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Abstract

We study a decision maker who faces a dynamic decision problem in which the
process of information arrival is subjective. By studying preferences over menus of
acts, we derive a sequence of utility representations that captures the decision maker’s
uncertainty about the beliefs he will hold when choosing from a menu. In the most
general model of second-order beliefs, we characterize a notion of "more preference for
flexibility" via a subjective analogue of Blackwell’s (1951, 1953) comparisons of experi-
ments. We proceed to analyze a model in which signals are describable as subsets of the
state space. The corresponding representation enables us to compare the behavior of
two decision makers who expect to learn differently, even if they do not agree on their
prior beliefs. The class of information systems that can support such a representation
generalizes the notion of modeling information as a partition of the state space. We
apply the model to study a decision maker who anticipates subjective uncertainty to
be resolved gradually over time. We derive a representation that uniquely identifies
the filtration, which is the timing of information arrival with the sequence of partitions
it induces, and the decision maker’s beliefs.

Key words: Subjective resolution of uncertainty, second-order beliefs, preference for
flexibility, valuing binary bets more, generalized partition.

1. Introduction

A decision maker (DM) is currently renting an apartment with a monthly lease and considers

buying a condominium at a nonnegotiable price. Availability of the condominium can be

guaranteed for 30 days. Buying the condominium today saves the DM one month’s rent.

Buying next month allows him to gather more information about the objective properties of

the premises (for example, the availability of public schools in the area or the approximate

ages of other occupants), which enables him to make a more informed decision about whether
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to buy or not. Learning is subjective, in the sense that an outside observer does not know

what the DM will learn over the course of the month.

The situation just described is an example of a dynamic decision problem, in which the

process of information arrival is subjective. A dynamic decision problem has two components:

The first is a set of feasible intermediate actions, each of which determines the DM’s payoff

for any realized state of the world. The set of available actions will be the domain of our

analysis.1 The second component is a prior distribution over the states of the world and the

information about these states that is expected to arrive over time. We assume that the

information the DM expects to receive is not directly observed by others; it may be that the

DM has access to private data, that he interprets information in an idiosyncratic way, or

that he is selective in the information he observes. Those situations, which we collectively

refer to as “subjective learning”, are the subject of our analysis.

We consider an objective state space. Actions correspond to (Savage) acts and preferences

that are defined over sets of acts. We first adopt the usual interpretation (see Kreps (1979)),

that the DM has to choose an alternative from the menu at some prespecified point in the

future. Only today’s behavior is explicitly modeled. The DM may expect information to

arrive between the choice of the menu and the time of choosing from it. The DM’s prior

beliefs over the states of the world will be updated conditional on the information received,

leading to posterior beliefs that will govern his choice from the menu. Our goal is to relate

the subjective process of learning to the DM’s observed choice behavior.

Section 2 outlines the most general model that captures subjective learning: the DM

acts as if he has beliefs over the possible posterior distributions over the state space that

he might face at the time of choosing from the menu. The model is parameterized by a

probability measure on the collection of all possible posterior distributions. This probability

measure, which we refer to as a second-order belief, is uniquely identified from behavior. We

use this representation (first derived in Takeoka (2004)) to compare preference for flexibility

among decision makers. We say that DM1 has more preference for flexibility than DM2 if

whenever DM1 prefers to commit to a particular action rather than to retain some choice,

so does DM2. We show that DM1 has more preference for flexibility than DM2 if and

only if DM2’s distribution of first-order beliefs is a mean-preserving spread of DM1’s. This

result is analogous to Blackwell’s (1951, 1953) comparisons of experiments in a domain

where probabilities are objective and comparisons are made with respect to the accuracy of

information systems. To rephrase our results in the language of Blackwell, DM1 has more

1In the condominium example, buying the condominium today leaves the DM with no further actions to
take next month. Delaying the purchase decision implies that the set of available actions next month consists
of purchasing or not, and that the payoff associated with each option should be reduced by the monthly rent.
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preference for flexibility than DM2 if and only if DM2 would be weakly better off if he could

rely on the information system induced by the subjective beliefs of DM1. In the condominium

example above, we can consider two individuals who agree on their current evaluation of the

condominium. Then one DM is willing to pay a larger fee (for example, a higher additional

monthly rent) to delay the decision whether or not to purchase the condominium if and only

if he expects to be better informed than the other by the end of the month.

The most general model does not allow the comparison of two individuals in terms of

the information they expect to learn, unless they agree on their prior beliefs, because infor-

mation may be tacit, that is, it can not be described in terms of the objective state space.

Describable information corresponds to an information set, that is, to learning a subset of

the objective state space. In the condominium example, whether or not there is a school

in the neighborhood is a piece of information that can be objectively described. The model

outlined in Section 3 considers learning from describable signals. The DM has beliefs about

which information set he might be in at the time he chooses from the menu. For any in-

formation set, he calculates his posterior beliefs by excluding all states that are not in that

set and applying Bayes’law with respect to the remaining states. We characterize the class

of information systems that admit such a representation as a natural generalization of the

concept of a set partition. The requirement on information systems turns out to be closely

related to the notion of a balanced collection of weights, as introduced by Shapley (1967) in

the context of cooperative games. This representation allows us to compare the behavior of

two individuals who expect to learn different amounts of information, without requiring that

they share the same initial beliefs. Their behavior differs in the value they derive from the

availability of binary bets as intermediate actions; roughly speaking, DM1 “values binary

bets more”than DM2 if for any two states, he is willing to pay more in order to have the

option to bet on one state versus the other. In this case, DM1 expects to receive more

information than DM2, in the sense that given the true state of the world, he is more likely

to be able to rule out any other state (i.e. to be in an information set that contains the true

state but not the other state.)

Lastly, reconsider the condominium example, and assume that the availability of the

condominium is not guaranteed for the entire 30 days, but rather the agent is given the right

of first refusal in case another offer arrives. In this situation, DM’s information set at any

point in this time interval may become the relevant one for his purchase decision. In Section

4 we provide a representation, which suggests that the decision maker behaves as if he has in

mind a filtration, indexed by continuous time. The filtration, including the subjective timing

of the resolution of uncertainty, is uniquely determined from behavior. In this context, DM1

values binary bets more than DM2 if and only if he expects to learn earlier in the sense that
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his filtration is finer at any given point in time. DM1 has more preference for flexibility than

DM2 if and only if they also share the same prior beliefs.

Several papers have explored the idea of subjective learning. As mentioned earlier,

Takeoka (2004) derives the most general model of second-order beliefs. We show that even

this general setting allows very intuitive comparative statics. Hyogo (2007) derives a repre-

sentation that features second-order beliefs on a richer domain, where the DM simultaneously

chooses a menu of acts and takes an action that might influence the (subjective) process of

information arrival. Dillenberger, Lleras, and Sadowski (2011) study a model in which the

information system is partitional, that is, signals correspond to information sets that do not

intersect. Since a partition is a special case of a generalized partition, the model is a special

case of the one outlined in Section 3. Learning by partition can also be viewed as a special

case of the model in Section 4, where the DM does not expect to learn gradually over time,

that is, he forms his final beliefs at time zero, right after he chose a menu. Takeoka (2007)

uses a different approach to study subjective temporal resolution of uncertainty. He ana-

lyzes a different domain, where the DM chooses between what one might term “compound

menus”(menus over menus etc.). We compare the two different approaches in Section 5.2,

while reevaluating our domain in light of the results of Section 4.

1.1. A formal preview of the representation results

Let S be a finite state space. An act is a mapping f : S → [0, 1], where [0, 1] is interpreted as

a utility space.2 Let F be the set of all acts. Let K (F) be the set of all non-empty compact

subsets of F . Preferences are defined over K (F). Theorem 1 derives a (second-order beliefs)

representation, in which the value of a set F is given by

V (F ) =

∫
∆(S)

max
f∈F

(∑
s∈Sf (s) π (s)

)
dp (π) ,

where p (·) is a unique probability measure on ∆ (S), the space of all probability measures

on S. The axioms that are equivalent to the existence of such representation are familiar

from the literature on preferences over sets of lotteries—Ranking, vNM Continuity, Nontriv-

iality, and Independence—adapted to our domain, in addition to Dominance, which implies

monotonicity in payoffs, and Set Monotonicity, which captures preferences for flexibility.

We then study a specialized model in which signals correspond to information sets, that

is, to subsets of 2S. We impose two additional axioms, Finiteness and Context Independence.

2This allows us to abstract from deriving the DM’s utility function over monetary prizes, which is a
standard exercise.
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Finiteness implies that the probability measure p in Theorem 1 has finite support. (Finiteness

is obviously necessary since 2S is finite.) Context Independence has the flavor of Savage’s

sure-thing principle. Suppose that given his prior beliefs, the DM prefers committing to the

act g to committing to the act f , where both g and f yield positive payoffs only on a subset

E ⊂ S. The axiom then requires that the DM would prefer to replace f with g in the context

of a menu from which f and g are only optimal under event E. With these additional axioms,

Theorem 3 derives an (information set) representation in which the value of a set F is given

by

V (F ) =
∑
I∈2S

max
f∈F

[∑
s∈I

f (s)
µ (s)

µ (I)

]
ρ (I) ,

where µ is a probability measure on S and ρ is a probability measure on 2S, such that∑
I∈2S |s∈I

ρ(I)
µ(I)

= 1 for all s ∈ S. The pair (µ, ρ) is unique. The condition that
∑

I∈2S |s∈I
ρ(I)
µ(I)

=

1 for all s ∈ S implies that the probability of being in information set I when the state of
the world is s is the same for all states s ∈ I. To say this differently, the DM behaves as if

he can infer no information about relative probabilities from the information set.

A natural question is which information structures Ψ ⊆ 2S are admissible, in the sense

that there exists an information set representation in which Ψ is the support of ρ. Theorem 4

shows that Ψ is admissible if and only if it is a generalized partition; Ψ ⊆ 2S is a generalized

partition of a set S ′ ⊆ S if there exists k ≥ 1 and a function β : Ψ → N+ such that for all

s ∈ S ′,
∑

I∈Ψ|s∈I β (I) = k. In this case we say that S ′ is covered k times by Ψ. Note that

the usual notion of a set partition corresponds to the case where k = 1.

