Risky Research

James Andreoni

UCSD

Risky Research
 Timely Research

James Andreoni

UCSD

Risky Research
 Timely Research
 New Work on Risk, Time, and Risk over Time.

James Andreoni
UCSD

Five Papers

- Estimating Time Preferences from Convex Budgets
- Risk Preferences are Not Time Preferences: Discounted Expected Utility with a Disproportionate Preference for Certainty
- Certain and Uncertain Utility: The Allais Paradox and Five Decision Theory Phenomena
- Uncertainty Equivalents: Testing the Limits of the Independence Axiom
- All four with Charles Sprenger, UCSD
- Unexpected Utility: Experimental Tests of Five Key Questions about Preferences over Risk.
- with Bill Harbaugh, University of Oregon

Three Papers Today

- Estimating Time Preferences from Convex Budgets
- Risk Preferences are Not Time Preferences: Discounted Expected Utility with a Disproportionate Preference for Certainty
- Certain and Uncertain Utility: The Allais Paradox and Five Decision Theory Phenomena
- Uncertainty Equivalents: Linear Tests of the Independence Axiom
- All four three with Charles Sprenger, UCSD
- Unexpected Utility: Experimental Tests of Five Key Questions about Preferences over Risk.
- with Bill Harbaugh, University of Oregon

Three Papers Today

- Estimating Time Preferences from Convex Budgets
- Risk Preferences are Not Time Preferences: Discounted Expected Utility with a Disproportionate Preference for Certainty
- Certain and Uncertain Utility: The Allais Paradox and Five Decision Theory Phenomena
- Uncertainty Equivalents: Understanding When the Independence Axiom Gets Out of Line
- All four three with Charles Sprenger, UCSD
- Unexpected Utility: Experimental Tests of Five Key Questions about Preferences over Risk.
- with Bill Harbaugh, University of Oregon

What is New in this Line of Work?

What is New in this Line of Work?

- New Ideas:

What is New in this Line of Work?

- New Ideas:
- None

> Other elements have appeared in disparate places, often without testing
> At the center of all the analysis is the Certainty Effect of Allais. Far from certainty, expected utility does fine and utility follows an EU function $u(x)$
> But in the neighborhood of certainty, people display a disproportionate preference for certainty, and utility follows a function $v(x)$, with $v(x) \geq u(x)$. This $u-v$ model of preferences is a "useful simplification" of a more continuous process.
> $u-v$ is a generalization of Disappointment Aversion that allows dominance violations.

What is New in this Line of Work?

- New Ideas:
- None
- The core ideas have been around since Allais in 1953
- Other elements have appeared in disparate places, often without testing.

dominance violations.

What is New in this Line of Work?

- New Ideas:
- None
- The core ideas have been around since Allais in 1953
- Other elements have appeared in disparate places, often without testing.
- At the center of all the analysis is the Certainty Effect of Allais.
- Far from certainty, expected utility does fine and utility follows an EU function $u(x)$.
- But in the neighborhood of certainty, people display a disproportionate preference for certainty, and utility follows a function $v(x)$, with $v(x) \geq u(x)$.
- This $u-v$ model of preferences is a "useful simplification" of a more continuous process.
- $u-v$ is a generalization of Disappointment Aversion that allows dominance violations.

What is New in this Line of Work?

- New Experimental Methods:

What is New in this Line of Work?

- New Experimental Methods:
- We introduce several innovations we believe eliminate some confounding effects of prior experimental methods.

What is New in this Line of Work?

- New Experimental Methods:
- We introduce several innovations we believe eliminate some confounding effects of prior experimental methods.
- This is true for both risk and time measures.

What is New in this Line of Work?

- New Experimental Methods:
- We introduce several innovations we believe eliminate some confounding effects of prior experimental methods.
- This is true for both risk and time measures.
- In time preferences we take several new measures to create confidence in future payments.
- Since the future is both less convenient and more risky than the present, this is crucial to get right.

What is New in this Line of Work?

- New Experimental Methods:
- We introduce several innovations we believe eliminate some confounding effects of prior experimental methods.
- This is true for both risk and time measures.
- In time preferences we take several new measures to create confidence in future payments.
- Since the future is both less convenient and more risky than the present, this is crucial to get right.
- We also introduce a new method for eliciting time preferences that can identify discounting and utility function curvature with a single instrument-Convex Time Budgets

What is New in this Line of Work?

- New Experimental Methods:
- We introduce several innovations we believe eliminate some confounding effects of prior experimental methods.
- This is true for both risk and time measures.
- In time preferences we take several new measures to create confidence in future payments.
- Since the future is both less convenient and more risky than the present, this is crucial to get right.
- We also introduce a new method for eliciting time preferences that can identify discounting and utility function curvature with a single instrument-Convex Time Budgets
- With risk preferences we re-introduce and develop a new way to measure preferences, which we call Uncertainty Equivalents.

What is New in this Line of Work?

- New Experimental Methods:
- We introduce several innovations we believe eliminate some confounding effects of prior experimental methods.
- This is true for both risk and time measures.
- In time preferences we take several new measures to create confidence in future payments.
- Since the future is both less convenient and more risky than the present, this is crucial to get right.
- We also introduce a new method for eliciting time preferences that can identify discounting and utility function curvature with a single instrument-Convex Time Budgets
- With risk preferences we re-introduce and develop a new way to measure preferences, which we call Uncertainty Equivalents.
- UEs allow us to test the Independence Axiom directly, and distinguish the three main alternatives: CPT Probability Weighting, Disappointment Aversion, $u-v$ preferences.

What is New in this Line of Work?

- New Data: Time Preferences and Discounted Expected Utility

What is New in this Line of Work?

- New Data: Time Preferences and Discounted Expected Utility
- Our data on time preferences finds reasonable discount rates which are correlated with recent studies.

What is New in this Line of Work?

- New Data: Time Preferences and Discounted Expected Utility
- Our data on time preferences finds reasonable discount rates which are correlated with recent studies.
- However our measure of curvature is smaller and completely uncorrelated with prior methods.
- Moreover, our estimates of utility predict well out of sample.

What is New in this Line of Work?

- New Data: Time Preferences and Discounted Expected Utility
- Our data on time preferences finds reasonable discount rates which are correlated with recent studies.
- However our measure of curvature is smaller and completely uncorrelated with prior methods.
- Moreover, our estimates of utility predict well out of sample.
- Our results are consistent with a model in which the future is risky, and individuals have $u-v$ preferences
- Most importantly, our data is inconsistent with a $\beta-\delta$ model of present bias.

\qquad confirm a $u-v$ interpretation of the data.

What is New in this Line of Work?

- New Data: Time Preferences and Discounted Expected Utility
- Our data on time preferences finds reasonable discount rates which are correlated with recent studies.
- However our measure of curvature is smaller and completely uncorrelated with prior methods.
- Moreover, our estimates of utility predict well out of sample.
- Our results are consistent with a model in which the future is risky, and individuals have $u-v$ preferences
- Most importantly, our data is inconsistent with a $\beta-\delta$ model of present bias.
- Either our experiment had too much front-end delay, or a lot of prior results of present bias were mistaken attributions of a certainty bias.

What is New in this Line of Work?

- New Data: Time Preferences and Discounted Expected Utility
- Our data on time preferences finds reasonable discount rates which are correlated with recent studies.
- However our measure of curvature is smaller and completely uncorrelated with prior methods.
- Moreover, our estimates of utility predict well out of sample.
- Our results are consistent with a model in which the future is risky, and individuals have $u-v$ preferences
- Most importantly, our data is inconsistent with a $\beta-\delta$ model of present bias.
- Either our experiment had too much front-end delay, or a lot of prior results of present bias were mistaken attributions of a certainty bias.
- New experiments that control the amount of risk over time tend to confirm a $u-v$ interpretation of the data.

What is New in this Line of Work?

- New Data: Risk Preferences
suggests that measures of preferences using Certainty Equivalents,
assuming only a u function, will be misspecified

What is New in this Line of Work?

- New Data: Risk Preferences
- If the $u-v$ model explains time preference data, then it also suggests that measures of preferences using Certainty Equivalents, assuming only a u function, will be misspecified.

What is New in this Line of Work?

- New Data: Risk Preferences
- If the $u-v$ model explains time preference data, then it also suggests that measures of preferences using Certainty Equivalents, assuming only a u function, will be misspecified.
- This is the case with CPT Probability Weighting.

What is New in this Line of Work?

- New Data: Risk Preferences
- If the $u-v$ model explains time preference data, then it also suggests that measures of preferences using Certainty Equivalents, assuming only a u function, will be misspecified.
- This is the case with CPT Probability Weighting.
- An Uncertainty Equivalent, when compared to a Certainty

Equivalent, can both test the linear-in-probability implication of the Independence Axiom, and test whether CPT Probability Weighting is or is not misspecified.

What is New in this Line of Work?

- New Data: Risk Preferences
- If the $u-v$ model explains time preference data, then it also suggests that measures of preferences using Certainty Equivalents, assuming only a u function, will be misspecified.
- This is the case with CPT Probability Weighting.
- An Uncertainty Equivalent, when compared to a Certainty Equivalent, can both test the linear-in-probability implication of the Independence Axiom, and test whether CPT Probability Weighting is or is not misspecified.
- Our data provide a clear contradiction of CPT Probability Weighting in Uncertainty Equivalents, and strong support of $u-v$ preferences when combined with Certainty Equivalents.

