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Abstract

We report experimental results for a twice-played prisoners’ dilemma in which the players

can choose the allocation of the stakes across the two periods. Our point of departure is the

assumption that some (but not all) people are willing to cooperate, as long as their opponent is

sufficiently likely to do so. The presence of such types can be exploited to enhance cooperation

by structuring the twice-played prisoners’ dilemma to “start small,” so that the second-stage

stakes are larger (but not too much larger) than the first-stage stakes. We compare conditions

where the allocation of stakes is chosen exogenously to conditions where it is chosen by the

players themselves. We show that players gravitate toward the payoff maximizing strategy of

starting small in a twice-played prisoners’ dilemma. Intriguingly, the salutary payoff effects of

doing so are larger than those that arise when the same allocation is exogenously chosen.
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1 Introduction

Can groups of individuals informally develop institutions and structure interactions that take ad-
vantage of the naturally occurring dispositions of many people to prefer cooperation? And can this
happen even in interactions that are too short to build reputations?

We confront these questions with a laboratory experiment that builds on the theoretical frame-
work and experimental test of Andreoni and Samuelson (2006). These authors examined a class of
twice-played “prisoners’ dilemmas,” with two distinguishing characteristics. First, while the total
monetary amount at stake over the two periods is fixed, different versions of the game distribute
these stakes across the two periods differently. It may be that the two iterations of the prisoners’
dilemma are played for the same stakes, as is customary, but may also be that the stakes are larger
in the first period than the second or vice versa.

Second, reflecting the quotation marks in the previous paragraph, we assume the players have
preferences that cause the utilities from cooperating and defecting to increase in the probability
that their opponent cooperates (as usual), but with the utility from cooperating increasing faster, to
the extent that cooperation may yield a higher utility than defection, if the opponent is sufficiently
likely to cooperate. Players are heterogeneous, differing in the likelihood of opponent cooperation
required to ensure that the utility of cooperation exceeds that of defection.

Andreoni and Samuelson (2006) show that equilibrium joint payoffs in such a setting are max-
imized if the game “starts small,” so that the second-period stage game is played for higher stakes
than those of the first period. Their experimental results confirm this intuitive hypothesis. Joint
payoffs are maximized by playing for approximately one third of the total stakes in the first stage,
reserving two-thirds for the second stage.

The arrangement of stakes across the periods in Andreoni and Samuelson (2006) is fixed ex-
ogenously. In this paper we reproduce the Andreoni-Samuelson experimental game, but this time
we allow the subjects themselves to determine the relative stakes. We find that joint payoffs are
maximized by an arrangement of stakes nearly identical to that found by Andreoni and Samuelson.
Moreover, the subjects indeed gravitate toward this same allocation of stakes.

We are especially intrigued by the finding that the gains from arriving at this allocation are sig-
nificantly higher when they are chosen by the players rather than controlled experimentally. That
is, when the subjects choose to start small on their own, it generates more cooperation than when
those same stakes are set by the experimenter. This result opens up new questions for theorists, ex-
perimenters, and policy makers. In particular, how well and how often can decentralized groups of
people endogenously learn and develop structured ways of interacting that help them collectively
achieve more efficient outcomes? And does mutual recognition of the strategic sophistication of
partners aid in this development?
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The next section provides some background on starting small and the endogenous determi-
nation of relationship stakes. We describe our experimental procedures in section 3, present the
results in section 4, and conclude in section 5.

2 Background on Starting Small

In this section we briefly discuss the literature on starting small and rational cooperation. We
then provide an intuitive description of the detailed theoretical model presented in Andreoni and
Samuelson (2006), and finally discuss how this theory could generalize to a game where the size
of stakes are chosen by the players.

2.1 The Literature

We build on four strands of literature. First, the underlying theoretical model presented in Andreoni
and Samuelson (2006) is a finitely repeated game of incomplete information. Kreps, Milgrom,
Roberts and Wilson (1982) highlighted the role of incomplete information in the finitely-repeated
prisoners’ dilemma, giving rise to a flourishing literature summarized in Mailath and Samuelson
(2006, chapter 17). We differ from much of this literature in focusing on short (two-period) games.

Second, the finitely-repeated-games literature emphasizes that even minuscule amounts of het-
erogeneity in agents’ preferences can have significant effects on equilibrium play (if the game is
sufficiently long). We join the extensive literature on social preferences in thinking that people
whose preferences are based on more than simply monetary payoffs are not necessarily rare. For
example, experimental research points to nonnegligible proportions of people who split evenly in
the dictator game or cooperate in the prisoners’ dilemma.1

Third, our work most directly fits into a small but growing literature examining the virtues
of starting small. Schelling (1960) suggests an incremental approach to funding public goods,
an idea formalized by Marx and Matthews (2000) and examined experimentally by Duffy, Ochs,
and Vesterlund (2007). Sobel (1985), Ghosh and Ray (1996) and Kranton (1996) all find various
notions of starting small embedded in equilibrium strategies in different settings: a credibility-
building game between a lender and borrower, communities seeking to achieve cooperation with
limited information about past behavior, and partnerships formed and maintained in the constant
presence of the outside option to start over with someone else, respectively. Closely related in
context to our study, Watson (1999, 2002) examines infinitely-repeated prisoners’ dilemma games
whose stakes vary over time, identifying circumstances under which a profile of increasing stakes
plays a key role in supporting cooperation. Rauch and Watson (2003) present empirical evidence

1See Andreoni and Miller (2002) and Camerer (2003, chapter 2).

2



that starting small plays a role in developing commercial relationships in developing countries.
These papers often use starting small as a means to increase the effective discount rate, in con-
trast to our focus on short relationships in which discounting plays no meaningful role.2 Kamijo,
Ozono and Shimizu (2016) and Ozono, Kamijo and Shimizu (2016) report experiments in which
increasing stakes can facilitate coordination in coordination games and public goods games.

Fourth, the literature includes some similarly motivated studies in which the players choose
some aspect of the game they are to play. The literature on punishment in public goods games
indicates that exogenously engineered opportunities to punish can be destructive, while the en-
dogenous adoption of delegated enforcement can be more effective.3 Related work by Andreoni
(2017) shows that the voluntary adoption of “satisfaction guaranteed” policies by merchants can
also be useful when interactions between merchants and customers are too infrequent to build
reputations. Peters (1995) develops a theory of equilibrium in markets in which multiple trading
mechanisms exist, and the emergence of a dominant mechanism is endogenously determined by
market participants. In the political science literature, Greif and Laitin (2004) adapt the traditional
theory in which institutions are defined by exogenously given parameters and endogenously de-
termined variables by defining quasi-parameters, that is, values that are fixed in the short run, but
variable in the long run. Other work has examined the endogenous determination of the players in
the game (rather than the specification of the game). Charness and Yang (2014) use the laboratory
to investigate how behavior, earnings, and efficiency can be enhanced by a voting procedure that
allows groups participating in a public-goods game to determine their own members.4 Ali and
Miller (2013) study a theoretical model of a networked society in which the formation of each
link is endogenously determined by individuals. Altogether, one could view this recent work (as
well as the present paper) as creating a framework for studying the development of relationships,
communities and enforcement mechanisms in an environment otherwise devoid of institutions.

2.2 Theoretical Intuition from Andreoni and Samuelson (2006)

This section provides an informal discussion of the model and results of Andreoni and Samuelson
(2006), counting on readers to refer to the original for details. Two players play a prisoners’

2Others that develop theoretical models in which starting small optimally builds relationships include Blonski and
Probst (2004), Datta (1996) and Diamond (1989). Laboratory evidence on starting small is provided by Binmore,
Proulx, Samuelson and Swierzbinski (1998), who investigate interactions preceded by small sunk costs, and Andreoni
and Samuelson (2006). Weber (2006) uses the laboratory to confirm that coordination is more efficient in small groups
that slowly build in size.

3On punishment see Fehr and Gächter (2000), and on its pitfalls see Nikiforakis (2008) and Rand, Dreber,
Ellingsen, Fudenberg and Nowak (2009). On voluntary adoption of delegated enforcement, see Kocher, Martinsson
and Visser (2012) and Andreoni and Gee (2012).

4Other notable papers on endogenous group regulation include Erhart and Keser (1999), Cinyabuguma, Page and
Putterman, (2005), Page, Putterman and Unel (2005) and Ahn, Isaac and Salmon (2008,2009).
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Figure 1: Two-Stage Prisoners’ Dilemma, 0 ≤ x1 ≤ 10 and x1 + x2 = 10.

dilemma, observe the outcome, and then (without discounting) play another prisoners’ dilemma.
Figure 1 presents the parameters of the games used here and by Andreoni and Samuelson (2006).

