Risky Research Timely Research New Work on Risk, Time, and Risk over Time.

James Andreoni

UCSD

James Andreoni Risky Research

Risky Research Timely Research New Work on Risk Time, and Risk over Time.

James Andreoni

UCSD

James Andreoni Risky Research

Risky Research Timely Research New Work on Risk, Time, and Risk over Time.

James Andreoni

UCSD

Five Papers

- Estimating Time Preferences from Convex Budgets
- Risk Preferences are Not Time Preferences: Discounted Expected Utility with a Disproportionate Preference for Certainty
- Certain and Uncertain Utility: The Allais Paradox and Five Decision Theory Phenomena
- Uncertainty Equivalents: Testing the Limits of the Independence Axiom
 - All four with Charles Sprenger, UCSD
- Unexpected Utility: Experimental Tests of Five Key Questions about Preferences over Risk.
 - with Bill Harbaugh, University of Oregon

Three Papers Today

- Estimating Time Preferences from Convex Budgets
- Risk Preferences are Not Time Preferences: Discounted Expected Utility with a Disproportionate Preference for Certainty
- Certain and Uncertain Utility: The Allais Paradox and Five Decision Theory Phenomena
- Uncertainty Equivalents: Linear Tests of the Independence Axiom
 - All four three with Charles Sprenger, UCSD
- Unexpected Utility: Experimental Tests of Five Key Questions about Preferences over Risk.
 - with Bill Harbaugh, University of Oregon

Three Papers Today

- Estimating Time Preferences from Convex Budgets
- Risk Preferences are Not Time Preferences: Discounted Expected Utility with a Disproportionate Preference for Certainty
- Certain and Uncertain Utility: The Allais Paradox and Five Decision Theory Phenomena
- Uncertainty Equivalents: Understanding When the Independence Axiom Gets Out of Line
 - All four three with Charles Sprenger, UCSD
- Unexpected Utility: Experimental Tests of Five Key Questions about Preferences over Risk.
 - with Bill Harbaugh, University of Oregon

• New Ideas:

- None
- The core ideas have been around since Allais in 1953
- Other elements have appeared in disparate places, often without testing.
- At the center of all the analysis is the Certainty Effect of Allais.
- Far from certainty, expected utility does fine and utility follows an EU function *u*(*x*).
- But in the neighborhood of certainty, people display a disproportionate preference for certainty, and utility follows a function v(x), with $v(x) \ge u(x)$.
- This u v model of preferences is a "useful simplification" of a more continuous process.
- *u v* is a generalization of Disappointment Aversion that allows dominance violations.

New Ideas:

None

- The core ideas have been around since Allais in 1953
- Other elements have appeared in disparate places, often without testing.
- At the center of all the analysis is the Certainty Effect of Allais.
- Far from certainty, expected utility does fine and utility follows an EU function *u*(*x*).
- But in the neighborhood of certainty, people display a disproportionate preference for certainty, and utility follows a function v(x), with $v(x) \ge u(x)$.
- This u v model of preferences is a "useful simplification" of a more continuous process.
- *u v* is a generalization of Disappointment Aversion that allows dominance violations.

• New Ideas:

None

- The core ideas have been around since Allais in 1953
- Other elements have appeared in disparate places, often without testing.
- At the center of all the analysis is the Certainty Effect of Allais.
- Far from certainty, expected utility does fine and utility follows an EU function u(x).
- But in the neighborhood of certainty, people display a disproportionate preference for certainty, and utility follows a function v(x), with v(x) ≥ u(x).
- This u v model of preferences is a "useful simplification" of a more continuous process.
- u v is a generalization of Disappointment Aversion that allows dominance violations.

- New Ideas:
 - None
 - The core ideas have been around since Allais in 1953
 - Other elements have appeared in disparate places, often without testing.
 - At the center of all the analysis is the Certainty Effect of Allais.
 - Far from certainty, expected utility does fine and utility follows an EU function u(x).
 - But in the neighborhood of certainty, people display a disproportionate preference for certainty, and utility follows a function v(x), with v(x) ≥ u(x).
 - This u v model of preferences is a "useful simplification" of a more continuous process.
 - u v is a generalization of Disappointment Aversion that allows dominance violations.

- New Ideas:
 - None
 - The core ideas have been around since Allais in 1953
 - Other elements have appeared in disparate places, often without testing.
 - At the center of all the analysis is the Certainty Effect of Allais.
 - Far from certainty, expected utility does fine and utility follows an EU function u(x).
 - But in the neighborhood of certainty, people display a disproportionate preference for certainty, and utility follows a function v(x), with v(x) ≥ u(x).
 - This u v model of preferences is a "useful simplification" of a more continuous process.
 - *u v* is a generalization of Disappointment Aversion that allows dominance violations.

• New Experimental Methods:

- We introduce several innovations we believe eliminate some confounding effects of prior experimental methods.
- This is true for both risk and time measures.
- In time preferences we take several new measures to create confidence in future payments.
- Since the future is both less convenient and more risky than the present, this is crucial to get right.
- We also introduce a new method for eliciting time preferences that can identify discounting and utility function curvature with a single instrument–*Convex Time Budgets*
- With risk preferences we re-introduce and develop a new way to measure preferences, which we call *Uncertainty Equivalents*.
- UEs allow us to test the Independence Axiom directly, and distinguish the three main alternatives: CPT Probability Weighting, Disappointment Aversion, u – v preferences.

• New Experimental Methods:

- We introduce several innovations we believe eliminate some confounding effects of prior experimental methods.
- This is true for both risk and time measures.
- In time preferences we take several new measures to create confidence in future payments.
- Since the future is both less convenient and more risky than the present, this is crucial to get right.
- We also introduce a new method for eliciting time preferences that can identify discounting and utility function curvature with a single instrument–*Convex Time Budgets*
- With risk preferences we re-introduce and develop a new way to measure preferences, which we call *Uncertainty Equivalents*.
- UEs allow us to test the Independence Axiom directly, and distinguish the three main alternatives: CPT Probability Weighting, Disappointment Aversion, u – v preferences.

- New Experimental Methods:
 - We introduce several innovations we believe eliminate some confounding effects of prior experimental methods.
 - This is true for both risk and time measures.
 - In time preferences we take several new measures to create confidence in future payments.
 - Since the future is both less convenient and more risky than the present, this is crucial to get right.
 - We also introduce a new method for eliciting time preferences that can identify discounting and utility function curvature with a single instrument–*Convex Time Budgets*
 - With risk preferences we re-introduce and develop a new way to measure preferences, which we call *Uncertainty Equivalents*.
 - UEs allow us to test the Independence Axiom directly, and distinguish the three main alternatives: CPT Probability Weighting, Disappointment Aversion, u – v preferences.

- New Experimental Methods:
 - We introduce several innovations we believe eliminate some confounding effects of prior experimental methods.
 - This is true for both risk and time measures.
 - In time preferences we take several new measures to create confidence in future payments.
 - Since the future is both less convenient and more risky than the present, this is crucial to get right.
 - We also introduce a new method for eliciting time preferences that can identify discounting and utility function curvature with a single instrument–*Convex Time Budgets*
 - With risk preferences we re-introduce and develop a new way to measure preferences, which we call *Uncertainty Equivalents*.
 - UEs allow us to test the Independence Axiom *directly*, and distinguish the three main alternatives: CPT Probability Weighting, Disappointment Aversion, u – v preferences.

- New Experimental Methods:
 - We introduce several innovations we believe eliminate some confounding effects of prior experimental methods.
 - This is true for both risk and time measures.
 - In time preferences we take several new measures to create confidence in future payments.
 - Since the future is both less convenient and more risky than the present, this is crucial to get right.
 - We also introduce a new method for eliciting time preferences that can identify discounting and utility function curvature with a single instrument–*Convex Time Budgets*
 - With risk preferences we re-introduce and develop a new way to measure preferences, which we call *Uncertainty Equivalents*.
 - UEs allow us to test the Independence Axiom *directly*, and distinguish the three main alternatives: CPT Probability Weighting, Disappointment Aversion, u – v preferences.

- New Experimental Methods:
 - We introduce several innovations we believe eliminate some confounding effects of prior experimental methods.
 - This is true for both risk and time measures.
 - In time preferences we take several new measures to create confidence in future payments.
 - Since the future is both less convenient and more risky than the present, this is crucial to get right.
 - We also introduce a new method for eliciting time preferences that can identify discounting and utility function curvature with a single instrument–*Convex Time Budgets*
 - With risk preferences we re-introduce and develop a new way to measure preferences, which we call *Uncertainty Equivalents*.
 - UEs allow us to test the Independence Axiom *directly*, and distinguish the three main alternatives: CPT Probability Weighting, Disappointment Aversion, u – v preferences.

- New Experimental Methods:
 - We introduce several innovations we believe eliminate some confounding effects of prior experimental methods.
 - This is true for both risk and time measures.
 - In time preferences we take several new measures to create confidence in future payments.
 - Since the future is both less convenient and more risky than the present, this is crucial to get right.
 - We also introduce a new method for eliciting time preferences that can identify discounting and utility function curvature with a single instrument–*Convex Time Budgets*
 - With risk preferences we re-introduce and develop a new way to measure preferences, which we call *Uncertainty Equivalents*.
 - UEs allow us to test the Independence Axiom *directly*, and distinguish the three main alternatives: CPT Probability Weighting, Disappointment Aversion, u – v preferences.

- Our data on time preferences finds reasonable discount rates which are correlated with recent studies.
- However our measure of curvature is smaller and completely uncorrelated with prior methods.
- Moreover, our estimates of utility predict well out of sample.
- Our results are consistent with a model in which the future is risky, and individuals have u v preferences
- Most importantly, our data is *inconsistent* with a β δ model of present bias.
- Either our experiment had too much front-end delay, or a lot of prior results of present bias were mistaken attributions of a certainty bias.
- New experiments that control the amount of risk over time tend to confirm a *u* - *v* interpretation of the data.

- Our data on time preferences finds reasonable discount rates which are correlated with recent studies.
- However our measure of curvature is smaller and completely uncorrelated with prior methods.
- Moreover, our estimates of utility predict well out of sample.
- Our results are consistent with a model in which the future is risky, and individuals have u v preferences
- Most importantly, our data is *inconsistent* with a $\beta \delta$ model of present bias.
- Either our experiment had too much front-end delay, or a lot of prior results of present bias were mistaken attributions of a certainty bias.
- New experiments that control the amount of risk over time tend to confirm a *u* - *v* interpretation of the data.

- Our data on time preferences finds reasonable discount rates which are correlated with recent studies.
- However our measure of curvature is smaller and completely uncorrelated with prior methods.
- Moreover, our estimates of utility predict well out of sample.
- Our results are consistent with a model in which the future is risky, and individuals have u v preferences
- Most importantly, our data is *inconsistent* with a β δ model of present bias.
- Either our experiment had too much front-end delay, or a lot of prior results of present bias were mistaken attributions of a certainty bias.
- New experiments that control the amount of risk over time tend to confirm a *u* - *v* interpretation of the data.