What is New in this Line of Work?

- New Data: Risk Preferences
- If the $u-v$ model explains time preference data, then it also suggests that measures of preferences using Certainty Equivalents, assuming only a u function, will be misspecified.
- This is the case with CPT Probability Weighting.
- An Uncertainty Equivalent, when compared to a Certainty Equivalent, can both test the linear-in-probability implication of the Independence Axiom, and test whether CPT Probability Weighting is or is not misspecified.
- Our data provide a clear contradiction of CPT Probability Weighting in Uncertainty Equivalents, and strong support of $u-v$ preferences when combined with Certainty Equivalents.
- This points to the "inverted-S" probability weighting curve as being the result of misspecification, not probability censoring by subjects.

Historical Estimates of Time Preferences

Thaler, Richard, "Some Empirical Evidence on Dynamic Inconsistency," Economics Letters, 8, 1981, 201-207.

- Hypothetical experiment in Thaler's class.
- Findings: For 3 month delay, discount rates of 62-277\%
 present enormous tactical problems. (Would subjects believe

Historical Estimates of Time Preferences

Thaler, Richard, "Some Empirical Evidence on Dynamic Inconsistency," Economics Letters, 8, 1981, 201-207.

- Hypothetical experiment in Thaler's class.
- Findings: For 3 month delay, discount rates of 62-277\%

Real money experiments would be interesting but seem to present enormous tactical problems. (Would subjects believe they would get paid in five years?)- Thaler(1981)

Historical Estimates of Time Preferences

Tactical Problems:

Figure 2. Discount Factor by Year of Study Publication

Wide Historical Variation in Preferences

Why are estimates so varied?

Subjects may be sensitive to methods

People cannot consistently report time preferences

Wide Historical Variation in Preferences

Why are estimates so varied?

- Subjects may be sensitive to methods

People cannot consistently report time preferences It is hard to make 'all else equal'

- Transaction costs of qettina paid

Wide Historical Variation in Preferences

Why are estimates so varied?

- Subjects may be sensitive to methods
- People cannot consistently report time preferences

Wide Historical Variation in Preferences

Why are estimates so varied?

- Subjects may be sensitive to methods
- People cannot consistently report time preferences
- It is hard to make 'all else equal'
- Transaction costs of getting paid
- Trust that the future payments will be made

Estimating Time Preferences

Experiments now often use

 Multiple Price List (MPL) methodology- Coller and Williams, ExEc (1999)
- Harrison et al. AER (2002)

Choices between a smaller, sooner reward and a larger, later reward.

Estimating Time Preferences

Experiments now often use Multiple Price List (MPL) methodology

- Coller and Williams, ExEc (1999)
- Harrison et al. AER (2002)

Choices between a smaller, sooner reward and a larger, later reward.

Example: Option A (TODAY) or Option B (IN A MONTH)

Decision 1: \$ 49 guaranteed today - \$ 50 guaranteed in a month Decision 2: \$ 47 guaranteed today - \$ 50 guaranteed in a month Decision 3: \$ 44 guaranteed today - \$ 50 guaranteed in a month Decision 4: \$ 40 guaranteed today - \$ 50 guaranteed in a month Decision 5: \$ 35 guaranteed today - \$ 50 guaranteed in a month Decision 6: \$ 29 guaranteed today - \$ 50 guaranteed in a month Decision 7: \$ 22 guaranteed today - \$ 50 guaranteed in a month

MPLs and Parameter Estimates

Experiments-including many MPLs-generally yield very high discount rates, often over 100\% per year. MPLs and others 'assume' linear preferences.
s.t. the discrete budget:

Restriction to corner solutions.

MPLs and Parameter Estimates

Experiments-including many MPLs-generally yield very high discount rates, often over 100\% per year. MPLs and others 'assume' linear preferences. Individuals solve:

$$
\max _{c_{t}, c_{t+k}} U\left(c_{t}, c_{t+k}\right)
$$

s.t. the discrete budget:

$$
\left.\left\{(1+r) c_{t}, c_{t+k}\right)\right\} \in\{(m, 0),(0, m)\}
$$

Restriction to corner solutions.

MPLs and Utility Function Curvature

Price list switching point reveals $u\left(c_{t}\right) \approx \delta^{k} u\left(c_{t+k}\right)$

MPLs and Utility Function Curvature

Price list switching point reveals $u\left(c_{t}\right) \approx \delta^{k} u\left(c_{t+k}\right)$ Assuming linearity, no problem:

$$
\delta_{L} \approx\left\{\frac{c_{t}}{c_{t+k}}\right\}^{1 / k}
$$

MPLs and Utility Function Curvature

Price list switching point reveals $u\left(c_{t}\right) \approx \delta^{k} u\left(c_{t+k}\right)$ Assuming linearity, no problem:

$$
\delta_{L} \approx\left\{\frac{c_{t}}{c_{t+k}}\right\}^{1 / k}
$$

Allowing curvature means:

$$
\delta_{C} \approx\left\{\frac{u\left(c_{t}\right)}{u\left(c_{t+k}\right)}\right\}^{1 / k}
$$

will yield a bias, $\delta_{C}-\delta_{L}$.

Proposed Solutions

Proposed solutions (Frederick et al., 2002):
Elicit utility rankings(attractiveness) at different points in time Compare temporally separated prospects. Exploit linearity-in-probability of EU (e.g., Anderhub et al. 2001)

Proposed Solutions

Proposed solutions (Frederick et al., 2002):
(1) Elicit utility rankings(attractiveness) at different points in time.
\square Separately elicit a preference for risk to identify concavity, and intertemporal choice to identify discounting(e.g., Andersen et al. 2008, Tanaka et al. 2009)

Proposed Solutions

Proposed solutions (Frederick et al., 2002):
(1) Elicit utility rankings(attractiveness) at different points in time.
(2) Compare temporally separated prospects. Exploit linearity-in-probability of EU (e.g., Anderhub et al. 2001).

Double Multiple Price List (DMPL)

Proposed Solutions

Proposed solutions (Frederick et al., 2002):
(1) Elicit utility rankings(attractiveness) at different points in time.
(2) Compare temporally separated prospects. Exploit linearity-in-probability of EU (e.g., Anderhub et al. 2001).
(3) Separately elicit a preference for risk to identify concavity, and intertemporal choice to identify discounting(e.g., Andersen et al. 2008, Tanaka et al. 2009).

Double Multiple Price List (DMPL)

Proposed Solutions

Proposed solutions (Frederick et al., 2002):

- Elicit utility rankings(attractiveness) at different points in time.
(3) Compare temporally separated prospects. Exploit linearity-in-probability of EU (e.g., Anderhub et al. 2001).
(3) Separately elicit a preference for risk to identify concavity, and intertemporal choice to identify discounting(e.g., Andersen et al. 2008, Tanaka et al. 2009).

Double Multiple Price List (DMPL)

Rethinking the Standard MPL

If corner solution restrictions create a bias
subject to

Rethinking the Standard MPL

If corner solution restrictions create a bias... why not connect the dots?
subject to

This is simply a future value budget constraint
Convex Time Budget methodology (CTB)

Rethinking the Standard MPL

If corner solution restrictions create a bias... why not connect the dots? To identify convex preferences on c_{t} and c_{t+k} use a convex budget:

$$
\max _{c_{t}, c_{t+k}} U\left(c_{t}, c_{t+k}\right)
$$

subject to

$$
(1+r) c_{t}+c_{t+k}=m
$$

This is simply a future value budget constraint.
Convex Time Budget methodology (CTB)

Rethinking the Standard MPL

If corner solution restrictions create a bias... why not connect the dots? To identify convex preferences on c_{t} and c_{t+k} use a convex budget:

$$
\max _{c_{t}, c_{t+k}} U\left(c_{t}, c_{t+k}\right)
$$

subject to

$$
(1+r) c_{t}+c_{t+k}=m
$$

This is simply a future value budget constraint.
Convex Time Budget methodology (CTB)

CTBs and Parameter Estimates

The CTB:

$$
\begin{gathered}
\max _{c_{t}, c_{t+k}} U\left(c_{t}, c_{t+k}\right) \\
\text { s.t. }(1+r) c_{t}+c_{t+k}=m
\end{gathered}
$$

In a single, simple instrument, CTBs allow for identification of:

- Curvature at the individual and aggregate levels.

CTBs and Parameter Estimates

The CTB:

$$
\begin{array}{ll}
& \max _{c_{t}, c_{t+k}} U\left(c_{t}, c_{t+k}\right) \\
\text { s.t. } & (1+r) c_{t}+c_{t+k}=m
\end{array}
$$

In a single, simple instrument, CTBs allow for identification of:

- Discounting at the individual and aggregate levels.
- Curvature at the individual and aggregate levels.
- Dynamic inconsistency (e.g., hyperbolic discounting)

CTBs and Parameter Estimates

The CTB:

$$
\begin{array}{ll}
& \max _{c_{t}, c_{t+k}} U\left(c_{t}, c_{t+k}\right) \\
\text { s.t. } & (1+r) c_{t}+c_{t+k}=m
\end{array}
$$

In a single, simple instrument, CTBs allow for identification of:

- Discounting at the individual and aggregate levels.
- Curvature at the individual and aggregate levels.

