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1 Introduction

The theory of Expected Utility (EU) is among the most elegant and esthetically pleas-

ing results in all of economics. It shows that if a preference ordering over a given set of

gambles is complete, transitive, continuous, and, in addition, it satisfies the indepen-

dence axiom, then utility is linear in objective probabilities.1 The idea that a gamble’s

utility could be represented by the mathematical expectation of its utility outcomes

dates to the St. Petersburg Paradox (Bernouilli, 1738). The idea that a gamble’s

utility was necessarily such an expectation if independence and the other axioms were

satisfied became clear only in the 1950’s (Samuelson, 1952, 1953).2

Two parallel research tracks have developed with respect to the independence ax-

iom. The first takes linearity-in-probabilities as given and fits functional forms of the

utility of consumption to experimental data (Holt and Laury, 2002).3 The second track

focuses on identifying violations of independence.4 Principal among these are Allais’

(1953b) well documented and extensively replicated common consequence and common

ratio paradoxes.5

These and other violations of EU motivated new theoretical and experimental ex-

1Subjective Expected Utility is not discussed in this paper. All results will pertain only to objective
probabilities.

2The independence axiom is closely related to the Savage (1954) ‘sure-thing principle’ for subjective
expected utility (Samuelson, 1952). Expected utility became known as von Neumann-Morgenstern
(vNM) preferences after the publication of von Neumann and Morgenstern (1944). Independence,
however, was not among the discussed axioms, but rather implicitly assumed. Samuelson (1952,
1953) discusses the resulting confusion and his suspicion of an implicit assumption of independence in
the vNM treatment. Samuelson’s suspicion was then confirmed in a note by Malinvaud (1952). For
an excellent discussion of the history of the independence axiom, see Fishburn and Wakker (1995).

3Harrison and Rutstrom (2008) provide a detailed summary of both the experimental methods and
estimation exercises associated with this literature.

4This second line of research began contemporaneously with the recognition of the importance
of the independence axiom. Indeed Allais’ presentation of Allais (1953a) was in the same session
as Samuelson’s presentation of Samuelson (1953) and the day after Savage’s presentation of Savage
(1953) at the Colloque Internationale d’Econométrie in Paris in May of 1952.

5In addition to the laboratory replications of Kahneman and Tversky (1979); Tversky and Kah-
neman (1992), there is now an extensive catalogue of Allais style violations of EU (Camerer, 1992;
Harless and Camerer, 1994; Starmer, 2000). Other tests have demonstrated important failures of EU
beyond the Allais Paradox (Allais, 1953b). These include the calibration theorem (Rabin, 2000a,b),
and goodness-of-fit comparisons (Camerer, 1992; Hey and Orme, 1994; Harless and Camerer, 1994).
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ercises, the most noteworthy being Cumulative Prospect Theory’s (CPT) inverted S -

shaped non-linear probability weighting (Kahneman and Tversky, 1979; Quiggin, 1982;

Tversky and Kahneman, 1992; Tversky and Fox, 1995). In a series of experiments elicit-

ing certainty equivalents for gambles, Tversky and Kahneman (1992) and Tversky and

Fox (1995) estimated utility parameters supporting a model in which subjects “edit”

probabilities by down-weighting high probabilities and up-weighting low probabilities.

Identifying the S -shape of the weighting function and determining its parameter val-

ues has received significant attention both theoretically and in experiments (Wu and

Gonzalez, 1996; Prelec, 1998; Gonzalez and Wu, 1999; Abdellaoui, 2000).6

Perhaps suprisingly, there are few direct tests of the independence axiom’s most

critical implication: linearity-in-probabilities of the expected utility function. If, as in

the first branch of literature, the independence axiom is assumed for identification of

utility parameters, then the axiom cannot be rejected. Likewise, in the second branch,

tests of probability weighting often are not separate from functional form assumptions

and thus are unlikely to confirm the independence axiom if it in fact holds unless, of

course, both consumption utility and the weighting function are correctly specified.7

In this paper, we provide a simple direct test of linearity-in-probabilities that reveals

when independence holds, how it fails, and the nature of violations. We reintroduce an

experimental method, which we call the uncertainty equivalent. Whereas a certainty

equivalent identifies the certain amount that generates indifference to a given gamble,

the uncertainty equivalent identifies the probability mixture over the gamble’s best

outcome and zero that generates indifference. For example, consider a (p, 1−p) gamble

over $10 and $30, (p; 10, 30). The uncertainty equivalent identifies the (q, 1−q) gamble

6Based upon the strength of these findings researchers have developed new methodology for eliciting
risk preferences such as the ‘trade-off’ method (Wakker and Deneffe, 1996) that is robust to non-linear
probability weighting.

7This observation is made by Abdellaoui (2000). Notable exceptions are the non-parametric prob-
ability weighting estimates of Gonzalez and Wu (1999); Bleichrodt and Pinto (2000) and Abdellaoui
(2000) which find support for non-linearity-in-probabilities (see sub-section 4.2 for discussion).
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over $30 and $0, (q; 30, 0), that generates indifference.8 Independence implies a linear

relationship between p and q. The uncertainty equivalent draws its motivation from

the derivation of expected utility, where the cardinal index for a gamble is derived

as the probability mixture over the best and worst options in the space of gambles.9

This means that in an uncertainty equivalent measure, the elicited q in (q;Y, 0) can be

interpreted as a utility index for the p gamble, (p;X, Y ), when Y > X > 0.

The uncertainty equivalent can be used to inform the discussion of a variety of non-

EU preference models including S -shaped probability weighting.10 Importantly, in the

uncertainty equivalent environment, these predictions are independent of the functional

form of utility. Hence, unlike the exercises described above, uncertainty equivalents can

explore the nature of probability distortions without potential confounds of functional

forms.

We conducted a within-subject experiment with 76 undergraduates at the Univer-

sity of California, San Diego, using both uncertainty and certainty equivalents. Using

8We recognize that it is a slight abuse of traditional notation to have the probability refer to
the lower outcome in the given gamble and the higher outcome in the uncertainty equivalent. It
does, however, ease explication to have p refer to the probability of the low value and q refer to the
probability of the high value.

9Such derivations are provided in most textbook treatments of expected utility. See, e.g. Varian
(1992). We should be clear to distinguish the uncertainty equivalent from a ‘probability equivalent’.
A probability equivalent elicits the probability of winning that makes a gamble indifferent to a sure
amount. Uncertainty equivalents have risk on both sides of the indifference condition. Our research has
uncovered that methods like our uncertainty equivalent were discussed in Farquhar’s (1984) excellent
survey of utility assessment methods and, to our knowledge, were implemented experimentally in only
one study of nine subjects using hypothetical monetary rewards (McCord and de Neufville, 1986), and
a number of medical questionnaires (Magat, Viscusi and Huber, 1996; Oliver, 2005, 2007; Bleichrodt,
Abellan-Perinan, Pinto-Prades and Mendez-Martinez, 2007). One important difference between these
techniques and our own is that prior research elicited the gamble (q;Y, 0) indifferent to an assessment
gamble (p;X, 0) and not (p;X,Y ). This distinction is important since if the gambles share a common
low outcome, the researcher cannot easily separate competing behavioral decision theories around
p = 1, as we show.

10Additional models that deliver specific predictions in the uncertainty equivalent environment are
expectations-based reference-dependence such as disappointment aversion (Bell, 1985; Loomes and
Sugden, 1986; Gul, 1991) and “u-v” preferences (Neilson, 1992; Schmidt, 1998; Diecidue, Schmidt
and Wakker, 2004). These models capture the intuition of Allais (1953b) that when options are
far from certain, individuals act effectively as EU maximizers but, when certainty is available, it is
disproportionately preferred. The u-v model differs in important ways from extreme or even discon-
tinuous probability weighting and prior experiments have demonstrated these differences (Andreoni
and Sprenger, 2011).
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uncertainty equivalents we find that p and q are, quite strikingly, related linearly for

values of p away from certainty. This linearity breaks down as probabilities approach 1,

violating expected utility. Interestingly, the nature of the violation stands in stark con-

trast to standard S-shaped formulations of cumulative prospect theory. However, when

we turn to our certainty equivalents data, these same subjects reproduce with precision

the standard finding of S-shaped weighting. These apparently disparate findings are

linked by a puzzling fact. Nearly 40% of our subjects in the uncertainty equivalent

environment demonstrate a surprising preference for certainty. These subjects exhibit

a higher uncertainty equivalent for a certain, low outcome than for a nearby dominant

gamble offering this low outcome with probability 0.95 and something greater other-

wise. This indirect violation of first order stochastic dominance, akin to the recently

debated ‘uncertainty effect’(Gneezy, List and Wu, 2006; Rydval, Ortmann, Prokosheva

and Hertwig, 2009; Keren and Willemsen, 2008; Simonsohn, 2009), has substantial pre-

dictive power. Subjects who violate stochastic dominance are significantly more likely

to exhibit hallmarks of S -shaped probability weighting in their certainty equivalents

behavior.

Understanding these results, particularly the predictive power of dominance viola-

tions in delivering standard prospect theory shapes, presents a key challenge. Violations

of first order stochastic dominance is a normatively unappealing feature of a theory

of decision-making under uncertainty, while the prospect theoretic S -shapes are often

thought to be a primitive, grounded in individuals’ reactions to changing probabili-

ties. Our results are problematic for the potentially attractive view of seeing stochastic

dominance violations as mistakes and probability weighting as a preference. The two

phenomena correlate at a high level. Clearly, more work is necessary to understand

the source of these phenomena. In one suggestive, but far from conclusive exercise we

indicate that specific preferences for certainty as in “u-v” preferences (Neilson, 1992;

Schmidt, 1998; Diecidue et al., 2004) or disappointment aversion (Bell, 1985; Loomes
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and Sugden, 1986; Gul, 1991) can generate the dominance violations of the uncertainty

equivalents, especially if there are small decision or measurement errors, and account at

least partially for the probability weighting of the certainty equivalents.11 This exercise

indicates that probability weighting, as often elicited in certainty-based experiments

may be an artifact of specific preferences for certainty coupled with specification error.

Our experiments are, of course, not the first to recognize the importance of certainty.

The original Allais (1953b) paradoxes drew attention to certainty being “disproportion-

ately preferred,” and others have noted the preponderance of the evidence against EU

implicates certainty as a factor (Conlisk, 1989; Camerer, 1992; Harless and Camerer,

1994; Starmer, 2000). Recognizing that certainty may be preferred gives a reason,

perhaps, to expect non-EU behavior in experimental methodologies such as certainty

equivalents: Allais style certainty effects are built into the experimental design.

The paper continues as follows. Section 2 discusses the uncertainty equivalent

methodology and develops predictions based on different preference models. Section 3

presents experimental design details. Section 4 presents results and Section 5 presents

a corresponding discussion. Section 6 concludes.

2 The Uncertainty Equivalent

Consider a lottery (p;X, Y ) which provides $X with probability p and $Y > $X with

probability 1 − p. A certainty equivalent task elicits the certain amount, $C, that is

indifferent to this gamble. The uncertainty equivalent elicits the q-gamble over $Y and

$0, (q;Y, 0), that is indifferent to this gamble. Take for example a 50%-50% gamble

paying either $10 or $30. The uncertainty equivalent is the q-gamble over $30 and $0

11Importantly, some disappointment averse models are constructed with assumptions guaranteeing
that the underlying preferences satisfy stochastic dominance, taking violations of stochastic dominance
as a disqualifying feature of a model of behavior (Loomes and Sugden, 1986; Gul, 1991), while others
are not (Bell, 1985). We remain agnostic about whether violations of dominance reflect true prefer-
ences, or are a result of a preference for certainty, as in disappointment aversion or u-v preferences,
coupled with noise. Exploring such a distinction is an interesting question for future research.
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that generates indifference.

Under standard preference models, a more risk averse individual will, for a given

gamble, have a lower certainty equivalent, C, and a higher uncertainty equivalent, q.

A powerful distinction of the uncertainty equivalent is, however, that it is well-suited

to identifying alternative preference models such as S -shaped probability weighting,

where the non-linearity of the weighting function can be recovered directly. Though the

uncertainty equivalent method could be easily applied to the estimation of parameters

for specific models of decision-making, these exercises are left to future work. Given

the potential sensitivity of parameter values to variations in the decision environment,

we instead focus on qualitative differences based on implied shape predictions.

2.1 Predictions

We present empirical predictions in the uncertainty equivalent environment for ex-

pected utility and S -shaped probability weighting.12 Unlike experimental contexts that

require functional form assumptions for model identification, the uncertainty equiva-

lent can provide tests of these specifications based on the relationship between p and

q without appeal to specific functional form for utility.

2.1.1 Expected Utility

Consider a gamble with probability p of $X and probability 1− p of a larger payment

$Y > $X. The uncertainty equivalent of this prospect is the value q satisfying

p · u(X) + (1− p) · u(Y ) = q · u(Y ) + (1− q) · u(0).

12We also provide some predictions based on disappointment aversion, and u-v preferences in Section
5. This is, of course, a limited list of the set of potentially testable decision models. For example,
we do not discuss the anticipatory utility specifications of Kreps and Porteus (1978) and Epstein and
Zin (1989) as experimental uncertainty was resolved during the experimental sessions. These models
generally reduce to expected utility when uncertainty is resolved immediately.
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Assuming u(0) = 0, u(Y ) > u(X), and letting θ = u(X)/u(Y ) < 1, then

q = p · u(X)

u(Y )
+ 1− p = 1− p · (1− θ),

and

dq

dp
=
u(X)

u(Y )
− 1 = −(1− θ) < 0.

Thus, expected utility generates a negative linear relationship between the probability

p of $X and the probability q of $Y . This is an easily testable prediction.

2.1.2 Cumulative Prospect Theory Probability Weighting

Under Cumulative Prospect Theory, probabilities are weighted by the non-linear

function π(p).13 One popular functional form to which we give specific attention

is the one parameter function used in Tversky and Kahneman (1992)14, π(p) =

pγ/(pγ + (1 − p)γ)1/γ, 0 < γ < 1. This inverted S -shaped function, as with others

used in the literature, has the property that π′(p) approaches infinity as p approaches

0 or 1. Probability weights are imposed on the higher of the two utility values.15

Under this CPT formulation, the uncertainty equivalent indifference condition is

(1− π(1− p)) · u(X) + π(1− p) · u(Y ) = π(q) · u(Y ) + (1− π(q)) · u(0).