- Our data on time preferences finds reasonable discount rates which are correlated with recent studies.
- However our measure of curvature is smaller and completely uncorrelated with prior methods.
- Moreover, our estimates of utility predict well out of sample.
- Our results are consistent with a model in which the future is risky, and individuals have u v preferences
- Most importantly, our data is *inconsistent* with a $\beta \delta$ model of present bias.
- Either our experiment had too much front-end delay, or a lot of prior results of present bias were mistaken attributions of a certainty bias.
- New experiments that control the amount of risk over time tend to confirm a *u* - *v* interpretation of the data.

- Our data on time preferences finds reasonable discount rates which are correlated with recent studies.
- However our measure of curvature is smaller and completely uncorrelated with prior methods.
- Moreover, our estimates of utility predict well out of sample.
- Our results are consistent with a model in which the future is risky, and individuals have u v preferences
- Most importantly, our data is *inconsistent* with a β δ model of present bias.
- Either our experiment had too much front-end delay, or a lot of prior results of present bias were mistaken attributions of a certainty bias.
- New experiments that control the amount of risk over time tend to confirm a *u* − *v* interpretation of the data.

- Our data on time preferences finds reasonable discount rates which are correlated with recent studies.
- However our measure of curvature is smaller and completely uncorrelated with prior methods.
- Moreover, our estimates of utility predict well out of sample.
- Our results are consistent with a model in which the future is risky, and individuals have u v preferences
- Most importantly, our data is *inconsistent* with a β δ model of present bias.
- Either our experiment had too much front-end delay, or a lot of prior results of present bias were mistaken attributions of a certainty bias.
- New experiments that control the amount of risk over time tend to confirm a *u* - *v* interpretation of the data.

- If the u v model explains time preference data, then it also suggests that measures of preferences using Certainty Equivalents, assuming only a u function, will be misspecified.
- This is the case with CPT Probability Weighting.
- An Uncertainty Equivalent, when compared to a Certainty Equivalent, can both test the linear-in-probability implication of the Independence Axiom, and test whether CPT Probability Weighting is or is not misspecified.
- Our data provide a clear contradiction of CPT Probability Weighting in Uncertainty Equivalents, and strong support of *u* – *v* preferences when combined with Certainty Equivalents.
- This points to the "inverted-S" probability weighting curve as being the result of misspecification, not probability censoring by subjects.

- If the u v model explains time preference data, then it also suggests that measures of preferences using Certainty Equivalents, assuming only a u function, will be misspecified.
- This is the case with CPT Probability Weighting.
- An Uncertainty Equivalent, when compared to a Certainty Equivalent, can both test the linear-in-probability implication of the Independence Axiom, and test whether CPT Probability Weighting is or is not misspecified.
- Our data provide a clear contradiction of CPT Probability Weighting in Uncertainty Equivalents, and strong support of *u* – *v* preferences when combined with Certainty Equivalents.
- This points to the "inverted-S" probability weighting curve as being the result of misspecification, not probability censoring by subjects.

- If the u v model explains time preference data, then it also suggests that measures of preferences using Certainty Equivalents, assuming only a u function, will be misspecified.
- This is the case with CPT Probability Weighting.
- An Uncertainty Equivalent, when compared to a Certainty Equivalent, can both test the linear-in-probability implication of the Independence Axiom, and test whether CPT Probability Weighting is or is not misspecified.
- Our data provide a clear contradiction of CPT Probability Weighting in Uncertainty Equivalents, and strong support of *u* - *v* preferences when combined with Certainty Equivalents.
- This points to the "inverted-S" probability weighting curve as being the result of misspecification, not probability censoring by subjects.

- If the u v model explains time preference data, then it also suggests that measures of preferences using Certainty Equivalents, assuming only a u function, will be misspecified.
- This is the case with CPT Probability Weighting.
- An Uncertainty Equivalent, when compared to a Certainty Equivalent, can both test the linear-in-probability implication of the Independence Axiom, and test whether CPT Probability Weighting is or is not misspecified.
- Our data provide a clear contradiction of CPT Probability Weighting in Uncertainty Equivalents, and strong support of u v preferences when combined with Certainty Equivalents.
- This points to the "inverted-S" probability weighting curve as being the result of misspecification, not probability censoring by subjects.

- If the u v model explains time preference data, then it also suggests that measures of preferences using Certainty Equivalents, assuming only a u function, will be misspecified.
- This is the case with CPT Probability Weighting.
- An Uncertainty Equivalent, when compared to a Certainty Equivalent, can both test the linear-in-probability implication of the Independence Axiom, and test whether CPT Probability Weighting is or is not misspecified.
- Our data provide a clear contradiction of CPT Probability Weighting in Uncertainty Equivalents, and strong support of *u* - *v* preferences when combined with Certainty Equivalents.
- This points to the "inverted-S" probability weighting curve as being the result of misspecification, not probability censoring by subjects.

- If the u v model explains time preference data, then it also suggests that measures of preferences using Certainty Equivalents, assuming only a u function, will be misspecified.
- This is the case with CPT Probability Weighting.
- An Uncertainty Equivalent, when compared to a Certainty Equivalent, can both test the linear-in-probability implication of the Independence Axiom, and test whether CPT Probability Weighting is or is not misspecified.
- Our data provide a clear contradiction of CPT Probability Weighting in Uncertainty Equivalents, and strong support of *u* – *v* preferences when combined with Certainty Equivalents.
- This points to the "inverted-S" probability weighting curve as being the result of misspecification, not probability censoring by subjects.

Historical Estimates of Time Preferences

Thaler, Richard, "Some Empirical Evidence on Dynamic Inconsistency," *Economics Letters*, 8, 1981, 201-207.

- Hypothetical experiment in Thaler's class.
- Findings: For 3 month delay, discount rates of 62-277%

Real money experiments would be interesting but seem to present enormous tactical problems. (Would subjects believe they would get paid in five years?)- Thaler(1981)

Historical Estimates of Time Preferences

Thaler, Richard, "Some Empirical Evidence on Dynamic Inconsistency," *Economics Letters*, 8, 1981, 201-207.

- Hypothetical experiment in Thaler's class.
- **Findings:** For 3 month delay, discount rates of 62-277%

Real money experiments would be interesting but seem to present enormous tactical problems. (Would subjects believe they would get paid in five years?)- Thaler(1981)

Introduction

Historical Estimates of Time Preferences

Tactical Problems:

(Frederick, Loewenstein, O'Donoghue, 2002)

Wide Historical Variation in Preferences

Why are estimates so varied?

- Subjects may be sensitive to methods
- People cannot consistently report time preferences
- It is hard to make 'all else equal'
 - Transaction costs of getting paid
 - Trust that the future payments will be made

Wide Historical Variation in Preferences

Why are estimates so varied?

Subjects may be sensitive to methods

- People cannot consistently report time preferences
- It is hard to make 'all else equal'
 - Transaction costs of getting paid
 - Trust that the future payments will be made

Wide Historical Variation in Preferences

Why are estimates so varied?

- Subjects may be sensitive to methods
- People cannot consistently report time preferences
- It is hard to make 'all else equal'
 - Transaction costs of getting paid
 - Trust that the future payments will be made
Wide Historical Variation in Preferences

Why are estimates so varied?

- Subjects may be sensitive to methods
- People cannot consistently report time preferences
- It is hard to make 'all else equal'
 - Transaction costs of getting paid
 - Trust that the future payments will be made

Estimating Time Preferences

Experiments now often use Multiple Price List (MPL) methodology

- Coller and Williams, *ExEc* (1999)
- Harrison et al. AER (2002)

Choices between a smaller, sooner reward and a larger, later reward.

Example: Option A (**TODAY**) or Option B (**IN A MONTH**)

Decision 1: \$ 49 guaranteed **today** - \$ 50 guaranteed **in a month** Decision 2: \$ 47 guaranteed **today** - \$ 50 guaranteed **in a month** Decision 3: \$ 44 guaranteed **today** - \$ 50 guaranteed **in a month** Decision 4: \$ 40 guaranteed **today** - \$ 50 guaranteed **in a month** Decision 5: \$ 35 guaranteed **today** - \$ 50 guaranteed **in a month** Decision 6: \$ 29 guaranteed **today** - \$ 50 guaranteed **in a month** Decision 7: \$ 22 guaranteed **today** - \$ 50 guaranteed **in a month**

Estimating Time Preferences

Experiments now often use Multiple Price List (MPL) methodology

- Coller and Williams, *ExEc* (1999)
- Harrison et al. AER (2002)

Choices between a smaller, sooner reward and a larger, later reward.

Example: Option A (TODAY) or Option B (IN A MONTH)

Decision 1: \$ 49 guaranteed **today** - \$ 50 guaranteed **in a month** Decision 2: \$ 47 guaranteed **today** - \$ 50 guaranteed **in a month** Decision 3: \$ 44 guaranteed **today** - \$ 50 guaranteed **in a month** Decision 4: \$ 40 guaranteed **today** - \$ 50 guaranteed **in a month** Decision 5: \$ 35 guaranteed **today** - \$ 50 guaranteed **in a month** Decision 6: \$ 29 guaranteed **today** - \$ 50 guaranteed **in a month** Decision 7: \$ 22 guaranteed **today** - \$ 50 guaranteed **in a month**

MPLs and Parameter Estimates

Experiments—including many MPLs–generally yield very high discount rates, often over 100% per year. MPLs and others 'assume' linear preferences.

Individuals solve:

 $max_{c_t,c_{t+k}} U(c_t,c_{t+k})$

s.t. the discrete budget:

 $\{(1+r)c_t, c_{t+k}\} \in \{(m, 0), (0, m)\}$

Restriction to corner solutions.

MPLs and Parameter Estimates

Experiments—including many MPLs–generally yield very high discount rates, often over 100% per year. MPLs and others 'assume' linear preferences. Individuals solve:

 $max_{c_t,c_{t+k}} U(c_t,c_{t+k})$

s.t. the discrete budget:

 $\{(1+r)c_t, c_{t+k}\} \in \{(m, 0), (0, m)\}$

Restriction to corner solutions.

MPLs and Utility Function Curvature

Price list switching point reveals $u(c_t) \approx \delta^k u(c_{t+k})$

Assuming linearity, no problem:

$$\delta_L \approx \{\frac{c_t}{c_{t+k}}\}^{1/k}$$

Allowing curvature means:

$$\delta_C \approx \{\frac{u(c_t)}{u(c_{t+k})}\}^{1/k}$$

will yield a bias, $\delta_C - \delta_L$.

MPLs and Utility Function Curvature

Price list switching point reveals $u(c_t) \approx \delta^k u(c_{t+k})$ Assuming linearity, no problem:

$$\delta_L \approx \{\frac{c_t}{c_{t+k}}\}^{1/k}$$

Allowing curvature means:

$$\delta_C \approx \{\frac{u(c_t)}{u(c_{t+k})}\}^{1/k}$$

will yield a bias, $\delta_C - \delta_L$.

MPLs and Utility Function Curvature

Price list switching point reveals $u(c_t) \approx \delta^k u(c_{t+k})$ Assuming linearity, no problem:

1

$$\delta_L \approx \{\frac{c_t}{c_{t+k}}\}^{1/k}$$

Allowing curvature means:

$$\delta_{C} \approx \{\frac{u(c_t)}{u(c_{t+k})}\}^{1/k}$$

will yield a bias, $\delta_C - \delta_L$.

