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Abstract

We study costly information acquisition in global games of regime change (that is,
coordination games where payo¤s are discontinuous in the unobserved state and in the
agents� average action). We show that only symmetric equilibria exist and provide
su¢ cient conditions for uniqueness. We then characterize the value of information in
these games and link it to the underlying parameters of the model. We investigate
equilibrium e¢ ciency, complementarities in information choices, and the trade-o¤s be-
tween public and private information. We show that information acquisition can be
ine¢ cient and that strategic complementarities in actions do not always translate into
strategic complementarities in information acquisition. Finally, we �nd that public
and private information can be complements. These results contrast �ndings in linear-
quadratic models, where payo¤s depend continuously on both the unobserved state
and the agents�average action.
Key words: global games, information acquisition, coordination, value of informa-

tion.
JEL classi�cation: C72, D80

1 Introduction

Global games have been extensively applied to model economic phenomena featuring coordi-
nation problems, such as currency crises (Morris and Shin, 1998), bank runs (Goldstein and
Pauzner, 2005), FDI decisions (Dasgupta, 2007), and political revolts (Edmond, 2013). In a
global game the payo¤s of agents depend on both the state of the economy and the actions
of others. However, agents observe only noisy private and public signals about this state
and, in order to choose an optimal action, they have to make inferences about its true value
and about the beliefs that other agents hold. This perturbation of the information structure

�Corresponding author. michal.szkup@ubc.ca, Vancouver School of Economics, University of British
Columbia, 1871 East Mall, FL 9, RM 997, Vancouver, V6T 1Z1, Canada.

yitrevino@ucsd.edu, Department of Economics, University of California San Diego, 9500 Gilman Drive
#0508 La Jolla, CA 92093, USA.

1



of the game gives rise to a very rich sequence of higher-order beliefs, which leads agents to
coordinate on a unique equilibrium. This prediction of a unique equilibrium contrasts the
complete information model, which features multiple equilibria. While the original models
have been extended along many directions, the precision of private signals has typically been
exogenously given and set to be identical across agents. In this paper we introduce costly
information acquisition into the standard global games framework.
Endogenizing information in a global game is a relevant endeavor, not only from a theo-

retical point of view but also from an applied one. Following Dasgupta (2007), one can think
of an emerging economy that wants to attract foreign direct investment where potential in-
vestors have to decide whether to invest or not invest. For the pro�ts to be positive, there
has to be enough investment so that the liberalization program succeeds (due to increasing
returns to aggregate investment), so investors will want to coordinate on their decisions.1

The returns of the project depend also on the state of the emerging economy, which can
be uncertain at the time of the investment decision. In this context, potential investors can
acquire more precise information about the state of the emerging economy by buying reports
that will assess the pro�tability of this investment.
Introducing costly information acquisition into a global game gives rise to a set of natural

questions with non-trivial implications. We focus on the following questions: Do investors
acquire the socially e¢ cient amount of private information (i.e., do they over-acquire or
under-acquire information)? Are there strategic complementarities in information choices
(i.e., do investors want to learn what others learn)? What is the trade-o¤between private and
public information in this context? Does more precise public information always crowd out
private information acquisition? Does it increase the probability of a successful investment?
And �nally, does it increase welfare?
In order to answer these questions, we �rst characterize an equilibrium in our model. We

establish that only symmetric equilibria exist, and we �nd that under mild conditions on
parameters we can guarantee uniqueness of equilibrium. We de�ne the value of additional
information in our setup and analyze how it is a¤ected by prior beliefs, the behavior of
other players, and the cost of investment. We �nd that the value of additional information
is determined by the extent to which it helps an agent to avoid two types of mistakes in
the coordination game: investing when investment is not pro�table, and not investing when
investment is pro�table.
Using these insights, we address each of the questions raised above under the assumptions

that ensure uniqueness. We �nd that the unique equilibrium of the game is generically ine¢ -
cient and that, depending on the characteristics of the economy, investors either over-acquire
or under-acquire information. In terms of strategic motives in information acquisition, we
�nd conditions under which strategic complementarities in information acquisition arise and
conditions where this is not the case, so that the optimal precision choice of an agent is a
non-monotonic function of the precision choices of others.

1See Hall et al. (1986), Hall (1987), and Caballero and Lyons (1992) for evidence of increasing returns to
scale in investment. Cooper (1999) provides an excellent overview of the literature on complementarities in
macroeconomics.
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We then study the e¤ects of an increase in the precision of public information on welfare.
Our analysis provides a novel perspective on this issue by investigating the trade-o¤ between
public and private information acquisition. In our model public information a¤ects out-
comes, not only through agents�actions in the coordination game but also by changing their
incentives to acquire private information. We provide conditions under which more precise
public information crowds out private information. Surprisingly, we �nd cases in which more
precise public information leads investors to acquire more precise private information, that
is, where private and public information are complements. Finally, we show that the e¤ect
of more precise public information on the probability of successful investment and welfare
depends on the characteristics of the economy.
Our analysis highlights the di¤erences between global games and the closely related family

of games with linear-quadratic payo¤s (see Angeletos and Pavan, 2007).2 First, we �nd that
whether an improvement in public information is welfare enhancing or not depends crucially
on the ex-ante beliefs about the state of the economy, while in games with linear-quadratic
payo¤s it depends on the relative informativeness of private and public information (Morris
and Shin, 2002; Colombo et al., 2014). Second, in games with linear-quadratic payo¤s strate-
gic complementarities in actions always lead to strategic complementarities in information
acquisition (Hellwig and Veldkamp, 2009; Colombo et al., 2014; Myatt and Wallace, 2012).
In the case of global games, we state conditions under which strategic complementarities in
actions translate into strategic complementarities in information acquisition, and we show
that if these conditions are violated then information choices are not strategic complements.
Finally, in games with linear-quadratic payo¤s with private information acquisition, an in-
crease in the precision of public information always decreases the incentives to acquire more
precise private information (Tong, 2007; Colombo et al., 2014), whereas in our model private
and public information can be complements. We argue that the di¤erences between our
�ndings and the existing results for games with linear-quadratic payo¤s are due to the fact
that the value of additional information is very di¤erent across these two types of models.
In global games the value of such information is determined by the tail probabilities of the
conditional joint distribution of the fundamental and the private signals, while in games with
linear-quadratic payo¤s it is determined by the covariances between investors�signals and
the fundamentals.
The paper is structured as follows. In Section 2 we set up the model and explain the

assumptions we make to solve it. In Section 3 we solve the model and present results
about the non-existence of asymmetric equilibria, the existence of symmetric equilibria, and
conditions ensuring uniqueness of the symmetric equilibrium. In Section 4 we investigate
notions of e¢ ciency of the unique equilibrium. In Section 5 we investigate whether strategic
complementarities in the coordination game translate into strategic complementarities in