13The key difference between Cumulative Prospect Theory and the original formulation posed in
Kahneman and Tversky (1979) is weighting of the cumulative distribution as opposed to weighting
each probability separately. In Appendix A.1, we provide additional analysis for non-cumulative
prospect theory which generates broadly similar predictions in the implemented uncertainty equivalent
environments to Cumulative Prospect Theory.

14Tversky and Fox (1995) and Gonzalez and Wu (1999) employ a similar two parameter π(p)
function. See Prelec (1998) for alternative S -shaped specifications.

15This formulation is assumed for binary gambles over strictly positive outcomes in Kahneman and
Tversky (1979) and for all gambles in Tversky and Kahneman (1992). We abstract away from prospect
theory’s fixed reference point formulation as static reference points do not alter the analysis.
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Again letting u(0) = 0 and θ = u(X)/u(Y ) < 1,

(1− π(1− p)) · θ + π(1− p) = π(q).

This implicitly defines q as a function of p, yielding

dq

dp
= −π

′(1− p)
π′(q)

· [1− θ] < 0.

As with expected utility, q and p are negatively related. Contrary to expected utility,

the rate of change, dq/dp, depends on both p and q. Importantly, as p approaches

1, π′(1 − p) approaches infinity and, provided finite π′(q), the slope dq/dp becomes

increasingly negative.16 This is a clearly testable alternative to expected utility.

Importantly, the argument does not rest on the derivatives of the probability weight-

ing function. Any modified S -shaped weighting function featuring up-weighting of low

probabilities and down-weighting of high probabilities will share the characteristic that

the relationship between q and p will become more negative as p approaches 1. This

would be the case for virtually all functional forms and parameter values discussed in

Prelec (1998) and for functions respecting condition (A) of the Quiggin (1982) weight-

ing function. Take p close to 1 and (1− p) close to zero, u(Y ) will be up-weighted and

u(X) will be down-weighted on the left hand side of the above indifference condition.

16It is difficult to create a general statement for all probabilities between zero and one based upon
the second derivative d2q/dp2, as the second derivatives of the weighting function can be positive or
negative depending on the concavity or convexity of the S -shaped distortion. The second derivative
is

d2q

dp2
=
π′′(1− p) · [1− θ] · π′(q) + π′′(q) dq

dp · π
′(1− p) · [1− θ]

π′(q)2
.

However, for p near 1, the sign is partially determined by π′′(q) which may be negative or positive.
For S -shaped weighting, π′′(1 − p) will be negative in the concave region of low probabilities, and
dq/dp will be negative from the development above. If q lies in the convex weighting region, such
that π′′(q) > 0, then d2q/dp2 < 0 and the relationship is concave and may remain so with π′′(q) < 0.
Consensus puts the concave region between probability 0 and around 1/3 (Tversky and Kahneman,
1992; Tversky and Fox, 1995; Prelec, 1998). As will be seen, the uncertainty equivalents for p = 1 lie
substantially above 1/3 for all of our experimental conditions such that a concave relationship between
p and q would be expected.
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In order to compensate for the up-weighting of the good outcome on the left hand side,

q on the right hand side must be high. At p = 1, the up-weighting of u(Y ) disappears

precipitously and so q decreases precipitously to maintain indifference.

To assess the power of the conducted tests in the domain of S -shaped probability

weighting we simulate data in our experimental environment for the probability weight-

ing formulation and parameter finding of Tversky and Kahneman (1992) (γ = 0.61).

This simulation exercise is detailed in Appendix A.1, demonstrating that a substantial

concave relationship is obtained both through regression analysis and non-parametric

test statistics at parameter levels generally estimated in the experimental literature.

Figure 1 presents the theoretical predictions of the EU and S -shaped probability

weighting of the form proposed by Tversky and Kahneman (1992), π(p) = pγ/(pγ+(1−

p)γ)1/γ, with γ ∈ {0.4, 0.5, 0.7}. Importantly, the uncertainty equivalent environment

provides clear separation between the CPT S -shaped probability weighting and EU

regardless of the form of utility. Under expected utility, q should be a linear function

of p. Under S -shaped probability weighting, q should be a concave function of p with

the relationship growing more negative as p approaches 1.

3 Experimental Design

Eight uncertainty equivalents were implemented with probabilities p ∈

{0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 1} in three different payment sets,

(X, Y ) ∈ {(10, 30), (30, 50), (10, 50)}, yielding 24 total uncertainty equivalents.

The experiment was conducted with paper-and-pencil and each payment set (X, Y )

was presented as a packet of 8 pages. The uncertainty equivalents were presented in

increasing order from p = 0.05 to p = 1 in a single packet.

On each page, subjects were informed that they would be making a series of deci-

sions between two options. Option A was a p chance of receiving $X and a 1−p chance

of receiving $Y . Option A remained the same throughout the page. Option B varied in
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Figure 1: Empirical Predictions

0.0 0.2 0.4 0.6 0.8 1.0

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Assessment Gamble, (p; X,Y)

U
nc

er
ta

in
ty

 E
qu

iv
al

en
t, 

(q
; Y

,0
)

X=10, Y=30

CPT
γ = 0.4

CPT
γ = 0.5

CPT
γ = 0.7

EU

Note: Empirical predictions of the relationship between assessment gambles, (p;X, Y ),
and uncertainty equivalents (q;Y, 0) for Expected Utility, and S -shaped CPT prob-
ability weighting with π(p) = pγ/(pγ + (1 − p)γ)1/γ, γ ∈ {0.4, 0.5, 0.7}. Apart from
probability distortions linear utility is assumed with X = 10, Y = 30 used for the
figure.

steps from a 5 percent chance of receiving $Y and a 95 percent chance of receiving $0

to a 99 percent chance of receiving $Y and a 1 percent chance of receiving $0. Figure

2, Panel A provides a sample decision task. In this price list style experiment, the row

at which a subject switches from preferring Option A to Option B indicates the range

of values within which the uncertainty equivalent, q, lies.

A common frustration with price lists is that anywhere from 10 to 50 percent of
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subjects can be expected to switch columns multiple times.17 Because such multiple

switch points are difficult to rationalize and may indicate subject confusion, it is com-

mon for researchers to drop these subjects from the sample.18 Instead, we augmented

the standard price list with a simple framing device designed to clarify the decision

process. In particular, we added a line to both the top and bottom of each price list

in which the choices were clear, and illustrated this by checking the obvious best op-

tion. The top line shows that each p-gamble is preferred to a 100 percent chance of

receiving $0 while the bottom line shows that a 100 percent chance of receiving $Y is

preferred to each p-gamble. These pre-checked gambles were not available for payment,

but were used to clarify the decision task. This methodology is close to the clarifying

instructions from the original Holt and Laury (2002), where subjects were described a

10 lottery choice task and random die roll payment mechanism and then told, “In fact,

for Decision 10 in the bottom row, the die will not be needed since each option pays

the highest payoff for sure, so your choice here is between 200 pennies or 385 pennies.”

Since the economist is primarily interested in the price list method as a means of

measuring a single choice – the switching point – it seemed natural to include language

to this end. Hence, in directions subjects were told “Most people begin by preferring

Option A and then switch to Option B, so one way to view this task is to determine the

best row to switch from Option A to Option B.” Our efforts appear to have reduced

the volume of multiple switching dramatically, to less than 1 percent of total responses.

Individuals with multiple switch points are removed from analysis and are noted.

In order to provide an incentive for truthful revelation of uncertainty equivalents,

subjects were randomly paid one of their choices in cash at the end of the experimen-

tal session.19 This random-lottery mechanism, which is widely used in experimental

17Holt and Laury (2002) observed around 10 percent and Jacobson and Petrie (2009) observed
nearly 50 percent multiple switchers. An approximation of a typical fraction of subjects lost to
multiple switch points in an MPL is around 15 percent.

18Other options include selecting one switch point to be the “true point” (Meier and Sprenger, 2010)
or constraining subjects to a single switch point (Harrison, Lau, Rutstrom and Williams, 2005).

19Please see the instructions in the Appendix for payment information provided to subjects.
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economics, does introduce a compound lottery to the decision environment. In a series

of experiments involving decisions over risky prospects, including those involving cer-

tainty, Starmer and Sugden (1991); Cubitt, Starmer and Sugden (1998) demonstrate

that this mechanism generally does not suffer from contamination effects in practice.

Seventy-six subjects were recruited from the undergraduate population at University

of California, San Diego. The experiment lasted about one hour and average earnings

were $24.50, including a $5 minimum payment.

3.1 Certainty Equivalents and Additional Risk Measures

In addition to the uncertainty equivalents discussed above, subjects faced 7 stan-

dard certainty equivalents tasks with p gambles over $30 and $0 from the set p ∈

{0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95}. These probabilities are identical to those used

in the original probability weighting experiments of Tversky and Kahneman (1992)

and Tversky and Fox (1995). The certainty equivalents were also presented in price

list style with similar language to the uncertainty equivalents and could also be chosen

for payment.20 An example of our implemented certainty equivalents is presented in

Figure 2, Panel B.

As a buffer between the certainty and uncertainty equivalents tasks, we also im-

plemented two Holt and Laury (2002) risk measures over payment values of $10 and

$30. Examples of these additional risk measures are provided in the appendix. Two

orders of the tasks were implemented: 1) UE, HL, CE and 2) CE, HL, UE to examine

order effects, and none were found. Though we used the HL task primarily as a buffer

between certainty and uncertainty equivalents, a high degree of correlation is obtained

across elicitation techniques. As the paper is already long, correlations with HL data

20Multiple switching was again greatly reduced relative to prior studies to less than 1 percent of
responses. Individuals with multiple switch points are removed from analysis and are noted. As will
be seen, results of the CE task reproduce the results of others. This increases our confidence that
our innovations with respect to the price lists did not result in biased or peculiar measurement of
behavior.
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are discussed primarily in footnotes.

4 Results

We present our analysis in three sub-sections. First, we look at the uncertainty equiv-

alents and provide tests of linearity at the aggregate level, documenting violations

of expected utility close to probability 1. The nature of the violation is inconsis-

tent with standard formulations of CPT S -shaped weighting. Second, we consider the

standard certainty equivalents, reproducing the usual S -shaped probability weighting

phenomenon. We link these two results in a third individual analysis sub-section inves-

tigating violations of first order stochastic dominance. We find that 38% of subjects

exhibit dominance violations at probability 1 in our uncertainty equivalents and that

the probability weighting identified in the certainty equivalents is driven by these in-

dividuals. Understanding this correlation is the subject of the subsequent discussion.

4.1 Uncertainty Equivalents and Tests of Linearity

To provide estimates of the mean uncertainty equivalent and the appropriate standard

error for each of the 24 uncertainty equivalent tasks, we first estimate interval regres-

sions (Stewart, 1983).21 The interval response of q is regressed on indicators for all

probability and payment-set interactions with standard errors clustered on the sub-

ject level. We calculate the relevant coefficients as linear combinations of interaction

terms and present these in Table 1, Panel A. Figure 3 graphs the corresponding mean

uncertainty equivalent, q, for each p, shown as dots with error bars.22

21Virtually identical results are obtained when using OLS and the midpoint of the interval.
22Uncertainty equivalents correlate significantly with the number of safe choices chosen in the Holt-

Laury risk tasks. For example, for p = 0.5 the individual correlations between the uncertainty equiv-
alent q and the number of safe choices, S10, in the $10 HL task are ρq(10,30),S10

= 0.52 (p < 0.01),
ρq(30,50),S10

= 0.38 (p < 0.01), and ρq(10,50),S10
= 0.54 (p < 0.01). The individual correlations be-

tween the uncertainty equivalent, q, and the number of safe choices, S30, in the $30 HL task are
ρq(10,30),S30

= 0.54 (p < 0.01), ρq(30,50),S30
= 0.45 (p < 0.01), and ρq(10,50),S30

= 0.67 (p < 0.01). The
correlation between the number of safe choices in the HL tasks is also high,ρS10,S30 = 0.72 (p < 0.01).
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Figure 3: Uncertainty Equivalent Responses
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Note: Figure presents uncertainty equivalent, (q;Y, 0), corresponding to Table 1, Panel
A for each given gamble, (p;X, Y ), of the experiment. The solid black line corresponds
to a linear projection based upon data from p ≤ 0.75, indicating the degree to which
the data adhere to the expected utility prediction of linearity away from certainty.

The first question we ask is: are p and q in an exact linear relationship, as predicted

These results demonstrate consistency across elicitation techniques as higher elicited q and a higher
number of safe HL choices both indicate more risk aversion.
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by expected utility? To answer this we conducted a linear interval regression of q on p

for only those p ≤ 0.75, with a linear projection to p = 1. This is presented as the solid

line in Figure 3. Figure 3 shows a clear pattern. The data fit the linear relationship

extremely well for the bottom panel, the (X, Y ) = (10, 50) condition, but as we move up

the linear fit begins to fail for probabilities of 0.90 and above, and becomes increasingly

bad as p approaches certainty. In the (10, 30) condition (top panel), EU fails to the

point that the mean behavior violates stochastic dominance: the q for p = 1 is above

the q for p = 0.95. Since q is a utility index for the p-gamble, this implies that a low

outcome of $10 for sure is worth more than a gamble with a 95 percent chance of $10

and a 5 percent chance of $30.

To explore the apparent non-linearity near p = 1, Table 1, Panels B and C present

regression estimates of the relationship between q and p. Panel B estimates interval

regressions assuming a quadratic relationship, and Panel C assumes a linear relation-

ship. Expected utility is consistent with a square term of zero and S -shaped probability

weighting is consistent with a negative square term. Panel B reveals a zero square term

for the (10, 50) condition, but positive and significant square terms for both (30, 50)

and (10, 30) conditions.23

Our results are important for evaluating linearity-in-probabilities, and for under-

standing the robustness of the standard S -shaped weighting phenomenon. The data

indicate that expected utility performs well away from certainty where the data ad-

here closely to linearity. However, the data deviate from linearity as p approaches 1,

generating a convex relationship between p and q.