Lastly, we show that the same domain can capture the effect of subjective gradual reso-

lution of uncertainty. To this end, we reinterpret menus as choice situations that require the

DM to choose at a randomly determined future point. Axiom Exclusivity formalizes the idea

that if the DM values acts f and g in a menu that is large enough (to be made precise in the

text), then they should be optimal on events that are either exclusive or can be ordered by

set inclusion. This allows us to interpret information as becoming more precise over time:

Theorem 7 provides an (exclusive tree) representation in which the value of a set F is given

by

V (F ) =

∫
[0,1]

{∑
P∈Pt

max
f∈F

[∑
s∈S

f (s)µ (s : P )

]
µ (P )

}
dt,

where µ is a probability measure on S and {Pt} is a filtration indexed by t ∈ [0, 1]. The pair

(µ, {Pt}) is unique. In this context, DM1 values binary bets more than DM2 if and only if
{P1

t } is finer than {P2
t } (i.e., for any t, all events in {P2

t } are measurable in {P1
t }). DM1

has more preference for flexibility than DM2 if and only if both also share the same prior
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beliefs (i.e., µ1 = µ2).

The remainder of the paper is organized as follows: Section 2 studies the most general

model of uncertainty about future beliefs. Section 3 studies a special case in which signals

correspond to information sets. Section 4 further specializes the model to situations in which

uncertainty is expected to be resolved gradually over time, and the pattern of its resolution

matters. Section 5 suggests a reinterpretation and an application of the model outlined in

Section 4 to cases in which the DM derives a utility flow from holding a particular act.

The section concludes by comparing our methodology to other approaches to the study of

subjective temporal resolution of uncertainty. Most proofs are relegated to the appendix.

2. A general model of subjective learning

Let S = {s1, ..., sk} be a finite state space. An act is a mapping f : S → [0, 1]. Let

F be the set of all acts. Let K (F) be the set of all non-empty compact subsets of F .
Capital letters denote sets, or menus, and small letters denote acts. For example, a typical

menu is F = {f, g, h, ...} ∈ K (F). We interpret payoffs in [0, 1] to be in “utils”; that

is, we assume that the utility function over outcomes is known and payoffs are stated in

its units. An alternative interpretation is that there are two monetary prizes x > y, and

f (s) = ps (x) ∈ [0, 1] is the probability of getting the greater prize in state s.

Let � be a preference relation over K (F). The symmetric and asymmetric components

of � are denoted by ∼ and �, respectively. We impose the following axioms on �:

Axiom 1 (Ranking). � is a weak order.

Definition 1. αF + (1− α)G := {αf + (1− α) g : f ∈ F, g ∈ G}, where αf + (1− α) g is

the act that yields αf (s) + (1− α) g (s) in state s.

Axiom 2 (vNM Continuity). If F � G � H, then there are α, β ∈ (0, 1), such that

αF + (1− α)H � G � βF + (1− β)H.

Axiom 3 (Nontriviality). There are F and G such that F � G.

Axiom 4 (Independence). For all F, G, H, and α ∈ [0, 1],

F � G⇔ αF + (1− α)H � αG+ (1− α)H.

In the present context of menus of acts, Axiom 4 implies that the DM’s preferences must

be linear in payoffs. This is plausible since we interpret payoffs in [0, 1] directly as “utils”,

as discussed above.
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Axiom 5 (Set monotonicity). F ⊂ G implies G � F .

Axiom 5 was first proposed in Kreps (1979). It captures preference for flexibility, that is,

bigger sets are weakly preferred. The interpretation of f (·) as a vector of utils requires the
following payoff-monotonicity axiom.

Axiom 6 (Domination). f ≥ g and f ∈ F imply F ∼ F ∪ {g} .

Axioms 1-6 are necessary and suffi cient for the most general representation of subjective

learning, which is derived in Takeoka (2004).

Theorem 1 (Takeoka (2004)). The relation � satisfies Axioms 1—6 if and only if it can
be represented by:

V (F ) =

∫
∆(S)

max
f∈F

(∑
s∈Sf (s) π (s)

)
dp (π) ,

where p (·) is a unique probability measure on ∆ (S), the space of all probability measures

on S.

Proof. See Appendix 6.1
The representation in Theorem 1 suggests that the decision maker is uncertain about

which first-order beliefs π he will have at the time he makes a choice from the menu.

Since our axioms are slightly different from Takeoka’s and since his working paper is

unpublished, for readers’convenience we present our proof in the appendix. Another related

work, Dekel, Lipman, and Rustichini (2001), analyzes choice over menus of lotteries and finds

a representation that suggests uncertainty about the DM’s tastes. (A relevant corrigendum

is Dekel, Lipman, Rustichini, and Sarver (2007).) Our proof relies on a sequence of geometric

arguments that establish the close connection between our domain and theirs. The parameter

p is uniquely identified in the representation above, because p and π are required to be

probability measures. Such natural normalization does not exist in Dekel et al. (2001,

2007), and therefore they can only jointly identify the parameters in their representation.

2.1. More preference for flexibility and the theorem of Blackwell

We now connect a notion of preference for flexibility with the DM’s subjective learning.

Definition 2. DM1 has more preference for flexibility than DM2 if for all f ∈ F and for
all G ∈ K (F),

{f} �1 G implies {f} �2 G
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Expressed in words, DM1 has more preference for flexibility than DM2 if whenever DM1

prefers to commit to a particular action rather than to retain an option to choose, so does

DM2.3

Remark 1. Definition 2 is equivalent to the notion that if DM1 and DM2 are endowed with
the same act, then DM1 has greater willingness to pay in order to acquire additional options.

That is, for all f, h ∈ F with f ≥ h and for all G ∈ K (F),

{f} �1 {f − h} ∪G implies {f} �2 {f − h} ∪G,

where (f − h) (s) = f (s) − h (s). The act h is interpreted as the state-contingent cost of

acquiring the options in G. Definition 2 clearly implies this condition. The converse follows

from taking h = f .

Definition 2, however, does not imply greater willingness to pay in order to add options

to any given menu. In particular, even if DM1 has more preferences for flexibility than DM2,

it may be possible to find G ⊂ F ∈ K (F) and an act hc with hc (s) = c for all s and f ≥ hc,

such that both V 2 (F − c) > V 2 (G) and V 1 (F − c) ≤ V 1 (G) hold, where

F − c := {f − hc |f ∈ F } .

A numerical example is provided in Appendix 6.10.

Claim 1. Suppose DM1 has more preference for flexibility than DM2. Then

{f} �1 {g} if and only if {f} �2 {g} .

Proof. Let G = {g} for some g ∈ F . Applying Definition 2 implies that if {f} ∼1 {g} then
{f} ∼2 {g}. That is, any indifference set of the restriction of �1 to singletons is a subset of

some indifference set of the restriction of �2 to singletons. The linearity (in probabilities)

of the restriction of V i (·) to singletons implies that these indifference sets are planes that
separate any n ≤ (|S| − 1)—dimensional unit simplex. Therefore, the indifference sets of the

restriction of �1 and �2 to singletons must coincide. Since the restrictions of �1 and of �2

to singletons share the same indifference sets and since both relations are monotone, they

must agree on all upper and lower counter sets. In particular, {f} �1 {g} if and only if
{f} �2 {g}.
We now compare subjective information systems in analogy to the notion of better infor-

mation proposed by Blackwell (1951,1953) in the context of objective information. In what
3Definition 2 is analogous to the notion of “more aversion to commitment”as appears in Higashi, Hyogo,

and Takeoka (2009, Definition 4.4, p. 1031) in the context of preferences over menus of lotteries.
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follows, when we discuss a particular individual i, we denote by V i the representation of his

preferences and by σ (pi) the corresponding support of his second-order beliefs. Definition 3

below says that an information system is more informative than another one if and only if

the information of the latter can be obtained by garbling the information of the former.

Definition 3. DM1 expects to be better informed than DM2 if and only if DM2’s distrib-
ution of first-order beliefs is a mean-preserving spread of DM1’s (in the space of probability

distributions), that is

(i) Mean preserving: ∫
∆(S)

π1 (s) dp1
(
π1
)

=

∫
∆(S)

π2 (s) dp2
(
π2
)

for all s ∈ S; and
(ii) Spread (garbling): there exists a nonnegative function k : σ (p1)× σ (p2)→ R+, such

that ∫
σ(p2)

k
(
π1, π2

)
dπ2 = 1

for all π1 ∈ σ (p1), and

π2 (s) =

∫
σ(p1)

π1 (s) k
(
π1, π2

)
dπ1

for all s ∈ S.

Theorem 2. If two decision makers, DM1 and DM2, have preferences that can be repre-
sented as in Theorem 1, then DM1 has more preference for flexibility than DM2 if and only

if DM1 expects to be better informed than DM2.4

Proof. Blackwell (1953, Theorem 8) establishes that DM2’s distribution of first-order beliefs
is a mean-preserving spread of DM1’s if and only if V 1 (G) ≥ V 2 (G) for any G ∈ K (F).

At the same time, V 1 ({f}) = V 2 ({f}) for any f ∈ F . Hence, V 1 ({f}) ≥ V 1 (G) implies

V 2 ({f}) ≥ V 2 (G). Conversely, suppose V 2 (G) > V 1 (G), then continuity implies that there

exists f ∈ F with V 2 (G) > V 2 ({f}) = V 1 ({f}) > V 1 (G).

4The characterization of preference for flexibility via Blackwell’s notion of garbling of information is
specific to our context, where this preference arises due to uncertainty about the arrival of information.
Krishna and Sadowski (2011) provide an analogous result in a context where preference for flexibility arises
due to uncertain tastes.
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3. Subjective learning with objectively describable signals

The model in Section 2 is the most general model that captures subjective learning. In

Theorem 2 we compare the behavior of two individuals who share the same prior beliefs but

expect to learn differently. We would like to be able to perform such a comparison even if

the two individuals disagree on their prior beliefs; for example, one individual might consider

himself a better experimenter than the other, even though he holds more pessimistic beliefs

about the state of the world. Disagreement on prior beliefs may not matter if we try to

compare the amount of information two individuals expect to learn contingent on the true

state of the world. Distinct priors, however, generically imply that the contingent priors

are also different. To see this, let, for i = 1, 2, µi be a vector of DMi’s prior beliefs and

let ai(s |s′ ) be the probability he assigns to state s contingent on the true state being s′.5

Then Ai := (ai(s |s′ ))s,s′ is a stochastic matrix and Bayes’law implies µiAi = µi, that is,

µi is the stationary distribution of A. If each entry of A is strictly positive, then A is an

indecomposable matrix and the stationary distribution is unique. In that case, different

priors, µ1 and µ2, must correspond to different stochastic matrices, A1 and A2. But since

the rows of Ai are the state-contingent priors of DMi, there must be at least one state s,

contingent on which a comparison as in Theorem 2 is impossible.