2Models with linear-quadratic payo¤s are also coordination games of incomplete information but di¤er
from global games in many respects. The choice sets for actions are continuous (as opposed to binary, as
in global games), and agents have a quadratic utility function that depends on both the distance between
an individual action and the average action of the other players and the distance between that individual
action and the underlying state of the economy.
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information choices. In Section 6 we ask whether an increase in the precision of public
information is welfare enhancing or not. Section 7 compares our results to previous results
on information acquisition in games with linear-quadratic payo¤s. Section 8 summarizes the
related literature, and Section 9 concludes. All the proofs are relegated to the appendix.

2 The model

We consider a two-period model where investors have to decide �rst how much information
to purchase and then, given this information, whether or not to invest in a risky project.
The �rst period, where investors choose the precision of their private signals, constitutes the
novel part of the model. The second period is similar to a standard global games model,
with the exception that investors observe signals with di¤erent precisions.
There is a continuum of investors in the economy; they are indexed by i, where i 2 [0; 1].

The economy is characterized by a parameter � that measures the strength of its economic
fundamentals and is unobserved by investors. Each investor has to make two decisions. First,
he has to decide how much information to acquire about �. Then he has to decide whether
to invest in a risky project (I) or not invest (NI). If an investor decides to invest, he incurs
cost T 2 (0; 1). The bene�t to investing is uncertain and depends on the state � and on p,
the proportion of investors that choose to invest. Investment is successful if p � 1� �, that
is, if the proportion of investors who invest is high enough with respect to the state. The
return on a successful investment for each investor who invests is 1, in which case he will get
the payo¤ 1� T . If investment is unsuccessful, his payo¤ will be �T . The return from not
investing is certain and normalized to 0. The payo¤s are summarized below:3

u (I; p; �) =

�
1� T if p � 1� �
�T if p < 1� � (1a)

u (NI; p; �) = 0 (1b)

Whether individual investment is successful or not depends on the state of the econ-
omy and on the number of individual investments. One can interpret this need for enough
aggregate investment as resulting from increasing returns to scale in investment.4

Investors do not observe the state of the economy �. Instead, they share a common prior
belief that � � N

�
��; �

�1
�

�
. In addition, at the beginning of period 2, investor i observes a

noisy private signal about the realization of �, given by xi:

xi = � + �
�1=2
i "i , i 2 [0; 1]

where "i � N (0; 1) is an idiosyncratic noise, i:i:d: across investors, and independent of the
realization of �, and �i is the precision of investor i�s signal.

3This payo¤ structure is standard in the global games literature (see, for example, Corsetti et al., 2004;
Morris and Shin, 2004; Hellwig et al. 2006; and Dasgupta, 2007).

4The payo¤s are chosen to make the game analytically tractable. All the qualitative results still hold if
we allow the bene�t from investing to be an explicit function of both the state � and aggregate investment.
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In period 1, each investor decides how much information about � to acquire by choosing
the precision of his signal, �i 2 [� ;1). If an investor chooses not to acquire information he
will observe a signal with a default precision � . The cost associated with choosing a precision
�i is given by C (�i), that is, investors face a trade-o¤ between informativeness and cost of
signals. After observing their respective signals, investors decide simultaneously whether to
invest in the project or not. The payo¤s from investment decisions, given by (1a) and (1b),
are realized at the end of period 2.

2.1 Assumptions
Before solving the model, we make two sets of assumptions. The �rst one considers the
underlying parameters of the game, while the second one pertains to the cost function.

Assumption 1 (Concavity) We assume the following:

� �� 2 [� �; � �]; 0 < � � < � � <1

� � > 1
2�
� 2�

The lower bound for precision choices � is set high enough to ensure not only that the
coordination game always has a unique equilibrium but also that the ex-ante utility function
is concave in the individual precision choice �i.5 The details of determining � can be found
in the online appendix.

Assumption 2 (Cost function) We assume that the cost function C (�) satis�es all of the
following conditions:

� C (�) is strictly increasing in �i (C 0(�) > 0)

� C (�) is strictly convex in �i (C 00(�) > 0)

� C 0(�) = 0

� lim�i!1C
0(�i) =1

These assumptions imply that the cost function is strictly convex, a common assump-
tion in the literature on information acquisition. We further assume that an in�nitesimal
improvement in precision is costless, to ensure that the problem is non-trivial and that in-
vestors always acquire information. The last assumption ensures that investors will never
choose to acquire perfect information.
We consider an additive Gaussian information structure and model information acquisi-

tion as a continuous precision choice. As pointed out by Yang (2015), this is not necessarily
the information structure that investors would choose if they had the �exibility to design

5As pointed out by Radner and Stiglitz (1984), the marginal value of information can be increasing for
low levels of informativeness. We choose � to ensure concavity of the ex-ante utility function in �i.
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their own type of information structure. Yang shows that, in a similar setup, investors
would typically prefer to observe binary discrete signals for a given �. An advantage of
Yang�s approach is that investors can choose not only how much information to acquire, but
also the type of signal they observe and its informativeness for any value of the fundamen-
tals. This allows investors to coordinate on their signal structures, and not only on their
informativeness or precision, as is typically assumed in the literature and in our model.
Despite this limitation, assuming an additive information structure has several advan-

tages in the context of our model. First, allowing for �exible information acquisition as in
Yang (2015) introduces multiplicity of equilibria into the model, which makes it di¢ cult
to establish comparative statics results. By choosing an additive structure we can guar-
antee a unique equilibrium. Second, an additive Gaussian information structure is more
tractable and allows us to analyze the resulting equilibrium in greater detail, which would
not be possible under �exible information acquisition. Finally, using an additive informa-
tion structure allows us to compare our results with the existing literature, both on global
games with exogenous information structures and on information acquisition in games with
linear-quadratic payo¤s.6

3 Solving the model

We solve the model using backward induction. We start in period 2, taking as given the pre-
cision choices made by investors in period 1. Once we characterize the equilibrium outcome
at t = 2; we move to the �rst stage of the game to determine optimal information choices.

