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Free riding experiments have generated many anomalous results that cannot be explained with standard Nash equilibrium 

models of public goods. This paper examines the experiments within the context of evolutionary game theory. This approach 

models the decision process of agents by an adaptive learning algorithm. The algorithm ‘strengthens’ strategies that do 

relatively well and ‘weakens’ strategies that do relatively poorly. This model produces predictions that are strikingly similar to 

those generated by experiments. Hence, evolutionary game theory may provide a way to understanding otherwise anomalous 

observations on contributions to public goods. 

1. Introduction 

Free riding experiments have generated many anomalous results that cannot be explained with 
standard Nash equilibrium models of public goods [see Dawes and Thaler (1988) for a review]. This 
paper examines these experiments within the context of evolutionary game theory. We model the 
decision process of agents by an adaptive learning algorithm. The algorithm ‘strengthens’ strategies 
that do relatively well and ‘weakens’ strategies that do relatively poorly. The model produces 
predictions that are strikingly similar to results generated in experiments. Hence, evolutionary 
dynamics may provide a way to understand the otherwise anomalous observations on contributions 
to public goods. 

In the typical public good experiment, subjects are formed into groups of size g, and are given an 
exogenous incomes of I. Each subject must then allocate I between a public and private good. After 
all individuals make their allocation decisions, each receives a payoff equal to 

p, = I - L’, + mg?, 

where c, is subject i’s contribution to the public good, m is the known marginal per capita return 
from giving to the public good, and C is the average contribution to the public good. The parameter 
M is chosen so that 0 < m < 1 and mg > 1. Given this design, ci = 0 (free riding) is the dominant 
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strategy Nash equilibrium, and c, = I is the symmetric Pareto efficient allocation. Values of g 
typically range from 4 to 10, m ranges from 0.3 to 0.75, and I is usually under $1.00. This design has 
been used by Marwell and Ames (1981) Isaac, Walker and Thomas (1984), Isaac, McCue and Plott 
(1985) Andreoni (1988b), Isaac and Walker (1988) and others. 

There are several regularities in these experiments. Subjects on average allocate about half of their 
income to the public good in the initial play of either a single-shot or repeated game, regardless of 
their group size or marginal return. In iterated games provision ‘decays’ toward the free riding 
equilibrium, although exact free riding behavior is seldom observed. Even more surprising results 
have been found recently by Isaac, Walker, and Williams (1990). Studying groups in size 4, 10, 40 
and 100, they found that, as above, subjects tend to give about half of their endowment to public 
good in the first round with decay in later rounds, however, they also observed that the rate of decay 
is inversely related to group size - larger groups had slower rates of decay. In addition, they found 
that as the marginal return from contributing to the public good rises (even though the equilibrium is 
unchanged), decay markedly slows for all group sizes, and the paths of play became largely 
indistinguishable. 

Existing models of rational Nash equilibrium play cannot explain any of these results. Current 
public goods theory indicates that free riding should be far more prevalent than is actually observed, 
and that cooperation should be more difficult to sustain in large groups [Andreoni (1988b)]. 
Although the equilibrium is the same in all models, m and g have systematic effects on behavior. In 
an effort to understand the above anomalies, we examine a simple model of decision making based 
on evolutionary dynamics. We find striking parallels between the dynamics generated by this model 
and the experimental findings. In particular, the model predicts the decay toward free riding, with 
slower decay for larger groups and for groups with higher marginal returns. 

2. An evolutionary model of decision making 

Economists have become increasingly interested in models of learning, adaptation, and evolution 
[e.g. Milgrom and Roberts (1990), Fudenberg and Maskin (1990), and Fudenberg and Kreps (1988)], 
and in using evolutionary game theory to examine experimental findings [Crawford (1990) and 
Andreoni and Miller (1990)]. The model used here is based on replicator dynamics [Schuster and 
Sigmond (1983)]. Applications of this dynamic by game theorists include Axelrod and Hamilton 
(1981), Samuelson (1988) Nachbar (1990), and Boylan (1990). Replicator dynamics are based on the 
notion that strategies that perform relatively well will replace those that perform relatively poorly. 