Proposed solutions (Frederick et al., 2002):

- Elicit utility rankings(attractiveness) at different points in time.
- Compare temporally separated prospects. Exploit linearity-in-probability of EU (e.g., Anderhub et al. 2001).
- Separately elicit a preference for risk to identify concavity, and intertemporal choice to identify discounting(e.g., Andersen et al. 2008, Tanaka et al. 2009).

Proposed solutions (Frederick et al., 2002):

- Elicit utility rankings(attractiveness) at different points in time.
- Compare temporally separated prospects. Exploit linearity-in-probability of EU (e.g., Anderhub et al. 2001).
- Separately elicit a preference for risk to identify concavity, and intertemporal choice to identify discounting(e.g., Andersen et al. 2008, Tanaka et al. 2009).

Proposed solutions (Frederick et al., 2002):

- Elicit utility rankings(attractiveness) at different points in time.
- Compare temporally separated prospects. Exploit linearity-in-probability of EU (e.g., Anderhub et al. 2001).
- Separately elicit a preference for risk to identify concavity, and intertemporal choice to identify discounting(e.g., Andersen et al. 2008, Tanaka et al. 2009).

Proposed solutions (Frederick et al., 2002):

- Elicit utility rankings(attractiveness) at different points in time.
- Compare temporally separated prospects. Exploit linearity-in-probability of EU (e.g., Anderhub et al. 2001).
- Separately elicit a preference for risk to identify concavity, and intertemporal choice to identify discounting(e.g., Andersen et al. 2008, Tanaka et al. 2009).

Proposed solutions (Frederick et al., 2002):

- Elicit utility rankings(attractiveness) at different points in time.
- Compare temporally separated prospects. Exploit linearity-in-probability of EU (e.g., Anderhub et al. 2001).
- Separately elicit a preference for risk to identify concavity, and intertemporal choice to identify discounting(e.g., Andersen et al. 2008, Tanaka et al. 2009).

If corner solution restrictions create a bias... why not connect the dots? To identify convex preferences on c_t and c_{t+k} use a convex budget:

 $\max_{c_t,c_{t+k}} U(c_t,c_{t+k})$

subject to

 $(1+r)c_t+c_{t+k}=m$

This is simply a future value budget constraint.

If corner solution restrictions create a bias... why not connect the dots? To identify convex preferences on c_t and c_{t+k} use a convex budget:

 $\max_{c_t,c_{t+k}} U(c_t,c_{t+k})$

subject to

$$(1+r)c_t + c_{t+k} = m$$

This is simply a future value budget constraint.

If corner solution restrictions create a bias... why not connect the dots? To identify convex preferences on c_t and c_{t+k} use a convex budget:

$$\max_{c_t,c_{t+k}} U(c_t,c_{t+k})$$

subject to

$$(1+r)c_t + c_{t+k} = m$$

This is simply a future value budget constraint.

If corner solution restrictions create a bias... why not connect the dots? To identify convex preferences on c_t and c_{t+k} use a convex budget:

$$\max_{c_t,c_{t+k}} U(c_t,c_{t+k})$$

subject to

$$(1+r)c_t+c_{t+k}=m$$

This is simply a future value budget constraint.

CTBs and Parameter Estimates

The CTB:

 $\max_{c_t, c_{t+k}} U(c_t, c_{t+k})$
s.t. $(1+r)c_t + c_{t+k} = m$

In a single, simple instrument, CTBs allow for identification of:

• Discounting at the individual and aggregate levels.

• Curvature at the individual and aggregate levels.

Dynamic inconsistency (e.g., hyperbolic discounting)

CTBs and Parameter Estimates

The CTB:

 $\max_{c_t, c_{t+k}} U(c_t, c_{t+k})$ s.t. $(1+r)c_t + c_{t+k} = m$

- Discounting at the individual and aggregate levels.
- Curvature at the individual and aggregate levels.
- Dynamic inconsistency (e.g., hyperbolic discounting)

CTBs and Parameter Estimates

The CTB:

 $\max_{c_t, c_{t+k}} U(c_t, c_{t+k})$
s.t. $(1+r)c_t + c_{t+k} = m$

- Discounting at the individual and aggregate levels.
- Curvature at the individual and aggregate levels.
- Dynamic inconsistency (e.g., hyperbolic discounting)

CTBs and Parameter Estimates

The CTB:

 $\max_{c_t, c_{t+k}} U(c_t, c_{t+k})$
s.t. $(1+r)c_t + c_{t+k} = m$

- Discounting at the individual and aggregate levels.
- Curvature at the individual and aggregate levels.
- Dynamic inconsistency (e.g., hyperbolic discounting)

The CTB:

 $\max_{c_t, c_{t+k}} U(c_t, c_{t+k})$ s.t. $(1+r)c_t + c_{t+k} = m$

- Discounting at the individual and aggregate level.
 - \rightarrow Annual discount rate $\approx 30\%$
- Curvature at the individual and aggregate level.
- Dynamic inconsistency (e.g., hyperbolic discounting)

The CTB:

 $\max_{c_t, c_{t+k}} U(c_t, c_{t+k})$ s.t. $(1+r)c_t + c_{t+k} = m$

- Discounting at the individual and aggregate level.
 - \rightarrow Annual discount rate $\approx 30\%$
- Curvature at the individual and aggregate level.
 → Significant, but limited utility function curvature
- Dynamic inconsistency (e.g., hyperbolic discounting)

The CTB:

 $\max_{c_t, c_{t+k}} U(c_t, c_{t+k})$
s.t. $(1+r)c_t + c_{t+k} = m$

In a single, simple instrument, CTBs allow for identification of:

- Discounting at the individual and aggregate level. \rightarrow Annual discount rate \approx 30%
- Curvature at the individual and aggregate level.
 → Significant, but limited utility function curvature
- Dynamic inconsistency (e.g., hyperbolic discounting)
 - \rightarrow Precisely estimated utility parameters

 \rightarrow To our surprise, no significant present bias

The CTB:

 $\max_{c_t, c_{t+k}} U(c_t, c_{t+k})$
s.t. $(1+r)c_t + c_{t+k} = m$

- Discounting at the individual and aggregate level. \rightarrow Annual discount rate \approx 30%
- Curvature at the individual and aggregate level.
 → Significant, but limited utility function curvature
- Dynamic inconsistency (e.g., hyperbolic discounting)
 - \rightarrow Precisely estimated utility parameters
 - \rightarrow To our surprise, no significant present bias

Paper 1

Paper 1: Estimating Time Preferences from Convex Budgets

Outline

- Experimental Design
- Aggregate Results
- Individual Results

Design: The CTB

In the CTB:

- Subjects are given a budget of 100 tokens.
- Tokens convert to dollars sooner at r₁ and later at r₂. So

$$\frac{r_2}{r_1} = (1+r)$$

- 45 convex budgets.
- $(t = 0, 7, \text{ or } 35 \text{ days}) \times (k = 35, 70, \text{ or } 98 \text{ days}) = 9 t k \text{ cells.}$
- $r_2 = 0.20$ or 0.25; $r_1 \in [0.10, 0.20]$.
- 97 subjects. All freshmen and sophomores at UCSD
- 1 budget chosen for payment.

Design: Supplemental Data

- Also collected standard DMPL data
 - 3 Standard MPLs
 - 2 Holt-Laury risk price lists
- Post questionnaire, including question on expenditures.

- Pre-tested forms of payment: i) emailed gift cards at Amazon, ii) PayPal, iii) Triton Cash, iv) Personal check from 'Professor Andreoni' drawn on campus bank.
- All payments by check.
- All studies done in January...school ends in June.
- Possible payment dates chosen to avoid high and low money demand times: Valentines Day, Spring Break +/- 1 week, final exams.

- Pre-tested forms of payment: i) emailed gift cards at Amazon, ii) PayPal, iii) Triton Cash, iv) Personal check from 'Professor Andreoni' drawn on campus bank.
- All payments by check.
- All studies done in January...school ends in June.
- Possible payment dates chosen to avoid high and low money demand times: Valentines Day, Spring Break +/- 1 week, final exams.

- Pre-tested forms of payment: i) emailed gift cards at Amazon, ii) PayPal, iii) Triton Cash, iv) Personal check from 'Professor Andreoni' drawn on campus bank.
- All payments by check.
- All studies done in January...school ends in June.
- Possible payment dates chosen to avoid high and low money demand times: Valentines Day, Spring Break +/- 1 week, final exams.

- Pre-tested forms of payment: i) emailed gift cards at Amazon, ii) PayPal, iii) Triton Cash, iv) Personal check from 'Professor Andreoni' drawn on campus bank.
- All payments by check.
- All studies done in January...school ends in June.
- Possible payment dates chosen to avoid high and low money demand times: Valentines Day, Spring Break +/- 1 week, final exams.

- Pre-tested forms of payment: i) emailed gift cards at Amazon, ii) PayPal, iii) Triton Cash, iv) Personal check from 'Professor Andreoni' drawn on campus bank.
- All payments by check.
- All studies done in January...school ends in June.
- Possible payment dates chosen to avoid high and low money demand times: Valentines Day, Spring Break +/- 1 week, final exams.

To equate transaction costs, continued...

- \$10 Thank-you payment split in two-\$5 sooner and \$5 later.
- Subjects addressed two envelopes to themselves.
- Wrote amount owed, and dates, inside flap of each envelope.
- All payments, including t = 0, delivered to campus mail box.
- 'Today' payments guaranteed by 5pm.
- Given Andreoni's business card and told to call or email if check doesn't arrive. OMG!!
- 97% believed they would get paid.

To equate transaction costs, continued...

- \$10 Thank-you payment split in two-\$5 sooner and \$5 later.
- Subjects addressed two envelopes to themselves.
- Wrote amount owed, and dates, inside flap of each envelope.
- All payments, including t = 0, delivered to campus mail box.
- 'Today' payments guaranteed by 5pm.
- Given Andreoni's business card and told to call or email if check doesn't arrive. OMG!!
- 97% believed they would get paid.

To equate transaction costs, continued...

- \$10 Thank-you payment split in two-\$5 sooner and \$5 later.
- Subjects addressed two envelopes to themselves.
- Wrote amount owed, and dates, inside flap of each envelope.
- All payments, including t = 0, delivered to campus mail box.
- 'Today' payments guaranteed by 5pm.
- Given Andreoni's business card and told to call or email if check doesn't arrive. OMG!!
- 97% believed they would get paid.
- \$10 Thank-you payment split in two-\$5 sooner and \$5 later.
- Subjects addressed two envelopes to themselves.
- Wrote amount owed, and dates, inside flap of each envelope.
- All payments, including t = 0, delivered to campus mail box.
- 'Today' payments guaranteed by 5pm.
- Given Andreoni's business card and told to call or email if check doesn't arrive. OMG!!
- 97% believed they would get paid.

- \$10 Thank-you payment split in two-\$5 sooner and \$5 later.
- Subjects addressed two envelopes to themselves.
- Wrote amount owed, and dates, inside flap of each envelope.
- All payments, including t = 0, delivered to campus mail box.
- 'Today' payments guaranteed by 5pm.
- Given Andreoni's business card and told to call or email if check doesn't arrive. OMG!!
- 97% believed they would get paid.

- \$10 Thank-you payment split in two-\$5 sooner and \$5 later.
- Subjects addressed two envelopes to themselves.
- Wrote amount owed, and dates, inside flap of each envelope.
- All payments, including t = 0, delivered to campus mail box.
- 'Today' payments guaranteed by 5pm.
- Given Andreoni's business card and told to call or email if check doesn't arrive. OMG!!
- 97% believed they would get paid.