CTBs and Parameter Estimates

The CTB:

$$
\begin{array}{ll}
& \max _{c_{t}, c_{t+k}} U\left(c_{t}, c_{t+k}\right) \\
\text { s.t. } & (1+r) c_{t}+c_{t+k}=m
\end{array}
$$

In a single, simple instrument, CTBs allow for identification of:

- Discounting at the individual and aggregate levels.
- Curvature at the individual and aggregate levels.
- Dynamic inconsistency (e.g., hyperbolic discounting)

CTBs and Parameter Estimates

The CTB:

$$
\begin{array}{ll}
& \max _{c_{t}, c_{t+k}} U\left(c_{t}, c_{t+k}\right) \\
\text { s.t. } & (1+r) c_{t}+c_{t+k}=m
\end{array}
$$

In a single, simple instrument, CTBs allow for identification of:

- Discounting at the individual and aggregate level. \rightarrow Annual discount rate $\approx 30 \%$
- Curvature at the individual and aggregate level.
- Dynamic inconsistency (e.g., hyperbolic discounting)

CTBs and Parameter Estimates

The CTB:

$$
\begin{array}{ll}
& \max _{c_{t}, c_{t+k}} U\left(c_{t}, c_{t+k}\right) \\
\text { s.t. } & (1+r) c_{t}+c_{t+k}=m
\end{array}
$$

In a single, simple instrument, CTBs allow for identification of:

- Discounting at the individual and aggregate level. \rightarrow Annual discount rate $\approx 30 \%$
- Curvature at the individual and aggregate level. \rightarrow Significant, but limited utility function curvature
- Dynamic inconsistency (e.g., hyperbolic discounting)

CTBs and Parameter Estimates

The CTB:

$$
\begin{gathered}
\max _{c_{t}, c_{t+k}} U\left(c_{t}, c_{t+k}\right) \\
\text { s.t. }(1+r) c_{t}+c_{t+k}=m
\end{gathered}
$$

In a single, simple instrument, CTBs allow for identification of:

- Discounting at the individual and aggregate level.
\rightarrow Annual discount rate $\approx 30 \%$
- Curvature at the individual and aggregate level. \rightarrow Significant, but limited utility function curvature
- Dynamic inconsistency (e.g., hyperbolic discounting) \rightarrow Precisely estimated utility parameters

CTBs and Parameter Estimates

The CTB:

$$
\begin{gathered}
\max _{c_{t}, c_{t+k}} U\left(c_{t}, c_{t+k}\right) \\
\text { s.t. }(1+r) c_{t}+c_{t+k}=m
\end{gathered}
$$

In a single, simple instrument, CTBs allow for identification of:

- Discounting at the individual and aggregate level.
\rightarrow Annual discount rate $\approx 30 \%$
- Curvature at the individual and aggregate level. \rightarrow Significant, but limited utility function curvature
- Dynamic inconsistency (e.g., hyperbolic discounting)
\rightarrow Precisely estimated utility parameters
\rightarrow To our surprise, no significant present bias

Paper 1: Estimating Time Preferences from Convex Budgets

Outline

- Experimental Design
- Aggregate Results
- Individual Results

Design: The CTB

In the CTB:

- Subjects are given a budget of 100 tokens.
- Tokens convert to dollars sooner at r_{1} and later at r_{2}. So

$$
\frac{r_{2}}{r_{1}}=(1+r)
$$

- 45 convex budgets.
- $(t=0,7$, or 35 days $) \times(k=35,70$, or 98 days $)=9 t-k$ cells.
- $r_{2}=0.20$ or $0.25 ; \quad r_{1} \in[0.10,0.20]$.
- 97 subjects. All freshmen and sophomores at UCSD
- 1 budget chosen for payment.

Design: Supplemental Data

- Also collected standard DMPL data
- 3 Standard MPLs
- 2 Holt-Laury risk price lists
- Post questionnaire, including question on expenditures.

Experimental Payments

To equate transaction costs of sooner and later payments:
Pre-tested forms of payment: i) emailed gift cards at Amazon, ii) PayPal, iii) Triton Cash, iv) Personal check from 'Professor Andreoni' drawn on campus bank.

Experimental Payments

To equate transaction costs of sooner and later payments:

- Pre-tested forms of payment: i) emailed gift cards at Amazon, ii) PayPal, iii) Triton Cash, iv) Personal check from 'Professor Andreoni' drawn on campus bank.

Experimental Payments

To equate transaction costs of sooner and later payments:

- Pre-tested forms of payment: i) emailed gift cards at Amazon, ii) PayPal, iii) Triton Cash, iv) Personal check from 'Professor Andreoni' drawn on campus bank.
- All payments by check.

All studies done in January...school ends in June.

Experimental Payments

To equate transaction costs of sooner and later payments:

- Pre-tested forms of payment: i) emailed gift cards at Amazon, ii) PayPal, iii) Triton Cash, iv) Personal check from 'Professor Andreoni' drawn on campus bank.
- All payments by check.
- All studies done in January...school ends in June.

Experimental Payments

To equate transaction costs of sooner and later payments:

- Pre-tested forms of payment: i) emailed gift cards at Amazon, ii) PayPal, iii) Triton Cash, iv) Personal check from 'Professor Andreoni' drawn on campus bank.
- All payments by check.
- All studies done in January...school ends in June.
- Possible payment dates chosen to avoid high and low money demand times: Valentines Day, Spring Break +/- 1 week, final exams.

Experimental Payments

To equate transaction costs, continued...

> \$10 Thank-you payment split in two-\$5 sooner and \$5 later. Subjects addressed two envelopes to themselves.

Experimental Payments

To equate transaction costs, continued...

- \$10 Thank-you payment split in two-\$5 sooner and \$5 later.

Experimental Payments

To equate transaction costs, continued...

- \$10 Thank-you payment split in two-\$5 sooner and \$5 later.
- Subjects addressed two envelopes to themselves.

Experimental Payments

To equate transaction costs, continued...

- \$10 Thank-you payment split in two-\$5 sooner and \$5 later.
- Subjects addressed two envelopes to themselves.
- Wrote amount owed, and dates, inside flap of each envelope.

Experimental Payments

To equate transaction costs, continued...

- \$10 Thank-you payment split in two-\$5 sooner and \$5 later.
- Subjects addressed two envelopes to themselves.
- Wrote amount owed, and dates, inside flap of each envelope.
- All payments, including $t=0$, delivered to campus mail box.

Experimental Payments

To equate transaction costs, continued...

- \$10 Thank-you payment split in two-\$5 sooner and \$5 later.
- Subjects addressed two envelopes to themselves.
- Wrote amount owed, and dates, inside flap of each envelope.
- All payments, including $t=0$, delivered to campus mail box.
- 'Today’ payments guaranteed by 5pm.

Experimental Payments

To equate transaction costs, continued...

- \$10 Thank-you payment split in two-\$5 sooner and \$5 later.
- Subjects addressed two envelopes to themselves.
- Wrote amount owed, and dates, inside flap of each envelope.
- All payments, including $t=0$, delivered to campus mail box.
- 'Today’ payments guaranteed by 5pm.
- Given Andreoni's business card and told to call or email if check doesn't arrive.

Experimental Payments

To equate transaction costs, continued...

- \$10 Thank-you payment split in two-\$5 sooner and \$5 later.
- Subjects addressed two envelopes to themselves.
- Wrote amount owed, and dates, inside flap of each envelope.
- All payments, including $t=0$, delivered to campus mail box.
- 'Today’ payments guaranteed by 5pm.
- Given Andreoni's business card and told to call or email if check doesn't arrive. OMG!!

Experimental Payments

To equate transaction costs, continued...

- \$10 Thank-you payment split in two-\$5 sooner and \$5 later.
- Subjects addressed two envelopes to themselves.
- Wrote amount owed, and dates, inside flap of each envelope.
- All payments, including $t=0$, delivered to campus mail box.
- 'Today’ payments guaranteed by 5pm.
- Given Andreoni's business card and told to call or email if check doesn’t arrive. OMG!!
- 97% believed they would get paid.

The Decision Environment

University of California San Diego, Economics Department

Decision

Please, be sure to complete the decisions behind each group-size tab before clicking submit. You can make your decisions in any order, and can always revise your decisions before submitting them.

[^0]
Results: Aggregate Behavior

Results: Dynamic Consistency

Estimating Time Preferences

$$
\max _{c_{t}, c_{t+k}} U\left(c_{t}, c_{t+k}\right)
$$

subject to

$$
(1+r) c_{t}+c_{t+k}=m
$$

Assume time-separable dynamically consistent CRRA:

$$
U\left(c_{t}, c_{t+k}, \cdot\right)=\left(c_{t}-\omega_{1}\right)^{\alpha}+\beta \delta^{k}\left(c_{t+k}-\omega_{2}\right)^{\alpha}
$$

- c_{t}, c_{t+k} are experimental earnings.
- ω_{1}, ω_{2} are parameters-Stone-Geary minima or negative background consumption.