The variables x1 and x2 determine the stakes for which the game is played in each stage, with
0 ≤ x1 ≤ 10 and x1 + x2 = 10. The key variable will be the relative sizes of the stakes in the two
stages, which we capture by defining λ = x2/(x1 + x2), so that λ is the fraction of total payoffs
reserved for stage 2. Starting small means λ > 1/2.

The players in the model are heterogeneous. We suppose that each player’s preferences can be
characterized by a number α, where an individual playing a single prisoners’ dilemma will prefer
to cooperate if they believe their opponent will cooperate with a probability at least α. We say
those with lower values of α are “more altruistic.” The values of α range from below 0 (in which
case the player always cooperates) to above 1 (always defect). In a single prisoners’ dilemma,
there would be at least one fixed point where exactly α∗ fraction of the population have preference
parameters less than or equal to α∗, and there would exist a corresponding equilibrium in which
proportion α∗ of the players cooperate.

To build intuition for the twice-played prisoners’ dilemma, think first of equal stakes across
the two stages (λ = 1/2). Now some people who otherwise would not cooperate in a single-shot
game will cooperate in the first play of the two-stage game, in order to pool with people who have
lower α’s and thereby induce their opponents to cooperate in stage 2. In equilibrium, there exists
a critical point α1 > α∗ where all those with α ≤ α1 will cooperate in the first stage. Moreover,
observing cooperation provides good news about the opponent’s value of α. This gives rise to a
critical value α2 such that those with α ≤ α2 and who have experienced mutual cooperation in the
first stage will also cooperate in stage 2. Importantly, in the game with equal stakes, α2 > α∗.

Next consider what happens as we move stakes from the first stage to the second. This has two
effects. On one hand, it increases the desire to pool with lower-type α’s in the first stage by lower-
ing the risk of cooperating, while also increasing second-stage payoffs and hence the payoff from
inducing cooperation in the second stage. We thus have a force tending to increase the incidence
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of mutual cooperation in the first stage and also to increase the benefits from mutual cooperation
in the second stage. On the other hand, a more valuable second stage makes defecting more at-
tractive to high α types, tending to decrease cooperation in the second stage. If the distribution of
α is smooth, then when we make a small movement away from equal stakes toward larger stakes
in stage 2, the first effect will dominate—more cooperation will be seen in the first stage and the
gains in payoffs in the second stage will outweigh the deleterious effects of temptation in the sec-
ond stage. On net, people will be better off. As more stakes get moved to the second stage there
is more pooling in the first stage, meaning that a mutually cooperative first stage is less predictive
of cooperation in the second, while second-stage defecting becomes more tempting. Eventually,
the marginal benefits of first stage cooperation are balanced by the marginal cost of second stage
defection. Overall earnings are thus maximized by moving just the right amount of stakes from the
first to the second stage.

2.3 Generalizing to Endogenous Stakes

The setting examined in this paper differs from the Andreoni-Samuelson model by allowing the
players to choose the relative stakes of the two stages of the prisoners’ dilemma, instead of fixing
them exogenously. If the players have common priors on the distribution of preferences and are
able to solve for the equilibrium, then there exists an equilibrium in which every player, regardless
of their cooperative intent or type, selects the expected payoff maximizing allocation of stakes and
duplicate the play found in Andreoni and Samuelson (2006), conditional on having such stakes
exogenously set.

In light of this, we investigate three questions. First, are joint payoffs maximized at the same
value λ∗ as in Andreoni and Samuelson (2006)? Second, there is no reason to believe that all
subjects have equal or accurate priors on the distributions of preferences in the sample, nor do
experimental subjects typically immediately hit on equilibrium play. We accordingly ask, do the
stakes chosen by the subjects gravitate toward λ∗ over the course of the experiment? Third, does
the subjects’ behavior and the corresponding payoffs, for endogenously chosen stakes near λ∗,
duplicate those found in Andreoni and Samuelson (2006)?

3 Experimental Procedures

We examine data from a total of eight experimental sessions, including five from the original
Andreoni-Samuelson paper, where λ is chosen by the experimenter, and three new sessions where
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λ is chosen by the players themselves.5 In the original Andreoni-Samuelson data, each session had
22 subjects playing 20 twice-played prisoners’ dilemmas, with no player meeting the same partner
twice. In the new data, two of the three sessions again had 22 subjects per session participating in
20 rounds, again with new partners, but with the subjects choosing λ. We will call this the short

sample. Given our interest in subjects learning over time, one additional new session was extended
to 40 rounds, again using 22 subjects, and this time the subjects were instructed that no two players
would meet more than twice. We will call this the long sample. In the short sample we have 440
new interactions (11 pairs per round × 20 rounds per session × 2 sessions), and we also have 440
new interactions in the long sample (11 pairs per round × 40 rounds per session × 1 session).

Combining the new data with the Andreoni-Samuelson data, we can split the sample into an
endogenous condition, referring to the new data in which λ is endogenously determined by sub-
jects, and a random condition, referring to the original data in which the computer randomly drew
λ from a discrete distribution ranging from zero to one with equal weight on each 0.1 increment,
including both ends. The original data come from 5 sessions each involving 22 subjects playing 20
rounds of the twice repeated prisoners’ dilemma, implying 1100 interactions. For all side-by-side
comparisons of the original and new data that follow, we exclude the new 40 round session.6

In all trials, subjects used isolated computer stations to play against a randomly matched,
anonymous opponent. The prisoners’ dilemma game was presented to the subjects as the “push-
pull” game (Andreoni and Varian, 1999). Tokens pushed to an opponent were tripled, while tokens
pulled to one’s self were received at face value.

In the endogenous condition, subjects were asked explicitly for the “pull value” they wished to
play for in stage 1. For example, choosing a pull value of 4 implies that in stage 1, the subjects
could either pull 4 to themselves or push 12 to their partner, and in stage 2, the subjects could either
pull 6 to themselves or push 18 to their partners. Therefore, a choice of 4 would correspond to a λ
of 0.6. Both subjects were asked to submit their preferred pull value prior to each game, and the
computer randomly chose one of the two submissions for use. Subjects were only told of the value
of λ chosen, and not which player selected the value.7 Subjects were paid for their performance in
all games in cash following the experiment.

5All data was collected at the University of Wisconsin, Madison over the course of a single semester, making them
comparable in terms of subject pool and timing. Copies of the experimental instructions are available in the online
appendix.

6Results from this long session are very similar to those from the short sessions, so we only present results from
the long sessions when we wish to focus on issues specific to the experiment length.

7For instance, if both players chose the same value, this fact was never revealed. This part of the design was
intended to keep the degree of information about one’s partner as similar as possible across all plays of the game. With
this design, no partner whose chosen λ is used will know the value of λ chosen by the other player. This fact is a
constant across all games.
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4 Results

We present our results in three parts. In subsection 4.1 we first ask whether the λ that maximizes
joint payoffs from the twice played prisoners’ dilemma in the endogenous condition is similar to
that in the random condition. We show that they are nearly identical. Next, in subsection 4.2, we
present evidence that subjects are indeed migrating towards the joint-payoff maximizing value of
λ. Third, we show in subsection 4.3 that payoffs, conditional on λ, differ under the random and
endogenous conditions, with higher payoffs appearing in the endogenous conditions, especially at
the values of λ close to the optimum.

4.1 What Value of λ Maximizes Joint Payoffs?

Figure 2 presents the mean joint payoffs from a single (two-stage) interaction separately by λ and
by condition. As can easily be seen, λ = 0.6 provides the maximum payoff for both the random and
endogenous conditions, indicating that selecting λ endogenously did not overturn the theoretical
prediction based on an exogenously chosen λ.

Figure 2: Payoffs by Value of λ and Condition

To establish the statistical significance of this observation, we follow Andreoni and Samuelson
(2006) and estimate joint payoffs, π, as a cubic polynomial of λ, conditional on a round fixed
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effect, γt. We then find the value of λ that maximizes this polynomial.8 Of course, individual
characteristics may play a role in determining the chosen λ in the endogenous condition, and
these same personal characteristics are likely to influence how people play the game once λ is
determined, and thus how much they earn from playing. To account for this, we augment the
specification with individual fixed effects:

πi,t + πj,t = θi + θj + γt + β1λk(i,j),t + β2λk(i,j),t
2 + β3λk(i,j),t

3 + εi,j,t , (1)

where i and j denote two individuals paired in round t and k(i, j) is an index indicating whether
individual i’s or j’s value of λ is chosen. θi and θj are individual-specific constants for both players
in a pairing. An important consideration for standard errors is that the unit of analysis is the game
that features a unique pairing of subjects. We apply two-way clustering using each individual
within a pair.9

We estimate equation (1) allowing β coefficients to differ across conditions. Results are re-
ported in Table 1 for the full sample, and samples limited to the first 10 rounds and last 10
rounds.We never reject that the null hypothesis that set of β coefficients or the payoff-maximizing
λ are the same across conditions. Restricting attention to the last 10 rounds, we see a slight drop
in the payoff-maximizing value λ∗ from 0.673 in the random condition to 0.623 in the endogenous
condition, but the two estimates of λ∗ are not significantly different at conventional levels.10

4.2 What Value of λ do Players Choose?

Here we first ask whether subjects see and learn the strategy of starting small. We then look more

specifically at the λ∗ found in Section 4.1 and ask whether subjects in the endogenous condition

come to choose this value with greater frequency over the course of the study. The evolution in

choices is also visible in the changing empirical distribution of λ over time. These figures and the

associated statistical tests can be found in Appendix Section B.