The regression analyses described above are complemented by non-parametric tests

of concavity and convexity. These tests, introduced by Abrevaya and Jiang (2003,

23The parametric specifications of Panels B and C can be compared to the non-parametric spec-
ification presented in Panel A with simple likelihood ratio chi-square tests. Neither the quadratic
nor the linear specification can be rejected relative to the fully non-parametric model: χ2(15)A,B =
8.23, (p = 0.91); χ2(18)A,C = 23.66, (p = 0.17). However, the linear specification of Panel C can be
rejected relative to the parsimonious quadratic specification of Panel B, χ2(3)B,C = 15.43, (p < 0.01).
We reject expected utility’s linear prediction in favor of a convex relationship between p and q.
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Table 1: Estimates of the Relationship Between q and p
(1) (2) (3)

(X, Y ) = ($10, $30) (X, Y ) = ($30, $50) (X, Y ) = ($10, $50)

Dependent Variable: Interval Response of Uncertainty Equivalent (q × 100)

Panel A: Non-Parametric Estimates

p× 100 = 10 -3.623*** -2.575*** -3.869***
(0.291) (0.321) (0.413)

p× 100 = 25 -13.270*** -8.867*** -11.840***
(0.719) (0.716) (0.748)

p× 100 = 50 -24.119*** -13.486*** -22.282***
(1.476) (0.916) (1.293)

p× 100 = 75 -34.575*** -17.790*** -30.769***
(2.109) (1.226) (1.777)

p× 100 = 90 -39.316*** -19.171*** -36.463***
(2.445) (1.305) (2.190)

p× 100 = 95 -41.491*** -20.164*** -39.721***
(2.635) (1.411) (2.425)

p× 100 = 100 -41.219*** -21.747*** -43.800***
(2.626) (1.536) (2.454)

Constant 95.298*** 96.822*** 96.230***
(0.628) (0.290) (0.497)

Log-Likelihood = -4498.66
AIC = -9047.32, BIC = 9185.02

Panel B: Quadratic Estimates

p× 100 -0.660*** -0.376*** -0.482***
(0.060) (0.035) (0.047)

(p× 100)2 0.002*** 0.002*** 0.001
(0.001) (0.000) (0.000)

Constant 98.125*** 97.855*** 97.440***
(0.885) (0.436) (0.642)

Log-Likelihood = -4502.77
AIC = -9025.55, BIC = 9080.63

Panel C: Linear Estimates

p× 100 -0.435*** -0.209*** -0.428***
(0.027) (0.016) (0.027)

Constant 95.091*** 95.603*** 96.718***
(0.678) (0.512) (0.714)

Log-Likelihood = -4510.49
AIC = -9034.98, BIC = 9073.54

Notes: Coefficients from single interval regression for each panel (Stewart, 1983) with 1823 obser-
vations. Standard errors clustered at the subject level in parentheses. 76 clusters. The regressions
feature 1823 observations because one individual had a multiple switch point in one uncertainty
equivalent in the (X,Y ) = ($10, $50) condition.

Level of significance: *p < 0.1, **p < 0.05, ***p < 0.01
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2005), develop non-parametric statistics constructed from examining the convexity or

concavity of each combination of ordered triples {(p1, q1), (p2, q2), (p3, q3)} | p1 < p2 <

p3 for a given payment set (X, Y ). If many more triples are convex relative to concave

or linear, the underlying relationship is likely to be convex.24

The statistic, Tn, takes all combinations of potential triples in a set of data with

n observations and counts the relative percentage of convex and concave triples. Ap-

pendix A.1 provides motivation and corresponding asymptotics for Tn, and simulates

behavior and corresponding statistics. Clearly, the prediction for Expected Utility is

that all triples are linear, so Tn should take value zero in each payment set. For S -

shaped weighting the majority of triples are predicted to be concave. In our simulations

of CPT, concave triples exceed convex triples by between 20 to 60 percentage points

in our three payment sets.

We analyze the aggregate data by simply investigating the value of Tn estimated

from the mean midpoint data in each payment set. In the series of 8 observations

for each payment set, there are
(
8
3

)
= 56 potential ordered triples. For payment set

(X, Y ) = (10, 30), we find Tn(10, 30) = 0.89, such that the percentage of convex triples

in the mean data exceed the percentage of concave triples by almost 90 percentage

points. Appendix A.1 discusses the construction of hypothesis tests following Abrevaya

and Jiang (2003, 2005). For the mean data, we reject the null hypothesis of linearity

at all conventional levels (z = 13.8, p < 0.01). Likewise for the mean data in payment

set (X, Y ) = (30, 50), we find Tn(30, 50) = 0.50 and we again reject the null hypothesis

of linearity (z = 3.0, p < 0.01). For the mean data in payment set (X, Y ) = (10, 50),

we find Tn(10, 50) = 0.04, echoing the near linearity observed in Table 1 Panel B, and

we fail to reject the null hypothesis of linearity (z = 0.14, p = 0.44).

The analysis of this sub-section generates two results. First, expected utility per-

forms well away from certainty. Second, at certainty behavior deviates from expected

24The relevant comparison is whether q2−q1
p2−p1

is greater than, less than or equal to q3−q2
p3−p2

. See
Appendix A.1 for further detail.
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utility in a surprising way, rejecting standard notions of Cumulative Prospect Theory.

The aggregate relationship, uncovered both non-parametrically and with regressions,

is convex. This result is in contrast to the linear prediction of expected utility and the

concave prediction of S -shaped probability weighting.

4.2 Certainty Equivalents Data

The data from our uncertainty equivalents environment are in contrast to a standard

S -shaped weighting account of deviations from expected utility. Given that uncertainty

equivalents are a minor deviation from the standard certainty equivalent environment in

which S -shaped weighting is robustly produced, this may come as a surprise. However,

we cannot tell if our subjects are an unusual selection. In this subsection we examine

standard certainty equivalents and document that our sample reproduces evidence of

S -shaped weighting.

Seven certainty equivalents tasks with p gambles over $30 and $0 from the set

p ∈ {0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95} were administered, following the probabili-

ties used in the original probability weighting experiments of Tversky and Kahneman

(1992) and Tversky and Fox (1995). The analysis also follows closely the presentation

and non-linear estimation techniques of Tversky and Kahneman (1992) and Tversky

and Fox (1995).

Figure 4 presents a summary of the certainty equivalents.25 As in sub-section 4.1,

we first conducted an interval regression of the certainty equivalent, C, on indicators

for the experimental probabilities. Following Tversky and Kahneman (1992), the data

are presented relative to a benchmark of risk neutrality such that, for a linear util-

ity function, Figure 4 directly reveals the probability weighting function, π(p). The

data show evidence of S -shaped probability weighting. Subjects appear significantly

25Figure 4 excludes one subject with multiple switching in one task. Identical aggregate results are
obtained with the inclusion of this subject. However, we cannot estimate probability weighting at the
individual level for this subject.
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Figure 4: Certainty Equivalent Responses
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Note: Mean certainty equivalent response. Solid line corresponds to risk neutrality.
Dashed line corresponds to fitted values from non-linear least squares regression (1).

risk loving at low probabilities and significantly risk averse at intermediate and high

probabilities. These findings are in stark contrast to those obtained in the uncertainty

equivalents discussed in Section 4.1. Whereas in uncertainty equivalents we obtain no

support for S -shaped probability weighting, in certainty equivalents we reproduce the
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probability weighting results generally found.26

Tversky and Kahneman (1992) and Tversky and Fox (1995) obtain probability

weighting parameters from certainty equivalents data by parameterizing both the utility

and probability weighting functions and assuming the indifference condition

u(C) = π(p) · u(30)

is met for each observation. We follow the parameterization of Tversky and Kahneman

(1992) with power utility, u(X) = Xα, and the one-parameter weighting function

π(p) = pγ/(pγ + (1 − p)γ)1/γ.27 Lower γ corresponds to more intense probability

weighting. The parameters γ̂ and α̂ are then estimated as the values that minimize

the sum of squared residuals of the non-linear regression equation

C = [pγ/(pγ + (1− p)γ)1/γ × 30α]1/α + ε. (1)

When conducting such analysis on our aggregate data with standard errors clustered

on the subject level, we obtain α̂ = 1.07 (0.05) and γ̂ = 0.73 (0.03).28 The hypothesis

of linear utility, α = 1, is not rejected, (F1,74 = 2.18, p = 0.15), while linearity in

probability, γ = 1, is rejected at all conventional levels, (F1,74 = 106.36, p < 0.01). The

model fit is presented as the dashed line in Figure 4. The obtained probability weighting

estimate compares favorably with the Tversky and Kahneman (1992) estimate of γ̂ =

26Certainty equivalents correlate significantly with the number of safe choices in the Holt-Laury risk
tasks. For example, for p = 0.5 the individual correlations between the midpoint certainty equivalent,
C, and the number of safe choices, S10 and S30, in the HL tasks are ρC,S10

= −0.24 (p < 0.05)
and ρC,S30

= −0.24 (p < 0.05). These results demonstrate consistency across elicitation techniques
as a lower certainty equivalent and a higher number of safe HL choices both indicate more risk
aversion. Additionally, the certainty equivalents correlate significantly with uncertainty equivalents.
For example, for p = 0.5 the individual correlations between the midpoint certainty equivalent, C,
and the midpoint of the uncertainty equivalent, q, are ρC,q(10,30) = −0.24 (p < 0.05), ρC,q(30,50) =
−0.25 (p < 0.05), and ρC,q(10,50) = −0.24 (p < 0.05).

27Tversky and Fox (1995) use power utility with curvature fixed at α = 0.88 from Tversky and
Kahneman (1992) and a two parameter π(·) function.

28For this analysis we estimate using the interval midpoint as the value of C, and note that the
dependent variable is measured with error.

21



0.61 and other one-parameter estimates such as Wu and Gonzalez (1996) who estimate

γ̂ = 0.71.

The findings of this sub-section indicate that our subjects are not selected on a

specific shape of risk preference. Though they fail to adhere to the S -shaped weighting

model in their uncertainty equivalent behavior, our subjects closely reproduce prior

findings of prospect theoretic shapes in the traditional certainty equivalent environ-

ment.

The uncertainty equivalent is motivated as an experimental environment where

the shape of probability distortions can be identified without confounds, while the

identification of probability weighting from certainty equivalents discussed above clearly

depends on the specification of utility in (1). In the following individual analysis sub-

section we investigate the link between our two experimental environments, drawing an

interesting correlation between violations of stochastic dominance in our uncertainty

equivalents and the identification of prospect theory shapes in our certainty equivalents.

4.3 Individual Analysis: Dominance Violations and Probabil-

ity Weighting

A substantial portion of our subjects violate first order stochastic dominance in their

uncertainty equivalent behavior. These violations are organized close to p = 1. Since

the q elicited in an uncertainty equivalent acts as a utility index, dominance violations

are identified when a subject reports a higher q for a higher p, indicating that they

prefer a greater chance of a smaller prize.

Each individual has 84 opportunities to violate first order stochastic dominance in

such a way.29 We can identify the percentage of choices violating stochastic dominance

29Identifying violations in this way recognizes the interval nature of the data as it is determined by
price list switching points. We consider violations within each payment set (X,Y ). With 8 probabilities
in each set, seven comparison can be made for p = 1 : p′ ∈ {0.95, 0.9, 0.75, 0.5, 0.25, 0.1, 0.05}. Six
comparisons can be made for p = 0.95 and so on, leading to 28 comparisons for each payment set and
84 within-set comparisons of this form.
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at the individual level and so develop an individual violation rate. To begin, away

from certainty, violations of stochastic dominance are few, averaging only 4.3% (s.d. =

6.4%). In the 21 cases per subject when certainty, p = 1, is involved, the individual

violation rate increases significantly to 9.7% (15.8%), (t = 3.88, p < 0.001). When

examining only the three comparisons of p = 1 to p′ = 0.95, the individual violation

rate increases further to 17.5% (25.8%), (t = 3.95, p < 0.001). Additionally, 38 percent

(29 of 76) of subjects demonstrate at least one violation of stochastic dominance when

comparing p = 1 to p′ = 0.95. This finding suggests that violations of stochastic

dominance are prevalent and tend to be localized close to certainty.

To simplify discussion, we will refer to individuals who violate stochastic dominance

between p = 1 and p′ = 0.95 as Violators. The remaining 62 percent of subjects are

classified as Non-Violators.30

Our finding of within-subject violations of stochastic dominance is evidence of the

hotly debated ‘uncertainty effect.’ Gneezy et al. (2006) discuss between-subject results

indicating that a gamble over book-store gift certificates is valued less than the cer-

tainty of the gamble’s worst outcome. Though the effect was reproduced in Simonsohn

(2009), other work has challenged these results (Keren and Willemsen, 2008; Rydval

et al., 2009). While Gneezy et al. (2006) do not find within-subject examples of the

uncertainty effect, Sonsino (2008) finds a similar within-subject effect in the Internet

auction bidding behavior of around 30% of individuals. Additionally, the uncertainty

effect was thought not to be present for monetary payments (Gneezy et al., 2006). Our

findings may help to inform the debate on the uncertainty effect and its robustness to

the monetary domain. Additionally, our results may also help to identify the source of

the uncertainty effect. In the following discussion we demonstrate that models which

30There were no session or order effects obtained for stochastic dominance violation rates or cate-
gorization of Violators. Violators are also more likely to violate stochastic dominance away from cer-
tainty. Their violation rate away from certainty is 8.2% (7.5%) versus 1.9% (4.1%) for Non-Violators,
(t = 4.70, p < 0.001). This, however, is largely driven by violations close to certainty.
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feature direct preferences for certainty, such as disappointment aversion or u-v pref-

erences, predict the observed violations of dominance at certainty. Indeed, something

close to the intuition of direct certainty preferences is hypothesized by Gneezy et al.

(2006), who argue that “an individual posed with a lottery that involves equal chance

at a $50 and $100 gift certicate might code this lottery as a $75 gift certicate plus some

risk. She might then assign a value to a $75 gift certicate (say $35), and then reduce

this amount (to say $15) to account for the uncertainty.”[p. 1291]

It is important to note that the violations of stochastic dominance that we docu-

ment are indirect measures of violation. We hypothesize that violations of stochastic

dominance would be less prevalent in direct preference rankings of gambles with a

dominance relation. Though we believe the presence of dominance violations can be

influenced by frames, this is likely true for the presence of many decision phenomena.