- \$10 Thank-you payment split in two-\$5 sooner and \$5 later.
- Subjects addressed two envelopes to themselves.
- Wrote amount owed, and dates, inside flap of each envelope.
- All payments, including t = 0, delivered to campus mail box.
- 'Today' payments guaranteed by 5pm.
- Given Andreoni's business card and told to call or email if check doesn't arrive. OMG!!
- 97% believed they would get paid.

- \$10 Thank-you payment split in two-\$5 sooner and \$5 later.
- Subjects addressed two envelopes to themselves.
- Wrote amount owed, and dates, inside flap of each envelope.
- All payments, including t = 0, delivered to campus mail box.
- 'Today' payments guaranteed by 5pm.
- Given Andreoni's business card and told to call or email if check doesn't arrive. OMG!!
- 97% believed they would get paid.

- \$10 Thank-you payment split in two-\$5 sooner and \$5 later.
- Subjects addressed two envelopes to themselves.
- Wrote amount owed, and dates, inside flap of each envelope.
- All payments, including t = 0, delivered to campus mail box.
- 'Today' payments guaranteed by 5pm.
- Given Andreoni's business card and told to call or email if check doesn't arrive. OMG!!
- 97% believed they would get paid.

Design

The Decision Environment

	Decision		
	January 2009 February 2009 March 2009 April 20012 A	4 11 7 18 25 1 8 15 122 329	
	Please, be sure to complete the decisions behind each group-size tab before clicking sub You can make your decisions in any order, and can always revise your decisions before submitt January 21, February 25 January 21, April 1 January 21, April 29 January 28, March 4	mit. ing them. January 28, i	April 8
	Divide Tokens between January 28 (1 week(s) from today), and April 8 (10 week(s) later)	January 28	April 8
1	Allocate 100 tokens: 83 tokens at \$0.20 on January 28, and 17 tokens at \$0.20 on April 8	\$16.60	\$3.40
- E	Allocate 100 tokens: 51 🗘 tokens at \$0.19 on January 28, and 49 🗘 tokens at \$0.20 on April 8	\$9.69	\$9.80
2			
14	Allocate 100 tokens: 43 🕃 tokens at \$0.18 on January 28, and 57 🕃 tokens at \$0.20 on April 8	\$7.74	\$11.40
3	Allocate 100 tokens: 43 tokens at \$0.18 on January 28, and 57 tokens at \$0.20 on April 8 Allocate 100 tokens: 21 tokens at \$0.16 on January 28, and 79 tokens at \$0.20 on April 8	\$7.74 \$3.36	\$11.40 \$15.80

James Andreoni Risky Research

Results: Aggregate Behavior

James Andreoni Risky Research

Results: Dynamic Consistency

Estimating Time Preferences

$$max_{c_t,c_{t+k}} U(c_t,c_{t+k})$$

subject to

$$(1+r)c_t+c_{t+k}=m$$

Assume time-separable dynamically consistent CRRA:

$$U(c_t, c_{t+k}, \cdot) = (c_t - \omega_1)^{\alpha} + \beta \delta^k (c_{t+k} - \omega_2)^{\alpha}$$

- c_t, c_{t+k} are experimental earnings.
- ω₁, ω₂ are parameters—Stone-Geary minima or negative background consumption.

Consumer Optimization

Optimization implies MRS = (1 + r)Substituting in the budget constraint, and rearrange to get Linear Demand for c_t :

If *t* = 0:

$$c_{t} = \left[\frac{1}{1 + (1 + r)(\beta \delta^{k}(1 + r))^{\left(\frac{1}{\alpha - 1}\right)}}\right]\omega_{1}$$
$$+ \left[\frac{(\beta \delta^{k}(1 + r))^{\left(\frac{1}{\alpha - 1}\right)}}{1 + (1 + r)(\beta \delta^{k}(1 + r))^{\left(\frac{1}{\alpha - 1}\right)}}\right](m - \omega_{2})$$

If *t* > 0:

$$c_t = \left[\frac{1}{1 + (1 + r)(\delta^k (1 + r))^{\left(\frac{1}{\alpha - 1}\right)}}\right]\omega_1$$
$$+ \left[\frac{(\delta^k (1 + r))^{\left(\frac{1}{\alpha - 1}\right)}}{1 + (1 + r)(\delta^k (1 + r))^{\left(\frac{1}{\alpha - 1}\right)}}\right](m - \omega_2)$$

Time Preference Estimates

- This is non-linear in many parameters of interest.
- Easily estimate parameters of via non-linear least squares.
- Estimate annual discount rate = $(\frac{1}{\delta})^{365} 1$.

Estimation

	(1)	(2)	(3)	(4)					
Annual Discount Rate	0.300	0.377	0.371	0.2467					
	(0.064)	(0.087)	(0.091)	(0.162)					
Present Bias Parameter: \hat{eta}	1.004	1.006	1.007	1.026					
	(0.002)	(0.006)	(0.006)	(0.008)					
Curvature Parameter: $\hat{\alpha}$	0.920	0.9212	0.897	0.706					
	(0.006)	(0.006)	(0.009)	(0.017)					
$\hat{\omega}_1$	1.368								
	(0.275)								
$\hat{\omega}_2$	-0.085								
	(1.581)								
$\hat{\omega}_1 = \hat{\omega}_2$		1.3506	0	-7.046					
		(0.278)	-	-					
R-Squared	0.4911	0.4908	0.4871	0.4499					
Ν	4365	4365	4365	4365					
James Andreoni Risky Research									

Individual Estimates

Discounting and curvature estimable for 89/97 individuals. Assuming $\omega_1=\omega_2=0$

	Median	5th %ile	95th %ile	Min	Max
Annual Disc	.4076	0178	5.618	-0.9949	35.355
Daily Disc $\hat{\delta}$.9991	.9948	1.0005	0.9902	1.014
Pres't Bias $\hat{\alpha}$	1.0011	0.9121	1.1075	.7681	1.3241
Curvature $\hat{\alpha}$.9665	0.7076	0.9997	-0.1331	0.9998

Comparison with DMPL Results

- Discount rates much lower than generally obtained.
- Curvature much closer to linear utility than DMPL estimates. Andersen et al. $\hat{\alpha} \approx 0.25$
- Analysis on DMPL: 3 standard MPLs and 2 Holt-Laury risk price list tasks.
- Calculate d = daily discount factor and a = CRRA parameter following standard practice.
 - Median $d = 0.9976 \rightarrow \text{Annual rate} \approx 137\%$. (N = 87)
 - Median *a* = 0.5125. (N = 79)

Correlation of CTB and DMPL Results

Bias Graphic

- Lower discount rates than previously obtained. \rightarrow curvature matters. $\hat{\delta}$ correlates with *d*. Bias correlates with $\hat{\alpha}$.
- I Less aggregate present bias than previously obtained. \rightarrow transaction costs? reproducibility?
- Find limited, though significant, utility function curvature. No correlation between â and a. → differential stimuli? Should we be using risk experiments to identify curvature?

- Lower discount rates than previously obtained. → curvature matters. δ correlates with d. Bias correlates with δ.
- 2 Less aggregate present bias than previously obtained. \rightarrow transaction costs? reproducibility?
- Find limited, though significant, utility function curvature. No correlation between â and a. → differential stimuli? Should we be using risk experiments to identify curvature?

- Lower discount rates than previously obtained. \rightarrow curvature matters. $\hat{\delta}$ correlates with *d*. Bias correlates with $\hat{\alpha}$.
- 2 Less aggregate present bias than previously obtained. \rightarrow transaction costs? reproducibility?
- Find limited, though significant, utility function curvature. No correlation between â and a. → differential stimuli? Should we be using risk experiments to identify curvature?

- Lower discount rates than previously obtained. \rightarrow curvature matters. $\hat{\delta}$ correlates with *d*. Bias correlates with $\hat{\alpha}$.
- ② Less aggregate present bias than previously obtained. → transaction costs? reproducibility?
- Sind limited, though significant, utility function curvature. No correlation between â and a. → differential stimuli? Should we be using risk experiments to identify curvature?

- Lower discount rates than previously obtained. \rightarrow curvature matters. $\hat{\delta}$ correlates with *d*. Bias correlates with $\hat{\alpha}$.
- 2 Less aggregate present bias than previously obtained. \rightarrow transaction costs? reproducibility?
- Sind limited, though significant, utility function curvature. No correlation between â and a. → differential stimuli? Should we be using risk experiments to identify curvature?

- Lower discount rates than previously obtained. \rightarrow curvature matters. $\hat{\delta}$ correlates with *d*. Bias correlates with $\hat{\alpha}$.
- 2 Less aggregate present bias than previously obtained. \rightarrow transaction costs? reproducibility?
- Sind limited, though significant, utility function curvature. No correlation between â and a. → differential stimuli? Should we be using risk experiments to identify curvature?

- Lower discount rates than previously obtained. \rightarrow curvature matters. $\hat{\delta}$ correlates with *d*. Bias correlates with $\hat{\alpha}$.
- 2 Less aggregate present bias than previously obtained. \rightarrow transaction costs? reproducibility?
- Signal Find limited, though significant, utility function curvature. No correlation between $\hat{\alpha}$ and a. \rightarrow differential stimuli? Should we be using risk experiments to identify curvature?

What Happened?

• Did we do something wrong?

- Did we bias behavior toward time consistency?
- Did we do something right?
 - Did we actually succeed in equalizing transactions cost?
 - Did we actually succeed in assuring future payments would be received?

What Happened?

- Did we do something wrong?
 - Did we bias behavior toward time consistency?
- Did we do something right?
 - Did we actually succeed in equalizing transactions cost?
 - Did we actually succeed in assuring future payments would be received?

- The present is known, but the future is inherently uncertain
- Many violations of Expected Utility come when one option is certain and one is uncertain.
 - Allais' Paradox of common consequence, the "certainty effect".
 - Tversky and Fox's Probability Weighting
 - Rabin's Calibration Theorem, excessive risk aversion over small gambles
 - Gneezy and List's "Uncertainty effect"
- Could differences in experimental results be due to controls on future risk?

- The present is known, but the future is inherently uncertain
- Many violations of Expected Utility come when one option is certain and one is uncertain.
 - Allais' Paradox of common consequence, the "certainty effect".
 - Tversky and Fox's Probability Weighting
 - Rabin's Calibration Theorem, excessive risk aversion over small gambles
 - Gneezy and List's "Uncertainty effect"
- Could differences in experimental results be due to controls on future risk?

- The present is known, but the future is inherently uncertain
- Many violations of Expected Utility come when one option is certain and one is uncertain.
 - Allais' Paradox of common consequence, the "certainty effect".
 - Tversky and Fox's Probability Weighting
 - Rabin's Calibration Theorem, excessive risk aversion over small gambles
 - Gneezy and List's "Uncertainty effect"
- Could differences in experimental results be due to controls on future risk?

- The present is known, but the future is inherently uncertain
- Many violations of Expected Utility come when one option is certain and one is uncertain.
 - Allais' Paradox of common consequence, the "certainty effect".
 - Tversky and Fox's Probability Weighting
 - Rabin's Calibration Theorem, excessive risk aversion over small gambles
 - Gneezy and List's "Uncertainty effect"
- Could differences in experimental results be due to controls on future risk?