8Estimating a cubic allows the data more flexibility to contradict the theoretical predictions of this relationship
from Andreoni and Samuelson (2006). In practice, we do observe a hump-shaped relationship as hypothesized, and
the cubic gives us the flexibility to estimate diminishing sensitivity of payoffs to λ in the start-large domain.

9Subjects in our study are randomly and anonymously rematched each round. Thus, the potential exists for the
error term across pairings within a round to be correlated because of shared past experiences. There is no perfect way
to implement clustering within a session. We can be more conservative, but at the cost of being ad-hoc—for example,
manually re-scaling the standard errors to reflect a sample size equal to the number of individuals in the sample—and
obtain similar results.

10We also estimate equation (1) without individual specific fixed effects, comparing the difference for the endoge-
nous condition only. Relative to a model with fixed effects we find significantly different coefficients on the cubic
polynomial estimates, yet nearly identical values of λ∗ with and without the individual fixed effects, and those values
are also nearly identical to those reported in Table 1. All measures of λ∗ are not significantly different. This can be
seen in appendix, Section A, Table A1.
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Table 1: Relationship between λ and Payoffs across Conditions
Sample Restriction

All Rounds Rounds 1-10 Rounds 11-20

Random Condition Terms:

λ -1.408 -12.623 -3.205
(6.693) (11.466) (6.949)

λ2 43.823∗∗∗ 66.310∗∗ 49.563∗∗∗

(15.883) (26.457) (15.088)

λ3 -44.768∗∗∗ -59.212∗∗∗ -46.765∗∗∗

(10.687) (17.495) (9.463)

Endogenous Interactions:

λ ∗ 1(endogenous = 1) 4.186 19.080 5.619
(12.847) (24.381) (16.906)

λ2 ∗ 1(endogenous = 1) -6.602 -57.092 2.515
(31.222) (61.421) (38.373)

λ3 ∗ 1(endogenous = 1) 4.819 46.462 -10.990
(21.943) (42.312) (25.209)

H0: Endog. Interactions = 0 F (3, 1361) = 0.28 F (3, 601) = 1.07 F (3.601) = 1.09
(p = 0.84) (p = 0.36) (p = 0.35)

Random Payoff-max. λ∗r 0.636 0.635 0.673
(0.020) (0.029) (0.019)

Endogenous Payoff-max. λ∗e 0.656 0.717 0.623
(0.030) (0.178) (0.031)

H0 : λ
∗
r = λ∗e χ2(1) = 0.31 χ2(1) = 0.21 χ2(1) = 1.76

(p = 0.58) (p = 0.65) (p = 0.19)

N 1540 770 770
Notes: ∗∗p < 0.05, ∗∗∗p < 0.01. Standard errors with two-way clustering for both individuals in a pairing are
in parentheses under the estimates unless otherwise indicated. Round fixed-effects and individual fixed-effects are
included in all specifications. The payoff-maximizing λ is a non-linear combination of the three coefficient estimates
obtained using the quadratic formula on the derivative of the implied cubic polynomial. Standard errors for the payoff-
maximizing λ are calculated via the delta method.

We partition our sample into three intervals. Call rounds 1 to 6 the beginning, rounds 7-14 the

middle, and rounds 15-20 the end. We sort subjects based on their choice of λ. Any subject whose

average choice is less than 0.5 is said to start large, while if it is greater than 0.5 they are said to

start small. If the average exactly equals 0.5 we say they start even. Table 2, Panel A presents the

proportions of individuals who choose to start small, even, or large. Interestingly, in the beginning
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a majority starts large, and by the end the pattern has flipped with a majority starting small. We

then look separately at those who started small in the beginning, and those who started large in the

beginning. Both groups gravitate to starting small by the end, and those who started small at the

beginning do so to even a greater degree.11

Table 2: Evolution of Sub-Sample Sizes over Time
Fraction of Sample in Each Sub-Sample

Group, Rounds Start Small Even Start Large
Panel A: Short Sample

Unconditional Groups:
Beginning (Rounds 1-6) 0.36 0.02 0.61

Middle (Rounds 7-14) 0.48 0.07 0.45

End (Rounds 15-20) 0.54 0.09 0.36

Conditional on Starting Small in Beginning:
End (Rounds 15-20 | Rounds 1-6 = SS) 0.63 0.19 0.19

Conditional on Starting Large in Beginning:
End (Rounds 15-20 | Rounds 1-6 = SL) 0.52 0.04 0.44

N = 44 per round
Panel B: Long Sample

Unconditional Groups:
Beginning (Rounds 1-6) 0.45 0.14 0.41

Middle (Rounds 17-24) 0.64 0.09 0.27

End (Rounds 35-40) 0.64 0.09 0.27

Conditional on Starting Small in Beginning:
End (Rounds 35-40 | Rounds 1-6 = SS) 0.70 0.00 0.30

Conditional on Starting Large in Beginning:
End (Rounds 35-40 | Rounds 1-6 = SL) 0.78 0.00 0.22

N = 22 per round

Would subjects have continued to learn to start small after round 20? We turn to the long

sample to answer this. To do the same analysis in the 40-round sample, we use intervals of the same
11Paired t-tests of the short sample frequencies in Table 2, Panel A reveal a marginally significant difference between

starting small and large in the beginning rounds (p = 0.09) and a more robust difference between starting small and
large in the end rounds conditional on starting small in the beginning rounds (p = 0.05). All other comparisons are
not significant at conventional levels.
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number of rounds as in the 20-round analysis to maintain comparability in classifying choices. The

beginning runs from rounds 1-6, the middle from 17-24 and the end from 35-40. The results of

the analysis are presented in Panel B of Table 2, and corroborate what we observed in the shorter

sample. Whereas 45% of the sample starts small in the beginning, 64% of the sample started small

in the end, and although 41% of the sample started large in the beginning, only 27% started large

in the end. While the magnitude of the shift towards starting small is larger in the long sample, it

is worth noting that starting large is less prominent overall in the long sample.12

Table 3: Time Trends in λ Choice
Dependent Variable

(1) (2) (3) (4) (5)

λi,t λi,t − λi,t−1 |λi,t − 0.656| Pr(λi,t ∈ [0.6, 0.9]) H-index
Panel A: Short Sample

Round 0.005∗∗∗ 0.002∗∗ -0.003∗∗ 0.007 0.002∗∗

(0.002) (0.001) (0.001) (0.004) (0.001)

Constant 0.456 -0.018 0.265 0.306 0.107
(0.029) (0.010) (0.018) (0.053) (0.007)

N 787 705 787 880 20
Panel B: Long Sample

Round 0.003∗∗ 0.001∗∗∗ -0.001∗ 0.007∗∗ -0.000
(0.001) (0.000) (0.000) (0.003) (0.000)

Constant 0.499 -0.016 0.214 0.350 0.149
(0.027) (0.007) (0.010) (0.061) (0.010)

N 804 743 804 880 40
Notes: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. Standard errors are in parentheses under the estimates and
clustered by individual in all specification except for the H-index, in which case observations are at the
round level. In calculating the H-index, we pool λ = 0 and λ = 1 in order to avoid over-estimating the
degree of choice dispersion.

In Table 3 we look at the changes in λ throughout the sessions from a number of vantage points.