3.1 Solving the model: t = 2
Let � be a distribution of precision choices �i, that is, � (�) is the proportion of investors
who choose precision �i � � in the �rst period. To make his decision, investor i has to
take into account the distribution of �i�s in the economy (�), his own precision level (�i), his
signal (xi), and his prior belief about �. Following the literature, we show that there exists
a unique equilibrium in monotone strategies and that this is the only type of equilibrium in
the coordination game.
Assume that all investors follow monotone strategies, and let ai (xi; �i;�) be investor i�s

strategy.7 Then ai (�) is monotone if there exists x�i (�i;�) such that

ai (xi; �i;�) =

�
I if xi � x�i (�i;�)
NI if xi < x�i (�i;�)

6Note that an additive information structure is a common modelling device, not only in the context of
global games or games with linear-quadratic payo¤s but also in the broad literature on costly information
acquisition. See Veldkamp (2011) for examples in macroeconomics and �nance, or Hwang (1993) and Hauk
and Hurkens (2001) for examples in industrial organization.

7In what follows, we assume that each investor conditions his strategy on the distribution of precision
choices �, rather than on each investor j�s precision choice �j , j 6= i. This assumption is without loss of
generality, since investors do not care about the identity of a particular investor j who chooses precision �j ,
they care only about the proportion of investors that choose a given precision level.
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Note that the thresholds can di¤er across investors with di¤erent precision levels and that
they also depend on �. We assume that all investors with the same precision level, �i, have
the same threshold x�i (�i;�). As in the standard global games models, the equilibrium in
monotone strategies is characterized by two equations: a payo¤ indi¤erence (PI) condition
and a critical mass (CM) condition. The di¤erence with respect to the standard setup is
that in our model each type �i has a di¤erent PI condition.8

Consider �rst the CM condition, which requires that at state �� the mass of investors
that invest be equal to the mass of investors needed for investment to succeed:Z

Pr (xi � x�i (�i;�) j��) d�(�i) = 1� ��

Next, consider investor i, whose precision level is �i. The PI condition states that when
observing signal x�i (�i;�), investor i is indi¤erent between investing and not investing:

Pr (� > �� (�) jx�i (�i;�))� T = 0 (2)

An equilibrium in monotone strategies is characterized by a set of signal thresholds
fx�i (�i;�)gi2[0;1] and a threshold level for the fundamentals, �� (�), that solve the PI and
CM equations simultaneously. In the case of a normal distribution, this system of equations
can be simpli�ed to one equation in one unknown, �� (�):Z

�

 
��

�
1=2
i

(�� (�)� ��) +
(�i + ��)

1=2

�
1=2
i

��1 (T )

!
d�(�i) = �

� (�) (3)

Each �� (�) that solves Equation (3) is then associated with a di¤erent equilibrium. The
next proposition speci�es conditions for this equation to have a unique solution and for no
other non-monotone equilibria to exist.

Proposition 1 Under Assumption A1, for any � the coordination game has a unique equi-
librium in which all investors use threshold strategies fx�i (�i;�) ; i 2 [0; 1]g and where invest-
ment is successful if and only if � � �� (�).
Note that Proposition 1 is a generalization of the standard uniqueness result in global

games (as established by Hellwig, 2002, and Morris and Shin, 2004) to the setting where
investors are heterogenous with respect to the precision of their information.9 Armed with
this result, we move on to the �rst period to analyze investors�optimal choices of precision.

3.2 Solving the model: t = 1
We now consider the �rst stage of the game, in which investors choose the precision of the
signal they will observe at the beginning of the second stage. We assume that each investor
will act optimally in the second period and that he believes that all other investors will act
optimally as well.

8See Hellwig (2002) for a detailed derivation of PI and CM conditions in the model where investors share
the same precision.

9Assumption A1 is stronger than necessary. The conclusion of Proposition 1 holds as long as
inf (supp(�)) > 1

2� �
2
� .
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3.2.1 Ex-ante utility

Denote by G�� (�) the prior belief of investors regarding �, and by F�i (xj�) the conditional
distribution of xi given � and given that the signal xi has precision �i. Recall that all investors
are ex-ante identical, that is, they have the same ex-ante utility.
For any (��; ��; T ) ; the ex-ante utility of investor i who chooses precision �i and faces a

distribution of precision choices � can be written as10

U i (�i; �) = �
Z ��

�1

Z 1

x�i

TdF�i (xj�) dG�� (�)�
Z 1

��

Z x�i

�1
(1� T ) dF�i (xj�) dG�� (�)

+

Z 1

��
(1� T ) dG�� (�)� C (�i) (4)

The expression on the RHS of Equation (4) has an intuitive interpretation. The last term is
the cost associated with the precision choice �i. Recall that investment is successful if and
only if � � �� (�), in which case an investor�s payo¤ is 1� T if he invests. Hence, the third
term is the expected payo¤ at time t = 1 for an investor who can perfectly observe � in the
second period. However, for any �i < 1 an investor�s information at t = 2 is noisy. This
means that the investor will sometimes make mistakes, either investing when investment
is unsuccessful (Type I mistake) or not investing when investment is successful (Type II
mistake). The �rst two terms capture the expected costs of these two mistakes, respectively.
We denote by by M (�i; �) the total expected cost of these mistakes for an investor with
precision �i who faces a distribution of precision choices �

M (�i; �) =

Z ��

�1

Z 1

x�i

TdF�i (xj�) dG�� (�) +
Z 1

��

Z x�i

�1
(1� T )F�i (xj�) dG�� (�)

To better understand how a higher precision is bene�cial to investors, we abstract from
the cost of precision and focus on its bene�t, which is captured in the �rst three terms on
the RHS of Equation (4). We de�ne this bene�t as Bi (�i; �):

Bi (�i; �) � �M (�i; �) +

Z 1

��
(1� T ) dG�� (�)

From the above equation, we see that more precise private information is valued by an
investor to the extent that it allows him to avoid committing costly mistakes. The speci�c
mechanism is formalized in the following lemma.11

10See Section A:3 of the appendix for derivations.
11A higher precision of private signals changes the expected cost of mistakes in two ways. First, a higher

�i changes the ex-ante joint distribution of (�; xi) by better aligning the realization of the signal xi to the
state �. Second, it a¤ects the threshold x�i . A decrease in x

�
i , holding everything else constant, leads to a

higher expected cost of a Type I mistake and a lower expected cost of a Type II mistake, since investors now
invest more aggressively. However, since x�i is chosen to equalize the bene�t from a successful investment
to the potential cost of an unsuccessful investment, the marginal change in x�i due to a change in �i has no
e¤ect on expected utility. Therefore, the marginal bene�t of a higher precision comes from the change in the
ex-ante joint distribution of (�; xi) that better aligns signals xi with the fundamentals �.
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Lemma 1 The marginal bene�t of an increase in the precision of private signals is equal to
the reduction in the expected cost of mistakes due to a change in the ex-ante joint distribution
of (�; xi) implied by this increase, and is given by

@Bi (�i; �)

@�i
=
1

2�i

1

�i + ��
�
1=2
i �

 
x�i � ��

�
�1=2
i

!
�
1=2
� �

 
�� � ��
�
�1=2
�

!
(5)

Equation (5) shows that, for a Gaussian noise structure, the value of additional informa-
tion depends on the distance between x�i and �

� and on the distance between �� and �� (with
larger distances decreasing the value of additional information), but it does not depend on
the relative cost of mistakes.12 ;13

To provide intuition for this result, we �rst focus on the distance between �� and ��.
Consider the case when the di¤erence between �� and �� is large and positive (the case
when the di¤erence is negative is analogous). In this case, an investor assigns a low ex-ante
probability to a successful investment, since prior beliefs indicate that � is unlikely to take
a value greater than ��. As such, he assigns a low probability to committing a Type II
mistake. Thus, in equilibrium he rarely chooses to invest (he sets a high x�i ) and expects
this action to be correct most of the time. In this case, therefore, the value of additional
information is low. The opposite is true when �� and �� lie close to each other. In this
case, from an investor�s perspective, both investment outcomes are almost equally likely.
Therefore, he assigns relatively high probabilities to committing the two types of mistakes
and thus attaches a high value to additional information.
To analyze how the value of additional information varies with the distance between x�i

and ��, we need to understand why in equilibrium x�i might be far away from ��. Consider
the case where x�i is higher than �

�. This occurs in equilibrium when T is high and �� is
low. In this case, an investor is mostly concerned about making a Type I mistake, since he
expects investment to be unsuccessful (low ��) and investing is costly (high T ). Therefore,
in equilibrium he chooses a high x�i in order to minimize a Type I mistake. An increase
in the precision of his private signal allows the investor to reduce the total expected cost
of mistakes. However, since he was already avoiding the mistake that he cares relatively
more about, the reduction in the expected cost of mistakes that accompanies the increase
in his precision is not very valuable. This is in contrast to the case when x�i is close to �

�,
which happens only if the investor initially cares about avoiding both types of mistakes. As
a result, an increase in precision allows him to reduce the probabilities of committing the
two types of mistakes at a similar pace. It follows that in this case the value of additional
information is higher than in the case where x�i is far away from ��.
To summarize, in our setup the value of additional information depends on the relative

distance between x�i , �
� and ��, which in equilibrium are determined by the cost of invest-

ment, T , and the mean of the prior belief, ��. Therefore, as we will see in the following
12This surprising result is a consequence of the equilibrium condition T Pr (� < ��jx�) =

(1� T ) Pr (� > ��jx�) and the properties of the normal distribution.
13In the appendix (Section A:3), we provide an expression for the reduction in the expected cost of each

type of mistake. Equation (5) is obtained by adding those two expressions.
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sections T and �� will play an important role when characterizing the properties of an equi-
librium (see Section 7:1 for a summary of the role played by T and �� for our results).
Moreover, note that, as explained above, when x�i , �

�, and �� are all close to one another
an investor is equally likely to commit the two types of mistakes. Equation (5) implies that,
from an investor�s perspective, the value of additional information is high when the two types
of mistakes are equally likely, and it is low otherwise.

3.3 Equilibrium at t = 1
In period 1; investors choose the precision of their signals. The expected payo¤ to investor
i from choosing precision �i when he faces a distribution of precision choices � and believes
that all investors will behave optimally at t = 2 is given by

U i (�i; �) = B
i (�i; �)� C (�i)

where �� (�) solves Z
Pr (xi � x� (�i; �) j�� (�)) d� = 1� �� (�)

and

x� (�i; �) =
�i + ��
�i

�� (�)� ��
�i
�� +

(�i + ��)
1=2

�i
��1 (T )

With the above description of the investor�s problem at time t = 1, we can now de�ne a
Perfect Bayesian Nash Equilibrium of the two-stage game.