Table 2: Estimated Probability Weighting and Uncertainty Equivalent Behavior

(1) (2) (3) (4) (5) (6)

Dependent Variable: γ̂i

Violator (= 1) -0.113* -0.167***
(0.059) (0.060)

p = 1 vs. p = 0.95 Violation Rate -0.264** -0.300***
(0.103) (0.105)

p = 1 vs. p < 1 Violation Rate -0.520** -0.707***
(0.197) (0.165)

Constant 0.864*** 0.863*** 0.867*** 0.857*** 0.871*** 0.869***
(0.045) (0.046) (0.042) (0.043) (0.040) (0.042)

Trimmed Sample No Yes No Yes No Yes
R-Squared 0.042 0.081 0.064 0.082 0.094 0.141
N 74 67 74 67 74 67

Notes: Coefficients from ordinary least squares regression with robust standard errors in paren-
theses. Columns (1), (3), (5), estimate effects for the full sample: 74 individuals with complete
data. Columns (2), (4), (6), estimate effects for the restricted sample with more precisely esti-
mated probability weighting parameters. Restricted sample is 10% trim of the estimated s.e.(γ̂i)
yielding 67 individuals.

Level of significance: *p < 0.1, **p < 0.05, ***p < 0.01

The puzzling behavior of violating dominance near p equal to 1 in our uncertainty
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equivalents is closely linked to the exhibiting probability weighting behavior in our

certainty equivalents. That is, violations of first order stochastic dominance have pre-

dictive power for the standard prospect theoretic shapes.

Assuming linear utility, α = 1, we estimate (1) for each individual based on the

midpoints of their certainty equivalent responses to obtain an individual probability

weighting estimate, γ̂i.
31 For the 74 (of 76) individuals with complete certainty equiv-

alent and uncertainty equivalent data, we estimate a mean γ̂i of 0.819 (s.d. = 0.272).

However, a number of subjects have parameter values estimated with limited precision.

While the mean standard error s.e.(γ̂i) is 0.124, 10% of subjects have standard errors

in excess of 0.25, limiting our ability to make unmuddied inference as to the extent of

their implied probability weighting.

In Table 2 we link the estimated probability weighting in certainty equivalents to the

observed behavior in the uncertainty equivalents. In column (1) we correlate the extent

of S -shaped weighting with whether individuals violate first order stochastic dominance

in the uncertainty equivalents, Violator (= 1). In column (2) we conduct a 10% trim of

s.e.(γ̂i), allowing us to focus on those individuals with more precisely identified values

of γ̂i. Though a limited correlation is obtained in column (1), under the 10% trim

of column (2), we document that violators of first order stochastic dominance have

significantly lower values of γ̂i. Interestingly, the point estimate has clear economic

import. Individuals who violate stochastic dominance at certainty have estimated

probability weighting parameters -0.2 below Non-Violators. Violators drive the non-

linearity in probabilities.

To further investigate the relationship between violating stochastic dominance and

estimated probability weighting, columns (3) through (6) use alternate measures of

dominance violation. Columns (3) and (4) use the Violation Rate between p = 1 and

31We motivate the assumption of α = 1 with the near linear utility estimated in the aggregate data.
A similar exercise is conducted by Tversky and Fox (1995) who fix α = 0.88 and estimate probability
weighting at the individual level. Attempting to estimate both α̂ and γ̂ based on seven observations
per subject yields extreme estimates in some cases.
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p = 0.95 as a continuous measure for the likelihood of exhibiting a dominance violation

close to certainty. Columns (5) and (6) use the Violation Rate between p = 1 and

all lower probabilities, such that a higher violation rate indicates a more intense kink

at certainty. Again, we document that individuals that violate stochastic dominance

and do so more intensely have lower estimated values of γ̂i. S -shaped probability

weighting as identified in standard certainty equivalents experiments correlates highly

with violating first order stochastic dominance in our uncertainty equivalents.

In the following discussion we provide an initial, but far from conclusive exercise

attempting to find a unifying framework for understanding our results.

5 Discussion

Our analysis demonstrates three critical findings. First, in an experimental environ-

ment where unconfounded inference can be made as to the shape of probability dis-

tortions, no support for S -shaped probability weighting is obtained. Rather, a number

of individuals exhibit a surprising preference for certainty, violating dominance near

p equal to 1. Second, in contrast to the 1st result, in standard certainty equivalents

evidence of S -shaped weighting is obtained. Third, these disparate findings appear

to be linked by individuals who exhibit violations of first order stochastic dominance.

Attempting to understand these linkages is the purpose of this discussion.

Our results are not easily explained by the potentially attractive view of interpreting

dominance violations as a mistake and S -shaped probability weighting as a preference

(or vice versa) as the two behaviors correlate significantly at the individual level. Ad-

ditionally, it is beyond the scope of this paper to definitively answer the question of

whether the observed behavior and correlation is rooted in a common preference or a

common decision error. However, we do provide an initial suggestive exercise indicating

that models with direct preferences for certainty as in disappointment aversion and u-v

preferences can generate both the convex shape and dominance violations of our un-
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certainty equivalents, especially if there are small decision or measurement errors, and

at least partially account for the observed probability weighting in our certainty equiv-

alents. This exercise suggests that probability weighting, as identified in estimation

from certainty equivalents may be a product of specification error.

To begin, we demonstrate that both u-v preferences and disappointment aversion

can generate a convex relationship between assessment gambles and their corresponding

uncertainty equivalents as well as dominance violations close to probability 1.

First, the u-v model (Neilson, 1992; Schmidt, 1998; Diecidue et al., 2004) is designed

to capture Allais’ (1953b) intuition of a disproportionate preference for security in the

‘neighborhood of certainty.’ The model adheres to expected utility away from certainty,

but certain outcomes are evaluated with a separate utility function. Let u(X) be the

utility of $X with uncertainty and v(X) be the utility of $X with certainty. Assume

v(X) > u(X) for $X > 0. Under such u-v preferences, p and q will have a linear

relationship away from p = 1. At p = 1, the discontinuity in utility introduces a

discontinuity in the relationship between p and q. At p = 1, the q that solves the

indifference condition

v(X) = q · u(Y )

will be

q =
v(X)

u(Y )
>
u(X)

u(Y )
.

With the u-v specification, q will be linearly decreasing in p and then discontinuously

increase at p = 1. This discontinuity introduces two characteristics to the relationship

between p and q. First, though the data are linear away from certainty, the discon-

tinuity will generate an overall convexity to the relationship. Second, the increase

in q at certainty of a low outcome corresponds to violations of first order stochastic

dominance. As with the other models, in Appendix A.1 we simulate data in our exper-

imental environment for u-v decision-makers. We demonstrate a substantially convex
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relationship between q and p, confirmed by both non-parametric and regression-based

tests, and potential violations of first order stochastic dominance.

Next, we consider disappointment aversion, referring to a broad class of reference-

dependent models where a gamble’s outcomes are evaluated relative to the gamble’s

EU certainty equivalent (Bell, 1985; Loomes and Sugden, 1986; Gul, 1991). Take a

p chance of $X and a 1 − p chance of a larger payment $Y > $X. The certainty

equivalent of this prospect is the value, Cp, satisfying p ·u(X) + (1− p) ·u(Y ) = u(Cp).

Taking Cp as the reference point, the reference-dependent utility of the p-gamble is

then

p · ũ(X|Cp) + (1− p) · ũ(Y |Cp)

where ũ(·|Cp) is the reference-dependent utility function with reference point Cp.

We assume a standard specification for ũ(·|Cp) (Bell, 1985; Loomes and Sugden,

1986),

ũ(z|Cp) = u(z) + µ(u(z)− u(Cp)),

where the function u(z) represents consumption utility for some outcome, z, and µ(·)

represents disappointment-elation utility relative to the referent, Cp. Several simpli-

fying assumptions are made. We assume a piecewise-linear disappointment-elation

function,

µ(u(z)− u(Cp)) =

 η · (u(z)− u(Cp)) if u(z)− u(Cp) ≥ 0

η · λ · (u(z)− u(Cp)) if u(z)− u(Cp) < 0

 ,

where the utility parameter η > 0 represents the sensitivity to disappointment and

elation and λ captures the degree of disappointment aversion. λ > 1 indicates disap-

pointment aversion.

When considering certainty, there is no prospect of disappointment. This leads

individuals with λ > 1 to be more risk averse at p = 1 than away from p = 1. In
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effect, this is what we term a preference for certainty in models of disappointment

aversion. The changing pattern of risk aversion moving towards certainty predicts

a convex shape to the relationship between (p;X, Y ) gambles and their uncertainty

equivalents, (q;Y, 0), and can, at specific parameter values, generate violations of first

order stochastic dominance at certainty.

Because the reference point depends on the gamble under consideration, utility de-

pends non-linearly on probabilities. Under the formulation above, the disappointment

averse utility of the gamble (p;X, Y ) is

Up = p · [u(X) + λη · (u(X)− u(Cp))] + (1− p) · [u(Y ) + η · (u(Y )− u(Cp))].

or

Up = [p+ p(1− p)η(λ− 1)]u(X) + [(1− p)− p(1− p)η(λ− 1)]u(Y ).

Defining

π̃(1− p) ≡ [(1− p)− p(1− p)η(λ− 1)],

we find

Up = [1− π̃(1− p)] · u(X) + π̃(1− p) · u(Y ).

Note that this implies that for two outcome gambles as in the uncertainty equivalent,

disappointment aversion is observationally equivalent to a form of CPT with the specific

weighting function, π̃(1− p). In addition π̃(1− p) ≤ 1− p if λ > 1, and π̃(1− p) is a

convex function describing a parabola with critical point 1−p = (η(λ−1)−1)/2η(λ−1).

Following identical logic to the development of S -shaped weighting, the uncertainty

equivalent indifference relation again implies

dq

dp
= − π̃

′(1− p)
π̃′(q)

· [1− θ] .

Because the weighting function, π̃(·), is convex, one can easily check that the second
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derivative, d2q
dp2

, is greater than zero, implying that disappointment aversion predicts a

convex relationship between p and q for λ > 1.32

As p approaches 1, π̃′(1 − p) approaches 1 + η − (ηλ) under our formulation. For

sufficiently disappointment averse individuals (λ > (1 + η)/η in this example) the

relationship between p and q will become positive as p approaches 1, provided π̃′(q) > 0.

This is an important prediction of disappointment aversion. A positive relationship

between p and q near certainty implies violations of first order stochastic dominance

as certainty is approached.

Importantly, some disappointment averse models are constructed with assumptions

guaranteeing that the underlying preferences satisfy stochastic dominance (Loomes and

Sugden, 1986; Gul, 1991), while others are not (Bell, 1985). However, identification

based on this distinction will not be fruitful as they are written to be deterministic

models of decision-making. With decision error, all such models would likely predict

dominance violations at some parameter values. Hence, we view violations of domi-

32We assume q ≥ 1 − p. Convexity implies π̃′(q) ≥ π̃′(1 − p). For the employed specification
π̃′(1−p) = 1−η(λ−1)+2(1−p)η(λ−1) and π̃′′(·) is a constant, such that π̃′′(1−p) = π̃′′(q) = 2η(λ−1).
This second derivative is positive under the assumption λ > 1. Hence, the sign of

d2q

dp2
=
π̃′′(1− p) · [1− θ] · π̃′(q) + π̃′′(q) dq

dp · π̃
′(1− p) · [1− θ]

π̃′(q)2
.

depends on the sign of

π̃′(q) +
dq

dp
· π̃′(1− p).

Plugging in for dq/dp

π̃′(q)− π̃′(1− p)
π̃′(q)

· [1− θ] · π̃′(1− p),

and dividing by π̃′(q) we obtain

1− π̃′(1− p)
π̃′(q)

· [1− θ] · π̃
′(1− p)
π̃′(q)

.

Because convexity of π̃(·) and q ≥ (1− p) implies π̃′(q) ≥ π̃′(1− p), π̃′(1− p)/π̃′(q) ≤ 1. Additionally
1− θ < 1, by the assumption of monotonicity. The second term is therefore a multiplication of three
terms that are less than or equal to 1 and one concludes

1− π̃′(1− p)
π̃′(q)

· [1− θ] · π̃
′(1− p)
π̃′(q)

> 0,

d2q/dp2 > 0, the relationship is convex.
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nance at p equal to 1 as indicative of a preference for certainty and not as a criterion

for restricting among the class of models with such a preference.

As with the other models, in Appendix A.1 we simulate data in our experimental

environment for disappointment averse decision-makers. We demonstrate a substan-

tially convex relationship between q and p under disappointment aversion, confirmed by

both non-parametric and regression-based tests, as well as the potential for violations

of stochastic dominance near certainty.

Models with specific preferences for certainty, such as disappointment aversion and

u-v preferences, yield the convex shapes obtained in our uncertainty equivalent en-

vironment as well as the prevalence of dominance violations near to certainty. The

next question we ask is how would an individual with such preferences behave in a

certainty equivalent? If certainty is disproportionately preferred, certainty equivalent

measures will overstate the level of risk aversion. If then the specific functional forms of

S -shaped weighting are fit to the data, this leads to a misspecification as the preference

for certainty confounds the identification of non-linearities in probabilities.

We investigate this claim in the four panels of Figure 5. The potential preference

for certainty is taken as the Violation Rate between p = 1 and p < 1.33 This measure is

correlated with the certainty equivalent responses for gambles offering a 5% , 25% , 75%

and 95% chance of receiving $30.34 Corresponding to the prediction, individuals with

a potentially more intense preference for certainty are significantly more risk averse for

33This measure is designed to capture the intensity of the preference for certainty as individuals that
are more disappointment averse (i.e larger λ) or have greater direct preferences for certainty should
violate dominance in a greater proportion of choices than those that are less so. We recognize that
this is a rough measure of intensity of certainty preference in the sense that individuals could have a
non-monotonic relationship between p and q away from certainty. However, given the low dominance
violation rates away from certainty, this is not overly problematic. A small minority of Non-Violators
have non-zero p = 1 vs p < 1 violation rates, as their elicited q at certainty is higher than that of some
lower probability. The average p = 1 vs p < 1 violation rate (0.069) for the 19% of Non-Violators (9
of 47) with positive values is about same as their average violation rate away from certainty (0.060).
For Violators, the average p = 1 vs p < 1 violation rate (0.235) is about three times their violation
rate away from certainty (0.082).

34Certainty equivalents are measured as the midpoint of the interval implied by an individual’s
switch point in a given certainty equivalent task.
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the higher probability gambles, with correlation coefficients, r, ranging from 0.27,

(p < 0.05) to 0.30, (p < 0.01). Insignificant positive correlations are found at lower

probabilities. For subjects with a more intense preference for certainty, the significant

increase in risk aversion at high probabilities (and the null effects at lower probabilities)

introduces more non-linearity into their estimated probability weighting functions. As

documented in Table 2, Columns (5) and (6) individuals with higher values of p = 1

vs. p < 1 Violation Rate have substantially and significantly more non-linear esti-

mated probability weighting functions. Of course, it should be stated that because

the predictions of disappointment aversion and u-v preferences are global, one cannot

easily accommodate the average finding of risk loving behavior at low probabilities.