In column (1) we start with λ itself, to ascertain an overall directional trend. In column (2) we then

estimate a first-differenced specification. Next, in column (3) we consider the absolute deviation

of λ from 0.656, our estimate of the payoff-maximizing λ over the course the short sample, to

see if individuals are getting closer to that value over time. In these first three specifications,

12Paired t-tests of the long sample frequencies in Table 2, Panel B indicate that the fraction starting small is signifi-
cantly greater than the fraction starting large in the middle and end with p = 0.07 in both cases. The comparisons of
starting large and small in the end rounds conditional on behavior in the beginning rounds are limited by very small
sample size, but nonetheless the comparison conditional on starting large in the beginning is on the margin of statistical
significance (p = 0.10).
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observations of λ = 0 and λ = 1 are excluded because the regression uses the cardinal information

in λ.13 The last two specifications do not require this exclusion. As an analogue to Table 2, we

use an indicator variable for starting small as an outcome variable. Lastly, we collapse the data

to the round level and calculate a round-specific Herfindahl index (H-index) that measures how

concentrated the market for λ values is. This approach is designed to assess whether learning and

convergence happen over the course of a session.14

The regression results shown in Table 3 include standard errors clustered by individual in all

specifications except for the H-index specification. We find, in both the short and long samples,

that the mean choice of λ is increasing slowly and significantly over time. In the short sample, the

predicted λ rises from 0.456 to 0.556 from round 1 to round 20. In the long sample, the predicted

value rises from 0.499 in round 1 to 0.559 in round 20 to 0.619 in round 40. In both samples, the

coefficients on the round variable shown in Table 3 indicates that subjects are growing closer to

choosing the payoff maximizing λ as play continues, and these coefficients are precisely measured

in 4 of 5 tests for both the short and long samples.

4.3 Do Players Earn More When λ is Endogenous?

Figure 3 presents the difference between the mean joint payoffs in the random condition and the

mean joint payoffs in the endogenous condition, for each round. As the sessions proceed, this

difference grows. This is expected. In the random condition, the (randomly chosen) value of λ is

often quite far from its optimal value of λ∗. In the endogenous condition, the subjects’ choices tend

toward the optimal value λ∗, allowing them to achieve higher payoffs. Table 4 shows regressions

of joint payoffs on a dummy variable for the endogenous condition. Columns (1) and (4) shows the

treatment effect of the endogenous condition relative to the random condition. Payoffs are about

10% larger over the last 10 rounds, an effect which is statistically significant at a 5% level.

The excess payoffs in the endogenous condition seen in Figures 2 and 3 lead us to examine

whether there are payoff differences conditional on λ. In other words, once λ is chosen, does it

matter if that choice came from a computer or a player? These estimates represent the combination

of two effects: 1) the causal effect of a value of λ being endogenously rather than randomly derived,

and 2) the effect of selection into a value of λ. Because these effects may differ considerably

13Not only are these extreme values cardinally ambiguous with respect to the other λ values, but with respect to
each other as well. λ = 0 corresponds to a single-shot game for all the payoffs followed by a meaningless game.
λ = 1 corresponds to a cheap talk game followed by a single-shot game for all the payoffs. Moving from λ = 0.9 to
λ = 1 (λ = 0.1 to λ = 0) may therefore be very different than moving from λ = 0.8 to λ = 0.9 (λ = 0.2 to λ = 0.1).

14Given our 10 distinct values of λ (we treat 0 and 1 identically), the minimum value for the index is 0.10. Part of the
reason the H-index was not a stronger measure is the fact that λs of 0 and 1 were disproportionately chosen, especially
early in the study, perhaps because they are more focal. With repetition, these extremes became less concentrated as
the intermediate points became more concentrated, which understated the change in the desired direction.
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Figure 3: Excess Payoffs in Endogenous Condition over Random Condition by Round

depending on what λ is, we define two groups of λ choices. We call λ values of 0.4, 0.5, or 0.6

central choices. These choices reveal that a player would like to split the payoffs roughly evenly

across the two stages. All other values of λ we call extreme values. Columns (2) and (5) of Table

4 show regressions of joint payoffs on a dummy variable for the endogenous condition, limited

to central λ values only.15 We find that payoffs at central values of λ are about 19% larger in

the second half of the endogenous condition sessions relative to the second half of the random

condition sessions. This is evidence that selection into a well-balanced version of the game (and

perhaps the signaling of that intent) can stimulate even higher cooperation than random assignment

to the same game. Columns (3) and (6) of Table 4 show regressions of joint payoffs on a dummy

variable for the endogenous condition, limited to extreme λ values only. We find a negative, but

statistically insignificant impact of selection into an imbalanced version of the game.

If there is signaling value to the selected λ, then values of λ far outside the optimal range

could be warning signs, and we might expect to see a negative effect of the endogenous condition,

while, by contrast, we might expect that endogenous values near the optimum could induce more

cooperation. The most direct test of whether the choice of λ is interpreted as a signal is to leverage

the fact that when a subject’s choice of λ is implemented, this news is relatively uninformative. For

example, if a subject chooses λ = 0.6 and then observes λ = 0.6 implemented, the interpretation

15We also include λ fixed effects to hold fixed the causal impact of different λ values on payoffs.
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Table 4: Payoff Differences across Conditions
Sample Restriction

All Rounds Rounds 11-20
(1) (2) (3) (4) (5) (6)

1(endogenous = 1) 1.290 1.952 -0.233 2.485∗∗ 4.396∗∗ -0.400
(1.190) (1.679) (0.947) (1.142) (1.990) (0.790)

Constant 28.374 29.335 25.620 24.442 23.663 21.073
(0.553) (1.130) (1.171) (0.528) (1.120) (0.715)

λ Fixed Effects? No Yes Yes No Yes Yes

λ Range All Central Extreme All Central Extreme

N 1540 446 1074 770 227 543
Notes: ∗∗p < 0.05. Standard errors with two-way clustering for both individuals in a pairing are in parentheses under
the estimates. In columns (2) and (5), λ = 0.04 is the excluded group for the fixed effects. In columns (3) and (6),
λ = 0 is the excluded group for the fixed effects.

should be that there is a greater likelihood that the subject’s own choice was implemented than

the choice of their partner. However, when a subject chooses λ = 0.6 and then observes λ = 0.5

implemented, the subject knows both players’ choices of λ and, moreover, can infer that both

players have similar strategic intentions. The same is true if two extreme choices of λ are revealed.

Our signaling hypothesis is that when both subjects in a pair choose central values of λ, a

subject should be more likely to cooperate when their choice of λ is not selected because the

revelation of λ is more informative. Conversely when both subjects in a pair choose extreme

values of λ (by which we mean all non-central values), a subject should be less likely to cooperate

when their choice is not selected for the similar reasons.

To test this hypothesis we regress an indicator for whether an individual cooperates in the first

stage of the game on four mutually exclusive indicators: 1) Central/Used = 1 if an individual’s

central choice of λ was implemented. 2) Central/Unused = 1 if an individual’s central choice

of λ was not implemented and a different central λ was implemented. 3) Extreme/Used = 1

when an individual’s extreme choice of λ was implemented. 4) Extreme/Unused = 1 when an

individual’s extreme choice of λ was not implemented and a different extreme λ was implemented.

We expect to find that the coefficient on Central/Unused is greater than that on Central/Used and

the coefficient on Extreme/Unused is less than that on Extreme/Used. Relative to the excluded

group (subjects aware of their partner’s λ choice being misaligned with theirs), we expect that the

sign of the Central/Unused coefficient to be positive and that on Extreme/Unused to be negative.

We use a fixed effects for λ, individual fixed effects, and dummy variables for game as controls.

Results are presented in Table 5 for both the full sample and the final 10 rounds. The predic-
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Table 5: Effect of λ on Cooperation in the Endogenous Condition
First Stage Cooperation

All Rounds Rounds 11-20

Central/Used 0.024 0.112
(0.079) (0.102)

Central/Unused 0.021 0.333∗∗

(0.090) (0.124)

Difference: Used−Unused 0.002 -0.221∗

(0.068) (0.125)

Extreme/Used -0.012 0.012
(0.043) (0.070)

Extreme/Unused -0.122∗∗ -0.103
(0.050) (0.076)

Difference: Used−Unused 0.110∗∗∗ 0.115∗

(0.037) (0.063)

N 880 440
Notes: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. Standard errors, clustered by
individual are in parentheses under the estimates. Both specifications include λ
fixed effects and individual fixed effects.

tions are first that coefficients on the dummy variables Central/Unused should be positive, while

those for Extreme/Unused should be negative. This prediction is met in all four cases, with one

coefficient reaching statistical significance for each time period. The second prediction is that the

difference between subjects with used and unused λs will be negative for central values and posi-

tive for extreme values. As the table shows, three of the four estimated differences have the correct

sign and reach statistical significance at conventional levels, while one difference (central and all

rounds) is a precisely estimated zero. Overall, this analysis is supportive of the hypothesis that

people recognize and respond to a signal in the level of λ in their partners.16

5 Discussion and Conclusion

People frequently enter into short term relationships where much is unknown about their partners.