- The present is known, but the future is inherently uncertain
- Many violations of Expected Utility come when one option is certain and one is uncertain.
 - Allais' Paradox of common consequence, the "certainty effect".
 - Tversky and Fox's Probability Weighting
 - Rabin's Calibration Theorem, excessive risk aversion over small gambles
 - Gneezy and List's "Uncertainty effect"
- Could differences in experimental results be due to controls on future risk?

What Did Allais Say?

What did Allais say about the Certainty Effect? From *The New Palgrave, 2008:*

"When I read the Theory of Games in 1948, (the Independence Axiom) appeared to me to be totally incompatible with the conclusions I had reached in 1936 attempting to define a reasonable strategy ... for games with mathematical expectations.... This lead me to derive some counter-examples. One of them, formulated in 1952, has become famous as the 'Allais Paradox.' Today it is as widespread as it is misunderstood." (p. 4-5)

What Did Allais Say?

"Limiting consideration to the mathematical expectations of the B_i involves neglecting the basic element characterizing psychology vis-a-vis risk,in particular when very large sums are involved....(there is a) very strong preference for security in the neighborhood of certainty."(p.6)

"To have a marked preferences for security in the neighborhood of certainty is not more irrational than preferring roast beef to chicken." (p. 7)

What Did Allais Say?

"Limiting consideration to the mathematical expectations of the B_i involves neglecting the basic element characterizing psychology vis-a-vis risk,in particular when very large sums are involved....(there is a) very strong preference for security in the neighborhood of certainty."(p.6)

"To have a marked preferences for security in the neighborhood of certainty is not more irrational than preferring roast beef to chicken." (p. 7)

Interpreting Allais

Put this in modern terms.

- "Near" certainty preferences are governed by utility v(x)
- "Away from" certainty preferences may be valued differently, say u(x)
- Let $\psi = 1$ in "the neighborhood of certainty."
- Define $U(x; \psi)$ as utility, Then perhaps

v(x) = U(x; 1)u(x) = U(x; 0)v(x) > u(x)

- So EU is discontinuous in *p*
- Perhaps *u* depends on *p* as well, so preferences are continuous in *p*, but the Independence Axiom fails.

Interpreting Allais

Put this in modern terms.

- "Near" certainty preferences are governed by utility v(x)
- "Away from" certainty preferences may be valued differently, say u(x)
- Let $\psi = 1$ in "the neighborhood of certainty."
- Define $U(x; \psi)$ as utility, Then perhaps

v(x) = U(x; 1)u(x) = U(x; 0)v(x) > u(x)

- So EU is discontinuous in p
- Perhaps *u* depends on *p* as well, so preferences are continuous in *p*, but the Independence Axiom fails.

Interpreting Allais

Put this in modern terms.

- "Near" certainty preferences are governed by utility v(x)
- "Away from" certainty preferences may be valued differently, say u(x)
- Let $\psi = 1$ in "the neighborhood of certainty."
- Define $U(x; \psi)$ as utility, Then perhaps

v(x) = U(x; 1)u(x) = U(x; 0)v(x) > u(x)

- So EU is discontinuous in p
- Perhaps *u* depends on *p* as well, so preferences are continuous in *p*, but the Independence Axiom fails.
Put this in modern terms.

- "Near" certainty preferences are governed by utility v(x)
- "Away from" certainty preferences may be valued differently, say u(x)
- Let $\psi = 1$ in "the neighborhood of certainty."
- Define $U(x; \psi)$ as utility, Then perhaps

v(x) = U(x; 1)u(x) = U(x; 0)v(x) > u(x)

- So EU is discontinuous in p
- Perhaps u depends on p as well, so preferences are continuous in p, but the Independence Axiom fails.

Violating the Independence Axiom in the Neighborhood of Certainty

Violating the Continuity (and IA) in the Neighborhood of Certainty

- Could it be that the excessive preference (for money) sooner is due to Allais' certainty effect?
- Utility for *x* in "the neighborhood of certainty" is different than "far from certainty"?
 - Hints of this idea in the literature
 - Halevy (AER 2008), Weber and Chapman (OBHDP 2005)
- How can this hypothesis be tested?
 - We can add risk back into our problem, both in the present and the future.
 - Do we find evidence of two utility functions, *u*(*x*) under risk and *v*(*x*) under certainty?

- Could it be that the excessive preference (for money) sooner is due to Allais' certainty effect?
- Utility for *x* in "the neighborhood of certainty" is different than "far from certainty"?
 - Hints of this idea in the literature
 - Halevy (AER 2008), Weber and Chapman (OBHDP 2005)
- How can this hypothesis be tested?
 - We can add risk back into our problem, both in the present and the future.
 - Do we find evidence of two utility functions, *u*(*x*) under risk and *v*(*x*) under certainty?

Paper 2: Risk Preferences are Not Time Preferences

Systematically add risk to intermporal choice.

Motivation

Motivation: When Risk Preferences *ARE* Time Preferences

In general Discounted Expected Utility (DEU) means

$$\max p_1 u(c_t) + p_2 \delta^k u(c_{t+k}) \ s.t. \ (1+r)c_t + c_{t+k} = m$$

Optimization means

$$\frac{u'(c_t)}{\delta^k u'(c_{t+k})} = \frac{p_2}{p_1}(1+r)$$

Define

$$\theta = \frac{p_2}{p_1}(1+r)$$

Whenever θ and *r* are the same, choices should be the same— even when one or both *p*'s is 1

Experimental Design

- Paper-and-pencil
- t = 7, k = 28, 56, always front end delay.
- Within subject, N = 80.
- Allocate 100 tokens worth \$0.20 in the later date, and \$0.14 to \$0.20 earlier.
- Risk Conditions: "Pr(paid sooner)-Pr(paid later)"
 - 100%-100% Always paid
 - 50%-50% each period paid 50%
 - 50%-40%
 - 40%-50%
 - 100%-80%
 - 80%-100%

Experimental Design, Cont.

Same protocol as Paper 1

- Recruit from dorms
- \$10 Thank You payment, \$5 sooner and \$5 later
- Paid by check
- Address two envelopes to themselves
- Given Andreoni's business card
- Paid for one decision at end.
- Roll 0, 1, or 2 10-sided die.

Design

2009 Calendar								IN EACH ROW ALLOCATE 100 TOKENS BETWEEN											
S M T W Th F S						s			PAY (1 week	MENT A from today)	4	ND)	PAY (4 we	<mark>MENT B</mark> eks later)				
April																			
			1☆	2	3	4		Date A:					Date B:						
5	6	7	*	9	10	11			April 8, 2009					may 0, 2009					
12	13	14	15	16	17	18		Chance A Sent:					Chance B Sent:						
19	20	21	22	23	24	25		40%				50%							
26	27	28	29	30			No.	A Tokens		Rate A \$ per token	Date A	&	B Tokens		Rate B \$ per token	Date B			
Мау																			
					1	2	1.		tokens at	\$.20 each	on April 8	&		tokens at	\$.20 each	on May 6			
3	4	5	•☆	7	8	9													
10	11	12	13	14	15	16	2.		tokens at	\$.19 each	on April 8	&		tokens at	\$.20 each	on May 6			
17	18	19	20	21	22	23													
24	25	26	27	28	29	30	3.		tokens at	\$.18 each	on April 8	&		tokens at	\$.20 each	on May 6			
31																			
June							4.	tokens at \$.17 each on April 8	on April 8	å		tokens at	on may 6						
	1	2	3	4	5	6	5		tokens at	\$ 16 each	on April 8			tokens at	\$ 20 each	on May 6			
7	8	9	10	11	12	13	0.												
14	15	16	17	18	19	20													
21	22	23	24	25	26	27	6.		tokens at	ş.15 each	on April 8	¢		tokens at	\$.20 each	on may 6			
28	29	30					7.		tokens at	\$.14 each	on April 8	&		tokens at	\$.20 each	on May 6			

PLEASE MAKE SURE A + B TOKENS = 100 IN EACH ROW!

Design

		с	2009 alend	ar				IN EACH ROW ALLOCATE 100 TOKENS BETWEEN										
S M T W Th F S						s		PAYMENT A (1 week from today)			AND PAYMENT B (4 weeks later)			MENT B eks later)				
April																		
						4		Date A:				Date B:						
5	6	7	*★	9	10	11			April 8, 2009					мау 6, 2009				
12	13	14	15	16	17	18			Chan	ce A Sent:			Chance B Sent:					
19	20	21	22	23	24	25			40%				50%					
26	27	28	29	30			No.	A Tokens		Rate A \$ per token	Date A	&	B Tokens		Rate B \$ per token	Date B		
Мау																		
					1	2	1.		tokens at	\$.20 each	on April 8	&		tokens at	\$.20 each	on May 6		
3	4	5	€★	7	8	9												
10	11	12	13	14	15	16	2.		tokens at	\$.19 each	on April 8	&		tokens at	\$.20 each	on May 6		

- Compare choices with common θ to see if choices are similar
- Estimate v(x) and δ from 100%-100%
- Estimate u(x) and δ from 50%-50%
- Are utilities and discount factors the same?
- Use utility estimates to predict out-of-sample for remaining treatments.

Results: Certain and Uncertain Utility

Parameter Estimates

	(1)	(2)	(3)
â	0.982		
	(0.002)		
$\hat{\alpha}_{(1,1)}$		0.988	0.988
		(0.002)	(0.002)
$\hat{\alpha}_{(0.5,0.5)}$		0.885	0.883
		(0.017)	(0.017)
Annual Rate	0.274		0.284
	(0.035)		(0.037)
Annual Rate(1,1)		0.282	
		(0.036)	
Annual Rate(0.5.0.5)		0.315	
		(0.088)	
$\hat{\omega}$	3.608	2.417	2.414
	(0.339)	(0.418)	(0.418)
R ²	0.642	0.673	0.673
Ν	2240	2240	2240
Clusters	80	80	80

James Andreoni

Risky Research

Parameter Estimates

Summary:

- Same discounting as before $\approx 30\%$ per year in both cases.
- Certain *α*: 0.988
- Uncertain α : 0.883. Difference is significant.
- Good fit to the data.

Results: Certain and Uncertain Utility

Graphs by k

Results: Certain and Uncertain Utility

С

James Andreoni Risky Research

Results: All Uncertainty & OOS Prediction

Graphs by k

Results: Hybrid Certainty and Uncertainty

Graphs by k

Summary of Paper 2

- In "the neighborhood of certainty" people prefer security
- But "far from certainty" they behave as consistent DEU maximizers
 - When θ is the same, choice favors certainty.
- It appears as if two different utility functions govern certainty and risk

- Notice whenever certainty and uncertainty mix, if u v preferences are correct then there will be a misspecification.
- For instance, assume $U(x) = x^a$ and elicit *a* through a Certainty Equivalent.
- Researchers often find $a \approx 0.5$ to 0.6, while we estimate $\alpha = 0.88$
- Example: X = 50, p = 0.5.
- $CE^{0.99} = pX^{0.88} \rightarrow CE = 16.07$
- Find the *a* that solves $CE^a = pX^a \rightarrow a = 0.61$
- Misspecification leads to conclusion of excessive risk aversion.