Hence, direct preferences for certainty can give only a partial account of our certainty

equivalent data.

Models with direct preferences for certainty can rationalize the pattern of behav-

ior observed in the uncertainty equivalent data and at least partially account for the

certainty equivalent elicited probability weighting and the linkage between prospect

theoretic shapes and dominance violations. Further, this suggests that behavior in

certainty equivalents often attributed to S -shaped weighting may be the product of a

misspecification combined with direct preferences for certainty. Standard estimation

exercises assuming functional form for utility or probability weighting cannot be used

to directly test linearity-in-probabilities. Though the exercise we reported in this sec-

tion is meant only to provide some direction and intuition, it is nonetheless clear that

if people carry specific preferences for certainty then certainty based experiments may

yield non-expected utility behavior. In particular, the certainty effects Allais described

would be built into the experimental design.

To add to the puzzle, there exist a number of studies parametrically investigating

probability weighting in decisions without certainty (Tanaka, Camerer and Nguyen,

2010; Booij, van Praag and van de Kuilen, 2010). These parametric estimates indicate
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that S -shaped probability weighting may be observed in decisions without certainty

and clearly points to the need for future research. Additionally, attention must be

given to the ‘parameter-free’ elicitation techniques that find non-parametric support for

non-linear probability weights (Gonzalez and Wu, 1999; Abdellaoui, 2000; Bleichrodt

and Pinto, 2000). Importantly, both Gonzalez and Wu (1999) and Abdellaoui (2000)

make use of certainty equivalents or at least a number of certain outcomes to identify

probability weights, a technique that is misspecified if there exists a specific preference

for certainty.35 Bleichrodt and Pinto (2000) do not use certainty equivalents techniques,

but their experiment is designed not to elicit preferences over monetary payments, but

rather over hypothetical life years.36

In sum our results suggest that a direct preference for certainty is likely to play

some role in reconsidering the large body of research on models of risk.

6 Conclusion

Volumes of research exists exploring both the implications and violations of the inde-

pendence axiom. Surprisingly, little research exists directly testing the most critical

result of the independence axiom: linearity-in-probabilities of the Expected Utility

(EU) function. We present an experimental device that easily generates such a direct

test, the uncertainty equivalent. Uncertainty equivalents not only provide tests of ex-

pected utility’s linearity-in-probabilities, but also provides a methodology for testing

alternative preference models such as Cumulative Prospect Theory’s (CPT) inverted S -

35Abdellaoui (2000) makes use of the trade-off method of Wakker and Deneffe (1996) for elicitation
of the utility function and apparently used certainty equivalents for the elicitation of the probabil-
ity equivalent. Though we cannot be certain, the experiment is described as follows “In the PW
[Probability Weighting]-experiments, each subject was asked a new series of choice questions to de-
termine the probabilities p1, ..., p5 that make her indifferent between the outcome xi and the prospect
(x6, pi, x0), i = 1, ..., 5” (page 1504).

36Abdellaoui (2000), Bleichrodt and Pinto (2000), Booij and van de Kuilen (2009) and Booij et al.
(2010) share a two-stage elicitation procedure which ‘chains’ responses in order to obtain utility or
probability weighting values. Such chained procedures are common to the ‘trade-off’ (Wakker and
Deneffe, 1996) method of utility assessment. A discussed problem with these chained methods is that
errors propagate through the experiment.
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shaped probability weighting (Kahneman and Tversky, 1979; Tversky and Kahneman,

1992) without assumptions for the functional form of utility.

In a within-subject experiment with both uncertainty equivalents and standard

certainty equivalent methodology we demonstrate a series of important results. First,

independence performs well away from certainty where probabilities are found to be

weighted nearly linearly. Second, independence breaks down close to certainty. The

nature of the violation is contrary to standard S -shaped probability weighting. Third,

in certainty equivalents these same subjects reproduce with precision the standard find-

ing of S -shaped weighting. These apparently disparate results are linked by a puzzling

fact. Nearly 40% of subjects indirectly violate first order stochastic dominance as prob-

abilities approach 1 in our uncertainty equivalents. Such individuals are substantially

more likely to exhibit the hallmarks of S -shaped weighting in their certainty equivalent

behavior.

We show that models with specific preferences for certainty are able to rationalize

the pattern of behavior in the uncertainty equivalents and explain the linkage between

violations of dominance and certainty equivalent-elicited probability weighting. This

suggests that empirical work should take great care to separate certainty preferences

from other phenomena under investigation. Additionally, theoretical research should

take seriously models with specific preferences for certainty, (small scale) violations of

stochastic dominance, and their implications for decision-making under uncertainty.
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A Appendix: NOT FOR PUBLICATION

A.1 Non-Parametric Convexity/Concavity Measures

We investigate the relationship between given p-gambles, (p;X, Y ), and their uncer-
tainty equivalents (q;Y, 0) both by analyzing the coefficient of the square term in re-
gressions of q on p and p2, and by examining non-parametric statistics constructed
from examining the convexity or concavity of each combination of ordered triples
{(p1, q1), (p2, q2), (p3, q3)} | p1 < p2 < p3. The triples statistic, Tn, is constructed
following closely the work of Abrevaya and Jiang (2005), which provides more general
discussion and multivariate test statistics. The implemented triples statistic specifically
is discussed in a prior working paper (Abrevaya and Jiang, 2003).

Each decision theory makes a prediction for the relationship between p and q, such
that the model under consideration is

qi = f(pi) + εi, E[εi|xi] = 0, (i = 1, ..., n),

where εi is an iid, conditionally exogenous disturbance term. The objective is to analyze
whether the function f(·) is concave, convex, or linear on the unit interval.

Definition: A function f : [0, 1] → R is convex (concave) if a1f(p1) + a2f(p2) +
a3f(p3) ≥ f(a1p1 + a2p2 + a3p3) for any collection of p1, p2, p3 ∈ [0, 1] and non-negative
weights a1, a2, a3 such that a1 + a2 + a3 = 1.

Relatedly, if f(·) is a convex function, then

p1 < p2 < p3 ∈ [0, 1]⇒ f(p2)− f(p1)

p2 − p1
≤ f(p3)− f(p2)

p3 − p2
.37

This provides a useful basis for testing the relationship between p and q. Following
the construction of Abrevaya and Jiang (2003, 2005), note that

q2 − q1
p2 − p1

<
q3 − q2
p3 − p2

⇔ f(p2) + ε2 − f(p1)− ε1
p2 − p1

<
f(p3) + ε3 − f(p2)− ε2

p3 − p2
f(p2)− f(p1)

p2 − p1
− f(p3)− f(p2)

p3 − p2
<
ε3 − ε2
p3 − p2

− ε2 − ε1
p2 − p1

Given that the ε are zero in expectation and are iid, the right hand side of the last
equation is zero on average. Under these assumptions the concavity or convexity of
the function f(·) is reflected in the data triple {(p1, q1), (p2, q2), (p3, q3)} | p1 < p2 < p3

37To see this consider a convex function satisfying a1f(p1)+(1−a1−a3)f(p2)+a3f(p3) ≥ f(a1p1 +
(1−a1−a3)p2 +a3p3) for all a1, a3 ∈ [0, 1]. Consider the case where a1p1 +(1−a1−a3)p2 +a3p3 = p2
such that a1(p1 − p2) + a3(p3 − p2) = 0. Then a1f(p1) + (1 − a1 − a3)f(p2) + a3f(p3) ≥ f(p2).
Correspondingly, a1(f(p1)− f(p2)) + a3(f(p3)− f(p2)) ≥ 0, or a1(f(p2)− f(p1)) ≤ a3(f(p3)− f(p2)).
Note that if p1 < p2 < p3, then the number a3(p3 − p2) = a1(p2 − p1) is positive. Divide by

a3(p3 − p2) = a1(p2 − p1) and we have f(p2)−f(p1)
p2−p1

≤ f(p3)−f(p2)
p3−p2

.
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We define the slope between two order points {(pi, qi), (pj, qj)|pi < pj} as

mij ≡
qi − qj
pi − pj

,

and define the triples statistic, Tn as(
n

3

)−1 ∑
i<j<k

sign(mjk −mij)

where the summation is shorthand for summing over all combinations of ordered triples
in the data. The functions sign(·) captures the convexity or concavity of an ordered
triple, sign(x) = 1 if x > 0, −1 if x < 0, and 0 if x = 0. Following the logic above, a
triple is convex if sign(mjk −mij) > 0, a triple is concave if sign(mjk −mij) < 0, and
a triple is linear if sign(mjk −mij) = 0.

The statistic Tn takes all combinations of potential triples in a set of data with
n observations and counts the number of convex and concave triples. As Tn simply
represents the percentage of convex triples minus the percentage of concave triples in
a given data set, it also acts as a convenient description of the data and is a measure
along which we describe behavior.

Abrevaya and Jiang (2003, 2005) prove that under the assumptions of an iid sample
drawn from the considered model

√
n(Tn − θT )→ N(0, 9ζT )

where θT ≡ E[sign(mjk −mij)|xi < xj < xk] and 9ζT is the asymptotic variance, with
the 9 inherited from the nature of the statistic as a 3rd order U -statistic. A consistent
estimator of ζT is provided by

ζ̂T ≡ n−1
n∑
i=1

(

(
n− 1

2

)−1 ∑
j<k,j 6=i,k 6=i

hT (vi, vj, vk)− Tn)2,

with hT (vi, vj, vk) given by

hT (vi, vj, vk) ≡
∑
i,j,k

1(xi < xj < xk) · sign(mjk −mij)

The null hypothesis of linearity θT = 0 is easily tested by examining the value of

z =

√
nTn

3

√
ζ̂T

,

distributed standard normal under the null.
For our simulations, we modify slightly the calculation of Tn, to account

for the interval nature of the data. We conservatively consider a triple,
{(p1, q1), (p2, q2), (p3, q3)} | p1 < p2 < p3, to be convex if the triple remains convex
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when evaluated at the low ends of the intervals for q1 and q3. Likewise, a triple is
considered concave if the triple remains concave when evaluated at the low end of the
interval for q2.

In order to gain some initial intuition as to the values of these non-parametric test
statistics, we create data following the behavioral decision theories considered in this
paper for our experimental context. To be specific, we consider both cumulative and
non-cumulative prospect theory probability weighting with S -shaped weighting and
curvature parameter γ = 0.61, disappointment aversion with loss aversion parameter
λ = 2.5, and u-v preferences with risk neutrality under uncertainty, u(x) = x1, and
a specific preference for certainty, v(x) = x1.1. Sample individuals are placed in our
experimental context, their decisions predicted, and corresponding regression and non-
parametric test statistics calculated.

We provide a graphical presentation of the sample data for the considered behavioral
decision theories in Figure A1. Additionally, Table A1 provides the corresponding
regression and non-parametric statistics and p-values for the sample data both using
standard regression of the midpoint of q on p and p2 and the non-parametric strategy
outlined above.

First, for CPT probability weighting with the standard functional form of π(p) =
pγ/(pγ + (1 − p)γ)(1/γ), a linear utility function and γ = 0.61. A sample individual
with such preferences would behave as in the solid red line in Figure A1. Note that a
substantially concave relationship is obtained. Taking each interval midpoint for q and
regressing on p and p2 a negative square term is obtained for all three payment sets.
Likewise, non-parametric test statistics show that the percentage of concave triples
exceeds the percentage of convex triples by between 21 to 63% in each payment set.
Further, even with a limited number of observations in each payment set, we reject
the null hypothesis of linearity. For a CPT decision-maker with standard functional
forms and parameter values, the uncertainty equivalent environment is sufficient for
both eliciting and precisely identifying the concave shape to the data.

Second, we consider non-cumulative prospect theory probability weighting as orig-
inally proposed in Kahneman and Tversky (1979). We consider π(p) = pγ/(pγ + (1−
p)γ)(1/γ), but allow each outcome to be weighted individually such that π(p) + π(1−
p) 6= 1, generally. We again consider a linear utility function and γ = 0.61. A sample
individual with such preferences would behave as the solid purple line in Figure A1.
Important to note, we again document substantially concave relationships between p
and q in two of our three payment sets. However, the uncertainty equivalent envi-
ronment is not precise enough to identify the shape of the weighting function in the
payment set (X, Y ) = (30, 50). In this condition, all triples are plausibly linear, and
no inference can be made. However, the broad patterns of a concave relationship are
maintained both in the non-parametric tests and regression coefficients.