An important aspect often under the control of people is how they sequence the values at stake in

each interaction. Common intuition suggests it would be best to start small—if an interaction goes

16This finding is strengthened by more complete analysis presented in Appendix Section C. Here we show evidence
that cooperation has a stronger reinforcement effect in the endogenous condition.

15



well, players can feel more comfortable increasing the stakes. Andreoni and Samuelson (2006)

confirmed this intuition in a theoretical model of a twice-played Prisoner’s Dilemma, and validated

this prediction with an experiment. Both the theory and experiment, however, were predicated on

the choice of stakes not being selected by the players themselves. It would appear both more

interesting and more valuable to see that the same conclusions—or stronger—hold when starting

small is determined endogenously. This paper squares this circle.

Andreoni and Samuelson’s innovation was to experimentally vary the allocation of stakes

across the two stages of Prisoners’ Dilemma. This allowed them to estimate the distribution of

stakes that maximized total surplus. Starting small, with around two-thirds of the potential re-

served for the second stage, maximized total social surplus in the game. Here we ask the natural

and more important question: When subject choose the stakes themselves, will they gravitate to-

ward starting small? If so, will the surplus maximizing allocation of stakes be the same? If they are,

then will earnings at this optimum allocation be the same as when the stakes were experimentally

controlled?

We find that starting small remains optimal; the payoff maximizing allocation of stakes in our

experiment are virtually the same as when stakes are experimentally selected. Additionally, we

find evidence of learning to start small over the course of the study. Subjects are significantly more

likely to start small, and to robustly choose stakes significantly closer to the payoff-maximizing

allocation as the study progresses.

We also found an unpredicted but very interesting effect. When the stakes are nearer to the

payoff maximizing stakes they are more profitable when selected by subjects than when selected

experimentally. Stated differently, there appears to be a signaling value to the level of stakes chosen

that heightens the returns to starting small and decreases the returns to starting (very) big. Our

speculation, which could be of great interest for further development, is that individuals are gaining

information about their partner’s character through their choice of stakes, despite the existence of

an equilibrium in which players of all types select the same stakes.

This result also speaks more generally to the ingenuity of individuals in structuring their in-

teractions. Rational cooperation is possible in a twice played Prisoners’ Dilemma game, but is

only possible if there truly are those who are willing to cooperate with sufficient assurance of co-

operation from their partners. As numerous laboratory and field experiments have shown, many

individuals behave pro-socially in social dilemmas, largely based on moral principles or altruistic

intentions. It is intuitive that individuals or groups within society would structure interactions to

take the greatest advantage of such “principled agents,” especially when doing so is reinforced by

the improved payoffs. This suggests a potentially valuable area for research. Can we find natu-

ral, organic structures like starting small as evidence that people, on their own, can successfully

innovate institutions and rules of interaction that leverage these moral or altruistic preferences for

16



the greater good? These structures need no central planner, no clever mechanism designer, and no

external enforcer. Instead, as in this study, informal arrangements are efficiency enhancing because

of the existence of a (perhaps very small) well of benevolent individuals.
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Appendix
For online publication only. To accompany

James Andreoni, Michael A. Kuhn and Larry Samuelson,
“Starting Small: Endogenous Stakes and Rational Cooperation.”

A Alternative Estimates of the Cubic Polynomial

Following Andreoni and Samuelson (2006), we estimate joint payoffs, π, as a cubic polynomial

of λ, conditional on a round fixed effect, γt. We then find the value of λ that maximizes this

polynomial. We call this first specification CP, for cubic polynomial:

CP : πi,t + πj,t = γt + β1λk(i,j),t + β2λ
2
k(i,j),t + β3λ

3
k(i,j),t + εi,j,t ,

where i and j denote two individuals paired in round t and k(i, j) is an index indicating whether

individual i’s or j’s value of λ is chosen.

Individual characteristics may play a role in determining the chosen λ, and these same personal

characteristics are likely to influence how people play the game once λ is determined and thus how

much they earn from playing. To account for this, we take an individual fixed effect approach in

specification FE:

FE : πi,t + πj,t = θi + θj + γt + β1λk(i,j),t + β2λk(i,j),t
2 + β3λk(i,j),t

3 + εi,j,t ,

where θi and θj are individual-specific constants for both players in a pairing. Given both the

individual and round constants, any remaining confounding endogeneity of λ must be within-

individual, time-varying covariance between the choice of λ and the cooperation decision.

Table A1 shows the CP and FE specifications side-by-side, applied to only the endogenous

condition. We test for the joint equality of all shared coefficients across the two models (including

round fixed effects). While we reject the null hypothesis that the model coefficients are jointly

equal across specifications, the non-linear combination of the λ coefficients yields very similar

estimates λ∗ of the payoff-maximizing λ, and we do not reject equality of the payoff maximizing

λ across specifications. While we use multi-way clustering for the main analysis of game-level

outcomes, we use unclustered robust standard errors here to accommodate the simultaneous esti-

mation of both models.
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Table A1: Relationship between λ and Payoffs in the Endogenous Condition
Model

CP FE

λ 3.802 1.487
(13.289) (12.166)

λ2 51.013 40.451
(33.097) (29.908)

λ3 -57.439∗∗ -42.722∗∗

(22.906) (20.550)

H0: CP Terms Jointly = FE Terms χ2(3)=7.38∗

(p = 0.06)

Payoff-maximizing λ: λ∗ 0.627 0.649
(0.025) (0.030)

H0 : λ
∗
CP = λ∗FE χ2(1) = 0.97

(p = 0.33)

N 440 440
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. Robust standard errors are reported in parentheses
under the estimates unless otherwise indicated. The payoff-maximizing λ is a non-linear
combination of the three coefficient estimates obtained using the quadratic formula on the
derivative of the implied cubic polynomial.

B Choices of λ Trend Upward

This section elaborates on the results of Section 4.2 by examining the full distribution of choices

over the course of the short and long samples. Figure A1 shows histograms of λ choices for the first

and last 5 rounds in the short sample, while Figure A2 shows the first 5, last 5 and rounds 16-20

(corresponding to the last 5 in the short sample) in the long sample. Both figures indicate a shift

of mass from the left side of the distribution (start large) to the right ride of the distribution (start

small) over time. Whereas starting even is still relatively common by the end of the short sample,

other values in the start small region overtake it in frequency by the end of the long sample.

We use Kolmogorov-Smirnov tests to assess whether the distributions in Figures A1 and A2

differ from one another.17 In the short sample, the distribution of λ choices in rounds 16-20 is

significantly to the right of the distribution of choices in rounds 1-5 (D = 0.20, p < 0.01), in-

dicating movement towards starting small. In the long sample, we find a shift towards starting

small in rounds 16 to 20 and rounds 36 to 40 relative to rounds 1-5 (D = 0.15, p = 0.07 and
17Aggregated up to 5-round bins, testing the distributions against the hypothesis of uniformity rejects the null in all

circumstances.
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Figure A1: λ Choices by Round in the Short Sample

D = 0.24, p < 0.01 respectively). The continued shift towards starting small from rounds 16-20

to 36-40 is not significant at conventional levels (D = 0.14, p = 0.13). Testing across short and

long samples, we do not reject the equality of distributions in rounds 1-5 (D = 0.11, p = 0.25).

However, starting small is significantly more frequent in the long sample by rounds 16-20 than in

the same rounds in the short sample (D = 0.22, p < 0.01), and thus we also find significantly

more starting small in rounds 36-40 of the long sample than in rounds 16-20 of the short sample

(D = 0.26, P < 0.01).

C Is Cooperation Self-Reinforcing?

Andreoni and Samuelson (2006) explain cooperation in the twice repeated prisoners’ dilemma as

rationally emerging from a model of innate preferences for cooperation. Could individuals learn

about their own preferences for cooperation through their experiences participating in socially

beneficial actions? In other words, does one learn about their warm-glow enjoyment of cooperation

by “accidentally” having a successful cooperative experience? Our data offer a unique ability to

ask whether participating in a successful cooperation in the past reinforces cooperative behavior

(i.e., is “habit forming”) using exogeneity in the determination of λ. We estimate the causal impact
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Figure A2: λ Choices by Round in the Long Sample

of having cooperated in the previous round on the likelihood of cooperating in the present round.

Furthermore, we determine whether this reinforcement effect is stronger in the random condition

or the endogenous condition.

Isolating the causal impact of cooperation in the past on cooperation in the future requires

finding random variation in whether an individual chose to cooperate in the past. A nice example

comes from Fujiwara, Meng, and Vogl (2013), in which weather events alter the transactions costs

of voting. Using instrumental variables, this allows the researchers to identify the causal impact

of voting in the past on voting in the future.18 In the case of our study, we need an instrumental

variable for cooperation in any given round that will serve the role of the weather shocks to voting

costs: what random source of variation affects the decision to cooperate? We use λ for this. Here

λ can be thought of as a cost of cooperation, and random variation in λ can thus lead to random

variation in cooperation.