Consumer Optimization

Optimization implies $M R S=(1+r)$
Substituting in the budget constraint, and rearrange to get Linear Demand for c_{t} :
If $t=0$:

$$
\begin{aligned}
c_{t} & =\left[\frac{1}{1+(1+r)\left(\beta \delta^{k}(1+r)\right)^{\left(\frac{1}{\alpha-1}\right)}}\right] \omega_{1} \\
& +\left[\frac{\left(\beta \delta^{k}(1+r)\right)^{\left(\frac{1}{\alpha-1}\right)}}{1+(1+r)\left(\beta \delta^{k}(1+r)\right)^{\left(\frac{1}{\alpha-1}\right)}}\right]\left(m-\omega_{2}\right)
\end{aligned}
$$

If $t>0$:

$$
\begin{aligned}
c_{t} & =\left[\frac{1}{1+(1+r)\left(\delta^{k}(1+r)\right)^{\left(\frac{1}{\alpha-1}\right)}}\right] \omega_{1} \\
& +\left[\frac{\left(\delta^{k}(1+r)\right)^{\left(\frac{1}{\alpha-1}\right)}}{1+(1+r)\left(\delta^{k}(1+r)\right)^{\left(\frac{1}{\alpha-1}\right)}}\right]\left(m-\omega_{2}\right)
\end{aligned}
$$

Time Preference Estimates

- This is non-linear in many parameters of interest.
- Easily estimate parameters of via non-linear least squares.
- Estimate annual discount rate $=\left(\frac{1}{\delta}\right)^{365}-1$.

Estimation

	(1)	(2)	(3)	(4)
Annual Discount Rate	0.300	0.377	0.371	0.2467
	(0.064)	(0.087)	(0.091)	(0.162)
Present Bias Parameter: $\hat{\beta}$	1.004	1.006	1.007	1.026
	(0.002)	(0.006)	(0.006)	(0.008)
Curvature Parameter: $\hat{\alpha}$	0.920	0.9212	0.897	0.706
	(0.006)	(0.006)	(0.009)	(0.017)
$\hat{\omega}_{1}$	1.368			
	(0.275)			
$\hat{\omega}_{2}$	-0.085			
$\hat{\omega}_{1}=\hat{\omega}_{2}$	(1.581)			
		1.3506	0	-7.046
$\mathrm{R}-$ Squared		(0.278)	-	-
N	0.4911	0.4908	0.4871	0.4499
	4365	4365	4365	4365

Individual Estimates

Discounting and curvature estimable for 89/97 individuals. Assuming $\omega_{1}=\omega_{2}=0$

	Median	5th \%ile	95th \%ile	Min	Max
Annual Disc	.4076	-.0178	5.618	-0.9949	35.355
Daily Disc $\hat{\delta}$.9991	.9948	1.0005	0.9902	1.014
Pres't Bias $\hat{\alpha}$	1.0011	0.9121	1.1075	.7681	1.3241
Curvature $\hat{\alpha}$.9665	0.7076	0.9997	-0.1331	0.9998

Comparison with DMPL Results

- Discount rates much lower than generally obtained.
- Curvature much closer to linear utility than DMPL estimates. Andersen et al. $\hat{\alpha} \approx 0.25$
- Analysis on DMPL: 3 standard MPLs and 2 Holt-Laury risk price list tasks.
- Calculate $d=$ daily discount factor and $a=$ CRRA parameter following standard practice.
- Median $d=0.9976 \rightarrow$ Annual rate $\approx 137 \%$. $(\mathrm{N}=87)$
- Median $a=0.5125$. $(\mathrm{N}=79)$

Correlation of CTB and DMPL Results

Panel A: Daily Discount Factors
$\mathrm{N}=87$

Panel B: Curvature Parameters
$\mathrm{N}=79$

Regression Line
rho $=0.024$
($p=0.834$)
45 Deg Line

Summary of Paper 1

We estimate discounting and curvature from a single instrument, the CTB.

Summary of Paper 1

We estimate discounting and curvature from a single instrument, the CTB.
(1) Lower discount rates than previously obtained.

Summary of Paper 1

We estimate discounting and curvature from a single instrument, the CTB.
(1) Lower discount rates than previously obtained. \rightarrow curvature matters. $\hat{\delta}$ correlates with d. Bias correlates with $\hat{\alpha}$.

Summary of Paper 1

We estimate discounting and curvature from a single instrument, the CTB.
(1) Lower discount rates than previously obtained. \rightarrow curvature matters. $\hat{\delta}$ correlates with d. Bias correlates with $\hat{\alpha}$.
(2) Less aggregate present bias than previously obtained.

Summary of Paper 1

We estimate discounting and curvature from a single instrument, the CTB.
(1) Lower discount rates than previously obtained. \rightarrow curvature matters. $\hat{\delta}$ correlates with d. Bias correlates with $\hat{\alpha}$.
(2) Less aggregate present bias than previously obtained. \rightarrow transaction costs? reproducibility?
correlation between $\hat{\alpha}$ and a. \rightarrow differential stimuli? Should we be

Summary of Paper 1

We estimate discounting and curvature from a single instrument, the CTB.
(1) Lower discount rates than previously obtained. \rightarrow curvature matters. $\hat{\delta}$ correlates with d. Bias correlates with $\hat{\alpha}$.
(2) Less aggregate present bias than previously obtained. \rightarrow transaction costs? reproducibility?
(3) Find limited, though significant, utility function curvature. No correlation between $\hat{\alpha}$ and a.

Summary of Paper 1

We estimate discounting and curvature from a single instrument, the CTB.
(1) Lower discount rates than previously obtained. \rightarrow curvature matters. $\hat{\delta}$ correlates with d. Bias correlates with $\hat{\alpha}$.
(2) Less aggregate present bias than previously obtained. \rightarrow transaction costs? reproducibility?
(3) Find limited, though significant, utility function curvature. No correlation between $\hat{\alpha}$ and a. \rightarrow differential stimuli? Should we be using risk experiments to identify curvature?

What Happened?

- Did we do something wrong?
- Did we bias behavior toward time consistency?

Did we do something right?

- Did we actually succeed in equalizing transactions cost? Did we actuallv succeed in assurina future navments woulc be received?

What Happened?

- Did we do something wrong?
- Did we bias behavior toward time consistency?
- Did we do something right?
- Did we actually succeed in equalizing transactions cost?
- Did we actually succeed in assuring future payments would be received?

Risk and Time

Observations:

> The present is known, but the future is inherently uncertain Many violations of Expected Utility come when one option is certain and one is uncertain.

Risk and Time

Observations:

- The present is known, but the future is inherently uncertain certain and one is uncertain.

Risk and Time

Observations:

- The present is known, but the future is inherently uncertain
- Many violations of Expected Utility come when one option is certain and one is uncertain.

Risk and Time

Observations:

- The present is known, but the future is inherently uncertain
- Many violations of Expected Utility come when one option is certain and one is uncertain.
- Allais' Paradox of common consequence, the "certainty effect".
- Tversky and Fox's Probability Weighting
- Rabin's Calibration Theorem, excessive risk aversion over small gambles
- Gneezy and List's "Uncertainty effect"

Risk and Time

Observations:

- The present is known, but the future is inherently uncertain
- Many violations of Expected Utility come when one option is certain and one is uncertain.
- Allais' Paradox of common consequence, the "certainty effect".
- Tversky and Fox's Probability Weighting
- Rabin's Calibration Theorem, excessive risk aversion over small gambles
- Gneezy and List's "Uncertainty effect"
- Could differences in experimental results be due to controls on future risk?

What Did Allais Say?

What did Allais say about the Certainty Effect?
From The New Palgrave, 2008:
> "When I read the Theory of Games in 1948, (the Independence Axiom) appeared to me to be totally incompatible with the conclusions I had reached in 1936 attempting to define a reasonable strategy ... for games with mathematical expectations.... This lead me to derive some counter-examples. One of them, formulated in 1952, has become famous as the 'Allais Paradox.' Today it is as widespread as it is misunderstood." (p. 4-5)

What Did Allais Say?

"Limiting consideration to the mathematical expectations of the B_{i} involves neglecting the basic element characterizing psychology vis-a-vis risk,in particular when very large sums are involved....(there is a) very strong preference for security in the neighborhood of certainty."(p.6)

What Did Allais Say?

"Limiting consideration to the mathematical expectations of the B_{i} involves neglecting the basic element characterizing psychology vis-a-vis risk,in particular when very large sums are involved....(there is a) very strong preference for security in the neighborhood of certainty."(p.6)
"To have a marked preferences for security in the neighborhood of certainty is not more irrational than preferring roast beef to chicken." (p. 7)

Interpreting Allais

Put this in modern terms.

- "Near" certainty preferences are governed by utility $v(x)$
- "Away from" certainty preferences may be valued differently, say $u(x)$
Let $\psi=1$ in "the neighborhood of certainty.
Define $U(x ; \psi)$ as utility, Then perhaps

Interpreting Allais

Put this in modern terms.

- "Near" certainty preferences are governed by utility $v(x)$
- "Away from" certainty preferences may be valued differently, say $u(x)$
- Let $\psi=1$ in "the neighborhood of certainty."

So EU is discontinuous in p Perhaps u depends on D as well, so preferences are continuous in p, but the Independence Axiom fails

Interpreting Allais

Put this in modern terms.