In order to compare the amount of information each DM expects to learn contingent on

the state, we need to be able to describe information independently of the induced changes

in beliefs. To this end, we now consider a more parsimonious model of learning in which

signals correspond to information sets, that is, to learning a subset of the objective state

space. The DM’s beliefs can then be understood as uncertainty about the information set he

will be in at the time of choosing from the menu. We maintain the assumptions of Theorem

1 and develop a language that allows us to formulate, in terms of behavior, the assumption

that the DM can not draw any inference from learning an information set besides knowing

that states outside that set did not realize. To say this differently, we axiomatize the most

general representation in which the relative probability of any two states is the same across

all information sets that contain them.6 In Section 3.1, we further identify the largest class

of (subjective) information systems that can accommodate this type of learning. This class

generalizes the notion of modeling information as a partition of the state space. Finally,

in Section 3.2, we compare two individuals according to the amount of information each is

5The probability individual i assigns to first-order belief π ∈ ∆ (S) contingent on state s′ ∈ σ
(
µi
)
is

li (π |s′ ) :=
π(s′)pi(π)

µi(s′) . Then ai(s |s′ ) =
∑

π∈∆(S)

π (s) li (π |s′ ).
6I.e., S must be large enough to contain all those random variables that the DM considers informative.

Subjectivity, therefore, does not refer to the information content of a signal, but only to whether or not the
DM learns a particular signal.
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expected to acquire without restricting them to have the same prior beliefs.

Since there are only finitely many distinct subsets of S, the support of the function p in

Theorem 1 must be finite. This restriction is captured by the following axiom:

Axiom 7 (Finiteness). For all F ∈ K (F), there is a finite set G ⊆ F with G ∼ F .7

Dekel, Lipman, and Rustichini (2009) show that Axiom 7 indeed implies that σ (p), the

support of the function p in Theorem 1, is finite. The intuition is clear: if any finite subset

G of F is as good as F itself, then only a finite set of first-order beliefs can be relevant.

Definition 4. Given f ∈ F , let fxs be the act

fxs (s′) =

{
f (s′) if s′ 6= s

x if s′ = s

Note that σ (f) := {s ∈ S : f (s) > 0} = {s ∈ S : f 0
s 6= f}.

Definition 5. A menu F ∈ K (F) is fat free if for all f ∈ F and for all s ∈ σ (f), F �
(F\ {f}) ∪ {f 0

s }.

If a menu F is fat free, then for any act f ∈ F and any state s ∈ σ (f), eliminating s

from σ (f) reduces the value of the menu.8 In particular, removing an act f from the fat-free

menu F must make the menu strictly worse.

Definition 6. A menu F ∈ K (F) is saturated if it is fat free and satisfies

(i) for all f ∈ F and s /∈ σ (f), there exists ε > 0 such that F ∼ F ∪ f εs for all ε < ε; and

(ii) there exists no menu G * F such that F ∪G � (F ∪G) \ {g} for all g ∈ F ∪G.

Definition 6 says that if F is a saturated set, then (i) if an act f ∈ F does not yield

any payoff in some state, then the DM’s preferences are insensitive to slightly improving f

in that state; and, (ii) adding an act to a saturated menu implies that there is at least one

act in the new menu that is not valued by the DM. In particular, the extended menu is no

longer fat-free.

To better understand the notions of fat-free and saturated sets, consider the following

example.
7We impose Axiom 7 mainly for clarity of exposition. Alternatively, it is possible to strengthen Definition

5, Definition 6, and Axiom 8 below to apply to situations where Finiteness may not hold. In that case,
Axiom 7 is implied.

8Our notion resembles the notion of “fat-free acts” suggested by Lehrer (2008). An act f is fat-free if
when an outcome assigned by f to a state is replaced by a worse one, the resulting act is strictly inferior to
f . In our setting, a finite fat-free set contains acts, for all of which reducing an outcome in any state in the
support results in an inferior set.
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Example 1. Suppose that there are two non null states. If the act f yields positive payoffs in
both states, then the set {f} is fat free. If there is another non-null state, ŝ, and f (ŝ) = 0,

then the set {f} is not saturated according to Definition 6 (i). Suppose now that DM’s

preferences have a second-order belief representation, where p (π) > 0, p (π′) > 0, and

σ (π) ⊂ σ (π′). Suppose that f is strictly positive on σ (π′). Then, by continuity, one can

construct an act g that does better than f under the belief π but worse than f under π′. In

that case, {f} is not saturated according to Definition 6 (ii).

Claim 2. A saturated menu F , with f (s) < 1 for all f ∈ F and all s ∈ S, always exists.
Furthermore, if F is saturated, then F is finite.

Proof. See Appendix 6.2
In all that follows, we only consider saturated sets that contain acts f with f (s) < 1 for

all s ∈ S. For ease of exposition, we refrain from always explicitly stating this assumption.

Claim 3. If F is saturated, then F is isomorphic to the set of first-order beliefs.

Proof. See Appendix 6.3
Claim 3 connects the definition of a saturated set with the idea that the DM might be

required to make a decision when his state of knowledge is any one of his first-order beliefs

from the representation of Theorem 1. Claim 3 then says that any act in a saturated set is

expected to be chosen under exactly one such belief.

The next claim demonstrates that the support of any act in a saturated set coincides

with that of the belief under which the act is chosen. For any act f in a given saturated

menu F , let πf ∈ ∆ (S) be the belief such that f = arg max
f ′∈F

∑
s∈Sf (s) πf (s). By Claim 3,

πf exists and is unique.

Claim 4. If F is saturated and f ∈ F , then σ (f) = σ (πf ).

Proof. Suppose f (s) > 0 and πf (s) = 0. Then F ∼ (F\ {f}) ∪ {f 0
s }, which is a contra-

diction to F being fat-free (and, therefore, to F being saturated.) Suppose f (s) = 0 and

πf (s) > 0. Then for any ε > 0, F ≺ F ∪{f εs} , which is a contradiction to F being saturated.

We are now ready to state the central axiom of this section.

Axiom 8 (Context independence). Suppose F is saturated and f ∈ F . Then for all g
with σ (g) = σ (f),

{g} � {f} implies (F\ {f}) ∪ {g} � F
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Suppose the DM prefers committing to g over committing to f , where both g and f pay

strictly positive amounts only on σ (f) ⊂ S. The axiom then requires that the DM would

prefer to replace f with g on any saturated menu that contains f . In light of Claim 4, the

axiom is similar to Savage’s sure thing principle. To see this, recall that Claim 4 suggests

that f is chosen from the saturated menu F only in the event σ (f). We can rephrase the

axiom as follows: whenever two acts, f and g, differ at most on event σ (f) ⊂ S, then their

unconditional ranking agrees with their ranking conditional on σ (f).

Definition 7. The pair (µ, ρ) is an information set representation if µ is a probability mea-

sure on S and ρ is a probability measure on 2S, such that
∑

I∈2S |s∈I
ρ(I)
µ(I)

= 1 for all s ∈ σ (µ),

and

V (F ) =
∑

I∈2σ(µ)

max
f∈F

[∑
s∈I

f (s)
µ (s)

µ (I)

]
ρ (I)

represents �.

Consider the probability of learning the information set I given that the true state s is

contained in I, Pr (I |s ∈ I ). Define p (I) := ρ(I)
µ(I)
. Observe that for any s ∈ I,

Pr (I |s ∈ I ) =
Pr (s |I ) ρ (I)

µ (s)
=
µ (s)

µ (I)

ρ (I)

µ (s)
=
ρ (I)

µ (I)
= p (I)

independent of s. Since p is a probability measure on 2S, consistency requires that

∑
I∈2σ(µ)|s∈I

ρ (I)

µ (I)
=

∑
I∈2σ(µ)|s∈I

p (I) = 1,

as in Definition 7.

The fact that Pr (I |s ∈ I ) is independent of s (conditional on s ∈ I) reflects the idea

that the DM can not draw any inference from learning an information set other than that

states outside that information set did not realize. Indeed, for any s, s′ ∈ I,

Pr (s |I )

Pr (s′ |I )
=
µ (s)

µ (s′)

independent of I.

Theorem 3. The relation � satisfies Axioms 1—8 if and only if it has an information set
representation, (µ, ρ).

Furthermore, the pair (µ, ρ) is unique.

13



Proof. See Appendix 6.4
In contrast to the representation in Theorem 1, the representation in Theorem 3 suggests

that S is large enough to capture the subjective resolution of uncertainty. To say this differ-

ently, consider a subjective state space that includes all (possibly only privately observable)

random variables the DM might consider informative about the objective state s ∈ S. This
subjective state space might be larger than S. The representation suggests that any event

in the larger subjective state space that the DM considers informative is measurable in S.9

3.1. Admissible information structures

In Theorem 3, signals are identified with information sets and the relative probability of any

two states is the same across all information sets that contain them. We now identify the

class of information systems, Ψ, such that there is an information set representation (µ, ρ)

with σ (ρ) = Ψ.

Definition 8. A set S ′ ⊆ S is covered k times by a collection of sets Ψ ⊆ 2S if there is a

function β : Ψ→ N+, such that for all s ∈ S ′,
∑

I∈Ψ|s∈I β (I) = k

Definition 9. A collection of sets Ψ ⊆ 2S is a generalized partition of a set S ′ ⊆ S, if there

exists k ≥ 1, such that S ′ is covered k times by Ψ.

In the context of cooperative games, Shapley (1967) introduces the notion of a balanced

collection of weights. Denote by C the set of all coalitions (subsets of the set N of players).

The collection (γL)L∈C of numbers in [0, 1] is a balanced collection of weights if for every

player i ∈ N , the sum of γL over all the coalitions that contain i is 1. Suppose Ψ ⊆ 2S is

a generalized partition of a set S ′ ⊆ S. Then there exists k ≥ 1 such that for all s ∈ S ′,∑
I∈Ψ|s∈I

β(I)
k

= 1. In the terminology of Shapley, the collection
(
β(I)
k

)
I∈Ψ

of numbers in

[0, 1] is, thus, a balanced collection of weights.

To better understand the notion of generalized partition, consider the following example.

9An implicit axiom in Savage’s model is the existence of a grand state space that describes all conceivable
sources of uncertainty. Gilboa, Postlewaite, and Schmeidler (2009a, 2009b) argue that this assumption
becomes far from innocuous when coupled with the other Savage axioms. In particular, they point out
the problems involved in using an analytical construction (where states are defined as functions from acts
to outcomes) to generate a state space that captures all conceivable sources of uncertainty. First, since
all possible acts on this new state space should be considered, the new state space must be extended yet
again, and this iterative procedure does not converge. Second, the constructed state space may include
events that are never revealed to the DM, and hence some of the comparisons between acts may not even be
potentially observable. (A related discussion appears in Gilboa (2009, Section 11.1.) Our approach provides
a behavioral criterion for checking whether a particular state space is large enough: given the state space,
� satisfies Axiom 8 if and only if the state space can capture all uncertainties that are actually relevant for
the DM.
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Example 2. Suppose S = {s1, s2, s3}. Any partition of S, for example {{s1} , {s2, s3}}, is a
generalized partition of S (with k = 1). A set that consists of multiple partitions, for example

{{s1} , {s2, s3} , {s1, s2, s3}}, is a generalized partition of S (in this example with k = 2).