- Notice whenever certainty and uncertainty mix, if u v preferences are correct then there will be a misspecification.
- For instance, assume $U(x) = x^a$ and elicit *a* through a Certainty Equivalent.
- Researchers often find $a \approx 0.5$ to 0.6, while we estimate $\alpha = 0.88$
- Example: X = 50, p = 0.5.
- $CE^{0.99} = pX^{0.88} \rightarrow CE = 16.07$
- Find the *a* that solves $CE^a = pX^a \rightarrow a = 0.61$
- Misspecification leads to conclusion of excessive risk aversion.

- Notice whenever certainty and uncertainty mix, if u v preferences are correct then there will be a misspecification.
- For instance, assume $U(x) = x^a$ and elicit *a* through a Certainty Equivalent.
- Researchers often find $a \approx 0.5$ to 0.6, while we estimate $\alpha = 0.88$

• Example:
$$X = 50, p = 0.5$$
.

•
$$CE^{0.99} = pX^{0.88} \rightarrow CE = 16.07$$

- Find the *a* that solves $CE^a = pX^a \rightarrow a = 0.61$
- Misspecification leads to conclusion of excessive risk aversion.

- Notice whenever certainty and uncertainty mix, if u v preferences are correct then there will be a misspecification.
- For instance, assume $U(x) = x^a$ and elicit *a* through a Certainty Equivalent.
- Researchers often find $a \approx 0.5$ to 0.6, while we estimate $\alpha = 0.88$
- Example: *X* = 50, *p* = 0.5.
- $CE^{0.99} = pX^{0.88} \rightarrow CE = 16.07$
- Find the *a* that solves $CE^a = pX^a \rightarrow a = 0.61$
- Misspecification leads to conclusion of excessive risk aversion.

- Notice whenever certainty and uncertainty mix, if u v preferences are correct then there will be a misspecification.
- For instance, assume $U(x) = x^a$ and elicit *a* through a Certainty Equivalent.
- Researchers often find $a \approx 0.5$ to 0.6, while we estimate $\alpha = 0.88$
- Example: *X* = 50, *p* = 0.5.
- $CE^{0.99} = pX^{0.88} \rightarrow CE = 16.07$
- Find the *a* that solves $CE^a = pX^a \rightarrow a = 0.61$
- Misspecification leads to conclusion of excessive risk aversion.

- Notice whenever certainty and uncertainty mix, if u v preferences are correct then there will be a misspecification.
- For instance, assume $U(x) = x^a$ and elicit *a* through a Certainty Equivalent.
- Researchers often find $a \approx 0.5$ to 0.6, while we estimate $\alpha = 0.88$
- Example: *X* = 50, *p* = 0.5.
- $CE^{0.99} = pX^{0.88} \rightarrow CE = 16.07$
- Find the *a* that solves $CE^a = pX^a \rightarrow a = 0.61$
- Misspecification leads to conclusion of excessive risk aversion.

- Notice, Certainty Equivalents are also used in experiments motivating probability weighting.
- Tversky and Fox (1995) assume a curvature parameter (coincidentally) *a* = 0.88
 - For *X* = 50, *p* = 0.90 our parameters say *CE* = 30.73
 - For *X* = 50, *p* = 0.01 our parameters say *CE* = 0.31
 - Find the $\pi(p)$ that rationalizes $CE^a = \pi(p)X^a$ with a = 0.88
 - For $X = 50, p = 0.9; \pi(p) = 0.652 \rightarrow$ downweighting.
 - For X = 50, p = 0.01; $\pi(p) = 0.013 \rightarrow$ upweighting.

- Notice, Certainty Equivalents are also used in experiments motivating probability weighting.
- Tversky and Fox (1995) assume a curvature parameter (coincidentally) *a* = 0.88
 - For *X* = 50, *p* = 0.90 our parameters say *CE* = 30.73
 - For *X* = 50, *p* = 0.01 our parameters say *CE* = 0.31
 - Find the $\pi(p)$ that rationalizes $CE^a = \pi(p)X^a$ with a = 0.88
 - For X = 50, p = 0.9; $\pi(p) = 0.652 \rightarrow$ downweighting.
 - For X = 50, p = 0.01; $\pi(p) = 0.013 \rightarrow$ upweighting.

- Notice, Certainty Equivalents are also used in experiments motivating probability weighting.
- Tversky and Fox (1995) assume a curvature parameter (coincidentally) a = 0.88
 - For *X* = 50, *p* = 0.90 our parameters say *CE* = 30.73
 - For *X* = 50, *p* = 0.01 our parameters say *CE* = 0.31
 - Find the $\pi(p)$ that rationalizes $CE^a = \pi(p)X^a$ with a = 0.88
 - For $X = 50, p = 0.9; \pi(p) = 0.652 \rightarrow \text{downweighting}.$
 - For X = 50, p = 0.01; $\pi(p) = 0.013 \rightarrow$ upweighting.

- Notice, Certainty Equivalents are also used in experiments motivating probability weighting.
- Tversky and Fox (1995) assume a curvature parameter (coincidentally) a = 0.88
 - For *X* = 50, *p* = 0.90 our parameters say *CE* = 30.73
 - For *X* = 50, *p* = 0.01 our parameters say *CE* = 0.31
 - Find the $\pi(p)$ that rationalizes $CE^a = \pi(p)X^a$ with a = 0.88
 - For X = 50, p = 0.9; $\pi(p) = 0.652 \rightarrow$ downweighting.
 - For X = 50, p = 0.01; $\pi(p) = 0.013 \rightarrow$ upweighting.

- Notice, Certainty Equivalents are also used in experiments motivating probability weighting.
- Tversky and Fox (1995) assume a curvature parameter (coincidentally) a = 0.88
 - For *X* = 50, *p* = 0.90 our parameters say *CE* = 30.73
 - For *X* = 50, *p* = 0.01 our parameters say *CE* = 0.31
 - Find the $\pi(p)$ that rationalizes $CE^a = \pi(p)X^a$ with a = 0.88
 - For $X = 50, p = 0.9; \pi(p) = 0.652 \rightarrow \text{downweighting}$.
 - For X = 50, p = 0.01; $\pi(p) = 0.013 \rightarrow$ upweighting.

- Notice, Certainty Equivalents are also used in experiments motivating probability weighting.
- Tversky and Fox (1995) assume a curvature parameter (coincidentally) *a* = 0.88
 - For *X* = 50, *p* = 0.90 our parameters say *CE* = 30.73
 - For *X* = 50, *p* = 0.01 our parameters say *CE* = 0.31
 - Find the $\pi(p)$ that rationalizes $CE^a = \pi(p)X^a$ with a = 0.88
 - For $X = 50, p = 0.9; \pi(p) = 0.652 \rightarrow \text{downweighting}$.
 - For $X = 50, p = 0.01; \pi(p) = 0.013 \rightarrow$ upweighting.

Paper 3: Uncertainty Equivalents: Testing the Limits of the Independence Axiom

Question: We know from the Allais Paradox that the Independence Axiom fails, but when does it fail, how does it fail, and for whom does it fail?

The ideal test would

- Not rely on functional form assumptions for utility or probability weights.
- Rely solely on the Independence Axioim's implication of linearity in probability
- Allow for separation between
 - Probability weighting
 - Disappointment Aversion
 - u v preferences

The Uncertainty Equivalent

Paper 3: Uncertainty Equivalents: Testing the Limits of the Independence Axiom

Question: We know from the Allais Paradox that the Independence Axiom fails, but when does it fail, how does it fail, and for whom does it fail?

The ideal test would

- Not rely on functional form assumptions for utility or probability weights.
- Rely solely on the Independence Axioim's implication of linearity in probability
- Allow for separation between
 - Probability weighting
 - Disappointment Aversion
 - *u v* preferences

The Uncertainty Equivalent

Paper 3: Uncertainty Equivalents: Testing the Limits of the Independence Axiom

Question: We know from the Allais Paradox that the Independence Axiom fails, but when does it fail, how does it fail, and for whom does it fail?

The ideal test would

- Not rely on functional form assumptions for utility or probability weights.
- Rely solely on the Independence Axioim's implication of linearity in probability
- Allow for separation between
 - Probability weighting
 - 2 Disappointment Aversion
 - u v preferences

The Uncertainty Equivalent
Paper 3: Uncertainty Equivalents: Testing the Limits of the Independence Axiom

Question: We know from the Allais Paradox that the Independence Axiom fails, but when does it fail, how does it fail, and for whom does it fail?

The ideal test would

- Not rely on functional form assumptions for utility or probability weights.
- Rely solely on the Independence Axioim's implication of linearity in probability
- Allow for separation between
 - Probability weighting
 - 2 Disappointment Aversion
 - u v preferences

The Uncertainty Equivalent

Paper 3: Uncertainty Equivalents: Testing the Limits of the Independence Axiom

Question: We know from the Allais Paradox that the Independence Axiom fails, but when does it fail, how does it fail, and for whom does it fail?

The ideal test would

- Not rely on functional form assumptions for utility or probability weights.
- Rely solely on the Independence Axioim's implication of linearity in probability
- Allow for separation between
 - Probability weighting
 - 2 Disappointment Aversion
 - u v preferences

The Uncertainty Equivalent

Experimental Environment

Consider a *p*-gamble which pays X with probability *p* and Y > X with probability (1 - p): (p; X, Y).

- Certainty Equivalent: What value \$C with certainty makes you indifferent to this p-gamble?
- Uncertainty Equivalent: What *q*-gamble over \$Y and \$0, (q; Y, 0), makes you indifferent to this *p*-gamble?
- *q* is a utility index for the *p* gamble.
- Linearity in probabilities: *p* and *q* must be linearly related.
- *C* and *q* have identical dynamics. More risk averse \rightarrow lower *C*, higher *q*. *C* is problematic under u v preferences.

Experimental Environment

Consider a *p*-gamble which pays X with probability *p* and Y > X with probability (1 - p): (p; X, Y).

- Certainty Equivalent: What value \$C with certainty makes you indifferent to this p-gamble?
- Uncertainty Equivalent: What *q*-gamble over \$Y and \$0, (q; Y, 0), makes you indifferent to this *p*-gamble?
- *q* is a utility index for the *p* gamble.
- Linearity in probabilities: *p* and *q* must be linearly related.
- C and q have identical dynamics. More risk averse → lower C, higher q. C is problematic under u - v preferences.

Experimental Environment

Consider a *p*-gamble which pays X with probability *p* and Y > X with probability (1 - p): (p; X, Y).

- Certainty Equivalent: What value \$*C* with certainty makes you indifferent to this *p*-gamble?
- Uncertainty Equivalent: What *q*-gamble over \$Y and \$0, (q; Y, 0), makes you indifferent to this *p*-gamble?
- *q* is a utility index for the *p* gamble.
- Linearity in probabilities: *p* and *q* must be linearly related.
- C and q have identical dynamics. More risk averse → lower C, higher q. C is problematic under u – v preferences.

Motivation for the Uncertainty Equivalent

• Expected Utility: Linear, negative relationship between q and p.

- u v Preferences: Linear, negative relationship between q and p until p = 1. At p = 1, q will discontinuously *increase*. Increase associated with violations of stochastic dominance a la Gneezy et al. (2006).
- Probability Weighting: Non-linear, concave negative relationship between *q* and *p*. Why?
 At *p* close to 1, *p* of \$*X* downweighted and 1 − *p* of \$*Y* upweighted. Need high *q* to compensate for upweighting of \$*Y*. When *p* = 1, upweighting disappears → *q* decreases precipitously.