The difference in how λ is determined between the random and endogenous conditions requires

that we use two different approaches to using it as an instrument for cooperation. In the random

condition, we use λ as an instrument for whether an individual cooperates in both stages of a

18Another similar situation comes from Ham, Kagel and Lehrer (2005) in which the researchers study the impact of
cash balances in auction behavior, using randomness in previous rounds as an instrument for cash balances.
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round, controlling for the first stage behavior of their partner in that round. In the endogenous

condition, we limit the sample to subjects in rounds that encounter a λ that they did not choose.

We then use λ as an instrument in the same way. When we run the second stage of the instrumental

variable regressions—cooperation in both stages of the current game regressed on cooperation in

both stages of the prior game, adjusting for the endogeneity of cooperation in the prior game—we

add the additional control of λ in the current game and their partner’s behavior in the first stage of

the current game. In the endogenous condition, we also control for whether an individual’s choice

of λ was implemented in the current game.

Maximizing the relevance of our instruments requires a different functional form across con-

ditions. Figure A3 shows the relationship between λ and the likelihood of cooperating in both

stages of a round. In the random condition, the cubic approximation used earlier to estimate the

relationship between λ and joint payoffs fits well. In the endogenous condition, an indicator vari-

able for whether λ is selected to be its nearest-to-cooperation-optimal value of 0.6 appears to be a

better predictor of cooperation due to the large spike in likelihood there and the noisy relationship

elsewhere.

Figure A3: Cooperation and λ across Conditions

Our first-stage IV specifications are

IV-R1: 1(C1
i,t−1, C

2
i,t−1 = 1) = αi + γt−1 + β1λt−1 + β2λ

2
t−1 + β3λ

3
t−1 + δC1

j,t−1 + εi,j,t−1
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in the random condition and

IV-E1: 1(C1
i,t−1, C

2
i,t−1 = 1) = αi + γt−1 + β ∗ 1(λt−1 = 0.6) + δC1

j,t−1 + εi,j,t−1

in the endogenous condition. C1
i,t and C2

i,t are indicators for whether individual i cooperated in

the first and second stage respectively in round t. The C1 indicator with a j subscript represents

the first-stage cooperation decision of the partner as a control variable. Individual and round fixed

effects are included in both stages. The estimation sample for IV-E1 is limited to those whose

partners selected λt−1. Partner second-stage cooperation in round t − 1 enters as a control in the

second stage but not the first because of the timing of the decisions.

Using ε̂i,j,t−1, the predicted residual from the first stage, the second stage specification in the

random condition is

IV-R2: 1(C1
i,t, C

2
i,t = 1) = αi + γt + ζ ∗ 1(C1

i,t−1, C
2
i,t−1 = 1) + ηε̂i,j,t−1+

β1λt + β2λ
2
t + β3λ

3
t + δ1C

1
k,t + δ2C

2
j,t−1 + δ3C

1
j,t−1 + εi,j,k,t

In the endogenous condition, we introduce an additional control for whether individual i’s choice

of λ is implemented in round t, Li,t. The sample is again restricted to those who did not choose λ

in the previous game.

IV-E2: 1(C1
i,t, C

2
i,t = 1) = αi + γt + ζ ∗ 1(C1

i,t−1, C
2
i,t−1 = 1) + ηε̂i,j,t−1+

β ∗ 1(λt = 0.6) + δ1C
1
k,t + δ2C

2
j,t−1 + δ3C

1
j,t−1 + θLi,t + εi,j,k,t .

The j subscript continues to represent individual i’s partner in round t − 1 and k is introduced

to represent individual i’s partner in round t. This control function approach is implemented in

two-stages with standard errors clustered at the individual level in the second stage. Because the

standard errors from the manual two-stage procedure fail to account for the estimated nature of the

instrument, we also present results using an automated procedure that adjusts the standard errors

but does not respect the timing of the control variables between the first and second stages.19

The instrument sets are both relevant. The first stage for the random condition yields an

F (3, 109)-statistic of 4.45, p < 0.01 on the joint test of the first, second and third-order λ co-

efficients being equal to zero. In the endogenous condition, the indicator for λ = 0.6 has a positive

and significant effect on the likelihood of cooperation in both stages of the game, with p < 0.01.

19In other words, variables that should be excluded from the first stage cannot be, using the packaged statistical
approach that allows for the proper imputation of standard errors. Manual adjustments of the standard errors in
the context of the two-stage models are difficult given that the random and endogenous specifications are estimated
simultaneously to allow for hypothesis testing.
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Our estimates of reinforcement learning are found in Table A2. OLS estimates of the relation-

ship between lagged cooperation and present cooperation yield similar results in both conditions,

and the effect is positive and significant.20 Instrumenting for lagged cooperation generates a much

larger coefficient in the endogenous condition only. This is surprising: the OLS estimates would be

biased upwards if time-varying personal factors that led to cooperation in the previous round also

led to cooperation in the current round. An advantage of the two-stage approach is that the coef-

ficients on the lagged cooperation indicator are simple to test across models despite the regression

specifications being different because the second stage is implemented using OLS. We find that

the large difference between the two conditions identified in the two-stage IV model is significant

at the 10% confidence level (p = 0.09). Given the binary dependent variable, the magnitude of the

IV coefficient on lagged cooperation in the endogenous condition needs to be taken in context with

the large negative influence of the first stage residual. This indicates that the causal effect of lagged

cooperation on present cooperation is partly masked by the endogeneity of past behavior, although

this endogeneity is not in the intuitive direction. While the estimates are noisy, the meaningful

magnitudes of the coefficients indicate that cooperation is more strongly learned when it arises

from an endogenously designed interaction.

Table A2: IV Estimates of Reinforcement Learning in Cooperation
OLS Estimates IV Estimates

2 Stage 1 Stage

Random Endogenous Random Endogenous Random Endogenous

Cooperated 0.233∗∗∗ 0.299∗∗ 0.210 0.906∗∗∗ 0.318 1.084∗

Last Round? (0.049) (0.114) (0.239) (0.332) (0.244) (0.605)

Last Round 0.023 -0.619∗

Residual (0.242) (0.337)

N 2086 326 2086 326 2086 326
Notes: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. Standard errors, clustered by individual are in parentheses under the
estimates. Two stage least squares is implemented using the control function approach and the estimating equations
described in the text. The one-stage procedure ignores the timing of variable determination, but has the advantage of
factoring first stage noise into the standard errors in the second stage.

20Dynamic panel fixed effects models are known to be inconsistent and biased towards zero (Nickell, 1981). How-
ever, our goal in this exercise is to compare across conditions rather than interpret the estimate magnitudes themselves.
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Welcome to the Economics Study

Welcome

Thank you for participating in this study. We expect this study to last about 90 minutes. Your earnings in this
study will be paid to you in cash at the end of the session.

Throughout the experiment your identity will be kept totally private. Neither the experimenter nor the other
participants will ever be able to tie you to your decisions.

The Experiment

In this experiment you will play a series of 20 games. In each of the 20 games you will be randomly paired with
one other person for that game. Your partner in each game will change randomly throughout the study. You will
never be able to predict which of the other participants in the room you are paired with for any game. Also, you
will never play anyone more than one time.

In each game, you and your partner will make choices in two rounds. When the two rounds are over, your game
will be complete. Then you will be randomly assigned a new partner and start a new game, again with two
rounds.

You will repeat this process until you have completed a total of 20 games. Since each game will have two
rounds, you will be in a total of 40 rounds over the course of the experiment.

In each game you will earn tokens. The tokens you earn in each game will be deposited in your Earnings
Account. At the end of the study you will be paid $0.06 for every chip in your Earnings Account.

Each Round

Each game has two rounds. In each round you will decide between one of two options. You can either pull an
amount X to yourself, or you can push an amount Y to your partner. In every decision, the amount you can push
is three times the amount you can pull, that is, Y=3X. However, the values of X and Y will be changing from
round to round.

Here is an example of a decision:

I choose
to:     pull 10 tokens to myself, or

 push 30 tokens to the other
player

 
Submit

My partner chooses
to:     pull 10 tokens to him/herself, or

 push 30 tokens to the other
player

There are four possible outcomes:

Possible Outcome 1: If you decide to pull 10 tokens to yourself and your partner decides to push 30 tokens to



you, then your payoff is 40 tokens and your partner's payoff is 0 tokens.

Possible Outcome 2: If you decide to pull 10 tokens to yourself but instead your partner decides to pull 10 tokens
for himself, then your payoff is 10 tokens and your partner's payoff is 10 tokens.