The set {{s2, s3} , {s1, s2, s3}} is not a generalized partition of S, because
∑

I|s1∈I β (I) <∑
I|s2∈I β (I) for any β : {{s2, s3} , {s1, s2, s3}} → N+. The set {{s2, s3} , {s1} , {s2} , {s3}},

however, is a generalized partition of S with

β (I) =

{
2 if I = {s1}
1 otherwise

Lastly, the set {{s1, s2} , {s2, s3} , {s1, s3}} is a generalized partition of S (with k = 2), even

though it does not contain a partition.

An empirical situation that gives rise to a generalized partition consisting of two parti-

tions is an experiment that reveals the state of the world if it succeeds, and is completely

uninformative otherwise. For a concrete example that gives rise to a generalized partition

that does not contain any partition, consider the sequential elimination of n candidates, say

during a recruiting process. If k candidates are to be eliminated in the first stage, then the

resulting generalized partition is the set of all (n− k)- tuples.

Definition 10. Given Ψ ⊆ 2S, let SΨ :=
{
s ∈ S

∣∣s ∈ ⋃I∈ΨI
}
.

Definition 11. Ψ ⊆ 2S is admissible if there exists an information set representation (µ, ρ)

with σ (ρ) = Ψ.

Theorem 4. Ψ is admissible if and only if Ψ is a generalized partition of SΨ.

Proof. See Appendix 6.5
To illustrate Theorem 4, let us consider a specific example of an empirical experiment.

An oil company is trying to learn whether there is oil in a particular location. Suppose the

company can drill a hole to determine accurately whether there is oil, s = 1, or not, s = 0.

In that case, the company learns the partition {{0} , {1}} and ρ (I) = µ (I) provides an

information set representation given the firm’s prior beliefs µ on S = {0, 1}.
Now suppose that with some positive probability the test may not be completed (for

some exogenous reason, which is not indicative of whether there is oil or not). Then, the

company will either face the trivial partition {{0, 1}}, or the partition {{0} , {1}}, and
hence Ψ = {{0, 1} , {0} , {1}}. Suppose the firm believes that the experiment will succeed

with probability q. Then ρ ({0, 1}) = 1 − q, ρ ({0}) = qµ (0) and ρ ({1}) = qµ (1) provides

an information set representation given the firms prior beliefs µ on S = {0, 1}.
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Finally, suppose the company is trying to assess the size of an oil field by drilling in l

proximate locations and hence the state space is {0, 1}l. As before, any test may not be
completed, independently of the other tests. This is an example of a situation where the

state consists of l different attributes (i.e., the state space is a product space), and the DM

may learn independently about either of them. Such learning about attributes also gives rise

to a generalized partition that consists of multiple partitions and can be accommodated. To

find an information set representation based on any generalized partition, Ψ, for which there

is a collection Π of partitions whose union is Ψ, based on any probability distribution q on

Π, and based on any measure µ on S = {0, 1}, one can set ρ (I) =
∑
P∈Π|I∈P q (P)µ (I). We

refer to the pair (q,Π) as a random partition.

3.2. Comparing valuations of binary bets

Fix 0 < k < c < 1− k and s, s′ ∈ σ (µ), such that {c} � {f}, where

f (ŝ) =


c+ k if ŝ = s

0 if ŝ = s′

c otherwise

Let

f ′ (ŝ) =

{
c+ k if ŝ = s

c otherwise

Implicitly define v(s) by {c+ v(s)} ∼ {f ′}. The amount v(s) is unique and nonnegative.

It captures DM’s willingness to pay for additional payoffs in state s. Implicitly define w (s, s′)

by {c+ w (s, s′)} ∼ {c, f}. The amount w (s, s′) captures DM’s willingness to pay for the

ability to bet on state s versus s′. Let

ζ (s, s′) =

{
w(s,s′)
v(s)

if v (s) > 0

0 otherwise

Corollary 1 in Appendix 6.6 establishes that ζ (s, s′) is independent of any k and c that

satisfy the premise above and that ζ (s, s′) = ζ (s′, s).

Definition 12. We say that DM1 values binary bets more than DM2 if

v1 (s) = 0⇔ v2 (s) = 0 and ζ1 (s, s′) ≥ ζ2 (s, s′)

for all s, s′ ∈ S
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In the context of Theorem 3, a natural measure of the amount of information that a DM

expects to receive is how likely he expects to be able to distinguish any state s from any other

state s′ whenever s is indeed the true state. Using Bayes’rule, Pr ({I : s ∈ I, s′ /∈ I} |s) =∑
I:s∈I, s′ /∈I

ρ(I)
µ(I)
.10

Theorem 5. DM1 values binary bets more than DM2 if and only if σ (µ1) = σ (µ2) and

∑
I:s∈I, s′ /∈I

ρ1 (I)

µ1 (I)
≥
∑

I:s∈I, s′ /∈I
ρ2 (I)

µ2 (I)

for all s, s′ ∈ σ (µ1)

Proof. See Appendix 6.6
Theorem 5 enables us to compare the behavior of two individuals who expect to learn

different amounts of information, without requiring that they share the same initial beliefs.

In contrast, Theorem 2 requires agreement on the prior distribution.

We conclude this section by establishing that having more preferences for flexibility (De-

finition 2) is stronger than valuing binary bets more (Definition 12)

Theorem 6. If DM1 has more preferences for flexibility than DM2, then DM1 values binary
bets more than DM2.

Proof. See Appendix 6.7
The Blackwell criterion for comparing information systems is often considered too strong,

because it only allows the comparison of information systems that generate identical under-

lying beliefs. We demonstrate in Theorem 2 that the behavioral counterpart of this criterion

is the notion of “more preference for flexibility.”The behavioral notion of “valuing binary

bets more”is weaker, that is, it allows more comparisons, as established in Theorem 6. Sup-

pose, for example, that both σ (ρ1) and σ (ρ2) form a partition of S. Then it is easy to verify

that DM1 has more preference for flexibility than DM2 if and only if DM1’s partition is finer

and both share the same prior beliefs. In this example, the weaker comparison of “valuing

binary bets more”corresponds exactly to dropping the requirement that prior beliefs are the

same.11

10Pr ({I : s ∈ I, s′ /∈ I} |s ) =
Pr(s|{I:s∈I, s′ /∈I} ) Pr({I:s∈I, s′ /∈I})

µ(s) =

[∑
I:s∈I, s′ /∈I

µ(s)
µ(I)

ρ(I)

ρ({I:s∈I, s′ /∈I})

]
ρ({I:s∈I, s′ /∈I})

µ(s)

=
∑
I:s∈I, s′ /∈I

ρ(I)
µ(I) .

11We do not provide a formal proof of this assertion at this point, as it is a corollary of Theorem 8 below.
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4. Subjective temporal resolution of uncertainty

Suppose that the DM anticipates uncertainty to resolve gradually over time. The pattern

of resolution might be relevant if, for example, the time at which the DM has to choose an

alternative from the menu is random, and is continuously distributed over some time interval,

say [0, 1]. An alternative interpretation is that at any given point in time t ∈ [0, 1] the DM

holds one act from the menu. At time 1, the true state of the world becomes objectively

known. The DM is then paid the convex combination of the payoffs specified by all acts

on the menu, where the weight assigned to each act is simply the amount of time the DM

held it. That is, the DM derives a utility flow from holding a particular act, where the

state-dependent flow is determined ex post, at the point where payments are made. In both

cases, the information available to the DM at any point in time t might be relevant for his

choice. This section is phrased in terms of random timing of second-stage choice. Section

5.1 discusses the utility flow interpretation in more detail.

We impose an additional axiom on � and derive a representation that can be interpreted
as follows: the DM holds beliefs over the states of the world and has in mind a filtration

indexed by continuous time. Using Bayes’law, the filtration together with the beliefs gen-

erates a subjective temporal lottery. Our domain is rich enough so that both the filtration,

that is the timing of information arrival and the sequence of partitions induced by it, and

the beliefs can be uniquely elicited from choice behavior.

Definition 13. An act f contains act g if σ (g) ( σ (f).

Definition 14. Acts f and g do not intersect if σ (g) ∩ σ (f) = ∅.

Axiom 9 (Exclusivity). If F is saturated and f, g ∈ F , then either f and g do not

intersect or one contains the other.

Axiom 9 formalizes the idea that if DM values acts f and g in a menu that is large enough

(i.e., saturated), then they should be optimal on events that are either exclusive or can be

ordered by set inclusion.

We want to assume that the DM perceives uncertainty that resolves over time in the

context of an information set representation, (µ, ρ), as in Theorem 3, where signals can be

described as information sets. Recall the sense in which Claim 3 establishes that any satu-

rated menu is isomorphic to σ (ρ). Axiom 9 simply requires that the collection of information

sets in σ (ρ) can be arranged to form a filtration on S.

Axiom 10 (Initial node). If F is saturated, then there exists f ∈ F such that f contains
g for all g ∈ F with g 6= f .
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At the time of menu choice, the DM holds beliefs over all possible states of the world. If he

expects additional information to arrive before time 0 (at which point his beliefs commence

to be relevant for choice from the menu), then time 0 information is described by a non-trivial

partition of S. In that case no saturated menu can feature one act that contains all other

acts. Axiom 10 rules out this situation. It should, therefore, be satisfied, if the (subjective)

flow of information can not start before time 0.

We now introduce subjective exclusive trees. Such trees can be described as a pair of a

probability measure µ on S and a filtration {Pt} indexed by t ∈ [0, 1].12 The measure µ is

interpreted as DM’s ex ante beliefs over states. The partition Pt represents the information
that DM anticipates to have at time t.

Definition 15. The pair (µ, {Pt}) is an exclusive tree if µ is a probability measure on S
and {Pt} is a filtration indexed by t ∈ [0, 1].

Note that there can only be a finite number of times at which the filtration {Pt} becomes
strictly finer. That is, there exists a finite set {t1, ..., tT} ⊂ (0, 1), such that Pt′ ⊂ Pt is
equivalent to t < t′ if, and only if t′ ∈ {t1, ..., tT}. The definition does not require P0 = {S}.
Let µ (P ) :=

∑
s∈P µ (s). Let µ (s : P ) denote the probability measure over states, con-

tingent on the state being in P ⊂ S, as implied by Bayes’law.13

If P0 6= S, then there is a collection of trees with initial nodes that have mutually exclusive

support. To interpret this collection as an exclusive tree, one can always complete the tree

for time t < 0 with a unique initial node in the time when the menu is chosen.