Third, we investigate disappointment aversion as described in Section 5. Disap-
pointment aversion is equivalent to cumulative prospect theory with a global shape to
the weighting function. We consider λ = 2.5, η = 1 such that the behavior is equivalent
to underweighting all probabilities. Further, as we consider λ > 2, η = 1, the model
will generate violations of first order stochastic dominance close to p = 1 in some con-
texts. A sample individual with such preferences would behave as the solid blue line
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Figure A1: Simulated Data
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Note: Midpoints of interval responses for simulated data following four behavioral
decisions theories: 1) Cumulative Prospect Theory with S -shaped probability weighting
(red); 2) Non-Cumulative Probability Weighting (purple); 3) Disappointment Aversion
(blue); 4) u-v Preferences (green).

in Figure A1. In both the regression and non-parametric tests we document convexity
to the relationship. Positive square terms are obtained in each regression context. The
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Table A1: Simulation Statistics
(1) (2) (3)

(X, Y ) = ($10, $30) (X, Y ) = ($30, $50) (X, Y ) = ($10, $50)

Panel A: Cumulative Prospect Theory, π(p) = pγ/(pγ + (1− p)γ)(1/γ), γ = 0.61

Non-Parametric Statistics
Tn -0.4107 -0.2143 -0.6250

9*ζ̂T 0.0100 0.0164 0.0381

z -11.6438 -4.7329 -9.0558
(p < 0.01) (p < 0.01) (p < 0.01)

Regression Estimates
Constant 0.9629 0.9633 0.9522

βp 0.0898 0.1274 -0.0605

βp2 -0.6409 -0.2860 -0.7069

Panel B: Non-Cumulative Prospect Theory, π(p) = pγ/(pγ + (1− p)γ)(1/γ), γ = 0.61

Non-Parametric Statistics
Tn -0.3036 0.0000 -0.4643

9*ζ̂T 0.0217 0.0000 0.0382

z -5.8279 - -6.7212
(p < 0.01) (−) (p < 0.01)

Regression Estimates
Constant 0.9649 0.9925 0.9680

βp -0.2476 -0.2702 -0.3293

βp2 -0.3208 0.0767 -0.4755

Panel C: Disappointment Aversion λ = 2.5, η = 1

Non-Parametric Statistics
Tn 0.3393 0.1964 0.5714

9*ζ̂T 0.1028 0.0101 0.0255

z 2.9932 5.5185 10.1193
(p < 0.01) (p < 0.01) (p < 0.01)

Regression Estimates
Constant 1.0055 1.0116 1.0467

βp -0.8070 -0.4856 -1.2089

βp2 0.4828 0.3035 0.7268

Panel D: u-v Preferences: u(x) = x1, v(x) = x1.1

Non-Parametric Statistics
Tn 0.2500 0.3571 0.2679

9*ζ̂T 0.0249 0.0219 0.0019

z 4.4836 6.8313 17.2183
(p < 0.01) (p < 0.01) (p < 0.01)

Regression Estimates
Constant 1.0192 1.0476 1.0315

βp -0.8572 -0.8968 -1.0923

βp2 0.2093 0.5570 0.2955

Notes: Non-parametric Tn statistics and z scores for the null hypothesis H0 : θ = 0 against a two-

sided alternative. Regression coefficients from the regression of the midpoint of the uncertainty

equivalent q on a constant p and p2.

non-parametric test statistics show that the percentage of convex triples exceeds the
percentage of concave triples by between 20 to 60% in each payment set. Further, we
reject the null hypothesis of linearity even with a limited number of observations in
each set. Hence, the uncertainty equivalent environment is sufficient for both eliciting
and precisely identifying the convex shape to the data predicted under disappointment
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aversion.
Fourth, we consider u-v preferences with the following parametric specification.

Under uncertainty, individuals act according to the risk neutral utility function u(x) =
x1 while under certainty they act according to v(x) = x1.1. A sample individual
with such preferences would behave as the solid green line in Figure A1. Similar to
disappointment averse preferences, a substantially convex relationship is obtained both
in regression and in the non-parametric tests.

The conducted exercise is meant to serve as a proving ground for the uncertainty
equivalent technique and our methods of analysis. If individuals behave according to
specific behavioral decision theories, the corresponding predicted concave, convex, or
linear relationships can both be uncovered and identified both in regression and via
non-parametric test statistics.
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A.2 Experimental Instructions
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Hello and Welcome.

ELIGIBILITY FOR THIS STUDY: To be in this study, you must be a

UCSD student. There are no other requirements. The study will be completely

anonymous. We will not collect your name, student PID or any other identifying

information. You have been assigned a participant number and it is on the note

card in front of you. This number will be used throughout the study. Please inform

us if you do not know or cannot read your participant number.



EARNING MONEY:

To begin, you will be given a $5 minimum payment. This $5 is yours. Whatever you earn from

the study today will be added to this minimum payment. All payments will be made in cash at the

end of the study today.

In this study you will make choices between two options. The first option will always be called

OPTION A. The second option will always be called OPTION B. In each decision, all you have

to do is decide whether you prefer OPTION A or OPTION B. These decisions will be made in 5

separate blocks of tasks. Each block of tasks is slightly different, and so new instructions will be

read at the beginning of each task block.

Once all of the decision tasks have been completed, we will randomly select one decision as the

decision-that-counts. If you preferred OPTION A, then OPTION A would be implemented. If you

preferred OPTION B, then OPTION B would be implemented.

Throughout the tasks, either OPTION A, OPTION B or both will involve chance. You will be

fully informed of the chance involved for every decision. Once we know which is the decision-that-

counts, and whether you prefer OPTION A or OPTION B, we will then determine the value of

your payments.

For example, OPTION A could be a 75 in 100 chance of receiving $10 and a 25 in 100 chance

of receiving $30. This might be compared to OPTION B of a 50 in 100 chance of receiving $30 and

a 50 in 100 chance of receiving nothing. Imagine for a moment which one you would prefer. You

have been provided with a calculator to help you in your decisions.

If this was chosen as the decision-that-counts, and you preferred OPTION A, we would then

randomly choose a number from 1 to 100. This will be done by throwing two ten-sided die: one for

the tens digit and one for the ones digit (0-0 will be 100). If the chosen number was between 1 and

75 (inclusive) you would receive $10 (+5 minimum payment) = $15. If the number was between 76

and 100 (inclusive) you would receive $30 (+5 minimum payment) = $35. If, instead, you preferred

OPTION B, we would again randomly choose a number from 1 to 100. If the chosen number was

between 1 and 50 (inclusive) you’d receive $0 (+5 minimum payment) = $5. If the number was

between 51 and 100 (inclusive) you’d receive $30 (+5 minimum payment) = $35.

In a moment we will begin the first task.



A.3 Sample Uncertainty Equivalents

49



TASKS 1-8

On the following pages you will complete 8 tasks. In each task you are asked to make a series of

decisions between two uncertain options: Option A and Option B.

In each task, Option A will be fixed, while Option B will vary. For example, in Task 1 Option

A will be a 5 in 100 chance of $10 and a 95 in 100 chance of $30. This will remain the same for

all decisions in the task. Option B will vary across decisions. Initially Option B will be a 5 in 100

chance of $30 and a 95 in 100 chance of nothing. As you proceed, Option B will change. The chance

of receiving $30 will increase, while the chance of receiving nothing will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B. Indicate

your preference by checking the corresponding box. Most people begin by preferring Option A and

then switch to Option B, so one way to view this task is to determine the best row to switch from

Option A to Option B.

The first question from Task 1 is reproduced as an example.

EXAMPLE
Option A or Option B

Chance of $10 Chance of $30 Chance of $0 Chance of $30

1) 5 in 100 95 in 100 ! or 95 in 100 5 in 100 !
If your prefer Option A, check the green box...

1) 5 in 100 95 in 100 !" or 95 in 100 5 in 100 !
If your prefer Option B, check the blue box...

1) 5 in 100 95 in 100 ! or 95 in 100 5 in 100 !"
Remember, each decision could be the decision-that-counts. So, it is in your

interest to treat each decision as if it could be the one that determines your pay-

ments.



TASK 1
On this page you will make a series of decisions between two uncertain options. Option A will be a 5 in
100 chance of $10 and a 95 in 100 chance of $30. Option B will vary across decisions. Initially, Option B
will be a 95 in 100 chance of $0 and a 5 in 100 chance of $30. As you proceed down the rows, Option B
will change. The chance of receiving $30 will increase, while the chance of receiving $0 will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B.

Option A or Option B
Chance of $10 Chance of $30 Chance of $0 Chance of $30

5 in 100 95 in 100 !" or 100 in 100 0 in 100 !
1) 5 in 100 95 in 100 ! or 95 in 100 5 in 100 !
2) 5 in 100 95 in 100 ! or 90 in 100 10 in 100 !
3) 5 in 100 95 in 100 ! or 85 in 100 15 in 100 !
4) 5 in 100 95 in 100 ! or 80 in 100 20 in 100 !
5) 5 in 100 95 in 100 ! or 75 in 100 25 in 100 !
6) 5 in 100 95 in 100 ! or 70 in 100 30 in 100 !
7) 5 in 100 95 in 100 ! or 65 in 100 35 in 100 !
8) 5 in 100 95 in 100 ! or 60 in 100 40 in 100 !
9) 5 in 100 95 in 100 ! or 55 in 100 45 in 100 !
10) 5 in 100 95 in 100 ! or 50 in 100 50 in 100 !
11) 5 in 100 95 in 100 ! or 45 in 100 55 in 100 !
12) 5 in 100 95 in 100 ! or 40 in 100 60 in 100 !
13) 5 in 100 95 in 100 ! or 35 in 100 65 in 100 !
14) 5 in 100 95 in 100 ! or 30 in 100 70 in 100 !
15) 5 in 100 95 in 100 ! or 25 in 100 75 in 100 !
16) 5 in 100 95 in 100 ! or 20 in 100 80 in 100 !
17) 5 in 100 95 in 100 ! or 15 in 100 85 in 100 !
18) 5 in 100 95 in 100 ! or 10 in 100 90 in 100 !
19) 5 in 100 95 in 100 ! or 5 in 100 95 in 100 !
20) 5 in 100 95 in 100 ! or 1 in 100 99 in 100 !

5 in 100 95 in 100 ! or 0 in 100 100 in 100 !"



TASK 2
On this page you will make a series of decisions between two uncertain options. Option A will be a 10 in
100 chance of $10 and a 90 in 100 chance of $30. Option B will vary across decisions. Initially, Option B
will be a 95 in 100 chance of $0 and a 5 in 100 chance of $30. As you proceed down the rows, Option B
will change. The chance of receiving $30 will increase, while the chance of receiving $0 will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B.

Option A or Option B
Chance of $10 Chance of $30 Chance of $0 Chance of $30

10 in 100 90 in 100 !" or 100 in 100 0 in 100 !
1) 10 in 100 90 in 100 ! or 95 in 100 5 in 100 !
2) 10 in 100 90 in 100 ! or 90 in 100 10 in 100 !
3) 10 in 100 90 in 100 ! or 85 in 100 15 in 100 !
4) 10 in 100 90 in 100 ! or 80 in 100 20 in 100 !
5) 10 in 100 90 in 100 ! or 75 in 100 25 in 100 !
6) 10 in 100 90 in 100 ! or 70 in 100 30 in 100 !
7) 10 in 100 90 in 100 ! or 65 in 100 35 in 100 !
8) 10 in 100 90 in 100 ! or 60 in 100 40 in 100 !
9) 10 in 100 90 in 100 ! or 55 in 100 45 in 100 !
10) 10 in 100 90 in 100 ! or 50 in 100 50 in 100 !
11) 10 in 100 90 in 100 ! or 45 in 100 55 in 100 !
12) 10 in 100 90 in 100 ! or 40 in 100 60 in 100 !
13) 10 in 100 90 in 100 ! or 35 in 100 65 in 100 !
14) 10 in 100 90 in 100 ! or 30 in 100 70 in 100 !
15) 10 in 100 90 in 100 ! or 25 in 100 75 in 100 !
16) 10 in 100 90 in 100 ! or 20 in 100 80 in 100 !
17) 10 in 100 90 in 100 ! or 15 in 100 85 in 100 !
18) 10 in 100 90 in 100 ! or 10 in 100 90 in 100 !
19) 10 in 100 90 in 100 ! or 5 in 100 95 in 100 !
20) 10 in 100 90 in 100 ! or 1 in 100 99 in 100 !

10 in 100 90 in 100 ! or 0 in 100 100 in 100 !"



TASK 3
On this page you will make a series of decisions between two uncertain options. Option A will be a 25 in
100 chance of $10 and a 75 in 100 chance of $30. Option B will vary across decisions. Initially, Option B
will be a 95 in 100 chance of $0 and a 5 in 100 chance of $30. As you proceed down the rows, Option B
will change. The chance of receiving $30 will increase, while the chance of receiving $0 will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B.

Option A or Option B
Chance of $10 Chance of $30 Chance of $0 Chance of $30

25 in 100 75 in 100 !" or 100 in 100 0 in 100 !
1) 25 in 100 75 in 100 ! or 95 in 100 5 in 100 !
2) 25 in 100 75 in 100 ! or 90 in 100 10 in 100 !
3) 25 in 100 75 in 100 ! or 85 in 100 15 in 100 !
4) 25 in 100 75 in 100 ! or 80 in 100 20 in 100 !
5) 25 in 100 75 in 100 ! or 75 in 100 25 in 100 !
6) 25 in 100 75 in 100 ! or 70 in 100 30 in 100 !
7) 25 in 100 75 in 100 ! or 65 in 100 35 in 100 !
8) 25 in 100 75 in 100 ! or 60 in 100 40 in 100 !
9) 25 in 100 75 in 100 ! or 55 in 100 45 in 100 !
10) 25 in 100 75 in 100 ! or 50 in 100 50 in 100 !
11) 25 in 100 75 in 100 ! or 45 in 100 55 in 100 !
12) 25 in 100 75 in 100 ! or 40 in 100 60 in 100 !
13) 25 in 100 75 in 100 ! or 35 in 100 65 in 100 !
14) 25 in 100 75 in 100 ! or 30 in 100 70 in 100 !
15) 25 in 100 75 in 100 ! or 25 in 100 75 in 100 !
16) 25 in 100 75 in 100 ! or 20 in 100 80 in 100 !
17) 25 in 100 75 in 100 ! or 15 in 100 85 in 100 !
18) 25 in 100 75 in 100 ! or 10 in 100 90 in 100 !
19) 25 in 100 75 in 100 ! or 5 in 100 95 in 100 !
20) 25 in 100 75 in 100 ! or 1 in 100 99 in 100 !

25 in 100 75 in 100 ! or 0 in 100 100 in 100 !"



TASK 4
On this page you will make a series of decisions between two uncertain options. Option A will be a 50 in
100 chance of $10 and a 50 in 100 chance of $30. Option B will vary across decisions. Initially, Option B
will be a 95 in 100 chance of $0 and a 5 in 100 chance of $30. As you proceed down the rows, Option B
will change. The chance of receiving $30 will increase, while the chance of receiving $0 will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B.

Option A or Option B
Chance of $10 Chance of $30 Chance of $0 Chance of $30

50 in 100 50 in 100 !" or 100 in 100 0 in 100 !
1) 50 in 100 50 in 100 ! or 95 in 100 5 in 100 !
2) 50 in 100 50 in 100 ! or 90 in 100 10 in 100 !
3) 50 in 100 50 in 100 ! or 85 in 100 15 in 100 !
4) 50 in 100 50 in 100 ! or 80 in 100 20 in 100 !
5) 50 in 100 50 in 100 ! or 75 in 100 25 in 100 !
6) 50 in 100 50 in 100 ! or 70 in 100 30 in 100 !
7) 50 in 100 50 in 100 ! or 65 in 100 35 in 100 !
8) 50 in 100 50 in 100 ! or 60 in 100 40 in 100 !
9) 50 in 100 50 in 100 ! or 55 in 100 45 in 100 !
10) 50 in 100 50 in 100 ! or 50 in 100 50 in 100 !
11) 50 in 100 50 in 100 ! or 45 in 100 55 in 100 !
12) 50 in 100 50 in 100 ! or 40 in 100 60 in 100 !
13) 50 in 100 50 in 100 ! or 35 in 100 65 in 100 !
14) 50 in 100 50 in 100 ! or 30 in 100 70 in 100 !
15) 50 in 100 50 in 100 ! or 25 in 100 75 in 100 !
16) 50 in 100 50 in 100 ! or 20 in 100 80 in 100 !
17) 50 in 100 50 in 100 ! or 15 in 100 85 in 100 !
18) 50 in 100 50 in 100 ! or 10 in 100 90 in 100 !
19) 50 in 100 50 in 100 ! or 5 in 100 95 in 100 !
20) 50 in 100 50 in 100 ! or 1 in 100 99 in 100 !