- "Near" certainty preferences are governed by utility $v(x)$
- "Away from" certainty preferences may be valued differently, say $u(x)$
- Let $\psi=1$ in "the neighborhood of certainty."
- Define $U(x ; \psi)$ as utility, Then perhaps

$$
\begin{gathered}
v(x)=U(x ; 1) \\
u(x)=U(x ; 0) \\
v(x)>u(x)
\end{gathered}
$$

- So EU is discontinuous in p

Perhaps u depends on p as well, so preferences are continuous in p, but the Independence Axiom fails

Interpreting Allais

Put this in modern terms.

- "Near" certainty preferences are governed by utility $v(x)$
- "Away from" certainty preferences may be valued differently, say $u(x)$
- Let $\psi=1$ in "the neighborhood of certainty."
- Define $U(x ; \psi)$ as utility, Then perhaps

$$
\begin{gathered}
v(x)=U(x ; 1) \\
u(x)=U(x ; 0) \\
v(x)>u(x)
\end{gathered}
$$

- So EU is discontinuous in p
- Perhaps u depends on p as well, so preferences are continuous in p, but the Independence Axiom fails.

Interpreting Allais

Interpreting Allais

Violating the Independence Axiom in the Neighborhood of Certainty

Interpreting Allais

Violating the Continuity (and IA) in the Neighborhood of Certainty

What if Allais is Right?

- Could it be that the excessive preference (for money) sooner is due to Allais' certainty effect?
- Utility for x in "the neighborhood of certainty" is different than "far from certainty"?
- Hints of this idea in the literature
- Halevy (AER 2008), Weber and Chapman (OBHDP 2005)
- How can this hypothesis be tested?

What if Allais is Right?

- Could it be that the excessive preference (for money) sooner is due to Allais' certainty effect?
- Utility for x in "the neighborhood of certainty" is different than "far from certainty"?
- Hints of this idea in the literature
- Halevy (AER 2008), Weber and Chapman (OBHDP 2005)
- How can this hypothesis be tested?
- We can add risk back into our problem, both in the present and the future.
- Do we find evidence of two utility functions, $u(x)$ under risk and $v(x)$ under certainty?

Paper 2: Risk Preferences are Not Time Preferences

Systematically add risk to intermporal choice.

Motivation: When Risk Preferences ARE Time Preferences

In general Discounted Expected Utility (DEU) means

$$
\max p_{1} u\left(c_{t}\right)+p_{2} \delta^{k} u\left(c_{t+k}\right) \text { s.t. }(1+r) c_{t}+c_{t+k}=m
$$

Optimization means

$$
\frac{u^{\prime}\left(c_{t}\right)}{\delta^{k} u^{\prime}\left(c_{t+k}\right)}=\frac{p_{2}}{p_{1}}(1+r)
$$

Define

$$
\theta=\frac{p_{2}}{p_{1}}(1+r)
$$

Whenever θ and r are the same, choices should be the same- even when one or both p's is 1

Experimental Design

- Paper-and-pencil
- $t=7, k=28,56$, always front end delay.
- Within subject, $\mathrm{N}=80$.
- Allocate 100 tokens worth $\$ 0.20$ in the later date, and $\$ 0.14$ to $\$ 0.20$ earlier.
- Risk Conditions: "Pr(paid sooner) $-\operatorname{Pr}$ (paid later)"
- 100\%-100\% Always paid
- 50\%-50\% each period paid 50\%
- $50 \%-40 \%$
- $40 \%-50 \%$
- $100 \%-80 \%$
- $80 \%-100 \%$

Experimental Design, Cont.

Same protocol as Paper 1

- Recruit from dorms
- \$10 Thank You payment, \$5 sooner and \$5 later
- Paid by check
- Address two envelopes to themselves
- Given Andreoni's business card
- Paid for one decision at end.
- Roll 0, 1, or 2 10-sided die.

Strategy

- Compare choices with common θ to see if choices are similar
- Estimate $v(x)$ and δ from $100 \%-100 \%$
- Estimate $u(x)$ and δ from $50 \%-50 \%$
- Are utilities and discount factors the same?
- Use utility estimates to predict out-of-sample for remaining treatments.

Results: Certain and Uncertain Utility

Graphs by k

Parameter Estimates

	(1)	(2)	(3)
$\hat{\alpha}$	0.982		
	(0.002)		
$\hat{\alpha}_{(1,1)}$		0.988	0.988
		(0.002)	(0.002)
$\hat{\alpha}_{(0.5,0.5)}$		0.885	0.883
		(0.017)	(0.017)
Annual Rate	0.274		0.284
	(0.035)		(0.037)
Annual Rate ${ }_{(1,1)}$		0.282	
		(0.036)	
Annual Rate ${ }_{(0.5,0.5)}$		0.315	
		(0.088)	
$\hat{\omega}$	3.608	2.417	2.414
	(0.339)	(0.418)	(0.418)
R^{2}	0.642	0.673	0.673
N	2240	2240	2240
Clusters	80	80	80

Parameter Estimates

Summary:

- Same discounting as before $\approx 30 \%$ per year in both cases.
- Certain α : 0.988
- Uncertain $\alpha: 0.883$. Difference is significant.
- Good fit to the data.

Results: Certain and Uncertain Utility

Results: Certain and Uncertain Utility

Results: All Uncertainty \& OOS Prediction

Graphs by k

Results: Hybrid Certainty and Uncertainty

Graphs by k

Summary of Paper 2

- In "the neighborhood of certainty" people prefer security
- But "far from certainty" they behave as consistent DEU maximizers
- When θ is the same, choice favors certainty.
- It appears as if two different utility functions govern certainty and risk

When Certainty and Uncertainty Mix

- Notice whenever certainty and uncertainty mix, if $u-v$ preferences are correct then there will be a misspecification.

Equivalent
Recoarmhers often find $a \approx 0.5$ to 0.6 , while we estimate $a=0.88$

When Certainty and Uncertainty Mix

- Notice whenever certainty and uncertainty mix, if $u-v$ preferences are correct then there will be a misspecification.
- For instance, assume $U(x)=x^{a}$ and elicit a through a Certainty Equivalent.
- Researchers often find $a \approx 0.5$ to 0.6 , while we estimate $\alpha=0.88$

When Certainty and Uncertainty Mix

- Notice whenever certainty and uncertainty mix, if $u-v$ preferences are correct then there will be a misspecification.
- For instance, assume $U(x)=x^{a}$ and elicit a through a Certainty Equivalent.
- Researchers often find $a \approx 0.5$ to 0.6 , while we estimate $\alpha=0.88$
- Example: $X=50, p=0.5$.
- $C E^{0.99}=p X^{0.88} \rightarrow C E=16.07$

When Certainty and Uncertainty Mix

- Notice whenever certainty and uncertainty mix, if $u-v$ preferences are correct then there will be a misspecification.
- For instance, assume $U(x)=x^{a}$ and elicit a through a Certainty Equivalent.
- Researchers often find $a \approx 0.5$ to 0.6 , while we estimate $\alpha=0.88$
- Example: $X=50, p=0.5$.
- $C E^{0.99}=p X^{0.88} \rightarrow C E=16.07$
- Find the a that solves $C E^{a}=p X^{a}$

When Certainty and Uncertainty Mix

- Notice whenever certainty and uncertainty mix, if $u-v$ preferences are correct then there will be a misspecification.
- For instance, assume $U(x)=x^{a}$ and elicit a through a Certainty Equivalent.
- Researchers often find $a \approx 0.5$ to 0.6 , while we estimate $\alpha=0.88$
- Example: $X=50, p=0.5$.
- $C E^{0.99}=p X^{0.88} \rightarrow C E=16.07$
- Find the a that solves $C E^{a}=p X^{a} \rightarrow a=0.61$

When Certainty and Uncertainty Mix

- Notice whenever certainty and uncertainty mix, if $u-v$ preferences are correct then there will be a misspecification.
- For instance, assume $U(x)=x^{a}$ and elicit a through a Certainty Equivalent.
- Researchers often find $a \approx 0.5$ to 0.6 , while we estimate $\alpha=0.88$
- Example: $X=50, p=0.5$.
- $C E^{0.99}=p X^{0.88} \rightarrow C E=16.07$
- Find the a that solves $C E^{a}=p X^{a} \rightarrow a=0.61$
- Misspecification leads to conclusion of excessive risk aversion.

When Certainty and Uncertainty Mix

- Notice, Certainty Equivalents are also used in experiments motivating probability weighting.
- Tversky and Fox (1995) assume a curvature parameter (coincidentally) $a=0.88$

When Certainty and Uncertainty Mix

- Notice, Certainty Equivalents are also used in experiments motivating probability weighting.
- Tversky and Fox (1995) assume a curvature parameter (coincidentally) $a=0.88$
- For $X=50, p=0.90$ our parameters say $C E=30.73$
- For $X=50, p=0.01$ our parameters say $C E=0.31$

When Certainty and Uncertainty Mix

- Notice, Certainty Equivalents are also used in experiments motivating probability weighting.
- Tversky and Fox (1995) assume a curvature parameter (coincidentally) $a=0.88$
- For $X=50, p=0.90$ our parameters say $C E=30.73$
- For $X=50, p=0.01$ our parameters say $C E=0.31$
- Find the $\pi(p)$ that rationalizes $C E^{a}=\pi(p) X^{a}$ with $a=0.88$

When Certainty and Uncertainty Mix

- Notice, Certainty Equivalents are also used in experiments motivating probability weighting.
- Tversky and Fox (1995) assume a curvature parameter (coincidentally) $a=0.88$
- For $X=50, p=0.90$ our parameters say $C E=30.73$
- For $X=50, p=0.01$ our parameters say $C E=0.31$
- Find the $\pi(p)$ that rationalizes $C E^{a}=\pi(p) X^{a}$ with $a=0.88$
- For $X=50, p=0.9 ; \pi(p)=0.652 \rightarrow$ downweighting.