Possible Outcome 3: If you decide to push 30 tokens to your partner and your partner decides to push 30 tokens
to you, then your payoff is 30 tokens and your partner's payoff is 30 tokens.

Possible Outcome 4: If you decide to push 30 tokens to your partner but instead your partner decides to pull 10
tokens to himself, then your payoff is 0 tokens and your partner's payoff is 40 tokens.

As you can see, your partner will be faced with the same decision as you. You will both make your decisions at
the same time. That is, you must make your decision without knowing what your partner is deciding.

Each Game

Each time you are paired with a new partner you will play a 2-round game with that person. In each round you
will make a decision like that above.

Here is an example of what a game could look like:

Round 1 Decision:

Round 1 - Make a Choice

I choose
to:     pull 3 tokens to myself, or

 push 9 tokens to the other
player

 
Submit

My partner chooses
to:     pull 3 tokens to him/herself, or

 push 9 tokens to the other
player

Round 2 - Next Round

I choose
to:     pull 7 tokens to myself, or

 push 21 tokens to the other
player

My partner chooses
to:     pull 7 tokens to him/herself, or

 push 21 tokens to the other
player

Notice that when you are asked to make your decision in the first round, you will also be able to see the decision
to be made in the second round. This is shown in the grayed-out portion of the decision screen.

So, for example, suppose that in Round 1, you decide to push 9 tokens to your partner and your partner also
decides to push 9 tokens to you. Then your payoff for the round would be 9 tokens and your partner's payoff
would also be 9 tokens.

You will be able to see the results of your decision and your partner's decision before you make your decision for
the second round. The screen you will see for your second-round decision looks like this:



Round 1 - Results

I choose
to:     pull 3 tokens to myself, or

 push 9 tokens to the other
player

My partner chooses
to:     pull 3 tokens to him/herself, or

 push 9 tokens to the other
player

Round 1 - Earnings

You: 0 + 9 = 9 Your Partner: 0 + 9 = 9

Round 2 - Make A Choice

I choose
to:     pull 7 tokens to myself, or

 push 21 tokens to the other
player

 
Submit

My partner chooses
to:     pull 7 tokens to him/herself, or

 push 21 tokens to the other
player

After seeing these results, you can go on to make a choice for Round 2. Suppose in this Round 2 you chose to
push 21 tokens while your partner chose to pull 7. Then for this decision you will earning nothing while your
partner earns 7 + 21 = 28 tokens.

This makes your total earnings for the game 9 + 0 = 9, while your partner's total earnings are 9 + 28 = 37. The
results of this game will be reported to you like this:

Round 1 - Results

I choose
to:     pull 3 tokens to myself, or

 push 9 tokens to the other
player

My partner chooses
to:     pull 3 tokens to him/herself, or

 push 9 tokens to the other
player

Round 1 - Earnings

You: 0 + 9 = 9 Your Partner: 0 + 9 = 9

Round 2 - Make A Choice

I choose
to:     pull 7 tokens to myself, or

 push 21 tokens to the other
player

My partner chooses
to:     pull 7 tokens to him/herself, or

 push 21 tokens to the other
player

Round 2 - Earnings

You: 0 + 0 = 0 Your Partner: 7 + 21 = 28

That was the end of game 1.



Total Game Earnings
You: 9 tokens Your Partner: 37 tokens

When you finish viewing the results of the game, you can click Next Game . Then you will be randomly
assigned a new partner from the others in the room and begin a new 2-round game.

How the Amounts to Pull and Push will Change

The amounts available to pull and push will change from round-to-round and from game-to-game. Here we
explain how these values will be set.

For each decision, the number of tokens available to push will always be 3 times the number available to pull.
For example, if you can pull 2 then you can push 6. Or, if you can pull 8, then you can push 24. If you can pull
10 then you can push 30.

In any decision the tokens you can pull will always be between 0 and 10. Since the push amounts are three times
the pull amounts, the amount you can push will always be between 0 and 30.

There will also be a special way the pull and push amounts are determined within a game. In particular, the
number of tokens you can pull in Round 1 plus the number you can pull in Round 2 will always equal 10. For
example, if you can pull 4 in Round 1 then you can pull 6 in Round 2. Or, if you can pull 1 in Round 1 then you
can pull 9 in Round 2. If you can pull 10 in Round 1, then you can pull 0 in Round 2.

Note that since the pull amounts in Round 1 and Round 2 always sum to 10, this means that the push amounts in
the two rounds will always sum to 30. In other words, all games will have the same feature that the total amount
to pull across the the two rounds is 10 and the total amount to push is 30. How games will differ is in how many
push and pull tokens are allocated to Round 1 and how many to Round 2.

Finally, the push and pull amounts you see in any game will be drawn at random from all the possible pull and
push amounts that meet these rules above. You will never know what values you will see in future games, but all
possible values are equally likely.

So there are three things to remember about how the pull and push amounts are set:

1. The push amounts are always 3 times the pull amounts.
2. In each game the pull amount in Round 1 and the pull amount in Round 2 always sume to 10. As a result,

the push amount in Round 1 and the push amount in Round 2 sum to 30.
3. The values in each game are determined at random from all the values that meet rules (1) and (2)

Your History

If you want to look back at the history of play you have seen over the experiment, you can do this from any
screen by hitting the button View My History . This will show you your decisions, your partner's decision, and
your earnings in each game.



Overview of the Experiment

As we are about to begin, keep these things in mind:

You will play a total of 20 2-round games.
For each 2-round game, you will play with the same partner for both of the rounds.
When you start a new game, you will get a new partner, chosen at random from everyone here today.
You will never play the same person more than once.
In each 2-round game the total amount to pull across the two rounds is 10 and the total amount to push is
30. The games will differ in how much of this is allocated to Round 1 and how much to Round 2.
You will be paid your total earnings across all 20 of the 2-round games.
Each token you earn is worth $0.06.
The experiment will last about 90 minutes.

Thanks for participating. Good luck! 

Begin!
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Welcome to the Economics Study

Welcome

Thank you for participating in this study. We expect this study to last about 90 minutes. Your earnings in this study will be paid to
you in cash at the end of the session.

Throughout the experiment your identity will be kept totally private. Neither the experimenter nor the other participants will ever
be able to tie you to your decisions.

The Experiment

In this experiment you will play a series of 3 games. In each of the 3 games you will be randomly paired with one other person for
that game. Your partner in each game will change randomly throughout the study. You will never be able to predict which of the
other participants in the room you are paired with for any game. Also, you will never play anyone more than one time.

In each game, you and your partner will make choices in two rounds. When the two rounds are over, your game will be complete.
Then you will be randomly assigned a new partner and start a new game, again with two rounds.

You will repeat this process until you have completed a total of 3 games. Since each game will have two rounds, you will be in a
total of 6 rounds over the course of the experiment.

In each game you will earn tokens. The tokens you earn in each game will be deposited in your Earnings Account. At the end of
the study you will be paid $0.04 for every chip in your Earnings Account.

Each Round

Each game has two rounds. In each round you will decide between one of two options. You can either pull an amount X to
yourself, or you can push an amount Y to your partner. In every decision, the amount you can push is three times the amount you
can pull, that is, Y=3X. However, the values of X and Y will be changing from round to round.

Here is an example of a decision:

I choose to:     pull 10 tokens to myself, or
 push 30 tokens to the other player
 

Submit

My partner chooses to:     pull 10 tokens to him/herself, or
 push 30 tokens to the other player

There are four possible outcomes:

Possible Outcome 1: If you decide to pull 10 tokens to yourself and your partner decides to push 30 tokens to you, then your
payoff is 40 tokens and your partner's payoff is 0 tokens.

Possible Outcome 2: If you decide to pull 10 tokens to yourself but instead your partner decides to pull 10 tokens for himself, then
your payoff is 10 tokens and your partner's payoff is 10 tokens.

Possible Outcome 3: If you decide to push 30 tokens to your partner and your partner decides to push 30 tokens to you, then your
payoff is 30 tokens and your partner's payoff is 30 tokens.

Possible Outcome 4: If you decide to push 30 tokens to your partner but instead your partner decides to pull 10 tokens to himself,
then your payoff is 0 tokens and your partner's payoff is 40 tokens.



As you can see, your partner will be faced with the same decision as you. You will both make your decisions at the same time.
That is, you must make your decision without knowing what your partner is deciding.

Each Game

Each time you are paired with a new partner you will play a 2-round game with that person. In each round you will make a
decision like that above.