Theorem 7. The relation � satisfies Axioms 1—9 if and only if there is an exclusive tree,
(µ, {Pt}) , such that

V (F ) =

∫
[0,1]

{∑
P∈Pt

max
f∈F

[∑
s∈P

f (s)µ (s)

]}
dt

represents �.
If � also satisfies Axiom 10, then there is Ŝ ⊆ S, such that P0 =

{
Ŝ
}
, that is, the tree

(µ, {Pt}) has a unique initial node.
12Slightly abusing notation, we will identify a filtration with a sequence of partitions of the state space.
13The explicit graph of an exclusive tree also consists of a set of probabilities µtτ (· : P ), where µtτ is a

measure on Ptτ+1 , contingent on P ∈ Ptτ . One can define those from (µ, {Pt}) as follows:

Definition 16. For all P ∈ Ptτ , P ′ ∈ Ptτ+1 , and P ′ ⊂ P ,

µtτ (P ′ : P ) =
µ (P ′)

µ (P )
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In either case, (µ, {Pt}) is unique.

Proof. See Appendix 6.8
Given an information set representation (µ, ρ) as in Theorem 3, Axiom 9 implies that

the information sets in σ (ρ) can be ordered to form a filtration. The proof shows that there

is always exactly one possible filtration, call it Π, such that (q,Π) constitutes a random

partition as defined at the end of Section 3.1, that is, ρ (I) =
∑
P∈Π|I∈P q (P)µ (I). Given

a uniform distribution of stopping times in [0, 1], it is natural to interpret q (P) as the time

for which DM expects partition P to be relevant.
If the DM faces an (exogenously given) random stopping time that is uniformly distrib-

uted on [0, 1],14 then Theorem 7 can be interpreted as if the DM holds initial beliefs µ and

expects to learn over time as described by the filtration {Pt}.

4.1. Revisiting the behavioral comparisons

We can characterize the notion of preference for flexibility and the value of binary bets via

the DM’s subjective filtration.

Definition 17. DM1 learns earlier than DM2 if {P1
t } is weakly finer than {P2

t } .

Theorem 8. (i) DM1 values binary bets more than DM2 if and only if DM1 learns earlier
than DM2;

(ii) DM1 has more preference for flexibility than DM2 if and only if DM1 learns earlier

than DM2 and they have the same prior beliefs, µ1 = µ2.

Proof. See Appendix 6.9
Theorem 8 shows that, in the context of Theorem 7, the characterization of the stronger

notion of “more preference for flexibility” differs from the characterization of the weaker

notion of “valuing binary bets more”precisely by the requirement that the underlying beliefs

are the same.

5. Discussion

5.1. A different interpretation; utility flow

In Section 4 we have suggested that cases in which the DMderives a utility flow from holding a

particular act can be accommodated in our setting. We now elaborate on this interpretation.
14It is straightforward to accommodate any other exogenously given distribution of stopping times. An

alternative interpretation is that the distribution of stopping times is uniform not because of an external
constraint, but because the DM subscribes to the principle of insuffi cient reason and assumes that all points
in time are equally likely to be relevant for choice.
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Consider a company that produces laptop computers and is preparing the scheduled release

of a new model. At any point in time prior to the launch, the company can choose one

of many development strategies, each of which specifies how to divide development effort

between different features of the product. For example, one development strategy might

divide the time equally between improving the screen and expanding the memory. Another

might to focus all attention on enlarging the keyboard. The value of the different collections

of features at the time of launch depends on consumers’tastes and competing products, as

summarized by the state of the world, and on the effort spent developing them. As the

launch approaches, the company may become more informed about the underlying state of

the world and may adjust its development strategy. Suppose that, given the state of the

world, the value generated by the development process is the sum of the values added by

the different strategies the company pursued prior to launch. In other words, the added

value from any particular strategy is simply the value it would have generated if it had been

pursued consistently, weighted by the length of time during which it was pursued. Formally,

given a collection of possible development strategies F , let a : [0, 1] → F be a development

process, or a particular path of strategy choices, that is, a (t) is the strategy f ∈ F that DM
chooses at time t. Given the state of the world s ∈ S, the payoff from the process a is∫

[0,1]

a (t) (s) dt

In light of this separability of payoffs, Theorem 7 provides an intuitive representation of

choice between sets of development strategies. The representation suggests that given a set

of alternative strategies F , the company chooses at every point in time the strategy that

performs best under its current beliefs: if its information at time t is the event Pt, then its

strategy choice, a (t), will satisfy

a (t) ∈ arg max
f∈F

[∑
s∈S

f (s)µ (s : Pt)

]

Take Apple as an example of a company that many perceive as standing out from their

competitors; the reason is that Apple has “vision,” the ability to be the first to identify

the next big thing. According to our behavioral comparison, Apple should derive more

value from flexibility than the competition. At the same time, as we argue in an example

(see Appendix 6.10), “vision”has no immediate implications for the amount of flexibility a

firm chooses. One can think of research expenditures as a proxy for flexibility: the more a

company spends on research, the more development options it has. Our predictions are then

in line with the observation that Microsoft vastly outspends Apple on research to less effect,
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“Apple gets more bang for their research buck.”15

5.2. Reevaluation of our domain

In this paper we study preferences over sets of feasible intermediate actions, or menus of

acts. For the first two representation theorems (Theorem 1 and Theorem 3), we adopt

the usual interpretation that the DM has to choose an alternative from a menu at some

prespecified point in the future. While this interpretation of the domain allows preferences

to be affected by the DM’s expectation about the resolution of uncertainty, preferences are

insensitive to the timing of resolution of this uncertainty as long as all resolution happens

before the second stage of choice. An illustrative example is provided in Takeoka (2007), who

proceeds to derive a subjective two-stage compound lottery by specifying the sets of feasible

intermediate actions at different points in time, that is, by analyzing choice between what one

might term “compound menus”(menus over menus etc.). The domain of compound menus

provides a way to talk about compound uncertainty (without objective probabilities). It has

the advantage that it can capture situations where the DM faces intertemporal trade-offs,

for example if today’s action may limit tomorrow’s choices. However, while only the initial

choice is modeled explicitly, the interpretation of choice on this domain now involves multiple

stages, say 0, 1/2, and 1, at which the DM must make a decision. That is, the pattern of

information arrival (or, at least, the collection of times at which an outside observer can

learn about changes in the DM’s beliefs) is objectively given. In that sense, the domain only

partially captures subjective temporal resolution of uncertainty. Furthermore, the domain

of compound menus becomes more and more complicated, as the resolution of uncertainty

becomes finer.16

In section 4 we take a different approach to study subjective temporal resolution of

uncertainty: we specify a single set of feasible intermediate actions, which is the relevant

constraint on choice at all points in time. At the first stage, the DM chooses a menu of

acts and only this choice is modeled explicitly. The innovation lies in our interpretation of

choice from the menu. Whether we think of an exogenous distribution of the stopping time

or of a model where DM derives a flow utility, the information that the DM has at any

point in time might be relevant for the DM’s ultimate choice from a menu. Our domain

has the obvious disadvantage that it does not accommodate choice situations where the set

of feasible actions may change over time. At the same time, our approach allows us, as we

argue in the text, to uniquely pin down the timing of information arrival in continuous time,

15See http://gizmodo.com/#!5486798/research-and-development-apple-vs-microsoft-vs-sony
16Note that the set of menus over acts is infinitely dimensional. Hence, even the three-stage model considers

menus that are subsets of an infinite dimensional space.
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the sequence of partitions induced by it, and the DM’s prior beliefs from the familiar and

analytically tractable domain of menus of acts.

6. Appendix

6.1. Proof of Theorem 1

It is easily verified that any preferences with a second-order beliefs representation as in

Theorem 1 satisfy the axioms. We proceed to show the suffi ciency of the axioms.

We can identify F with the set of all k−dimensional vectors, where each entry is in [0, 1].

For reasons that will become clear below, we now introduce an artificial state, sk+1. Let

F ′ :=
{
f ′ ∈ [0, 1]k × [0, k] :

k+1∑
i=1

f ′ (si) = k

}
.

Note that the k + 1 component in f ′ equals k −
k∑
i=1

f ′ (si). F and F ′ are isomorphic,

hence we look at preferences on K (F ′), �∗, defined by: F ′ �∗ G′ ⇔ F � G, where

F ′ := {f ′ ∈ F ′ : f ∈ F}.

Claim 5. The relation �∗ satisfies the independence axiom.

Proof. Using the definition of�∗ and Axiom 4, we have, for all F,G, andH inK (F ′) and for
all α ∈ [0, 1], F ′ �∗ G′ ⇔ F � G⇔ αF+(1− α)H � αG+(1− α)H ⇔ αF+(1− α)H �∗
αG+ (1− α)H.

Let

F ′′ :=
{
f ′ ∈ [0, k]k+1 :

k+1∑
i=1

f ′ (si) = k

}
.

Let F k+1 :=
{(

k
k+1

, ..., k
k+1

)}
. Observe that for ε < 1

k2 , εF + (1− ε)F k+1 ∈ K (F ′).
Define �∗∗ on K (F ′′) by F �∗∗ G⇔ εF + (1− ε)F k+1 �∗ εG+ (1− ε)F k+1 for all ε < 1

k2 .

Claim 6. The relation �∗∗ is the unique extension of �∗ to K (F ′′) that satisfies the inde-
pendence axiom.

Proof. Note that the (k + 1)-dimensional vector
(

k
k+1

, ..., k
k+1

)
∈ intF ′ ⊂ F ′′, hence F k+1 ⊂

intF ′ ⊂ F ′′. We now show that �∗∗ satisfies independence. For any F,G,H ∈ K (F ′′) and
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α ∈ [0, 1],

F �∗∗ G⇔ εF + (1− ε)F k+1 �∗ εG+ (1− ε)F k+1 ⇔
α
(
εH + (1− ε)F k+1

)
+ (1− α)

(
εF + (1− ε)F k+1

)
= ε (αH + (1− α)F ) + (1− ε)F k+1 �∗
α
(
εH + (1− ε)F k+1

)
+ (1− α)

(
εG+ (1− ε)F k+1

)
= ε (αH + (1− α)G) + (1− ε)F k+1 ⇔ αH + (1− α)F �∗∗ αH + (1− α)G

The first and third ⇔ is by the definition of �∗∗. The second ⇔ is by Claim 5.17

This argument shows that a linear extension exists. To show uniqueness, let �̂ be any

preference relation over K (F ′′), which satisfies the independence axiom. By independence,
F �̂ G ⇔ εF + (1− ε)F k+1 �̂ εG + (1− ε)F k+1. Since �̂ extends �∗, they must agree
on K (F ′). Therefore, εF + (1− ε)F k+1 �̂ εG + (1− ε)F k+1 ⇔ εF + (1− ε)F k+1 �∗
εG+ (1− ε)F k+1. By combining the two equivalences above, we conclude that defining �̂
by F �̂ G⇔ εF + (1− ε)F k+1 �∗ εG+ (1− ε)F k+1 is the only admissible extension of �∗.