- Expected Utility: Linear, negative relationship between *q* and *p*.
- u v Preferences: Linear, negative relationship between q and p until p = 1. At p = 1, q will discontinuously *increase*. Increase associated with violations of stochastic dominance a la Gneezy et al. (2006).
- Probability Weighting: Non-linear, concave negative relationship between *q* and *p*. Why?
 At *p* close to 1, *p* of \$*X* downweighted and 1 − *p* of \$*Y* upweighted. Need high *q* to compensate for upweighting of \$*Y*. When *p* = 1, upweighting disappears → *q* decreases precipitously.

- Expected Utility: Linear, negative relationship between *q* and *p*.
- u v Preferences: Linear, negative relationship between q and p until p = 1. At p = 1, q will discontinuously *increase*. Increase associated with violations of stochastic dominance a la Gneezy et al. (2006).
- Probability Weighting: Non-linear, concave negative relationship between *q* and *p*. Why?
 At *p* close to 1, *p* of \$*X* downweighted and 1 − *p* of \$*Y* upweighted. Need high *q* to compensate for upweighting of \$*Y*. When *p* = 1, upweighting disappears → *q* decreases precipitously.

- Expected Utility: Linear, negative relationship between *q* and *p*.
- u v Preferences: Linear, negative relationship between q and p until p = 1. At p = 1, q will discontinuously *increase*. Increase associated with violations of stochastic dominance a la Gneezy et al. (2006).
- Probability Weighting: Non-linear, concave negative relationship between *q* and *p*. Why?

At *p* close to 1, *p* of \$*X* downweighted and 1 - p of \$*Y* upweighted. Need high *q* to compensate for upweighting of \$*Y*. When p = 1, upweighting disappears $\rightarrow q$ decreases precipitously.

- Expected Utility: Linear, negative relationship between *q* and *p*.
- u v Preferences: Linear, negative relationship between q and p until p = 1. At p = 1, q will discontinuously *increase*. Increase associated with violations of stochastic dominance a la Gneezy et al. (2006).
- Probability Weighting: Non-linear, concave negative relationship between *q* and *p*. Why?
 At *p* close to 1, *p* of \$*X* downweighted and 1 − *p* of \$*Y* upweighted. Need high *q* to compensate for upweighting of \$*Y*. When *p* = 1, upweighting disappears → *q* decreases precipitously.

• Disappointment Aversion:

- Bell (1985); Loomes and Sugden (1986); Gul (1991)
- DA is general class of reference-dependent models with expectations-based reference points.
- A gamble's outcomes are evaluated relative to the gamble's EU certainty equivalent.
- Recently, Koszegi and Rabin(2006, 2007) extend this notion of reference points to reference distributions.

Uncertainty Equivalents

- Three payment sets. $(X, Y) \in \{(10, 30), (30, 50), (10, 50)\}$
- $p \in \{0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 1\}$
- Certainty Equivalents of gambles over \$0 and \$30.
 - $p \in \{0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95\}$
 - Probabilities chosen to reproduce Tversky & Kahneman (1992), Tversky & Fox (1995).
- Paper-and-pencil price lists. Packets with increasing *p*.
- Two orders. UE-CE; CE-UE. No order effects.
- One task, one question chosen for payment.
- Uncertainty resolved immediately at end of experiment.

Uncertainty Equivalents

- Three payment sets. $(X, Y) \in \{(10, 30), (30, 50), (10, 50)\}$
- $p \in \{0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 1\}$
- Certainty Equivalents of gambles over \$0 and \$30.
 - $p \in \{0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95\}$
 - Probabilities chosen to reproduce Tversky & Kahneman (1992), Tversky & Fox (1995).

• Paper-and-pencil price lists. Packets with increasing *p*.

- Two orders. UE-CE; CE-UE. No order effects.
- One task, one question chosen for payment.
- Uncertainty resolved immediately at end of experiment.

Uncertainty Equivalents

- Three payment sets. $(X, Y) \in \{(10, 30), (30, 50), (10, 50)\}$
- $p \in \{0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 1\}$
- Certainty Equivalents of gambles over \$0 and \$30.
 - $p \in \{0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95\}$
 - Probabilities chosen to reproduce Tversky & Kahneman (1992), Tversky & Fox (1995).
- Paper-and-pencil price lists. Packets with increasing *p*.
- Two orders. UE-CE; CE-UE. No order effects.
- One task, one question chosen for payment.
- Uncertainty resolved immediately at end of experiment.

Uncertainty Equivalents

- Three payment sets. $(X, Y) \in \{(10, 30), (30, 50), (10, 50)\}$
- $p \in \{0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 1\}$
- Certainty Equivalents of gambles over \$0 and \$30.
 - $p \in \{0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95\}$
 - Probabilities chosen to reproduce Tversky & Kahneman (1992), Tversky & Fox (1995).
- Paper-and-pencil price lists. Packets with increasing *p*.
- Two orders. UE-CE; CE-UE. No order effects.
- One task, one question chosen for payment.

• Uncertainty resolved immediately at end of experiment.

Uncertainty Equivalents

- Three payment sets. $(X, Y) \in \{(10, 30), (30, 50), (10, 50)\}$
- $p \in \{0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 1\}$
- Certainty Equivalents of gambles over \$0 and \$30.
 - $p \in \{0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95\}$
 - Probabilities chosen to reproduce Tversky & Kahneman (1992), Tversky & Fox (1995).
- Paper-and-pencil price lists. Packets with increasing *p*.
- Two orders. UE-CE; CE-UE. No order effects.
- One task, one question chosen for payment.
- Uncertainty resolved immediately at end of experiment.

Sample Task: Uncertainty Equivalents

TASK 4

On this page you will make a series of decisions between two uncertain options. Option A will be a 50 in 100 chance of \$10 and a 50 in 100 chance of \$30. Option B will yary across decisions. Initially, Option B will be a 95 in 100 chance of \$9 and a 5 in 100 chance of \$30. As you proceed down the rows, Option B will change. The chance of receiving \$30 will increase, while the chance of receiving \$0 will decrease.

For each row, all you have to do is decide whether you prefer Option A or Option B.

_	Option A			or	Option B		
	Chance of \$10	Chance of \$30			Chance of \$0	Chance of $$30$	
	50 in 100	50 in 100	Ø	or	100 in 100	0 in 100	
1)	50 in 100	50 in 100		or	95 in 100	5 in 100	
2)	50 in 100	50 in 100		or	90 in 100	10 in 100	
3)	50 in 100	50 in 100		or	85 in 100	15 in 100	
4)	50 in 100	50 in 100		or	80 in 100	20 in 100	
5)	50 in 100	50 in 100		or	75 in 100	25 in 100	
6)	50 in 100	50 in 100		or	70 in 100	30 in 100	
7)	50 in 100	50 in 100		or	65 in 100	35 in 100	
8)	50 in 100	50 in 100		or	60 in 100	40 in 100	
9)	50 in 100	50 in 100		or	55 in 100	45 in 100	
10)	50 in 100	50 in 100		or	50 in 100	50 in 100	
11)	50 in 100	50 in 100		or	45 in 100	55 in 100	
12)	50 in 100	50 in 100		or	40 in 100	60 in 100	
13)	50 in 100	50 in 100		or	35 in 100	65 in 100	
14)	50 in 100	50 in 100		or	30 in 100	70 in 100	
15)	50 in 100	50 in 100		or	25 in 100	75 in 100	
16)	50 in 100	50 in 100		or	20 in 100	80 in 100	
17)	50 in 100	50 in 100		or	15 in 100	85 in 100	
18)	50 in 100	50 in 100		or	10 in 100	90 in 100	
19)	50 in 100	50 in 100		or	5 in 100	95 in 100	
20)	50 in 100	50 in 100		or	1 in 100	99 in 100	
	50 in 100	50 in 100		or	0 in 100	100 in 100	Ø

Results

Uncertainty Equivalents Results

Model Separation: The Relationship Between q and p

(1)
(X, Y) = (
$$\$10, \$30$$
) (X, Y) = ($\$30, \50) (X, Y) = ($\$10, \50)

Dependent Variable: Interval Response of Uncertainty Equivalent ($q \times 100$)

p imes 100	-0.660***	-0.376***	-0.482***
	(0.060)	(0.035)	(0.047)
(<i>p</i> × 100) ²	0.002***	0.002***	0.001
	(0.001)	(0.000)	(0.000)
Constant	98.122	97.866	97.439
	(0.885)	(0.435)	(0.642)
# Observations	608	608	607
# Clusters	76	76	76

Level of significance: **p* < 0.1, ***p* < 0.05, ****p* < 0.01

84 opportunities to violate stochastic dominance \rightarrow obtain individual level violation rates.

Violation Rates:

84 opportunities to violate stochastic dominance \rightarrow obtain individual level violation rates.

Violation Rates:

(63) Away from certainty: 0.043 (s.d. = 0.064)

84 opportunities to violate stochastic dominance \rightarrow obtain individual level violation rates.

Violation Rates:

- (63) Away from certainty: 0.043 (s.d. = 0.064)
- (21) Involving certainty: 0.097 (0.158), (t = 3.88, p < 0.001)

84 opportunities to violate stochastic dominance \rightarrow obtain individual level violation rates.

Violation Rates:

- (63) Away from certainty: 0.043 (s.d. = 0.064)
- (21) Involving certainty: 0.097 (0.158), (t = 3.88, p < 0.001)
- (3) Comparing p = 1 to p' = 0.95: 0.175 (0.258),

(t = 3.95, p < 0.001)

84 opportunities to violate stochastic dominance \rightarrow obtain individual level violation rates.

Violation Rates:

- (63) Away from certainty: 0.043 (s.d. = 0.064)
- (21) Involving certainty: 0.097 (0.158), (t = 3.88, p < 0.001)
- (3) Comparing p = 1 to p' = 0.95: 0.175 (0.258), (t = 3.95, p < 0.001)
- 38 percent of subject demonstrate at least one violation between p = 1 and p' = 0.95, \rightarrow Violators.

84 opportunities to violate stochastic dominance \rightarrow obtain individual level violation rates.

Violation Rates:

- (63) Away from certainty: 0.043 (s.d. = 0.064)
- (21) Involving certainty: 0.097 (0.158), (t = 3.88, p < 0.001)
- (3) Comparing p = 1 to p' = 0.95: 0.175 (0.258), (t = 3.95, p < 0.001)
- 38 percent of subject demonstrate at least one violation between p = 1 and p' = 0.95, \rightarrow Violators.

Following u - v preferences, violations of stochastic dominance are prevalent and localized close to certainty. Focus attention on violators and non-violators.

- Within-subject demonstration of the hotly debated 'uncertainty' effect' (Gneezy et al. 2006)

- Within-subject demonstration of the hotly debated 'uncertainty effect' (Gneezy et al. 2006)
- Here achieved with money.

- Within-subject demonstration of the hotly debated 'uncertainty effect' (Gneezy et al. 2006)
- Here achieved with money.
- Increasing *p* order unlikely to 'frame' the result *against* violations. ۲

- Within-subject demonstration of the hotly debated 'uncertainty effect' (Gneezy et al. 2006)
- Here achieved with money.
- Increasing *p* order unlikely to 'frame' the result *against* violations. ۲
- Result may help inform the uncertainty effect debate and its • source: u - v preferences?