50 in 100 50 in 100 ! or 0 in 100 100 in 100 !"



TASK 5
On this page you will make a series of decisions between two uncertain options. Option A will be a 75 in
100 chance of $10 and a 25 in 100 chance of $30. Option B will vary across decisions. Initially, Option B
will be a 95 in 100 chance of $0 and a 5 in 100 chance of $30. As you proceed down the rows, Option B
will change. The chance of receiving $30 will increase, while the chance of receiving $0 will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B.

Option A or Option B
Chance of $10 Chance of $30 Chance of $0 Chance of $30

75 in 100 25 in 100 !" or 100 in 100 0 in 100 !
1) 75 in 100 25 in 100 ! or 95 in 100 5 in 100 !
2) 75 in 100 25 in 100 ! or 90 in 100 10 in 100 !
3) 75 in 100 25 in 100 ! or 85 in 100 15 in 100 !
4) 75 in 100 25 in 100 ! or 80 in 100 20 in 100 !
5) 75 in 100 25 in 100 ! or 75 in 100 25 in 100 !
6) 75 in 100 25 in 100 ! or 70 in 100 30 in 100 !
7) 75 in 100 25 in 100 ! or 65 in 100 35 in 100 !
8) 75 in 100 25 in 100 ! or 60 in 100 40 in 100 !
9) 75 in 100 25 in 100 ! or 55 in 100 45 in 100 !
10) 75 in 100 25 in 100 ! or 50 in 100 50 in 100 !
11) 75 in 100 25 in 100 ! or 45 in 100 55 in 100 !
12) 75 in 100 25 in 100 ! or 40 in 100 60 in 100 !
13) 75 in 100 25 in 100 ! or 35 in 100 65 in 100 !
14) 75 in 100 25 in 100 ! or 30 in 100 70 in 100 !
15) 75 in 100 25 in 100 ! or 25 in 100 75 in 100 !
16) 75 in 100 25 in 100 ! or 20 in 100 80 in 100 !
17) 75 in 100 25 in 100 ! or 15 in 100 85 in 100 !
18) 75 in 100 25 in 100 ! or 10 in 100 90 in 100 !
19) 75 in 100 25 in 100 ! or 5 in 100 95 in 100 !
20) 75 in 100 25 in 100 ! or 1 in 100 99 in 100 !

75 in 100 25 in 100 ! or 0 in 100 100 in 100 !"



TASK 6
On this page you will make a series of decisions between two uncertain options. Option A will be a 90 in
100 chance of $10 and a 10 in 100 chance of $30. Option B will vary across decisions. Initially, Option B
will be a 95 in 100 chance of $0 and a 5 in 100 chance of $30. As you proceed down the rows, Option B
will change. The chance of receiving $30 will increase, while the chance of receiving $0 will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B.

Option A or Option B
Chance of $10 Chance of $30 Chance of $0 Chance of $30

90 in 100 10 in 100 !" or 100 in 100 0 in 100 !
1) 90 in 100 10 in 100 ! or 95 in 100 5 in 100 !
2) 90 in 100 10 in 100 ! or 90 in 100 10 in 100 !
3) 90 in 100 10 in 100 ! or 85 in 100 15 in 100 !
4) 90 in 100 10 in 100 ! or 80 in 100 20 in 100 !
5) 90 in 100 10 in 100 ! or 75 in 100 25 in 100 !
6) 90 in 100 10 in 100 ! or 70 in 100 30 in 100 !
7) 90 in 100 10 in 100 ! or 65 in 100 35 in 100 !
8) 90 in 100 10 in 100 ! or 60 in 100 40 in 100 !
9) 90 in 100 10 in 100 ! or 55 in 100 45 in 100 !
10) 90 in 100 10 in 100 ! or 50 in 100 50 in 100 !
11) 90 in 100 10 in 100 ! or 45 in 100 55 in 100 !
12) 90 in 100 10 in 100 ! or 40 in 100 60 in 100 !
13) 90 in 100 10 in 100 ! or 35 in 100 65 in 100 !
14) 90 in 100 10 in 100 ! or 30 in 100 70 in 100 !
15) 90 in 100 10 in 100 ! or 25 in 100 75 in 100 !
16) 90 in 100 10 in 100 ! or 20 in 100 80 in 100 !
17) 90 in 100 10 in 100 ! or 15 in 100 85 in 100 !
18) 90 in 100 10 in 100 ! or 10 in 100 90 in 100 !
19) 90 in 100 10 in 100 ! or 5 in 100 95 in 100 !
20) 90 in 100 10 in 100 ! or 1 in 100 99 in 100 !

90 in 100 10 in 100 ! or 0 in 100 100 in 100 !"



TASK 7
On this page you will make a series of decisions between two uncertain options. Option A will be a 95 in
100 chance of $10 and a 5 in 100 chance of $30. Option B will vary across decisions. Initially, Option B
will be a 95 in 100 chance of $0 and a 5 in 100 chance of $30. As you proceed down the rows, Option B
will change. The chance of receiving $30 will increase, while the chance of receiving $0 will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B.

Option A or Option B
Chance of $10 Chance of $30 Chance of $0 Chance of $30

95 in 100 5 in 100 !" or 100 in 100 0 in 100 !
1) 95 in 100 5 in 100 ! or 95 in 100 5 in 100 !
2) 95 in 100 5 in 100 ! or 90 in 100 10 in 100 !
3) 95 in 100 5 in 100 ! or 85 in 100 15 in 100 !
4) 95 in 100 5 in 100 ! or 80 in 100 20 in 100 !
5) 95 in 100 5 in 100 ! or 75 in 100 25 in 100 !
6) 95 in 100 5 in 100 ! or 70 in 100 30 in 100 !
7) 95 in 100 5 in 100 ! or 65 in 100 35 in 100 !
8) 95 in 100 5 in 100 ! or 60 in 100 40 in 100 !
9) 95 in 100 5 in 100 ! or 55 in 100 45 in 100 !
10) 95 in 100 5 in 100 ! or 50 in 100 50 in 100 !
11) 95 in 100 5 in 100 ! or 45 in 100 55 in 100 !
12) 95 in 100 5 in 100 ! or 40 in 100 60 in 100 !
13) 95 in 100 5 in 100 ! or 35 in 100 65 in 100 !
14) 95 in 100 5 in 100 ! or 30 in 100 70 in 100 !
15) 95 in 100 5 in 100 ! or 25 in 100 75 in 100 !
16) 95 in 100 5 in 100 ! or 20 in 100 80 in 100 !
17) 95 in 100 5 in 100 ! or 15 in 100 85 in 100 !
18) 95 in 100 5 in 100 ! or 10 in 100 90 in 100 !
19) 95 in 100 5 in 100 ! or 5 in 100 95 in 100 !
20) 95 in 100 5 in 100 ! or 1 in 100 99 in 100 !

95 in 100 5 in 100 ! or 0 in 100 100 in 100 !"



TASK 8
On this page you will make a series of decisions between two uncertain options. Option A will be a 100 in
100 chance of $10 and a 5 in 100 chance of $30. Option B will vary across decisions. Initially, Option B
will be a 100 in 100 chance of $0 and a 5 in 100 chance of $30. As you proceed down the rows, Option B
will change. The chance of receiving $30 will increase, while the chance of receiving $0 will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B.

Option A or Option B
Chance of $10 Chance of $30 Chance of $0 Chance of $30

100 in 100 0 in 100 !" or 100 in 100 0 in 100 !
1) 100 in 100 0 in 100 ! or 95 in 100 5 in 100 !
2) 100 in 100 0 in 100 ! or 90 in 100 10 in 100 !
3) 100 in 100 0 in 100 ! or 85 in 100 15 in 100 !
4) 100 in 100 0 in 100 ! or 80 in 100 20 in 100 !
5) 100 in 100 0 in 100 ! or 75 in 100 25 in 100 !
6) 100 in 100 0 in 100 ! or 70 in 100 30 in 100 !
7) 100 in 100 0 in 100 ! or 65 in 100 35 in 100 !
8) 100 in 100 0 in 100 ! or 60 in 100 40 in 100 !
9) 100 in 100 0 in 100 ! or 55 in 100 45 in 100 !
10) 100 in 100 0 in 100 ! or 50 in 100 50 in 100 !
11) 100 in 100 0 in 100 ! or 45 in 100 55 in 100 !
12) 100 in 100 0 in 100 ! or 40 in 100 60 in 100 !
13) 100 in 100 0 in 100 ! or 35 in 100 65 in 100 !
14) 100 in 100 0 in 100 ! or 30 in 100 70 in 100 !
15) 100 in 100 0 in 100 ! or 25 in 100 75 in 100 !
16) 100 in 100 0 in 100 ! or 20 in 100 80 in 100 !
17) 100 in 100 0 in 100 ! or 15 in 100 85 in 100 !
18) 100 in 100 0 in 100 ! or 10 in 100 90 in 100 !
19) 100 in 100 0 in 100 ! or 5 in 100 95 in 100 !
20) 100 in 100 0 in 100 ! or 1 in 100 99 in 100 !

100 in 100 0 in 100 ! or 0 in 100 100 in 100 !"
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TASKS 25-26

On the following pages you will complete 2 tasks. In each task you are asked to make a series of

decisions between two uncertain options: Option A and Option B.

In each task, both Option A and Option B will vary. For example, in Task 25, question 1 Option

A will be a 10 in 100 chance of $5.20 and a 90 in 100 chance of $4.15. Option B will be a 10 in 100

chance of $10 and a 90 in 100 chance of $0.26.

As you proceed, both Option A and Option B will change. For Option A, the chance of receiving

$5.20 will increase and the chance of receiving $4.15 will decrease. For Option B, the chance of

receiving $10 will increase, while the chance of receiving $0.26 will decrease. For each row, all you

have to do is decide whether you prefer Option A or Option B. Most people begin by preferring

Option A and then switch to Option B, so one way to view this task is to determine the best row

to switch from Option A to Option B.

The first question from Task 25 is reproduced as an example.

EXAMPLE
Option A or Option B

Chance Chance Chance Chance
of of of of

$5.20 $4.15 $10 $0.26

1) 10 in 100 90 in 100 ! or 10 in 100 90 in 100 !
If your prefer Option A, check the green box...

1) 10 in 100 90 in 100 !" or 10 in 100 90 in 100 !
If your prefer Option B, check the blue box...

1) 10 in 100 90 in 100 ! or 10 in 100 90 in 100 !"

Remember, each decision could be the decision-that-counts. So, treat each

decision as if it could be the one that determines your payments.



TASK 25
On this page you will make a series of decisions between two uncertain options. Option A involves payments
of $5.20 and $4.15. Option B involves payments of $10 and $0.26. As you proceed, both Option A and
Option B will change. For Option A, the chance of receiving $5.20 will increase and the chance of receiving
$4.15 will decrease. For Option B, the chance of receiving $10 will increase, while the chance of receiving
$0.26 will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B. Indicate your
preference, by checking the corresponding box.

Option A or Option B
Chance Chance Chance Chance

of of of of
$5.20 $4.15 $10 $0.26

0 in 100 100 in 100 !" or 0 in 100 100 in 100 !
1) 10 in 100 90 in 100 ! or 10 in 100 90 in 100 !
2) 20 in 100 80 in 100 ! or 20 in 100 80 in 100 !
3) 30 in 100 70 in 100 ! or 30 in 100 70 in 100 !
4) 40 in 100 60 in 100 ! or 40 in 100 60 in 100 !
5) 50 in 100 50 in 100 ! or 50 in 100 50 in 100 !
6) 60 in 100 40 in 100 ! or 60 in 100 40 in 100 !
7) 70 in 100 30 in 100 ! or 70 in 100 30 in 100 !
8) 80 in 100 20 in 100 ! or 80 in 100 20 in 100 !
9) 90 in 100 10 in 100 ! or 90 in 100 10 in 100 !

100 in 100 0 in 100 ! or 100 in 100 0 in 100 !"



TASK 26
On this page you will make a series of decisions between two uncertain options. Option A involves payments
of $15.59 and $12.47. Option B involves payments of $30 and $0.78. As you proceed, both Option A and
Option B will change. For Option A, the chance of receiving $15.59 will increase and the chance of receiving
$12.47 will decrease. For Option B, the chance of receiving $30 will increase, while the chance of receiving
$0.78 will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B. Indicate your
preference, by checking the corresponding box.

Option A or Option B
Chance Chance Chance Chance

of of of of
$15.59 $12.47 $30 $0.78

0 in 100 100 in 100 !" or 0 in 100 100 in 100 !
1) 10 in 100 90 in 100 ! or 10 in 100 90 in 100 !
2) 20 in 100 80 in 100 ! or 20 in 100 80 in 100 !
3) 30 in 100 70 in 100 ! or 30 in 100 70 in 100 !
4) 40 in 100 60 in 100 ! or 40 in 100 60 in 100 !
5) 50 in 100 50 in 100 ! or 50 in 100 50 in 100 !
6) 60 in 100 40 in 100 ! or 60 in 100 40 in 100 !
7) 70 in 100 30 in 100 ! or 70 in 100 30 in 100 !
8) 80 in 100 20 in 100 ! or 80 in 100 20 in 100 !
9) 90 in 100 10 in 100 ! or 90 in 100 10 in 100 !

100 in 100 0 in 100 ! or 100 in 100 0 in 100 !"
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TASKS 27-33

On the following pages you will complete 7 tasks. In each task you are asked to make a series of

decisions between two options: Option A and Option B.