The domain K (F ′′) is formally equivalent to that of Dekel, Lipman, Rustichini, and
Sarver (2007, henceforth DLRS) with k+1 prizes. (The unit simplex is obtained by rescaling

all elements of F ′′ by 1/k, that is, by redefining F ′′ as
{
f ′ ∈ [0, 1]k+1 :

k+1∑
i=1

f ′ (si) = 1

}
.)

Applying Theorem 2 in DLRS,18 one obtains the following representation of �∗∗:

V̂ (F ′′) =

∫
M(S)

max
f ′′∈F ′′

(∑
s∈S∪{sk+1}f

′′ (s) π̂ (s)
)
dp̂ (π̂)

where M (S) :=
{
π̂
∣∣∣∑s∈S∪{sk+1}π̂ (s) = 0 and

∑
s∈S∪{sk+1} (π̂ (s))2 = 1

}
. Given the nor-

malization of π̂ ∈M (S), p̂ (·) is a unique probability measure. Note that V̂ also represents

�∗ when restricted to its domain, K (F ′).
17The (=) sign in the third line and in the fifth line is due to the fact that F k+1 is a singleton menu. For

a singleton menu {f} and α ∈ (0, 1) ,

α {f}+ (1− α) {f} = {f}

while, for example,

α {f, g}+ (1− α) {f, g} = {f, g, αf + (1− α) g, αg + (1− α) f} ,

is not, in the general case, equal to {f, g} .
18DLRS provide a supplemental appendix, which shows that, for the purpose of the theorem, their stronger

continuity assumption can be relaxed to the weaker notion of vNM continuity used in the present paper.
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We aim for a representation of � of the form

V (F ) =

∫
∆(S)

max
f∈F

(∑
s∈Sf (s) π (s)

)
dp (π) ,

where f (·) is a vector of utils and p (·) is a unique probability measure on ∆ (S), the space

of all probability measures on S.

We now explore the additional constraint imposed on V̂ by Axiom 6 and the definition

of �∗.

Claim 7. π̂ (sk+1) ≤ π̂ (s) for all s ∈ S, p̂−almost surely.

Proof. Suppose there exists some event E ⊂M (S) with p̂ (E) > 0 and π̂ (sk+1) > π̂ (s) for

some s ∈ S and all π̂ ∈ E. Let f ′ = (0, 0, ..., 0, ε, 0, ..., k − ε) , where ε is received in state s
and k− ε is received in state sk+1. Let g′ = (0, 0, ..0, 0, 0, ..., k). Then {f ′, g′} �∗ {f ′}. Take
F ′ = {f ′} (so that F ′ ∪ {g′} �∗ F ′). But note that Axiom 6 and the definition of �∗ imply
that F ′ ∼∗ F ′ ∪ {g′}, which is a contradiction.
Given our construction of V̂ , there are two natural normalizations that allow us to replace

the measure p̂ onM (S) with a unique probability measure p on ∆ (S).

First, since sk+1 is an artificial state, the representation should satisfy π (sk+1) = 0,

p−almost surely. For all s and for all π̂, define ξ (π̂ (s)) := π̂ (s)−π̂ (sk+1). Since
k+1∑
i=1

f ′ (si) = k

and ξ simply adds a constant to every π̂,

arg max
f ′′∈F ′′

(∑
s∈S∪{sk+1}f

′′ (s) ξ (π̂ (s))
)

= arg max
f ′′∈F ′′

(∑
s∈S∪{sk+1}f

′′ (s) π̂ (s)
)

for all π̂ ∈ σ (p̂). Furthermore, by Claim 7, ξ (π̂ (s)) ≥ 0 for all s, p̂−almost surely.
Second, we would like to transform ξ ◦ π̂ into a probability measure π. Let

π (s) := ξ (π̂ (s)) /
(∑

s′∈Sξ (π̂ (s′))
)
.

(recall that ξ (π̂ (sk+1)) = 0). Since this transformation affects the relative weight given to

event E ⊂ M (S) in the representation, we need p to be a probability measure on I that

offsets this effect, as implied by the uniqueness in DLRS. Hence, we have the Radon-Nikodym

derivative
dp (π)

dp̂ (π̂)
=

∑
s∈Sξ (π̂ (s))∫

M(S)

(∑
s∈Sξ (π̂ (s))

)
dp̂ (π̂)

.
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Therefore,

V (F ) =

∫
∆(S)

max
f∈F

(∑
s∈Sf (s)π (s)

)
dp (π)

represents �.

6.2. Proof of Claim 2

We will construct a menu that satisfies Definition 6 with f (s) < 1 for all f ∈ F and all

s ∈ S. Let F∆(S) := {f ∈ F : ‖f‖2 = 1} be the positive segment of the k − 1 dimensional

unit sphere. There is an isomorphism between ∆ (S) and F∆(S), with the mapping π →
arg max
f∈FS

(∑
s∈Sf (s) π (s)

)
. For L ⊂ ∆ (S) let FL ⊂ F∆(S) be the image of L under this map-

ping. Finiteness of σ (p) implies that Fσ(p) is finite. Let fσ(p),π := arg max
f∈Fσ(p)

(∑
s∈Sf (s) π (s)

)
and (implicitly) define πσ(p),f by f = arg max

f∈Fσ(p)

(∑
s∈Sf (s) πσ(p),f (s)

)
. Because F∆(S) is the

positive segment of a sphere, π (s) > 0 for π ∈ σ (p) if and only if fσ(p),π (s) > 0. We

claim that Fσ(p) is a saturated set. Fσ(p) is fat-free (Definition 5) because, by construction,

f ∈ Fσ(p) only if Fσ(p) � Fσ(p)\ {f}. Consider condition (i) in Definition 6. If f (s) = 0, then

πσ(p),f (s) = 0. Hence, there exists ε > 0 such that Fσ(p) ∼ Fσ(p) ∪
{
f
f(s)+ε
s

}
for all ε < ε.

Finally, consider condition (ii) in Definition 6. Let G * Fσ(p). If Fσ(p) ∪G ∼ Fσ(p) then the

condition is trivially satisfied. Suppose Fσ(p) ∪ G � Fσ(p). Then, there exist π ∈ σ (p) and

g ∈ G with
∑

s∈Sg (s) π (s) >
∑

s∈Sfσ(p),π (s) π (s). Then Fσ(p) ∪G ∼
(
Fσ(p) ∪G

)
\
{
fσ(p),π

}
.

6.3. Proof of Claim 3

If F is saturated and f ∈ F , then there exists π such that f = arg max
(∑

s∈Sf (s) π (s)
)
.

(If not, then F ∼ F\ {f}). We should show that if f = arg max
(∑

s∈Sf (s) π (s)
)
, then

for all π′ 6= π, f /∈ arg max
(∑

s∈Sf (s) π′ (s)
)
. Suppose to the contrary that there exist π

and π′ such that f = arg max
(∑

s∈Sf (s) π (s)
)
and f ∈ arg max

(∑S
s=1f (s) π′ (s)

)
. Then

f (s) > 0 for all s ∈ σ (π) ∪ σ (π′) by Definition 6 (i). We construct an act f ′, which does

better than f with respect to belief π′ and does not change the arg max with respect to any

other belief in which f was not initially best. Since π 6= π′, there exist two states, s and s′,

such that π′ (s) > π (s) and π′ (s′) < π (s′). Let

f ′ (ŝ) =


f (ŝ) if ŝ /∈ {s, s′}
f (ŝ) + ε if ŝ = s

f (ŝ)− δ if ŝ = s′
,
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where ε, δ > 0 are such that:

(1) επ′ (s)− δπ′ (s′) > 0

(2) επ (s)− δπ (s′) < 0,

or, ε
δ
∈
(
π′(s′)
π′(s) ,

π(s′)
π(s)

)
⊂ (0,∞). Note that one can make ε and δ suffi ciently small (while

maintaining their ratio fixed), so that, by continuity, f ′ does not change the arg max with

respect to any other belief in which f was not initially best. Hence f ′ /∈ F and F ∪ f ′ �
F ∪ f ′\ {g} for all g ∈ F ∪ f ′, which is a contradiction to F being saturated.

6.4. Proof of Theorem 3

To show that the axioms are necessary for the representation, we only verify that the repre-

sentation implies Axiom 8, as the other axioms follow exactly as in the case of Theorem 1.

Suppose then that F is saturated with f ∈ F , and let g satisfy σ (g) = σ (f) and {g} � {f}.
{g} � {f} implies that

V ({g})− V ({f}) =
∑

I∈2σ(µ)

∑
s∈I

[g (s)− f (s)]µ (s)
ρ (I)

µ (I)
(1)

=
∑
s∈S

∑
I∈2σ(µ)|s∈I

[g (s)− f (s)]µ (s)
ρ (I)

µ (I)

=
∑
s∈S

[g (s)− f (s)]µ (s)
∑

I∈2σ(µ)|s∈I

ρ (I)

µ (I)

=
∑
s∈S

[g (s)− f (s)]µ (s) ≥ 0

Since F is saturated, Claim 3 and Claim 4 imply that there exists If ∈ σ (ρ) such that

V (F ) =

∑
s∈If

f (s)µ (s)

 ρ (If )

µ (If )
+

∑
I∈2σ(µ)/If

max
f ′∈F/{f}

[∑
s∈I

f (s)
µ (s)

µ (I)

]
ρ (I)

≤

∑
s∈If

g (s)µ (s)

 ρ (If )

µ (If )
+

∑
I∈2σ(µ)/If

max
f ′∈F/{f}

[∑
s∈I

f (s)
µ (s)

µ (I)

]
ρ (I)

≤ V ((F\ {f}) ∪ {g}) ,

where the first inequality uses Equation (1) and the second inequality is because the addition

of the act g might improve the value of the second component. Therefore, (F\ {f})∪{g} � F .