Here is an example of what a game could look like:

Round 1 Decision:

Round 1 - Make a Choice

I choose to:     pull 3 tokens to myself, or
 push 9 tokens to the other player
 

Submit

My partner chooses to:     pull 3 tokens to him/herself, or
 push 9 tokens to the other player

Round 2 - Next Round

I choose to:     pull 7 tokens to myself, or
 push 21 tokens to the other player

My partner chooses to:     pull 7 tokens to him/herself, or
 push 21 tokens to the other player

Notice that when you are asked to make your decision in the first round, you will also be able to see the decision to be made in the
second round. This is shown in the grayed-out portion of the decision screen.

So, for example, suppose that in Round 1, you decide to push 9 tokens to your partner and your partner also decides to push 9
tokens to you. Then your payoff for the round would be 9 tokens and your partner's payoff would also be 9 tokens.

You will be able to see the results of your decision and your partner's decision before you make your decision for the second
round. The screen you will see for your second-round decision looks like this:

Round 1 - Results

I choose to:     pull 3 tokens to myself, or
 push 9 tokens to the other player

My partner chooses to:     pull 3 tokens to him/herself, or
 push 9 tokens to the other player

Round 1 - Earnings

You: 0 + 9 = 9 Your Partner: 0 + 9 = 9

Round 2 - Make A Choice

I choose to:     pull 7 tokens to myself, or
 push 21 tokens to the other player
 

Submit

My partner chooses to:     pull 7 tokens to him/herself, or
 push 21 tokens to the other player

After seeing these results, you can go on to make a choice for Round 2. Suppose in this Round 2 you chose to push 21 tokens
while your partner chose to pull 7. Then for this decision you will earning nothing while your partner earns 7 + 21 = 28 tokens.

This makes your total earnings for the game 9 + 0 = 9, while your partner's total earnings are 9 + 28 = 37. The results of this game
will be reported to you like this:



Round 1 - Results

I choose to:     pull 3 tokens to myself, or
 push 9 tokens to the other player

My partner chooses to:     pull 3 tokens to him/herself, or
 push 9 tokens to the other player

Round 1 - Earnings

You: 0 + 9 = 9 Your Partner: 0 + 9 = 9

Round 2 - Make A Choice

I choose to:     pull 7 tokens to myself, or
 push 21 tokens to the other player

My partner chooses to:     pull 7 tokens to him/herself, or
 push 21 tokens to the other player

Round 2 - Earnings

You: 0 + 0 = 0 Your Partner: 7 + 21 = 28

That was the end of game 1.

Total Game Earnings
You: 9 tokens Your Partner: 37 tokens

When you finish viewing the results of the game, you can click Next Game . Then you will be randomly assigned a new partner
from the others in the room and begin a new 2-round game.

How the Amounts to Pull and Push will Change

The amounts available to pull and push will change from round-to-round and from game-to-game. Here we explain how these
values will be set.

For each decision, the number of tokens available to push will always be 3 times the number available to pull. For example, if you
can pull 2 then you can push 6. Or, if you can pull 8, then you can push 24. If you can pull 10 then you can push 30.

In any decision the tokens you can pull will always be between 0 and 10. Since the push amounts are three times the pull amounts,
the amount you can push will always be between 0 and 30.

There will also be a special way the pull and push amounts are determined within a game. In particular, the number of tokens you
can pull in Round 1 plus the number you can pull in Round 2 will always equal 10. For example, if you can pull 4 in Round 1 then
you can pull 6 in Round 2. Or, if you can pull 1 in Round 1 then you can pull 9 in Round 2. If you can pull 10 in Round 1, then
you can pull 0 in Round 2.

Note that since the pull amounts in Round 1 and Round 2 always sum to 10, this means that the push amounts in the two rounds
will always sum to 30. In other words, all games will have the same feature that the total amount to pull across the the two rounds
is 10 and the total amount to push is 30. How games will differ is in how many push and pull tokens are allocated to Round 1 and
how many to Round 2.

In each round the push and pull values will be set by one of the two players.  Before any round, all players will choose which of
the 11 possible push and pull values they would like to play.  Then after you are paired with another player, the computer will
randomly select either the push and pull values that you chose, or the push and pull values that the other player chose.

You will choose the push and pull values that you wish to play by filling out a form like this below.  Try it to see how it works.

Preliminary Round: Select the game to be played next round.  Your partner will also be selecting a game to play. 
Which game you actually play will be determined at random to be either the game you chose or the game your
partner chose.  You and your partner must always play the same game.



Select a number below in order to set the pull and push values in the game you will play next:

          0     1     2     3      4     5      6      7       8      9     10

Submit your decision when you have selected the game below that you wish to play next: Submit

Round 1 

I choose to:     pull 3 tokens to myself, or
 push 9 tokens to the other player
 

My partner chooses to:     pull 3 tokens to him/herself, or
 push 9 tokens to the other player

Round 2 

I choose to:     pull 7 tokens to myself, or
 push 21 tokens to the other player

My partner chooses to:     pull 7 tokens to him/herself, or
 push 21 tokens to the other player

 

Results from the Preliminary Stage:

You Chose:                       0     1     2     3      4     5      6      7       8      9     10

The computer chose randomly between your choice and the choice of your partner.  The result is that both you and your partner
will play this game: 

                                         0     1     2     3      4     5      6      7       8      9     10

Begin Round 1:

Round 1 - Make a Choice

I choose
to:   pull 6 tokens to myself, or

 push 18 tokens to the other
player

Submit

My partner chooses to:     pull 6 tokens to him/herself, or
 push 18 tokens to the other player

Round 2 - Next Round

I choose to:     pull 4 tokens to myself, or
 push 12 tokens to the other player

My partner chooses to:     pull 4 tokens to him/herself, or
 push 12 tokens to the other player

  

Results from the Preliminary Stage:

You Chose:                       0     1     2     3      4     5      6      7       8      9     10

The computer chose randomly between your choice and the choice of your partner.  The result is that both you and your partner
will play this game: 

                                         0     1     2     3      4     5      6      7       8      9     10



Begin Round 2:

Round 1 - Results

I choose to:     pull 6 tokens to myself, or
 push 18 tokens to the other player

My partner chooses to:     pull 6 tokens to him/herself, or
 push 18 tokens to the other player

Round 1 - Earnings

You: 0 + 18 = 18 Your Partner: 0 + 18 = 18

Round 2 - Make A Choice

I choose to:     pull 4 tokens to myself, or
 push 12 tokens to the other player
 

Submit

My partner chooses to:     pull 4 tokens to him/herself, or
 push 12 tokens to the other player

Results from the Preliminary Stage:

You Chose:                       0     1     2     3      4     5      6      7       8      9     10

The computer chose randomly between your choice and the choice of your partner.  The result is that both you and your partner
will play this game: 

                                         0     1     2     3      4     5      6      7       8      9     10

 

Round 1 - Results

I choose to:     pull 6 tokens to myself, or
 push 18 tokens to the other player

My partner chooses to:     pull 6 tokens to him/herself, or
 push 18 tokens to the other player

Round 1 - Earnings

You: 0 + 18 = 18 Your Partner: 0 + 18 = 18

Round 2 - Make A Choice

I choose to:     pull 4 tokens to myself, or
 push 12 tokens to the other player

My partner chooses to:     pull 4 tokens to him/herself, or
 push 12 tokens to the other player

Round 2 - Earnings

You: 0 + 0 = 0 Your Partner: 4 + 12 = 16

That was the end of game 1.

Total Game Earnings
You: 18 tokens Your Partner: 34 tokens



 So there are three things to remember about how the pull and push amounts are set:

1. The push amounts are always 3 times the pull amounts.
2. In each game the pull amount in Round 1 and the pull amount in Round 2 always sume to 10. As a result, the push amount

in Round 1 and the push amount in Round 2 sum to 30.
3. Before any game, both players will play a Preliminary round where they choose the push and pull values for the game they

wish to play.  Which push and pull values you actually play will be determined at random to be either the those you chose or
the those your partner chose.

Your History

If you want to look back at the history of play you have seen over the experiment, you can do this from any screen by hitting the
button View My History . This will show you your decisions, your partner's decision, and your earnings in each game.

Overview of the Experiment

As we are about to begin, keep these things in mind:

You will play a total of 20 2-round games.
For each 2-round game, you will play with the same partner for both of the rounds.
When you start a new game, you will get a new partner, chosen at random from everyone here today.
You will never play the same person more than once.
In each 2-round game the total amount to pull across the two rounds is 10 and the total amount to push is 30. The games will
differ in how much of this is allocated to Round 1 and how much to Round 2.
You will be paid your total earnings across all 20 of the 2-round games.
Each token you earn is worth $0.06.
The experiment will last about 90 minutes.

Thanks for participating. Good luck!

  