When Certainty and Uncertainty Mix

- Notice, Certainty Equivalents are also used in experiments motivating probability weighting.
- Tversky and Fox (1995) assume a curvature parameter (coincidentally) $a=0.88$
- For $X=50, p=0.90$ our parameters say $C E=30.73$
- For $X=50, p=0.01$ our parameters say $C E=0.31$
- Find the $\pi(p)$ that rationalizes $C E^{a}=\pi(p) X^{a}$ with $a=0.88$
- For $X=50, p=0.9 ; \pi(p)=0.652 \rightarrow$ downweighting.
- For $X=50, p=0.01 ; \pi(p)=0.013 \rightarrow$ upweighting.

When Certainty and Uncertainty Mix

- Notice, Certainty Equivalents are also used in experiments motivating probability weighting.
- Tversky and Fox (1995) assume a curvature parameter (coincidentally) $a=0.88$
- For $X=50, p=0.90$ our parameters say $C E=30.73$
- For $X=50, p=0.01$ our parameters say $C E=0.31$
- Find the $\pi(p)$ that rationalizes $C E^{a}=\pi(p) X^{a}$ with $a=0.88$
- For $X=50, p=0.9 ; \pi(p)=0.652 \rightarrow$ downweighting.
- For $X=50, p=0.01 ; \pi(p)=0.013 \rightarrow$ upweighting.

Is Probability Weighting simply specification error from $u-v$ preferences?

Paper 3: Uncertainty Equivalents: Testing the Limits of the Independence Axiom

Question: We know from the Allais Paradox that the Independence Axiom fails, but when does it fail, how does it fail, and for whom does it fail?

Paper 3: Uncertainty Equivalents: Testing the Limits of the Independence Axiom

Question: We know from the Allais Paradox that the Independence Axiom fails, but when does it fail, how does it fail, and for whom does it fail?

The ideal test would

- Not rely on functional form assumptions for utility or probability weights.
Rely solely on the Independence Axioim's implication of linearity

Paper 3: Uncertainty Equivalents: Testing the Limits of the Independence Axiom

Question: We know from the Allais Paradox that the Independence Axiom fails, but when does it fail, how does it fail, and for whom does it fail?

The ideal test would

- Not rely on functional form assumptions for utility or probability weights.
- Rely solely on the Independence Axioim's implication of linearity in probability

Paper 3: Uncertainty Equivalents: Testing the Limits of the Independence Axiom

Question: We know from the Allais Paradox that the Independence Axiom fails, but when does it fail, how does it fail, and for whom does it fail?

The ideal test would

- Not rely on functional form assumptions for utility or probability weights.
- Rely solely on the Independence Axioim's implication of linearity in probability
- Allow for separation between
(1) Probability weighting
(2) Disappointment Aversion
(3) $u-v$ preferences

Paper 3: Uncertainty Equivalents: Testing the Limits of the Independence Axiom

Question: We know from the Allais Paradox that the Independence Axiom fails, but when does it fail, how does it fail, and for whom does it fail?

The ideal test would

- Not rely on functional form assumptions for utility or probability weights.
- Rely solely on the Independence Axioim's implication of linearity in probability
- Allow for separation between
(1) Probability weighting
(2) Disappointment Aversion
(3) $u-v$ preferences

The Uncertainty Equivalent

Experimental Environment

Consider a p-gamble which pays $\$ X$ with probability p and $\$ Y>\$ X$ with probability $(1-p)$: $(p ; X, Y)$.

- Certainty Equivalent: What value $\$ C$ with certainty makes you indifferent to this p-gamble?
- Uncertainty Equivalent: What q-gamble over $\$ Y$ and $\$ 0,(q ; Y, 0)$, makes you indifferent to this p-gamble?
- q is a utility index for the p gamble.
- Linearity in probabilities: p and q must be linearly related.

Experimental Environment

Consider a p-gamble which pays $\$ X$ with probability p and $\$ Y>\$ X$ with probability $(1-p)$: $(p ; X, Y)$.

- Certainty Equivalent: What value $\$ C$ with certainty makes you indifferent to this p-gamble?
- Uncertainty Equivalent: What q-gamble over $\$ Y$ and $\$ 0,(q ; Y, 0)$, makes you indifferent to this p-gamble?
- q is a utility index for the p gamble.
- Linearity in probabilities: p and q must be linearly related.
- C and q have identical dynamics. More risk averse \rightarrow lower C, higher q.

Experimental Environment

Consider a p-gamble which pays $\$ X$ with probability p and $\$ Y>\$ X$ with probability $(1-p)$: $(p ; X, Y)$.

- Certainty Equivalent: What value $\$ C$ with certainty makes you indifferent to this p-gamble?
- Uncertainty Equivalent: What q-gamble over $\$ Y$ and $\$ 0,(q ; Y, 0)$, makes you indifferent to this p-gamble?
- q is a utility index for the p gamble.
- Linearity in probabilities: p and q must be linearly related.
- C and q have identical dynamics. More risk averse \rightarrow lower C, higher q. C is problematic under $u-v$ preferences.

Motivation for the Uncertainty Equivalent

Empirical Predictions

- Expected Utility: Linear, negative relationship between q and p.

Empirical Predictions

- Expected Utility: Linear, negative relationship between q and p.
- $u-v$ Preferences: Linear, negative relationship between q and p until $p=1$. At $p=1, q$ will discontinuously increase.

Empirical Predictions

- Expected Utility: Linear, negative relationship between q and p.
- $u-v$ Preferences: Linear, negative relationship between q and p until $p=1$. At $p=1, q$ will discontinuously increase. Increase associated with violations of stochastic dominance a la Gneezy et al. (2006).

Empirical Predictions

- Expected Utility: Linear, negative relationship between q and p.
- $u-v$ Preferences: Linear, negative relationship between q and p until $p=1$. At $p=1, q$ will discontinuously increase. Increase associated with violations of stochastic dominance a la Gneezy et al. (2006).
- Probability Weighting: Non-linear, concave negative relationship between q and p. Why?

Empirical Predictions

- Expected Utility: Linear, negative relationship between q and p.
- $u-v$ Preferences: Linear, negative relationship between q and p until $p=1$. At $p=1, q$ will discontinuously increase. Increase associated with violations of stochastic dominance a la Gneezy et al. (2006).
- Probability Weighting: Non-linear, concave negative relationship between q and p. Why?
At p close to $1, p$ of $\$ X$ downweighted and $1-p$ of $\$ Y$ upweighted. Need high q to compensate for upweighting of $\$ Y$. When $p=1$, upweighting disappears $\rightarrow q$ decreases precipitously.

Empirical Predictions

- Disappointment Aversion:
- Bell (1985); Loomes and Sugden (1986); Gul (1991)
- DA is general class of reference-dependent models with expectations-based reference points.
- A gamble's outcomes are evaluated relative to the gamble's EU certainty equivalent.
- Recently, Koszegi and Rabin(2006, 2007) extend this notion of reference points to reference distributions.

Empirical Predictions

Design Details

- Uncertainty Equivalents
- Three payment sets. $(X, Y) \in\{(10,30),(30,50),(10,50)\}$
- $p \in\{0.05,0.10,0.25,0.50,0.75,0.90,0.95,1\}$
- Certainty Equivalents of gambles over \$0 and \$30.
- $p \in\{0.05,0.10,0.25,0.50,0.75,0.90,0.95\}$
- Probabilities chosen to reproduce Tversky \& Kahneman (1992) , Tversky \& Fox (1995).

Design Details

- Uncertainty Equivalents
- Three payment sets. $(X, Y) \in\{(10,30),(30,50),(10,50)\}$
- $p \in\{0.05,0.10,0.25,0.50,0.75,0.90,0.95,1\}$
- Certainty Equivalents of gambles over \$0 and \$30.
- $p \in\{0.05,0.10,0.25,0.50,0.75,0.90,0.95\}$
- Probabilities chosen to reproduce Tversky \& Kahneman (1992) , Tversky \& Fox (1995).
- Paper-and-pencil price lists. Packets with increasing p.

Design Details

- Uncertainty Equivalents
- Three payment sets. $(X, Y) \in\{(10,30),(30,50),(10,50)\}$
- $p \in\{0.05,0.10,0.25,0.50,0.75,0.90,0.95,1\}$
- Certainty Equivalents of gambles over \$0 and \$30.
- $p \in\{0.05,0.10,0.25,0.50,0.75,0.90,0.95\}$
- Probabilities chosen to reproduce Tversky \& Kahneman (1992) , Tversky \& Fox (1995).
- Paper-and-pencil price lists. Packets with increasing p.
- Two orders. UE-CE; CE-UE. No order effects.