In each task, Option A will be fixed, while Option B will vary. For example, in Task 27 Option

A will be a 5 in 100 chance of $30 and a 95 in 100 chance of $0. This will remain the same for all

decisions in the task. Option B will vary across decisions. Initially Option B will be a $0.50 for

sure. As you proceed, Option B will change. The sure amount will increase.

For each row, all you have to do is decide whether you prefer Option A or Option B. Indicate

your preference by checking the corresponding box. Most people begin by preferring Option A and

then switch to Option B, so one way to view this task is to determine the best row to switch from

Option A to Option B.

The first question from Task 27 is reproduced as an example.

EXAMPLE
Option A or Option B

Chance of $30 Chance of $0 Sure Amount

1) 5 in 100 95 in 100 ! or $0.50 for sure !
If your prefer Option A, check the green box...

1) 5 in 100 95 in 100 !" or $0.50 for sure !
If your prefer Option B, check the blue box...

1) 5 in 100 95 in 100 ! or $0.50 for sure !"

Remember, each decision could be the decision-that-counts. So, it is in your

best interest to treat each decision as if it could be the one that determines your

payments.



TASK 27
On this page you will make a series of decisions between two options. Option A will be a 5 in 100 chance
of $30 and a 95 in 100 chance of $0. Option B will vary across decisions. Initially, Option B will be a $0.50
for sure. As you proceed down the rows, Option B will change. The sure amount will increase.

For each row, all you have to do is decide whether you prefer Option A or Option B.

Option A or Option B
Chance of $30 Chance of $0 Sure Amount

5 in 100 95 in 100 !" or $0.00 for sure !
1) 5 in 100 95 in 100 ! or $0.50 for sure !
2) 5 in 100 95 in 100 ! or $1.00 for sure !
3) 5 in 100 95 in 100 ! or $1.50 for sure !
4) 5 in 100 95 in 100 ! or $2.50 for sure !
5) 5 in 100 95 in 100 ! or $3.50 for sure !
6) 5 in 100 95 in 100 ! or $4.50 for sure !
7) 5 in 100 95 in 100 ! or $6.50 for sure !
8) 5 in 100 95 in 100 ! or $8.50 for sure !
9) 5 in 100 95 in 100 ! or $10.50 for sure !
10) 5 in 100 95 in 100 ! or $13.50 for sure !
11) 5 in 100 95 in 100 ! or $16.50 for sure !
12) 5 in 100 95 in 100 ! or $19.50 for sure !
13) 5 in 100 95 in 100 ! or $21.50 for sure !
14) 5 in 100 95 in 100 ! or $23.50 for sure !
15) 5 in 100 95 in 100 ! or $25.50 for sure !
16) 5 in 100 95 in 100 ! or $26.50 for sure !
17) 5 in 100 95 in 100 ! or $27.50 for sure !
18) 5 in 100 95 in 100 ! or $28.50 for sure !
19) 5 in 100 95 in 100 ! or $29.00 for sure !
20) 5 in 100 95 in 100 ! or $29.50 for sure !

5 in 100 95 in 100 ! or $30.00 for sure !"



TASK 28
On this page you will make a series of decisions between two options. Option A will be a 10 in 100 chance
of $30 and a 90 in 100 chance of $0. Option B will vary across decisions. Initially, Option B will be a $0.50
for sure. As you proceed down the rows, Option B will change. The sure amount will increase.

For each row, all you have to do is decide whether you prefer Option A or Option B.

Option A or Option B
Chance of $30 Chance of $0 Sure Amount

10 in 100 90 in 100 !" or $0.00 for sure !
1) 10 in 100 90 in 100 ! or $0.50 for sure !
2) 10 in 100 90 in 100 ! or $1.00 for sure !
3) 10 in 100 90 in 100 ! or $1.50 for sure !
4) 10 in 100 90 in 100 ! or $2.50 for sure !
5) 10 in 100 90 in 100 ! or $3.50 for sure !
6) 10 in 100 90 in 100 ! or $4.50 for sure !
7) 10 in 100 90 in 100 ! or $6.50 for sure !
8) 10 in 100 90 in 100 ! or $8.50 for sure !
9) 10 in 100 90 in 100 ! or $10.50 for sure !
10) 10 in 100 90 in 100 ! or $13.50 for sure !
11) 10 in 100 90 in 100 ! or $16.50 for sure !
12) 10 in 100 90 in 100 ! or $19.50 for sure !
13) 10 in 100 90 in 100 ! or $21.50 for sure !
14) 10 in 100 90 in 100 ! or $23.50 for sure !
15) 10 in 100 90 in 100 ! or $25.50 for sure !
16) 10 in 100 90 in 100 ! or $26.50 for sure !
17) 10 in 100 90 in 100 ! or $27.50 for sure !
18) 10 in 100 90 in 100 ! or $28.50 for sure !
19) 10 in 100 90 in 100 ! or $29.00 for sure !
20) 10 in 100 90 in 100 ! or $29.50 for sure !

10 in 100 90 in 100 ! or $30.00 for sure !"



TASK 29
On this page you will make a series of decisions between two options. Option A will be a 25 in 100 chance
of $30 and a 75 in 100 chance of $0. Option B will vary across decisions. Initially, Option B will be a $0.50
for sure. As you proceed down the rows, Option B will change. The sure amount will increase.

For each row, all you have to do is decide whether you prefer Option A or Option B.

Option A or Option B
Chance of $30 Chance of $0 Sure Amount

25 in 100 75 in 100 !" or $0.00 for sure !
1) 25 in 100 75 in 100 ! or $0.50 for sure !
2) 25 in 100 75 in 100 ! or $1.00 for sure !
3) 25 in 100 75 in 100 ! or $1.50 for sure !
4) 25 in 100 75 in 100 ! or $2.50 for sure !
5) 25 in 100 75 in 100 ! or $3.50 for sure !
6) 25 in 100 75 in 100 ! or $4.50 for sure !
7) 25 in 100 75 in 100 ! or $6.50 for sure !
8) 25 in 100 75 in 100 ! or $8.50 for sure !
9) 25 in 100 75 in 100 ! or $10.50 for sure !
10) 25 in 100 75 in 100 ! or $13.50 for sure !
11) 25 in 100 75 in 100 ! or $16.50 for sure !
12) 25 in 100 75 in 100 ! or $19.50 for sure !
13) 25 in 100 75 in 100 ! or $21.50 for sure !
14) 25 in 100 75 in 100 ! or $23.50 for sure !
15) 25 in 100 75 in 100 ! or $25.50 for sure !
16) 25 in 100 75 in 100 ! or $26.50 for sure !
17) 25 in 100 75 in 100 ! or $27.50 for sure !
18) 25 in 100 75 in 100 ! or $28.50 for sure !
19) 25 in 100 75 in 100 ! or $29.00 for sure !
20) 25 in 100 75 in 100 ! or $29.50 for sure !

25 in 100 75 in 100 ! or $30.00 for sure !"



TASK 30
On this page you will make a series of decisions between two options. Option A will be a 50 in 100 chance
of $30 and a 50 in 100 chance of $0. Option B will vary across decisions. Initially, Option B will be a $0.50
for sure. As you proceed down the rows, Option B will change. The sure amount will increase.

For each row, all you have to do is decide whether you prefer Option A or Option B.

Option A or Option B
Chance of $30 Chance of $0 Sure Amount

50 in 100 50 in 100 !" or $0.00 for sure !
1) 50 in 100 50 in 100 ! or $0.50 for sure !
2) 50 in 100 50 in 100 ! or $1.00 for sure !
3) 50 in 100 50 in 100 ! or $1.50 for sure !
4) 50 in 100 50 in 100 ! or $2.50 for sure !
5) 50 in 100 50 in 100 ! or $3.50 for sure !
6) 50 in 100 50 in 100 ! or $4.50 for sure !
7) 50 in 100 50 in 100 ! or $6.50 for sure !
8) 50 in 100 50 in 100 ! or $8.50 for sure !
9) 50 in 100 50 in 100 ! or $10.50 for sure !
10) 50 in 100 50 in 100 ! or $13.50 for sure !
11) 50 in 100 50 in 100 ! or $16.50 for sure !
12) 50 in 100 50 in 100 ! or $19.50 for sure !
13) 50 in 100 50 in 100 ! or $21.50 for sure !
14) 50 in 100 50 in 100 ! or $23.50 for sure !
15) 50 in 100 50 in 100 ! or $25.50 for sure !
16) 50 in 100 50 in 100 ! or $26.50 for sure !
17) 50 in 100 50 in 100 ! or $27.50 for sure !
18) 50 in 100 50 in 100 ! or $28.50 for sure !
19) 50 in 100 50 in 100 ! or $29.00 for sure !
20) 50 in 100 50 in 100 ! or $29.50 for sure !

50 in 100 50 in 100 ! or $30.00 for sure !"



TASK 31
On this page you will make a series of decisions between two options. Option A will be a 75 in 100 chance
of $30 and a 25 in 100 chance of $0. Option B will vary across decisions. Initially, Option B will be a $0.50
for sure. As you proceed down the rows, Option B will change. The sure amount will increase.

For each row, all you have to do is decide whether you prefer Option A or Option B.

Option A or Option B
Chance of $30 Chance of $0 Sure Amount

75 in 100 25 in 100 !" or $0.00 for sure !
1) 75 in 100 25 in 100 ! or $0.50 for sure !
2) 75 in 100 25 in 100 ! or $1.00 for sure !
3) 75 in 100 25 in 100 ! or $1.50 for sure !
4) 75 in 100 25 in 100 ! or $2.50 for sure !
5) 75 in 100 25 in 100 ! or $3.50 for sure !
6) 75 in 100 25 in 100 ! or $4.50 for sure !
7) 75 in 100 25 in 100 ! or $6.50 for sure !
8) 75 in 100 25 in 100 ! or $8.50 for sure !
9) 75 in 100 25 in 100 ! or $10.50 for sure !
10) 75 in 100 25 in 100 ! or $13.50 for sure !
11) 75 in 100 25 in 100 ! or $16.50 for sure !
12) 75 in 100 25 in 100 ! or $19.50 for sure !
13) 75 in 100 25 in 100 ! or $21.50 for sure !
14) 75 in 100 25 in 100 ! or $23.50 for sure !
15) 75 in 100 25 in 100 ! or $25.50 for sure !
16) 75 in 100 25 in 100 ! or $26.50 for sure !
17) 75 in 100 25 in 100 ! or $27.50 for sure !
18) 75 in 100 25 in 100 ! or $28.50 for sure !
19) 75 in 100 25 in 100 ! or $29.00 for sure !
20) 75 in 100 25 in 100 ! or $29.50 for sure !

75 in 100 25 in 100 ! or $30.00 for sure !"



TASK 32
On this page you will make a series of decisions between two options. Option A will be a 90 in 100 chance
of $30 and a 10 in 100 chance of $0. Option B will vary across decisions. Initially, Option B will be a $0.50
for sure. As you proceed down the rows, Option B will change. The sure amount will increase.

For each row, all you have to do is decide whether you prefer Option A or Option B.

Option A or Option B
Chance of $30 Chance of $0 Sure Amount

90 in 100 10 in 100 !" or $0.00 for sure !
1) 90 in 100 10 in 100 ! or $0.50 for sure !
2) 90 in 100 10 in 100 ! or $1.00 for sure !
3) 90 in 100 10 in 100 ! or $1.50 for sure !
4) 90 in 100 10 in 100 ! or $2.50 for sure !
5) 90 in 100 10 in 100 ! or $3.50 for sure !
6) 90 in 100 10 in 100 ! or $4.50 for sure !
7) 90 in 100 10 in 100 ! or $6.50 for sure !
8) 90 in 100 10 in 100 ! or $8.50 for sure !
9) 90 in 100 10 in 100 ! or $10.50 for sure !
10) 90 in 100 10 in 100 ! or $13.50 for sure !
11) 90 in 100 10 in 100 ! or $16.50 for sure !
12) 90 in 100 10 in 100 ! or $19.50 for sure !
13) 90 in 100 10 in 100 ! or $21.50 for sure !
14) 90 in 100 10 in 100 ! or $23.50 for sure !
15) 90 in 100 10 in 100 ! or $25.50 for sure !
16) 90 in 100 10 in 100 ! or $26.50 for sure !
17) 90 in 100 10 in 100 ! or $27.50 for sure !
18) 90 in 100 10 in 100 ! or $28.50 for sure !
19) 90 in 100 10 in 100 ! or $29.00 for sure !
20) 90 in 100 10 in 100 ! or $29.50 for sure !

90 in 100 10 in 100 ! or $30.00 for sure !"



TASK 33
On this page you will make a series of decisions between two options. Option A will be a 95 in 100 chance
of $30 and a 5 in 100 chance of $0. Option B will vary across decisions. Initially, Option B will be a $0.50
for sure. As you proceed down the rows, Option B will change. The sure amount will increase.

For each row, all you have to do is decide whether you prefer Option A or Option B.

Option A or Option B
Chance of $30 Chance of $0 Sure Amount

95 in 100 5 in 100 !" or $0.00 for sure !
1) 95 in 100 5 in 100 ! or $0.50 for sure !
2) 95 in 100 5 in 100 ! or $1.00 for sure !
3) 95 in 100 5 in 100 ! or $1.50 for sure !
4) 95 in 100 5 in 100 ! or $2.50 for sure !
5) 95 in 100 5 in 100 ! or $3.50 for sure !
6) 95 in 100 5 in 100 ! or $4.50 for sure !
7) 95 in 100 5 in 100 ! or $6.50 for sure !
8) 95 in 100 5 in 100 ! or $8.50 for sure !
9) 95 in 100 5 in 100 ! or $10.50 for sure !
10) 95 in 100 5 in 100 ! or $13.50 for sure !
11) 95 in 100 5 in 100 ! or $16.50 for sure !
12) 95 in 100 5 in 100 ! or $19.50 for sure !
13) 95 in 100 5 in 100 ! or $21.50 for sure !
14) 95 in 100 5 in 100 ! or $23.50 for sure !
15) 95 in 100 5 in 100 ! or $25.50 for sure !
16) 95 in 100 5 in 100 ! or $26.50 for sure !
17) 95 in 100 5 in 100 ! or $27.50 for sure !
18) 95 in 100 5 in 100 ! or $28.50 for sure !
19) 95 in 100 5 in 100 ! or $29.00 for sure !
20) 95 in 100 5 in 100 ! or $29.50 for sure !

95 in 100 5 in 100 ! or $30.00 for sure !"