Violators and Non-Violators

Experimental Risk Aversion and Probability Weighting

Generally, in certainty equivalents we see....

- Small-stakes Risk Aversion: Use some intermediate probability $(p \sim 0.5 - 0.75)$. Any risk aversion over small stakes violates expected utility (Rabin 2000).
- Probability Weighting: Use spectrum of probabilities. For fixed stakes, probability weighting \rightarrow risk loving at low probabilities, risk averse at higher probabilities.

But

Experimental Risk Aversion and Probability Weighting

Generally, in certainty equivalents we see....

- Small-stakes Risk Aversion: Use some intermediate probability $(p \sim 0.5 - 0.75)$. Any risk aversion over small stakes violates expected utility (Rabin 2000).
- Probability Weighting: Use spectrum of probabilities. For fixed stakes, probability weighting \rightarrow risk loving at low probabilities, risk averse at higher probabilities.

But...

- Both phenomena follow from u v preferences in certainty equivalents experiments.

Experimental Risk Aversion and Probability Weighting

Generally, in certainty equivalents we see....

- Small-stakes Risk Aversion: Use some intermediate probability $(p \sim 0.5 - 0.75)$. Any risk aversion over small stakes violates expected utility (Rabin 2000).
- Probability Weighting: Use spectrum of probabilities. For fixed stakes, probability weighting \rightarrow risk loving at low probabilities, risk averse at higher probabilities.

But

- Both phenomena follow from u v preferences in certainty equivalents experiments.
- Violations of stochastic dominance in uncertainty equivalents should have predictive power for these phenomena.

Results

Risk Averse, Loving, Neutral

All Subjects* (N=70)								
р	Proportion Risk Averse	Proportion Risk Neutral	Proportion Risk Loving					
0.05	0.13	0.30	0.57					
0.10	0.10	0.27	0.63					
0.25	0.24	0.36	0.40					
0.50	0.43	0.29	0.29					
0.75	0.53	0.24	0.23					
0.90	0.50	0.24	0.26					
0.95	0.29	0.53	0.18					

*Six potentially confused, extremely risk-loving (every task) subjects not reported with average risk premia of -109% of gamble's expected value.
Results

Risk Averse, Loving, Neutral

Panel B: Violators (N=26)						
р	Proportion Risk Averse	Proportion Risk Neutral	Proportion Risk Loving			
0.05	0.08	0.23	0.69			
0.10	0.04	0.12	0.85			
0.25	0.19	0.27	0.54			
0.50	0.50	0.12	0.38			
0.75	0.58	0.08	0.35			
0.90	0.54	0.19	0.27			
0.95	0.36	0.36	0.28			
Panel C: Non-Violators (N=44)						
0.05	0.16	0.35	0.49			
0.10	0.14	0.36	0.50			
0.25	0.27	0.41	0.32			
0.50	0.39	0.39	0.23			
0.75	0.50	0.34	0.16			
0.90	0.48	0.27	0.25			
0.95	0.26	0.63	0.12			

James Andreoni **Risky Research**

Violators Drive Phenomena

	(1)	(2)	(3)		
	All n	n < 0.25	n > 0.25		
	7 W P	$P \ge 0.20$	p > 0.20		
Multinomial Logit: Risk Averse, Neutral or Loving Classification					
Risk Loving					
Violator (=1)	1.248***	1.090**	1.336***		
	(0.373)	(0.449)	(0.473)		
<i>p</i> × 100	-0.016***	-0.033**	-0.018*		
	(0.004)	(0.015)	(0.009)		
Constant	0.386	0.572	0.637		
	(0.303)	(0.368)	(0.782)		
Risk Averse					
Violator (=1)	0.716*	-0.044	1.001**		
	(0.392)	(0.654)	(0.445)		
<i>p</i> × 100	0.010**	0.029	-0.014*		
	(0.004)	(0.021)	(0.008)		
Constant	-0.768**	-1.108**	1.081*		
	(0.365)	(0.553)	(0.655)		
# Observations	487	209	278		
# Clusters	70	70	70		

James Andreoni **Risky Research** Uncertainty Equivalents

Results

Median Certainty Equivalents Data

Risky Research James Andreoni

Results

Probability Weighting Estimates

Standard Procedure:

$$u(C) = \pi(p)u(30)$$

Assume

•
$$u(X) = X^{\alpha}$$

• $\pi(p) = p^{\gamma}/(p^{\gamma} + (1-p)^{\gamma})^{1/\gamma}$

Estimate:

$$C = [p^{\gamma}/(p^{\gamma} + (1-p)^{\gamma})^{1/\gamma} \times 30^{\alpha}]^{1/\alpha} + \epsilon$$

•
$$\hat{\alpha}_V = 1.101 \ (0.049) \ ; \ \hat{\gamma}_V = 0.743 \ (0.033)$$

• $\hat{\alpha}_N = 0.987 \ (0.049) \ ; \ \hat{\alpha}_N = 0.929 \ (0.057)$

•
$$H_0: \gamma_V = \gamma_N; F_{1,10} = 8.04, p < 0.05.$$

Results

Probability Weighting Estimates

Standard Procedure:

$$u(C) = \pi(p)u(30)$$

Assume

•
$$u(X) = X^{\alpha}$$

• $\pi(p) = p^{\gamma}/(p^{\gamma} + (1-p)^{\gamma})^{1/\gamma}$

Estimate:

$$C = [p^{\gamma}/(p^{\gamma} + (1-p)^{\gamma})^{1/\gamma} \times 30^{\alpha}]^{1/\alpha} + \epsilon$$

Median Data:

•
$$\hat{\alpha}_V = 1.101 \ (0.049)$$
; $\hat{\gamma}_V = 0.743 \ (0.033)$
• $\hat{\alpha}_N = 0.987 \ (0.049)$; $\hat{\gamma}_N = 0.929 \ (0.057)$
• $H_0: \ \gamma_V = \gamma_N$; $F_{1,10} = 8.04, \ p < 0.05.$

Independence performs well away from certainty, but breaks down at p = 1.

• Rejects CPT Probability Weighting, consisent with DA and u - v

- 38 percent of subjects violate stochastic dominance.
 These violators drive the failures of the Independence Aviant and the Independence Aviant a
 - Rejects strict forms of Disappointment Aversion, since these preclude dominance violations. Supports u v.
- Certainty equivalents conflate risk preferences and probability weighting with attitudes towards certainty v(x) > u(x).
 - Violators drive the model of probability weighting.
- All choices can be unified under u v preferences.

- Independence performs well away from certainty, but breaks down at p = 1.
 - Rejects CPT Probability Weighting, consisent with DA and *u v*
- 38 percent of subjects violate stochastic dominance.
 These violators drive the failures of the Independence Ax
 - Rejects strict forms of Disappointment Aversion, since these preclude dominance violations. Supports u v.
- Certainty equivalents conflate risk preferences and probability weighting with attitudes towards certainty v(x) > u(x).
 - Violators drive the model of probability weighting.
- All choices can be unified under u v preferences.

- Independence performs well away from certainty, but breaks down at p = 1.
 - Rejects CPT Probability Weighting, consisent with DA and *u v*
- 38 percent of subjects violate stochastic dominance.
 These violators drive the failures of the Independence Axior
 - Rejects strict forms of Disappointment Aversion, since these preclude dominance violations. Supports u v.
- Certainty equivalents conflate risk preferences and probability weighting with attitudes towards certainty v(x) > u(x).
 - Violators drive the model of probability weighting.
- All choices can be unified under u v preferences.

- Independence performs well away from certainty, but breaks down at p = 1.
 - Rejects CPT Probability Weighting, consisent with DA and u v
- 38 percent of subjects violate stochastic dominance.
- These violators drive the failures of the Independence Axiom
 - Rejects strict forms of Disappointment Aversion, since these preclude dominance violations. Supports u v.
- Certainty equivalents conflate risk preferences and probability weighting with attitudes towards certainty v(x) > u(x).
 - Violators drive the model of probability weighting.
- All choices can be unified under u v preferences.

- Independence performs well away from certainty, but breaks down at p = 1.
 - Rejects CPT Probability Weighting, consisent with DA and u v
- 38 percent of subjects violate stochastic dominance.
- These violators drive the failures of the Independence Axiom
 - Rejects strict forms of Disappointment Aversion, since these preclude dominance violations. Supports *u v*.
- Certainty equivalents conflate risk preferences and probability weighting with attitudes towards certainty v(x) > u(x).
 - Violators drive the model of probability weighting.
- All choices can be unified under u v preferences.

- Independence performs well away from certainty, but breaks down at p=1.
 - Rejects CPT Probability Weighting, consistent with DA and u v
- 38 percent of subjects violate stochastic dominance.
- These violators drive the failures of the Independence Axiom
 - Rejects strict forms of Disappointment Aversion, since these preclude dominance violations. Supports u - v.
- Certainty equivalents conflate risk preferences and probability weighting with attitudes towards certainty v(x) > u(x).

- Independence performs well away from certainty, but breaks down at p = 1.
 - Rejects CPT Probability Weighting, consisent with DA and u v
- 38 percent of subjects violate stochastic dominance.
- These violators drive the failures of the Independence Axiom
 - Rejects strict forms of Disappointment Aversion, since these preclude dominance violations. Supports *u v*.
- Certainty equivalents conflate risk preferences and probability weighting with attitudes towards certainty v(x) > u(x).
 - Violators drive the model of probability weighting.

• All choices can be unified under u - v preferences.

- Independence performs well away from certainty, but breaks down at p=1.
 - Rejects CPT Probability Weighting, consistent with DA and u v
- 38 percent of subjects violate stochastic dominance.
- These violators drive the failures of the Independence Axiom
 - Rejects strict forms of Disappointment Aversion, since these preclude dominance violations. Supports u - v.
- Certainty equivalents conflate risk preferences and probability weighting with attitudes towards certainty v(x) > u(x).
 - Violators drive the model of probability weighting.
- All choices can be unified under u v preferences.

- Joint with with Charlie Sprenger and Brian Knutson on u v preferences in fMRI machines.
- Charlie Sprenger solo work on reference dependent expected utility.
- Joint work with Charlie on ambiguity, and Kreps-Porteus preferences for resolution of uncertainty. $\rightarrow u v w x$ preferences?

- Joint with with Charlie Sprenger and Brian Knutson on u v preferences in fMRI machines.
- Charlie Sprenger solo work on reference dependent expected utility.
- Joint work with Charlie on ambiguity, and Kreps-Porteus preferences for resolution of uncertainty. $\rightarrow u v w x$ preferences?

- Joint with with Charlie Sprenger and Brian Knutson on u v preferences in fMRI machines.
- Charlie Sprenger solo work on reference dependent expected utility.
- Joint work with Charlie on ambiguity, and Kreps-Porteus preferences for resolution of uncertainty. → u - v - w - x preferences?

- Joint with with Charlie Sprenger and Brian Knutson on u v preferences in fMRI machines.
- Charlie Sprenger solo work on reference dependent expected utility.
- Joint work with Charlie on ambiguity, and Kreps-Porteus preferences for resolution of uncertainty. $\rightarrow u v w x$ preferences?

Finally certain - time is up!