Suppose there are N types of strategies interacting in a population of fixed size. Each strategy of 
type i always contributes ci dollars to the public good, Let x: be the proportion of type i strategies 
in the population at time 1. Then, we expected payoff to an agent using strategy type i is 

N 

p, = z - c, + mg 1 c,x; = z - c, + mgc’, 
/=I 

where C’ is the average contribution at time t. 
Replicator dynamics provide a natural algorithm for allowing the weights, x:, to evolve over time. 

The dynamics are given by 

P, ,:+I = x:7 = Xf 
z - c, + in@? 

c pJxf 
’ Z - C’ + mg?’ . 

/=I 

(1) 
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This adjustment process captures the intuitive notion that strategies should be ‘strengthened’ if they 

do better than average, and ‘weakened’ if they do worse, and that the rate of adjustment should be 
faster the farther a strategy is from the mean. The dynamic also has the feature that a $1 deviation 
from the mean payoff will result in a faster adjustment when the mean is $10 than when it is $100. 
This accords with the intuitive rule-of-thumb that 10% differences are more ‘urgent’ or ‘costly’ than 
1% differences. Note also that strategy types that are not initially in the population can never emerge, 

and those that have support will never (in finite time) disappear. 
There are several ways in which replicator dynamics may be viewed as a plausible model of 

decision making. First, agents may be playing an evolutionary game [see Maynard Smith and Price 
(1973) and van Damme (1989 ch. 9)]. Over time, better strategies proliferate by some adaptive 
selection process. In this case, strategies can be viewed as individuals whose presence is determined 
adaptively, or as ‘ideas’ that reside in the strategy space of players who choose moves randomly, as in 
a mixed strategy, using x: as weights. Second, agents may actually be concerned with their 
performance relative to the average. Several experiments [Andreoni (1990) and Kahneman and 
Knetsch (1990)] have demonstrated that the behavior of subjects is consistent with the hypothesis 

that people enjoy being part of cooperative outcomes, but that they are unwilling to have their 
cooperation exploited by other more selfish players [see Andreoni (1989) and Ledyard (1990) on 
‘warm glow’ giving]. If this is true, then those who give above average amounts will always feel 
exploited, and hence will switch to more selfish strategies. Finally, the model mirrors prominent 

psychological theories of decision making based on ‘reference points’ [see Ableson and Levi (1985) 
for a review]. According to these theories, people adjust their decisions more rapidly the more the 
outcome falls short of some reference point, such as the average. 

3. Theoretical predictions 

Despite its simplicity, the model makes a number of predictions about the behavior of agents in 
the system. We will present six propositions. All of these propositions have rigorous proofs, although, 
for brevity, we will sometimes only outline the proofs. The propositions concern only those strategies 
that have positive support during the initial time period, and we assume that at least two such 
strategies exist. 

Proposition I. Any strategy that contributes less (more> than the average contribution will grow 
(decline ) in proportion over time. 

Proof By eq. (1) x:“/x: > (= , <) 1 as c, < (=, >) C’. 

Proposition 2. The average contribution will fall over time. 

Proof At any point in time, the weights on those c, < C’ increase, while the weights on those c, > C’ 
decrease. Thus, the average must decline. 

Proposition 3. The system will converge asymptotically to the strategy that does the most free riding. 

Proof (intuition). Proposition 1 indicates that the growth always occurs in strategies that give less 
than the current average. Proposition 2 indicates that the average will decline over time. Thus, as the 
average moves down, the weights will eventually be concentrated on the strategy that gives the least 
to the public good. 
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Propositions 1, 2, and 3 show that replicator dynamics will produce decay towards free riding. 
Over time, the more cooperative strategies will be replaced by those that give less to the public good. 
Proposition 3 implies that given sufficient time the entire population will use the strategy that does 
the most free riding. 

Proposition 4. Starting from the same initial distribution, the dynamics will be identical for mg = k 

where k is a constant. 