Design Details

- Uncertainty Equivalents
- Three payment sets. $(X, Y) \in\{(10,30),(30,50),(10,50)\}$
- $p \in\{0.05,0.10,0.25,0.50,0.75,0.90,0.95,1\}$
- Certainty Equivalents of gambles over \$0 and \$30.
- $p \in\{0.05,0.10,0.25,0.50,0.75,0.90,0.95\}$
- Probabilities chosen to reproduce Tversky \& Kahneman (1992) , Tversky \& Fox (1995).
- Paper-and-pencil price lists. Packets with increasing p.
- Two orders. UE-CE; CE-UE. No order effects.
- One task, one question chosen for payment.

Design Details

- Uncertainty Equivalents
- Three payment sets. $(X, Y) \in\{(10,30),(30,50),(10,50)\}$
- $p \in\{0.05,0.10,0.25,0.50,0.75,0.90,0.95,1\}$
- Certainty Equivalents of gambles over \$0 and \$30.
- $p \in\{0.05,0.10,0.25,0.50,0.75,0.90,0.95\}$
- Probabilities chosen to reproduce Tversky \& Kahneman (1992) , Tversky \& Fox (1995).
- Paper-and-pencil price lists. Packets with increasing p.
- Two orders. UE-CE; CE-UE. No order effects.
- One task, one question chosen for payment.
- Uncertainty resolved immediately at end of experiment.

Sample Task: Uncertainty Equivalents

TASK 4
On this page you will make a series of decisions between two uncertain options. Option A will be a 50 in 100 chance of $\$ 10$ and a 50 in 100 chance of $\$ 30$. Option B will vary across decisions. Initially, Option B will be a 95 in 100 chance of $\$ 0$ and a 5 in 100 chance of $\$ 30$. As you proceed down the rows, Option B will change. The chance of receiving $\$ 30$ will increase, while the chance of receiving $\$ 0$ will decrease: For each row, all you have to do is decide whether you prefer Option A or Option B.

	Option A			or	Option B		
	Chance of \$10	Chance of \$30			Chance of \$0	Chance of \$30	
	50 in 100	50 in 100	\square	or	100 in 100	0 in 100	\square
1)	50 in 100	50 in 100	\square	or	95 in 100	5 in 100	\square
2)	50 in 100	50 in 100	\square	or	90 in 100	10 in 100	\square
3)	50 in 100	50 in 100	\square	or	85 in 100	15 in 100	\square
4)	50 in 100	50 in 100	\square	or	80 in 100	20 in 100	\square
5)	50 in 100	50 in 100	\square	or	75 in 100	25 in 100	\square
6)	50 in 100	50 in 100	\square	or	70 in 100	30 in 100	\square
7)	50 in 100	50 in 100	\square	or	65 in 100	35 in 100	\square
8)	50 in 100	50 in 100	\square	or	60 in 100	40 in 100	\square
9)	50 in 100	50 in 100	\square	or	55 in 100	45 in 100	\square
10)	50 in 100	50 in 100	\square	or	50 in 100	50 in 100	\square
11)	50 in 100	50 in 100	\square	or	45 in 100	55 in 100	\square
12)	50 in 100	50 in 100		or	40 in 100	60 in 100	\square
13)	50 in 100	50 in 100		or	35 in 100	65 in 100	\square
14)	50 in 100	50 in 100	\square	or	30 in 100	70 in 100	\square
15)	50 in 100	50 in 100	\square	or	25 in 100	75 in 100	\square
16)	50 in 100	50 in 100	\square	or	20 in 100	80 in 100	\square
17)	50 in 100	50 in 100	\square	or	15 in 100	85 in 100	\square
18)	50 in 100	50 in 100	\square	or	10 in 100	90 in 100	\square
19)	50 in 100	50 in 100	\square	or	5 in 100	95 in 100	\square
20)	50 in 100	50 in 100	\square	or	1 in 100	99 in 100	\square
	50 in 100	50 in 100	\square	or	0 in 100	100 in 100	\square

Uncertainty Equivalents Results

Graphs by dblock

Model Separation: The Relationship Between q and p

	(1)	(2)	(3)
	$(X, Y)=(\$ 10, \$ 30)$	$(X, Y)=(\$ 30, \$ 50)$	$(X, Y)=(\$ 10, \$ 50)$
Dependent Variable: Interval Response of Uncertainty Equivalent $(q \times 100)$			
$p \times 100$	$-0.660^{* * *}$	$-0.376^{* * *}$	$-0.482^{* * *}$
	(0.060)	(0.035)	(0.047)
$(p \times 100)^{2}$	$0.002^{* * *}$	$0.002^{* * *}$	0.001
	(0.001)	(0.000)	(0.000)
Constant	98.122	97.866	97.439
	(0.885)	(0.435)	(0.642)
\# Observations	608	608	607
\# Clusters	76	76	76

Level of significance: ${ }^{*} p<0.1,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$

Violations of Stochastic Dominance

84 opportunities to violate stochastic dominance \rightarrow obtain individual level violation rates. Violation Rates:

Violations of Stochastic Dominance

84 opportunities to violate stochastic dominance \rightarrow obtain individual level violation rates.
Violation Rates:

- (63) Away from certainty: $0.043(s . d .=0.064)$

Violations of Stochastic Dominance

84 opportunities to violate stochastic dominance \rightarrow obtain individual level violation rates.
Violation Rates:

- (63) Away from certainty: 0.043 (s.d. $=0.064$)
- (21) Involving certainty: 0.097 (0.158), $(t=3.88, p<0.001)$

Violations of Stochastic Dominance

84 opportunities to violate stochastic dominance \rightarrow obtain individual level violation rates.
Violation Rates:

- (63) Away from certainty: 0.043 (s.d. $=0.064$)
- (21) Involving certainty: 0.097 (0.158), $(t=3.88, p<0.001)$
- (3) Comparing $p=1$ to $p^{\prime}=0.95$: 0.175 (0.258), $(t=3.95, p<0.001)$

Violations of Stochastic Dominance

84 opportunities to violate stochastic dominance \rightarrow obtain individual level violation rates.
Violation Rates:

- (63) Away from certainty: 0.043 (s.d. $=0.064$)
- (21) Involving certainty: 0.097 (0.158), $(t=3.88, p<0.001)$
- (3) Comparing $p=1$ to $p^{\prime}=0.95$: 0.175 (0.258), ($t=3.95, p<0.001$)
- 38 percent of subject demonstrate at least one violation between $p=1$ and $p^{\prime}=0.95, \rightarrow$ Violators.

Violations of Stochastic Dominance

84 opportunities to violate stochastic dominance \rightarrow obtain individual level violation rates.
Violation Rates:

- (63) Away from certainty: 0.043 (s.d. $=0.064$)
- (21) Involving certainty: 0.097 (0.158), $(t=3.88, p<0.001)$
- (3) Comparing $p=1$ to $p^{\prime}=0.95$: 0.175 (0.258), ($t=3.95, p<0.001$)
- 38 percent of subject demonstrate at least one violation between $p=1$ and $p^{\prime}=0.95, \rightarrow$ Violators.
Following $u-v$ preferences, violations of stochastic dominance are prevalent and localized close to certainty. Focus attention on violators and non-violators.

Violations of Stochastic Dominance

- Within-subject demonstration of the hotly debated 'uncertainty effect' (Gneezy et al. 2006)

Violations of Stochastic Dominance

- Within-subject demonstration of the hotly debated 'uncertainty effect' (Gneezy et al. 2006)
- Here achieved with money.

Increasing p order unlikely to 'frame' the result against violations. Result may help inform the uncertainty effect debate and its source: $u-v$ preferences?

Violations of Stochastic Dominance

- Within-subject demonstration of the hotly debated 'uncertainty effect' (Gneezy et al. 2006)
- Here achieved with money.
- Increasing p order unlikely to 'frame' the result against violations.

Violations of Stochastic Dominance

- Within-subject demonstration of the hotly debated 'uncertainty effect' (Gneezy et al. 2006)
- Here achieved with money.
- Increasing p order unlikely to 'frame' the result against violations.
- Result may help inform the uncertainty effect debate and its source: $u-v$ preferences?

Violators and Non-Violators

Graphs by dblock

Violators

Graphs by dblock

Experimental Risk Aversion and Probability Weighting

Generally, in certainty equivalents we see....

- Small-stakes Risk Aversion: Use some intermediate probability ($p \sim 0.5-0.75$). Any risk aversion over small stakes violates expected utility (Rabin 2000).
- Probability Weighting: Use spectrum of probabilities. For fixed stakes, probability weighting \rightarrow risk loving at low probabilities, risk averse at higher probabilities.
But...
Both phenomena follow from $u-v$ preferences in certainty
equivalents experiments.
Violations of stochastic dominance in uncertainty equivalents should have predictive power for these phenomena.

Experimental Risk Aversion and Probability Weighting

Generally, in certainty equivalents we see....