De�nition 1 A pure strategy Perfect Bayesian Nash Equilibrium is a set of precision choices
f� �i ; i 2 [0; 1]g, together with a set of decision rules for the second period fa�i (xi; �i;�); i 2 [0; 1]g
and a distribution of precision choices �� such that all the following hold:

1. Each investor�s choice of precision � �i is optimal, given �
�:

Bi(� �i ; �
�)� C(� �i ) � Bi(b�i; ��)� C(b�i) 8b�i 2 [� ;1)

2. The distribution implied by the investors�choices is almost surely equal to the distrib-
ution ��;

3. All investors behave optimally in the second stage:

a�i (xi; �i;�
�) =

(
I if xi � x�i (�i;��)
NI if xi < x

�
i (�i;�

�)

where

x�i (�i;�
�) =

�i + ��
�i

��(��)� ��
�i
�� +

(�i + ��)

�i

1=2

��1(T )
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and ��(��) solvesZ
�

 
��

�
1=2
i

(��(��)� ��) +
(�i + ��)

1=2

�
1=2
i

��1(T )

!
d��(�i) = �

�(��)

The �rst condition requires investors to choose the precision of their private signals
optimally. The second condition is a standard consistency requirement. Finally, the third
condition requires investors to follow equilibrium strategies in the second stage, given their
choice of precision �i and their beliefs about the equilibrium precision choices of others, ��.
In particular, this condition requires an investor to behave optimally in the second period,
even in the case of an individual deviation in precision choices.
With the above de�nition, we can now state our main existence result.14

Theorem 1 Suppose that Assumptions A1 and A2 hold. Then we have the following:

1. There are no asymmetric equilibria in which investors choose di¤erent precision levels
in the �rst stage.

2. There exists a symmetric equilibrium of the information acquisition game where all
investors choose the same precision � � in period 1 and equilibrium in period 2 is char-
acterized by a pair of thresholds f�� (� �) ; x� (� �)g.

3. There exists � < 1 such that if � > � , then there is a unique equilibrium in the

information acquisition game.

Theorem 1 establishes the existence of symmetric equilibria and rules out the existence
of asymmetric equilibria.15 Moreover, if the default precision level is high enough, there is a
unique symmetric equilibrium. Notice that the condition we impose on � , that is, that the
default precision of signals be high enough, is in the same spirit as the standard condition
to ensure uniqueness of equilibrium in global games.
In what follows, we assume that the above condition for uniqueness of the two-stage game

is satis�ed and denote the unique equilibrium precision choice by � �.16 Since in equilibrium
all investors choose the same precision, with a slight abuse of notation we express the bene�t
function as B (�i; �) and the ex-ante utility function as U (�i; �) ; rather than B (�i; �) and
U (�i; �), respectively. In the remainder of the paper, we investigate the properties of the
unique equilibrium.
14For this result to be true, we need quasi-concavity of the ex-ante utility function, net of the precision

cost, and a unique equilibrium in the second stage. The assumptions made in Section 2 ensure that these
conditions are met (see the online appendix).
15Since in a symmetric equilibrium all investors choose the same precision, we abuse notation slightly and

write x� (��) and �� (��) instead of x� (��; ��) and �� (��) ; where �� = 1���� .
16To be more precise, we assume that � is not only high enough to ensure uniqueness of equilibrium

but also high enough to imply that the slope of the best-response function is lower than 5
6 (the uniqueness

argument requires this slope to be less than 1). Since the slope of the best response function converges to 0
for all � > � as � !1, such a lower bound exists. We need this additional condition to prove Proposition
6.
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4 Spillover e¤ects and the ine¢ ciency of equilibrium

The information acquisition game exhibits spillover e¤ects, since investors do not take into
account the impact of their precision choices on the equilibrium investment outcome. In
particular, an increase in the precision of all investors a¤ects their utility through its impact
on ��. However, since all investors take �� as given, they ignore this e¤ect when choosing
their individual level of precision. As we show below, this leads to the unique equilibrium of
the game being ine¢ cient.
We de�ne an e¢ cient symmetric precision choice as one that maximizes the ex-ante

expected utility, taking into account these spillover e¤ects.

De�nition 2 We say that a precision choice � �� is e¢ cient if

� �� 2 argmax
[�;1)

�
Bi(� ; �)� C(�)

�
That is, a precision choice � �� is e¢ cient if it allows investors to achieve the highest ex-ante

utility when they coordinate their precision choices. Let � �i (�) be investor i�s best-response
function. The di¤erence between the equilibrium precision � � and the e¢ cient precision � ��

is that the former is chosen in a non-cooperative fashion, that is, � � = � �i (�
�), while the

latter is chosen in a cooperative fashion. Hence, � �� is not necessarily a best-response to all
other investors choosing � ��. Indeed, we show that generically � �� 6= � �i (� ��).17
A precision choice is e¢ cient if either � �� = � , or it satis�es the following necessary

�rst-order condition:

Bi1 (�
��; � ��) +Bi2 (�

��; � ��)� C 0 (� ��) = 0

This condition is necessary, but not su¢ cient, for the equilibrium to be e¢ cient, since in
some cases Bi (� ; �) � C (�) is not a quasi-concave function of � . We discuss this issue in
more detail below.18

We �rst show that the unique equilibrium is typically ine¢ cient. To state our result, we
de�ne �E� (T ) as the unique solution to

�� = �

 s
� �(��)

� �(��) + ��
��1 (T )

!
+

1p
� �(��) + ��

��1 (T )

where � � (��) is the equilibrium choice of precision, given that the mean of the prior is ��.
We show in the appendix (proof of Proposition 2) that in equilibrium Bi2 (�

�; � �) = 0 if and
only if �� = �E� . Using this observation, we arrive at the following result:

Proposition 2 Consider the equilibrium precision choice � �. For any T 2 (0; 1), if �� 6=
�E� (T ) then the equilibrium precision choice is ine¢ cient.

17We show in the appendix that the set of arguments that maximizes
�
Bi(� ; �)� C(�)

�
is non-empty and

that they are all �nite.
18See also Section 3:2 of the online appendix.