Proof: Equation (1) is identical for all systems in this case. 

Proposition 5. As mg increases, the rate of adjustment slows, and as mg -+ co then xi”/x: -+ 1. 

Prooj: It can be shown that the absolute value of 1 - x~“/x~ decreases as mg increases. For the 
latter statement, take the limit of eq. (1). 

Proposition 6. As mg increases, the decline in average contributions slows. 

Proof (intuition). As in the proof of Proposition 5, a larger mg slows the changes in x:+’ relative to 
x:, and thus starting from the same initial conditions the convergence is slowed. 

-0 20 

Fig. 1. Uniform initial distribution. 
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Fig. 2. Biased initial distribution. 
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Proposition 4, 5, and 6 indicate that decay should be slower the larger the group size, R, and the 
higher the marginal return m. For any average contribution C’, the higher rng the higher the payoff 

of every subject. The higher the total payoff, the lower each person’s percentage deviation from the 
mean, hence, the slower the rate of decay. Although the optimizing model would predict, for 
instance, that free riding will increase as g increases, this model does not: Since all strategies perform 
about the same, there is a smaller incentive for any agent to change strategies. Hence, a behavioral 

model in which subjects choose their first move more or less randomly, and then adjust their 
behavior according to a rule like (1) will produce a dynamic path similar to the paths observed in 

experiments. 
Figures 1 and 2 illustrate the above propositions. These figures are based on an initial population 

of 20 strategies distributed between giving 0% of I to the public good and giving 100% of 1. Figure 1 
illustrates a uniform initial distribution of strategy types, and fig. 2 illustrates one that is con- 
centrated around 50%. ’ The paths are shown for a variety of groups sizes, with m = 0.3. Although 
the figures illustrate the dynamics over 70‘generations’ of play, this does not necessarily correspond 
to any particular time scale. The rates of adjustment can be quickened or slowed in the algorithm by, 
for example, adding a constant to the payoff values. This constant could even be estimated using 
experimental data. 

’ 95.25% of the weight is on the 50% strategy. and the remainder of the weight is evenly distributed across the other strategies. 
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4. Discussion and conclusion 

The replicator-dynamic model of evolutionary decision making has captured the anomalous 
results from experiments. Contributions will decay toward the dominant strategy Nash level, and the 
rate of decay will be slower for larger groups and for groups with higher marginal returns. While this 
model is very simple, more complex versions of evolutionary dynamics are likely to lead to similar 
results. For example, identical qualitative results hold if agents who perform worse than average only 
switch to the average strategy, or if agents follow a complicated adaptive scheme, such as a genetic 

algorithm model [Holland (1975) Goldberg (1989)]. Although the simple replicator model discussed 
here does not have any explicit parameters, simple modifications could allow the speed of adjustment 
to be set parametrically. 

There is one regularity found by Isaac and Walker (1988) and Isaac, Walker and Williams (1990) 

that is not yet captured by this simple model of decision making. Comparing separate groups in 
which mg is identical, they find that decay is slower for groups with higher m and lower g, than in 
groups with lower m and higher g. While the difference is not vast, it is persistent. This is clearly at 
odds with proposition 4 above, which indicates that the dynamics depend only on mg. Hence, there 
may be additional benefits to more research into the evolutionary models of giving. For instance, the 
above model is based on the assumption that large and small groups sample the population at the 
same rate, that is, the dynamic is based on the population average, regardless of group size. However, 
subjects in small groups have less exposure to different ‘types’ of strategies, hence sample the 
population at a slower rate. As a result, their convergence to free riding may be slower, even though 
rng is the same. Generalizing and developing this aspect of the model may yield predictions 
consistent with this last experimental result. 

In conclusion, the simple evolutionary model of behavior is intuitively plausible, and can explain 

otherwise anomalous behavior. This suggests that our understanding of the private provision of 
public goods may be improved by more careful research into evolutionary game theory, and by 
theory and experiments that examine the motives, decision processes, and dynamics of public goods 

games. 
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