- Small-stakes Risk Aversion: Use some intermediate probability ($p \sim 0.5-0.75$). Any risk aversion over small stakes violates expected utility (Rabin 2000).
- Probability Weighting: Use spectrum of probabilities. For fixed stakes, probability weighting \rightarrow risk loving at low probabilities, risk averse at higher probabilities.
But...
- Both phenomena follow from $u-v$ preferences in certainty equivalents experiments.

Experimental Risk Aversion and Probability Weighting

Generally, in certainty equivalents we see....

- Small-stakes Risk Aversion: Use some intermediate probability ($p \sim 0.5-0.75$). Any risk aversion over small stakes violates expected utility (Rabin 2000).
- Probability Weighting: Use spectrum of probabilities. For fixed stakes, probability weighting \rightarrow risk loving at low probabilities, risk averse at higher probabilities.
But...
- Both phenomena follow from $u-v$ preferences in certainty equivalents experiments.
- Violations of stochastic dominance in uncertainty equivalents should have predictive power for these phenomena.

Risk Averse, Loving, Neutral

All Subjects* $(N=70)$			
p	Proportion Risk Averse	Proportion Risk Neutral	Proportion Risk Loving
0.05	0.13	0.30	0.57
0.10	0.10	0.27	0.63
0.25	0.24	0.36	0.40
0.50	0.43	0.29	0.29
0.75	0.53	0.24	0.23
0.90	0.50	0.24	0.26
0.95	0.29	0.53	0.18

*Six potentially confused, extremely risk-loving (every task) subjects not reported with average risk premia of -109% of gamble's expected value.

Risk Averse, Loving, Neutral

Panel B: Violators ($N=26$)

p	Proportion Risk Averse	Proportion Risk Neutral	Proportion Risk Loving
0.05	0.08	0.23	0.69
0.10	0.04	0.12	0.85
0.25	0.19	0.27	0.54
0.50	0.50	0.12	0.38
0.75	0.58	0.08	0.35
0.90	0.54	0.19	0.27
0.95	0.36	0.36	0.28

Panel C: Non-Violators ($N=44$)

0.05	0.16	0.35	0.49
0.10	0.14	0.36	0.50
0.25	0.27	0.41	0.32
0.50	0.39	0.39	0.23
0.75	0.50	0.34	0.16
0.90	0.48	0.27	0.25
0.95	0.26	0.63	0.12

Violators Drive Phenomena

	(1) All p	$\begin{gathered} (2) \\ p \leq 0.25 \end{gathered}$	$\begin{gathered} \hline(3) \\ p>0.25 \end{gathered}$
Multinomial Logit: Risk Averse, Neutral or Loving Classification			
Risk Loving			
Violator (=1)	$\begin{aligned} & 1.248^{* * *} \\ & (0.373) \end{aligned}$	$\begin{aligned} & 1.090^{* *} \\ & (0.449) \end{aligned}$	$\begin{aligned} & 1.336^{* * *} \\ & (0.473) \end{aligned}$
$p \times 100$	$\begin{aligned} & -0.016^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & -0.033^{\star *} \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.018^{\star} \\ & (0.009) \end{aligned}$
Constant	$\begin{gathered} 0.386 \\ (0.303) \end{gathered}$	$\begin{gathered} 0.572 \\ (0.368) \end{gathered}$	$\begin{gathered} 0.637 \\ (0.782) \end{gathered}$
Risk Averse			
Violator (=1)	$\begin{aligned} & 0.716^{*} \\ & (0.392) \end{aligned}$	$\begin{gathered} -0.044 \\ (0.654) \end{gathered}$	$\begin{aligned} & 1.001^{* *} \\ & (0.445) \end{aligned}$
$p \times 100$	$\begin{aligned} & 0.010^{* *} \\ & (0.004) \end{aligned}$	$\begin{gathered} 0.029 \\ (0.021) \end{gathered}$	$\begin{aligned} & -0.014^{\star} \\ & (0.008) \end{aligned}$
Constant	$\begin{aligned} & -0.768^{\star \star} \\ & (0.365) \end{aligned}$	$\begin{gathered} -1.108^{\star \star} \\ (0.553) \end{gathered}$	$\begin{aligned} & 1.081^{*} \\ & (0.655) \end{aligned}$
\# Observations	487	209	278
\# Clusters	70	70	70

Median Certainty Equivalents Data

Probability Weighting Estimates

Standard Procedure:

$$
u(C)=\pi(p) u(30)
$$

Assume

- $u(X)=X^{\alpha}$
- $\pi(p)=p^{\gamma} /\left(p^{\gamma}+(1-p)^{\gamma}\right)^{1 / \gamma}$

Estimate:

$$
C=\left[p^{\gamma} /\left(p^{\gamma}+(1-p)^{\gamma}\right)^{1 / \gamma} \times 30^{\alpha}\right]^{1 / \alpha}+\epsilon
$$

Probability Weighting Estimates

Standard Procedure:

$$
u(C)=\pi(p) u(30)
$$

Assume

- $u(X)=X^{\alpha}$
- $\pi(p)=p^{\gamma} /\left(p^{\gamma}+(1-p)^{\gamma}\right)^{1 / \gamma}$

Estimate:

$$
C=\left[p^{\gamma} /\left(p^{\gamma}+(1-p)^{\gamma}\right)^{1 / \gamma} \times 30^{\alpha}\right]^{1 / \alpha}+\epsilon
$$

Median Data:

- $\hat{\alpha}_{V}=1.101(0.049) ; \hat{\gamma}_{V}=0.743$ (0.033)
- $\hat{\alpha}_{N}=0.987(0.049) ; \hat{\gamma}_{N}=0.929(0.057)$
- $H_{0}: \gamma_{V}=\gamma_{N} ; F_{1,10}=8.04, p<0.05$.

Summary

- Independence performs well away from certainty, but breaks down at $p=1$.

Summary

- Independence performs well away from certainty, but breaks down at $p=1$.
- Rejects CPT Probability Weighting, consisent with DA and $u-v$

Summary

- Independence performs well away from certainty, but breaks down at $p=1$.
- Rejects CPT Probability Weighting, consisent with DA and $u-v$

Summary

- Independence performs well away from certainty, but breaks down at $p=1$.
- Rejects CPT Probability Weighting, consisent with DA and $u-v$
- 38 percent of subjects violate stochastic dominance.
- These violators drive the failures of the Independence Axiom

Summary

- Independence performs well away from certainty, but breaks down at $p=1$.
- Rejects CPT Probability Weighting, consisent with DA and $u-v$
- 38 percent of subjects violate stochastic dominance.
- These violators drive the failures of the Independence Axiom
- Rejects strict forms of Disappointment Aversion, since these preclude dominance violations. Supports $u-v$.

Summary

- Independence performs well away from certainty, but breaks down at $p=1$.
- Rejects CPT Probability Weighting, consisent with DA and $u-v$
- 38 percent of subjects violate stochastic dominance.
- These violators drive the failures of the Independence Axiom
- Rejects strict forms of Disappointment Aversion, since these preclude dominance violations. Supports $u-v$.
- Certainty equivalents conflate risk preferences and probability weighting with attitudes towards certainty $v(x)>u(x)$.

All choices can be unified under $u-v$ preferences.

Summary

- Independence performs well away from certainty, but breaks down at $p=1$.
- Rejects CPT Probability Weighting, consisent with DA and $u-v$
- 38 percent of subjects violate stochastic dominance.
- These violators drive the failures of the Independence Axiom
- Rejects strict forms of Disappointment Aversion, since these preclude dominance violations. Supports $u-v$.
- Certainty equivalents conflate risk preferences and probability weighting with attitudes towards certainty $v(x)>u(x)$.
- Violators drive the model of probability weighting.

Summary

- Independence performs well away from certainty, but breaks down at $p=1$.
- Rejects CPT Probability Weighting, consisent with DA and $u-v$
- 38 percent of subjects violate stochastic dominance.
- These violators drive the failures of the Independence Axiom
- Rejects strict forms of Disappointment Aversion, since these preclude dominance violations. Supports $u-v$.
- Certainty equivalents conflate risk preferences and probability weighting with attitudes towards certainty $v(x)>u(x)$.
- Violators drive the model of probability weighting.
- All choices can be unified under $u-v$ preferences.

Where Next?

- Joint with with Charlie Sprenger and Brian Knutson on $u-v$ preferences in fMRI machines.
Charlie Sprenger solo work on reference dependent expected

Where Next?

- Joint with with Charlie Sprenger and Brian Knutson on $u-v$ preferences in fMRI machines.
- Charlie Sprenger solo work on reference dependent expected utility.

Where Next?

- Joint with with Charlie Sprenger and Brian Knutson on $u-v$ preferences in fMRI machines.
- Charlie Sprenger solo work on reference dependent expected utility.
- Joint work with Charlie on ambiguity, and Kreps-Porteus preferences for resolution of uncertainty.

Where Next?

- Joint with with Charlie Sprenger and Brian Knutson on $u-v$ preferences in fMRI machines.
- Charlie Sprenger solo work on reference dependent expected utility.
- Joint work with Charlie on ambiguity, and Kreps-Porteus preferences for resolution of uncertainty. $\rightarrow u-v-w-x$ preferences?

Finally certain - time is up!

[^0]: Submit Decisions <--Clicking this button will submit ALL your decisions behind every tab