The suffi ciency part of Theorem 3 is proved using the following claims:
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Claim 8. Suppose F is saturated and f ∈ F . Then for all g with σ (g) = σ (f),

{g} � {f} implies (F\ {f}) ∪ {g} � F

Proof. For ε > 0 small enough, let

h (s) =

{
f (s) + ε if s ∈ σ (f)

0 if s /∈ σ (f)

Then {g} � {h} and σ (h) = σ (g). Theorem 1 implies that F ∪ {h} � F . Let

F ′ :=

{
arg max
f ′∈F∪{h}

(∑
s∈S

f ′ (s) π (s)

)
|π ∈ σ (p)

}

Then F ′ ∼ F ∪ {h} and F ′ is saturated. By Axiom 8,

F ′\ {h} ∪ {g} � F ′

Furthermore, F ′\ {h} ⊆ F\ {f} and, by Axiom 5 (Set Monotonicity), F\ {f} ∪ {g} �
F ′\ {h} ∪ {g}. Collecting all the preference rankings established above completes the proof:

F\ {f} ∪ {g} � F ′\ {h} ∪ {g} � F ′ ∼ F ∪ {h} � F

Claim 9. If π, π′ ∈ σ (p) and π 6= π′ then σ (π) 6= σ (π′)

Proof. Suppose there are π, π′ ∈ σ (p), π 6= π′, but σ (π) = σ (π′). Let FM be the saturated

menu constructed in Claim 2. Then there are f 6= g ∈ FM such that σ (f) = σ (g). Without

loss of generality, suppose that {g} � {f}. For ε > 0 small enough, let

h (s) =

{
g (s) + ε if s ∈ σ (f)

0 if s /∈ σ (f)

and let

F :=

{
arg max

f∈FM∪{h}

(∑
s∈Sf (s)π (s)

)
|π ∈ σ (p)

}
F is a saturated menu with F ∼ FM ∪ {h}. For ε > 0 small enough, f, h ∈ F . Furthermore,
{h} � {g} � {f}. Then, by Claim 8 F\ {f} = (F\ {f})∪{h} � F , which is a contradiction

to Axiom 5.
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So far we have established that in Theorem 1 we can replace the integral over ∆ (S)

according to the measure p with a summation over 2S according to the measure ρ. The

uniqueness of ρ is implied by the uniqueness of p in Theorem 1.

V (F ) =
∑
I∈2S

max
f∈F

[∑
s∈Sf (s) π (s |I )

]
ρ (I)

Let µ (s) =
∑

I:s∈I π (s |I ) ρ (I). The uniqueness of (π, p) in Theorem 1 implies that µ (s)

is unique as well.

Claim 10. For all s, s′ ∈ I ∈ σ (ρ),

π (s |I )

π (s′ |I )
=
µ (s)

µ (s′)

Proof. Suppose to the contrary that there are s, s′ ∈ I ∈ σ (ρ) such that

π (s |I )

π (s′ |I )
<
µ (s)

µ (s′)
.

Given a saturated menu F , let fI := arg max
f∈F

∑
s∈S f (s) π (s |I ). By continuity, and since

fI (s′) > 0, there exists an act h with

h (ŝ) =


fI (ŝ) if ŝ /∈ {s, s′}
fI (ŝ) + ε if ŝ = s

fI (ŝ)− δ if ŝ = s′
,

where ε, δ > 0 are such that:

(1) εµ (s)− δµ (s′) > 0, and

(2) επ (s |I )− δπ (s′ |I ) < 0

Note that using Claim 3 and Claim 4 one can make ε and δ suffi ciently small (while

maintaining their ratio fixed), so that, by continuity and finiteness of σ (ρ), h does not

change the arg max with respect to any other belief in σ (ρ). Then {h} � {fI}, but F �
F\ {fI} ∪ {h}, which contradicts Axiom 8

Claim 11. π (s |I ) = µ(s)
µ(I)

for all I in the support of ρ.
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Proof. Using Claim 10,

µ (I) :=
∑

s′∈Iµ (s′) =
µ (s)

π (s |I )

∑
s′∈Iπ (s′ |I ) =

µ (s)

π (s |I )

⇒ π (s |I ) =
µ (s)

µ (I)

Claim 12. For all s ∈ σ (µ), ∑
I∈2S |s∈I

ρ (I)

µ (I)
= 1

Proof. Using Claim 11,

µ (s) :=
∑

I∈2S |s∈I

π (s |I ) ρ (I) =
∑

I∈2S |s∈I

ρ (I)

µ (I)
µ (s)

⇒
∑

I∈2S |s∈I

ρ (I)

µ (I)
= 1

6.5. Proof of Theorem 4

We have already observed that an information set representation exists if and only if there

is p : Ψ → (0, 1], such that for all I, p (I) = Pr (I |s ∈ I ) for any s ∈ I. We now show that
such p exists if and only if Ψ is a generalized partition of SΨ.

(if) Let Ψ be a generalized partition of SΨ. Let k ≥ 1 be the number of times that SΨ is

covered by Ψ. Set p (I) = β(I)
k
for all I ∈ Ψ.

(only if) Suppose that p (I) ∈ Q∩ (0, 1] for all I ∈ Ψ. Rewrite the vector p by expressing all

entries using the smallest common denominator, ξ ∈ N+. Then Ψ is a generalized partition

of size ξ. To see this, let β (I) := ξp(I) for all I ∈ Ψ. Then

∑
I∈Ψ|s∈I β (I) =

∑
I∈Ψ|s∈I ξp (I) = ξ

∑
I∈Ψ|s∈I Pr (I |s ∈ I ) = ξ

for all s ∈ SΨ.

It is thus left to show that if there exists p ∈ (0, 1]|Ψ|, such that for all I ∈ Ψ, p (I) =

Pr (I |s ∈ I ) for any s ∈ I, then there is also p′ ∈ [Q ∩ (0, 1]]|Ψ| with this property. Note

that p is a solution for the system of linear equations Ap = 1, where A is a |SΨ|× |Ψ| matrix
with entries ai,j ∈ {0, 1}, p is a |Ψ| × 1 vector, and 1 is a |SΨ| × 1 vector of ones.
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Let P̂ be the set of solutions for the system Ap = 1. Then, there exists X ∈ Rk (with
k ≤ |Ψ|) and an affi ne function f : X → R|Ψ| such that p̂ ∈ P̂ implies p̂ = f (x) for some

x ∈ X. We first make the following two observations:
(i) there exists f as above, such that x ∈ Qk implies f (x) ∈ Q|Ψ|

;

(ii) there exists an open set X̃ ⊆ Rk such that f (x) ∈ P̂ for all x ∈ X̃
To show (i), apply the Gauss elimination procedure to get f and X as above. Using the

assumption that the matrix A has only rational entries, the Gauss elimination procedure

(which involves a sequence of elementary operations on A) guarantees that x ∈ Qk
implies

f (x) ∈ Q|Ψ|
.

To show (ii), suppose first that p∗ ∈ P̂ ∩(0, 1)|Ψ| and p∗ /∈ Q|Ψ|. By definition, p∗ = f (x∗),

where x∗ ∈ X. Since p∗ ∈ (0, 1)|Ψ|and f is affi ne, there exists an open ball Bε (x∗) ⊂ Rk

such that f (x) ∈ P̂ ∩ (0, 1)|Ψ| for all x ∈ Bε (x∗), and in particular for x′ ∈ Bε (x∗) ∩ Qk

(6= φ). Then p′ = f (x′) ∈ [Q ∩ (0, 1]]|Ψ|. Lastly, suppose that p∗ ∈ P̂ ∩ (0, 1]|Ψ| and that

there are 0 ≤ l ≤ |Ψ| sets I ∈ Ψ, for which p (I) is uniquely determined to be 1. Then set

those l values to 1 and repeat the argument above for the remaining |Ψ| −l system of linear
equations.

6.6. Proof of Theorem 5

By Theorem 3, vi(s) = kµi (s) for i = 1, 2. Consider the set {c, f}. Since conditional on any
I 3 s, s′

Pr (s |I )

Pr (s′ |I )
=
µ (s)

µ (s′)

and since {c} � {f},
∑

ŝ∈I f (ŝ) µ(ŝ)
µ(I)

> c
∑

ŝ∈I
µ(ŝ)
µ(I)

if and only if s ∈ I but s′ /∈ I. These

are the only events in which DM expects to choose f from {c, f}. Therefore, wi (s, s′) =

kµi (s) Pri ({I : s ∈ I, s′ /∈ I} |s) and

ζi (s, s
′) = Pri ({I : s ∈ I, s′ /∈ I} |s) =

∑
I:s∈I, s′ /∈I

ρi (I)

µi (I)
.

Corollary 1. ζ (s, s′) is independent of any k and c (that satisfy the premise in the beginning

of the section) and ζ (s, s′) = ζ (s′, s).

Proof. The proof of Theorem 5 established that ζ (s, s′) =
∑

I:s∈I, s′ /∈I
ρ(I)
µ(I)

independently of

k and c. Theorem 3 implies that
∑

I:s∈I, s′ /∈I
ρ(I)
µ(I)

= 1−
∑

I:s∈I, s′∈I
ρ(I)
µ(I)

=
∑

I:s′∈I, s/∈I
ρ(I)
µ(I)
, and

hence ζ (s, s′) = ζ (s′, s).
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6.7. Proof of Theorem 6

We first establish that in the context of Theorem 3, Definition 3 can be rewritten as follows:

Definition 18. DM2’s distribution of first-order beliefs is a mean-preserving spread of
DM1’s if and only if

(i) µ1 = µ2, and

(ii) for all I ∈ 2S ∑
I′⊆I

ρ1 (I ′) ≥
∑
I′⊆I

ρ2 (I ′)

In light of Theorem 2 and the finiteness of σ (ρ), it is suffi cient to establish the following:

Claim 13. DM1 has more preference for flexibility than DM2 if and only if items (i) and
(ii) in Definition 18 hold.

Proof. (if) DM1 expects to be better informed than DM2; He, therefore, expects to be able
to imitate DM2’s choice from any menu by simply ignoring the additional information (with

appropriate probability he pretends to be in a larger information set). Hence, he expects to

derive weakly more value from any menu. Since both derive the same value from singletons,

where there is no choice to be made from the menu (and therefore information is irrelevant),

DM1 must weakly prefer a menu over a singleton, whenever DM2 does.

(only if)
(i) Taking G = {g} implies that they have same preferences on singletons, hence same

beliefs.

(ii) Suppose that there is I ∈ 2S with
∑

I′⊆I ρ2 (I ′) >
∑

I′⊆I ρ1 (I ′) . Obviously I is a

strict subset of the support of µ. Define the act

f :=

{
δ > 0 if s ∈ I

0 if s /∈ I

Let c denote the constant act that gives c > 0 in every state, such that δ > c > µ(I)
µ(I′′)δ for all

I ′′ that are a strict super set of I. Then Vi ({f, c}) = c + (δ − c)
∑

I′⊆I ρi (I
′). Finally, pick

c′ such that

(δ − c)
∑
I′⊆I

ρ2 (I ′) > c′ − c > (δ − c)
∑
I′⊆I

ρ1 (I ′)

to find {f, c} �2 {c′} but {c′} �1 {f, c}, and hence DM1 cannot have more preference for
flexibility than DM2.
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We now ready to prove Theorem 6, which states that if DM1 has more preferences for

flexibility than DM2, then DM1 values binary bets more than DM2.