12



We now investigate whether investors over-acquire or under-acquire information. We say
that investors globally over-acquire information if � � (��) > � �� (��). On the other hand,
investors locally over-acquire information if a small decrease in precision from the equilib-
rium level would lead to an increase in welfare. The de�nitions for the under-acquisition of
information are analogous.
The following proposition fully characterizes the conditions under which investors locally

under- or over-acquire information in equilibrium.

Proposition 3 Consider the investors�equilibrium precision choices.

1. If �� > �E� (T ) ; then investors locally over-acquire information.

2. If �� = �E� (T ) ; (and T � 1=2) then investors choose the locally e¢ cient level of
information.

3. If �� < �E� (T ) ; then investors locally under-acquire information.

To understand the intuition behind Proposition 3, recall that investors take into con-
sideration only their private bene�t and cost when choosing their precision. In particular,
they choose a precision taking as given the equilibrium threshold ��, ignoring the e¤ect their
collective decisions have on the equilibrium probability of a successful investment. Thus, the
social bene�t of additional information tends to di¤er from the private bene�t of a higher
precision, since the former also takes into account the e¤ect of precision choices on ��.
When the investment threshold �� is decreasing in the precision of all investors in the

neighborhood of the equilibrium precision choice � �, which happens when �� < �E� (T ), then
the marginal private bene�t of extra information is lower than the marginal social bene�t.
This is because the marginal social bene�t takes into account the positive e¤ect of a higher
private precision on investment. Since at the equilibrium precision the marginal private
bene�t is equal to the marginal cost of extra information, the social bene�t of more precise
information is strictly higher than its marginal cost. Thus, in this case it would be welfare
improving if all investors acquired more information, that is, investors are locally under-
acquiring information in equilibrium. The opposite is true if the investment threshold ��

is increasing in investors�precision choices in the neighborhood of the equilibrium precision
choice � �, which happens when �� > �E� (T ). In this case, the marginal private bene�t is
higher than the marginal social bene�t and investors locally over-acquire information.19

Finally, as is shown in Proposition 2, if �� = �E� (T ) then the private and social marginal
bene�ts of additional information are equal at the equilibrium precision level � �, and hence
� � is an extremum point of the welfare function. However, this is not enough to conclude
that agents acquire the locally e¢ cient amount of information. In particular, it can be shown
that if T < 1=2, then � � corresponds to a local minimizer of the welfare function, while if
T � 1=2, then � � corresponds to a local maximizer of the welfare function.
19See Iachan and Nenov (2014) for an analysis of the e¤ects in equilibrium of changes in the precision of

private information in a general class of games of regime change.
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The above intuition can also be used to understand when investors globally over-acquire
or under-acquire information. In particular, if the investment threshold �� is monotone in � ,
then the local results translate directly into global results. In this case, the marginal private
bene�t of additional information is either always lower (when �� is a decreasing function of
�) or always higher (when �� is an increasing function of �) than the social marginal bene�t
of information. The di¢ culty of fully characterizing global results is due to the fact that ��

can be a non-monotone function of private precision choices.20

In the online appendix (Proposition 9), we show that the local results translate directly
into global results except for the case when T < 1=2 and �� 2 (b�� (T; � ; ��) ; T ), where

b�� (T; � ; ��) = ��r �

� + ��
��1 (T )

�
+

1p
� + ��

��1 (T )

In this case, it is possible for investors to locally under-acquire but globally over-acquire
information. This is because for these parameters �� is �rst increasing and then decreasing
in the investors�precision choices. Thus, if the equilibrium precision is high, a small increase
in investors�precision choices from the equilibrium level is welfare improving, since it leads
to a lower investment threshold. At the same time, it is possible that from the planner�s
perspective it is optimal to acquire no information, since it is costly and it leads to a higher
��. Verifying this analytically, however, is di¢ cult because the welfare function may not be
quasi-concave.21 Section 3 of the online appendix explores these issues in more detail.

5 Strategic complementarities in information acquisition

We now investigate whether strategic complementarities in the coordination game translate
into strategic complementarities in information acquisition. In the context of games with
linear-quadratic payo¤s, Hellwig and Veldkamp (2009) have shown that this is indeed the
case. In our model this is not always true.

De�nition 3 Let �i be investor i�s precision choice, while � is the precision choice of all the
other investors. We say that information choices are strategic complements if for all �i � �
20See Szkup (2015) for a complete characterization of conditions under which �� is non-monotone in global

games.
21To understand why the welfare function may not be quasi-concave, note that a higher precision has three

separate e¤ects on the welfare function. First, a higher precision allows investors to avoid costly mistakes.
Second, a higher precision, through its e¤ect on investment choices, a¤ects the threshold ��. Finally, a higher
� is associated with a higher cost. If T < 1=2 and �� 2 (b�� (T; � ; ��) ; T ) ; then �� is initially increasing and
then decreasing in � . Thus, not only is a small increase in � costly, but it also lowers the probability of a
successful investment. These two negative e¤ects tend to reduce welfare. However, as � keeps on increasing,
the negative e¤ect of a higher � on investment decreases sharply. For intermediate values of � (precision
choices near the point where �� achieves the global maximum), the negative e¤ect of a higher � on investment
becomes negligible. At this point, it is possible that the reduction in the expected cost of mistakes becomes
the dominant e¤ect and, as a result, the welfare function becomes increasing in � . However, as � increases
further, the reduction in the expected cost of mistakes becomes smaller and smaller. Intuitively, if investors
already have precise information, then they are able to avoid committing mistakes to a large extent, and
there is little value to additional information. As a result, the welfare function again becomes decreasing in
� , driven by the increasing cost of a higher precision.
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and all � � � we have
@2Bi (�i; �)

@�i@�
> 0

The above de�nition states that information choices are strategic complements if and
only if the value of additional information to investor i is increasing in the precision choices
of the other investors for all pairs f�i; �g. Recall from Section 3:2 that the value of additional
information to investor i is determined by the distance between x�i and �

�, as well as the
distance between �� and ��. A change in the precision choice of the other investors, � ,
a¤ects investor i�s incentives to acquire information by a¤ecting these distances, and hence
the value of additional information to investor i. As shown in the next proposition, there is
no guarantee that strategic complementarities in information choices arise in our model.22

Proposition 4 Consider investors�information choices.