Proof of Theorem 6. Suppose µ1 = µ2. Then DM1 values binary bets more than DM2 if

and only if
∑

I:s∈I, s′ /∈I
ρ1(I)−ρ2(I)

µ(I)
≥ 0 for all s, s′ ∈ σ (µ1). In particular, for any I ∈ σ (ρ) the

condition holds for all s, s′ ∈ I, and thus
∑

I′⊆I
ρ1(I′)−ρ2(I′)

µ(I′) ≥ 0 must hold. We now show that

this condition is implied by item (ii) in Definition 18. That is, we show that if there exists an

I for which
∑

I′⊆I
ρ2(I)−ρ1(I)

µ(I)
> 0, then there is I ′ such that

∑
I′′⊆I′ ρ

2 (I ′′) >
∑

I′′⊆I′ ρ
1 (I ′′).

Suppose this is not the case. Then ρ1 (I) − ρ2 (I) ≥ 0 for any singleton I. For any I

with |I| = 2 we must have ρ2 (I) − ρ1 (I) ≤
∑

I′⊆I ρ
1 (I ′) − ρ2 (I ′). But then, since µ is

increasing with respect to the order of set inclusion, ρ
2(I)−ρ1(I)
µ(I)

≤
∑

I′⊆I
ρ1(I′)−ρ2(I′)

µ(I′) also holds.

Continue inductively in this manner to establish that for any I we must have ρ2 (I)−ρ1 (I) ≤∑
I′⊆I ρ

1 (I ′) − ρ2 (I ′), which implies that there is no I for which
∑

I′⊆I
ρ2(I)−ρ1(I)

µ(I)
> 0;

contradiction.

6.8. Proof of Theorem 7

It is easy to check that any preferences with an exclusive tree representation as in Theorem

7 satisfy Axiom 9. The rest of the axioms are satisfied since Theorem 7 is a special case of

Theorem 3.

To show suffi ciency, first observe that by Axiom 9 and Claim 3, I,I ′ ∈ σ (ρ) implies that

either I ⊂ I ′, or I ′ ⊂ I, or I ∩ I ′ = φ. This observation guarantees that for any M ⊂ σ (ρ)

and s ∈ σ (µ), arg max
I∈M

{|I| : s ∈ I} is unique if it exists.

For any state s ∈ σ (µ), let Is1 = arg max
I∈σ(ρ)

{|I| : s ∈ I}. Define T1 := {Is1 : s ∈ σ (µ)}. Let

η1 = min
I∈T 1

(
ρ(I)
µ(I)

)
. Set

ρ1 (I) =

{
ρ (I)− η1µ (I) if I ∈ T1

ρ (I) if I /∈ T1

Let ρn : σ (ρ)→ [0, 1]. Inductively, if for all s ∈ σ (µ) there exists I ∈ σ (ρn) such that s ∈ I,
then for any s ∈ σ (µ) let Isn+1 = arg max

I∈σ(ρn)

{|I| : s ∈ I}. Define Tn+1 :=
{
Isn+1 : s ∈ σ (µ)

}
.

Let ηn+1 = min
I∈Tn+1

(
ρn(I)
µ(I)

)
. Set

ρn+1 (I) =

{
ρn (I)− ηn+1µ (I) if I ∈ Tn+1

ρn (I) if I /∈ Tn+1

LetN be the first iteration in which there is s ∈ σ (µ) which is not included in any I ∈ σ (ρN).
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Axiom 9 and Claim 3 imply that N is finite and that the sequence (T n)n=1,..,N is a sequence

of increasingly finer partitions, that is, for m > n, Ism ⊆ Isn for all s, with strict inclusion for

some s.

Claim 14. ρ (I) = µ (I)
∑

n|I∈Tn ηn for all I ∈ σ (ρ).

Proof. First note that by the definition of N , ρ (I) ≥ µ (I)
∑

n≤N |I∈Tn ηn for all I ∈ σ (ρ). If

the claim were not true, then there exists I ′ ∈ σ (ρ) such that ρ (I ′) > µ (I ′)
∑

n≤N |I′∈Tn ηn.

Pick s′ ∈ I ′. On the same time, by the definition of N , there exists s′′ ∈ σ (µ) such that if

s′′ ∈ I ∈ σ (ρ) then ρ (I) = µ (I)
∑

n≤N |I∈Tn ηn. We have,

µ (s′′) =
∑

I∈σ(ρ) Pr (s′′ |I ) ρ (I) =
∑

I∈σ(ρ) Pr (s′′ |I )µ (I)
∑

n≤N |I∈Tn ηn

=
∑

n≤N Pr
(
s′′
∣∣∣Is′′n )µ(Is′′n ) ηn = µ (s′′)

∑
n≤Nηn

Where the last equality follows from Claim 11. Therefore,
∑

n≤Nηn = 1. At the same time

µ (s′) =
∑

I∈σ(ρ) Pr (s′ |I ) ρ (I) >
∑

I∈σ(ρ) Pr (s′ |I )µ (I)
∑

n≤N |I∈Tn ηn

=
∑

n≤N Pr
(
s′
∣∣∣Is′n )µ(Is′n ) ηn = µ (s′)

∑
n≤Nηn = µ (s′) ,

which is a contradiction.

Claim 14 implies that σ (ρN) = ∅. Define the filtration {Pt} by

Pt := Tn, where
n∑

m=0

ηm ≤ t <
n+1∑
m=0

ηm

The pair (µ, {Pt}) is thus an exclusive tree.

Claim 15. If � also satisfies Axiom 10, then P0 = {σ (µ)}

Proof. Suppose to the contrary, that there are {S ′, S ′′} ⊂ P0 such that S ′ ∩ S ′′ = ∅ and
S ′ ∪ S ′′ ⊆ σ (µ). Then, any saturated F includes some act h with σ (h) ⊂ S ′ and act g with

σ (g) ∈ S ′′, but does not include an act f that contains both h and g, which contradicts

Axiom 10.

Claim 16. If
(
µ̂,
{
P̂t
})

induces a representation as in Theorem 7, then
(
µ̂,
{
P̂t
})

=

(µ, {Pt}).

Proof. µ is unique according to Theorem 3. Suppose that {Pt} 6=
{
P̂t
}
. Then, without

loss of generality, there exists t and I ∈ σ (ρ), such that I ∈ Pt and Î ⊂ I ∈ P̂t. Let
M = {I ′ ∈ σ (ρ) : I ⊆ I ′}. Then, according to (µ, {Pt}), ρ (M) > t, while according to(
µ̂,
{
P̂t
})
, ρ (M) < t, which is a contradiction.
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6.9. Proof of Theorem 8

(i) DM1 does not learn earlier than DM2 ⇔ there exists t such that P1
t is not finer than P2

t

⇔ there exists two states s, s′, such that s, s′ ∈ I for some I ∈ P1
t , but s, s

′ /∈ I ′ for any

I ′ ∈ P2
t ⇔ Pr2 ({I : s ∈ I, s′ /∈ I} |s) = ζ2 (s, s′) ≥ 1 − t, but Pr1 ({I : s ∈ I, s′ /∈ I} |s) =

ζ1 (s, s′) < 1− t ⇔ DM1 does not value binary bets more than DM2.

(ii) For i = 1, 2, let

ti (I) = min
{
t
∣∣I is measurable in P it }

if defined, otherwise let ti (I) = 1. Let

∆i (I) = max
{
t
∣∣I ∈ P it }−min

{
t
∣∣I ∈ P it }

if defined, otherwise let ∆i (I) = 0. Under the assumptions of Theorem 7,

∑
I′⊆Iρ

i (I ′) =
∑

I′⊆Iµ
i (I ′) ∆i (I) = µi (I)

(
1− ti (I)

)
Hence, DM1 learns more than DM2 if and only if µ1 = µ2 and t1 (I) ≤ t2 (I) for all I, which

is equivalent to {P1
t } being weakly finer than {P2

t }.

6.10. Preferences for flexibility versus willingness to pay to add options to a given
menu

We show that having more preferences for flexibility does not imply greater willingness

to pay to add options to a given menu. To see this, consider the following abstract and

simple example, which is formulated under the assumptions of Theorem 7. Suppose that

S = {s1, s2}. Take two decision makers, DM1 and DM2, both believe ex-ante that the two
states are equally likely. However, DM1 expects to learn the true state at time t1 = 1

4
, while

DM2 expects to learn the true state later, at t2 = 3
4
. Theorem 7 implies that

V 1 (F ) =
1

4
max
f∈F

{
1

2
f (s1) +

1

2
f (s2)

}
+

3

4

{
1

2
max
f∈F

f (s1) +
1

2
max
f∈F

f (s2)

}
V 2 (F ) =

3

4
max
f∈F

{
1

2
f (s1) +

1

2
f (s2)

}
+

1

4

{
1

2
max
f∈F

f (s1) +
1

2
max
f∈F

f (s2)

}
For any menu of acts F and and a positive number c ≤ min

f∈F , s∈σ(f)
f (s), let

F − c := {f − hc |f ∈ F } ,
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where hc is the constant act that yields c in each state. The number c is naturally interpreted

as a utility cost associated with attaining menu F .

Define three acts f, g, h ∈ F such that

f (s) :=

{
1 if s = s1
1
12
if s = s2

g (s) :=

{
1
12
if s = s1

1 if s = s2

h (s) :=

{2
3
if s = s1

2
3
if s = s2

The acts f and g perform very well only in state s1 or s2, respectively, while act h provides

“insurance”and performs decently in both states. It is easy to verify that V 1 ({f, g, h}) = 11
12
,

V 2 ({f, g, h}) = 3
4
, V 1 ({f, g}) = 85

96
, V 2 ({f, g}) = 21

32
, V 1 ({f, h}) = 19

24
, and V 2 ({f, h}) = 17

24
.

On the one hand, V 1
(
{f, g, h} − 1

12

)
= 80

96
< 85

96
= V 1 ({f, g}) and V 2

(
{f, g, h} − 1

12

)
=

64
96
> 63

96
= V 2 ({f, g}); that is, DM2 is willing to pay c = 1

12
in order to add the insurance act

h to the menu {f, g}, but DM1, who expects to learn the true state earlier, does not derive
enough benefit from this insurance to justify the cost c.

On the other hand, V 1
(
{f, g, h} − 1

12

)
= 20

24
> 19

24
= V 1 ({f, h}) and V 2

(
{f, g, h} − 1

12

)
=

16
24
< 17

24
= V 2 ({f, h}); that is, DM1 is willing to pay c = 1

12
in order to have g available, as

it allows him to capitalize on learning the true state early, while DM2 expects to choose the

insurance option h for so long that being able to choose g once he learns the true state does

not warrant paying cost c.
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