1. For T 6= 1
2
; information choices are strategic complements if

�� =2
�
min

�
T; �SC (� ; ��; T )

	
;max

�
T; �SC (� ; ��; T )

	�
where

�SC (� ; ��; T ) � T +
1p
� + ��

��1 (T )

Otherwise, there is a lack of strategic complementarities.

2. For T = 1
2
; information choices are always strategic complements.

Proposition 4 indicates that when T 6= 1=2, for extreme values of the prior mean, infor-
mation choices are strategic complements, while for intermediate values they are not. To
see this, �x T and consider the case when �� is low, so that �� is high and the distance
between the two is large (the case for a high �� is analogous). In this case, an investor cares
mainly about Type I mistakes, since he assigns a low ex-ante probability to a successful
investment, so he attaches relatively low value to additional information. An increase in
� , the precision choice of other investors, leads to a decrease in ��. This is because when
�� is low, an increase in � implies that investors assign a lower weight to the unfavorable
information, represented by low ��; and thus invest more often. However, a decrease in ��

increases the expected probability of a successful investment. As a result, investor i shifts
his concern from avoiding mainly a Type I mistake to avoiding both types of mistakes more
evenly. This increases his demand for information.

22By �lack of strategic complementarities�we refer to the situation where there exist pairs f�i; �g such that
@2

@�i@�
B (�i; �) < 0, that is, where an increase in the other investors�precision choices leads to lower incentives

for investor i to further increase his own precision. This is di¤erent from strategic substitutabilities, which
would correspond to the situation where for all �i and all � we have @2

@�i@�
B (�i; �) < 0. It can be veri�ed

that in our model information choices cannot be strategic substitutes (see the proof of Theorem 1).
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To see why information choices might not be strategic complements, consider the case
when T > 1=2 and �� 2

�
T; �SC (� ; ��; T )

�
; and assume that investor i has a low precision,

�i, and that the precision of the rest of the investors, � , is high. When �i is low, investor i
will care slightly more about a Type I mistake than the rest of the investors, since a high T
implies that this mistake is relatively more costly, and his information is not as precise as
that of the rest of the investors. When both � and T are high, an additional increase in � will
increase �� (see the proof of Proposition 2), thus decreasing the probability of a successful
investment. This, in turn, will make investor i shift his concern even further towards avoiding
a Type I mistake, thus becoming less concerned about a Type II mistake. Since the value of
additional information is higher when an investor cares about both types of mistakes, this
adjustment in investor i�s behavior makes him value additional information even less, which
decreases his incentives to acquire information. An analogous argument holds when T < 1=2
and �� takes a value in

�
�SC (� ; ��; T ) ; T

�
.

6 Public information and welfare

In recent years, the e¤ect of public information on welfare has attracted a lot of attention (see
Morris and Shin, 2002, and the literature that followed). This motivates us to study, in the
context of our model, the e¤ects of the precision of public information on welfare. Going back
to our example in the introduction, consider a government that, in order to encourage foreign
direct investment, decides to provide investors with detailed information about the current
state of the economy. This initial report provided by the government shapes the investors�
prior beliefs about the state of the economy. In addition to this information, investors have
the possibility to gather more information privately. It is of interest to understand the
e¤ect of the public information initially released by the government on investors�incentives
to acquire private information, on the probability of successful investment, and on ex-ante
social welfare.
We interpret prior beliefs as public information and study how changes in the precision

of this type of public information a¤ect equilibrium strategies and outcomes.23 Given our
interpretation, we �rst investigate how an increase in the precision of public information
a¤ects investors�incentives to acquire private information. We then turn our attention to
the e¤ects on coordination among investors, and �nally on the welfare implications of changes
in the informativeness of the prior.
In what follows, we assume that T = 1=2. This assumption implies that Type I and

Type II mistakes are equally costly, and that investors care equally about coordinating with
other investors on investing and on not investing. While not without loss of generality, this
assumption simpli�es the analysis substantially, allowing us to completely characterize the
impact of an increase in the precision of public information on private information acquisition
and on the probability of a successful investment. The case when T 6= 1=2 is discussed in
detail in the online appendix.
One should note that our modelling of public information is di¤erent from the typical

23This interpretation of public information is similar to Metz (2002) and Morris and Shin (2004).
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approach in the literature. Public information is commonly modelled as a separate public
signal that is observed simultaneously with the private signal, and an increase in public
information is modelled as an increase in the precision of this signal (see Morris and Shin,
2002, and Colombo et al., 2014, among others). In those setups agents choose the precision of
private information before the public signal is realized. In our approach, investors condition
their private information choices on the realization of the public signal, captured by ��.24 In
order to facilitate the comparison of our model with the existing literature on games with
linear-quadratic payo¤s, in Section 7 we compare our results to a version of the model with
linear-quadratic payo¤s with a proper prior, but without an explicit public signal.

6.1 Trade-o¤ between public and private information
To analyze the trade-o¤ between public and private information, notice that more precise
public information a¤ects the value of acquiring private information through three di¤erent
channels. First, more precise public information changes the joint density of f�; xig. Since
this e¤ect is independent of investors�behavior, we call this the passive information e¤ect.
Second, a change in ��, by changing the informativeness of the prior, a¤ects an individual
investor�s investment strategy for any given precision choice. Since this e¤ect involves a
change in the investor�s behavior, we call it the active information e¤ect. Finally, a change
in �� a¤ects the equilibrium threshold �� through a change in the other investors�investment
strategies. We call this the coordination e¤ect.
In comparison, more precise private signals a¤ect the value of acquiring more private infor-

mation only through the passive and active information e¤ects. Not only is the coordination
e¤ect not present, but the passive information e¤ect is also di¤erent. In particular, more
precise private information better aligns the signals with the realization of the fundamental.
In contrast, more precise public information increases the likelihood of the fundamentals
taking values closer to their mean. This subtle di¤erence in the passive information e¤ect
can lead to complementarities between public and private information.

Proposition 5 Let T = 1=2. There exist cuto¤s b�� and b�+ such that b�� < 1=2 < b�+ and
the following holds:

1. If �� =2 (b��; b�+), then private and public information are substitutes.
2. If �� 2 (b��; b�+), then private and public information are complements.
To understand the intuition behind Proposition 5, we consider �rst the passive informa-

tion e¤ect (i.e., we keep �� and x� constant). An increase in �� increases the likelihood of the
fundamental taking a value near ��. If �� lies near ��; this leads to a higher probability that
the realization of � will be close to the critical threshold ��. For a given precision of private
information, such a change in the distribution of � increases the ex-ante probability that an

24This has the disadvantage of introducing sensitivity to the prior mean when studying the e¤ects of
changes in the precision of the prior. Unfortunately, introducing a separate public signal makes the analysis
intractable.
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investor�s signal will lie on the �wrong�side of ��, leading him to take the incorrect action.25

In this case, an increase in the precision of public information increases the expected cost of
mistakes, which increases the value of additional information. Therefore, when �� lies near
�� the passive information e¤ect encourages investors to acquire more private information.
Note that this e¤ect is strongest when �� = ��, which happens exactly when �� = 1=2. The
opposite is true when �� is far from ��, which happens when �� is far from 1=2. In this case,
an increase in �� shifts the probability mass away from the values of � at which investors are
particularly susceptible to taking the incorrect action. In this case, the passive information
e¤ect discourages private information acquisition. This e¤ect is particularly strong when ��

is far from ��, which happens when �� is far from 1=2.
The above argument explains why the passive information e¤ect encourages information

acquisition when �� is close to 1=2 and discourages it otherwise. What about the other
e¤ects? When T = 1=2; the coordination e¤ect will always discourage private information
acquisition by increasing the gap between �� and ��. Intuitively, when �� is high (so that
�� > ��), an increase in �� reassures investors that the fundamentals are strong, which
encourages investment and leads to a decrease in ��. Since �� lies now further away from
��, the probability that the actual realization of the fundamental will be close to the critical
threshold �� is lower. For a given precision of private information, such a change in ��

decreases the ex-ante probability that an investor will take the incorrect action, reducing his
incentives to acquire more private information. Analogous intuition applies to the case when
�� is low. By similar logic, the active information e¤ect pushes the investors�threshold, x�,
away from �� (and away from ��), thus decreasing the probability that an investor will take
the incorrect action that he wants to avoid the most.26

Note that the active information and coordination e¤ects become stronger as �� moves
away from 1=2. In particular, the active information e¤ect is strong when a small change in
�� leads to a large change in x�. In turn, the change in x� is large when x� lies far from ��;
since a small change in the precision of the prior has a large e¤ect on investors�posterior
beliefs, evaluated at the signal threshold. Since investors choose the threshold signal to be
close to �� when �� is close to 1=2; the active information e¤ect is strong when �� is far from
1
2
and weak when �� is close to 1=2. Finally, since the change in �� is driven by a change in

x�, the same intuition applies to the coordination e¤ect.

6.1.1 The case T 6= 1=2
One may wonder whether the above intuition extends to the case when T 6= 1=2. In partic-
ular, are there values of �� such that private and public information are complements when
T 6= 1=2? In the online appendix (Section 4), we show that we can use the same intuition
to understand the case T 6= 1=2, since there exist TL and TH , 0 < TL < 1=2 < TH < 1, such
25The probability of taking the incorrect action is highest when � lies close to ��, since an investor faces

the highest likelihood of receiving a signal xi < ��, while in reality � > ��, and vice versa.
26When T = 1=2; the value of �� determines which mistake investors care more about. When �� > 1=2,

investors want to make sure that they invest when investment is successful, and they choose x� < �� < ��.
The opposite is true when �� < 1=2, in which case investors prefer to coordinate on not investing and set
x� > �� > ��.
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that for all T 2 (TL; TH) there are values of �� for which private and public information
are complements. Moreover, as shown in Figure 1, numerical simulations suggest that this
result extends to all T 2 (0; 1).27

T

µ θ

0.05 0.25 0.5 0.75 0.95
2

0.75

0.5

1.75

3

Substitutes
Complements
Passive=0
Active=0

Figure 1: Relation between private and public information

Understanding which e¤ects drive the results when T 6= 1=2 is more di¢ cult, since it
requires comparing the absolute magnitudes of the three e¤ects. However, our analytical
results reported in the online appendix, suggest that, unless T takes extreme values, the
passive information e¤ect still plays an important role in driving the complementarity be-
tween public and private information. This is because the e¤ect of the passive information on
the incentives to acquire private information is the same regardless of the value of T 6= 1=2.
In particular, it is still true that whenever �� is close to �� the passive information e¤ect
encourages information acquisition, while the opposite is true when �� lies far from ��.
Figure 1 further supports this claim. In the �gure the area between the two dashed

curves corresponds to the region where the passive information e¤ect is positive, and the area
between the two dash-dotted curves corresponds to the region where the active information
e¤ect is positive.28 We can see that, unless T takes extreme values, the region where private
and public information are complements lies in the interior of the region where the passive
information e¤ect is positive. This suggests that, unless T is very small or very large, the
passive information e¤ect is the key force driving the complementarity between public and
private information.
When T takes on extreme values, the complementarity between private and public infor-

mation can be driven by the active information e¤ect. To understand why this is the case,

27See Section 4:2 in the online appendix for numerical robustness checks.
28The two dash-dotted curves intersect at T = 1=2, since in this case the active information e¤ect is always

non-positive (and strictly negative when �� 6= 1=2).
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recall that investors care both about the cost of mistakes (captured by T ) and about the
probability with which they commit these mistakes (captured by ��). When T is very high,
investors are mainly worried about committing a Type I mistake, even if committing such a
mistake is not very likely from an ex-ante perspective (i.e., for high values of ��). However,
when �� is high, an increase in �� assures investors that investment will be successful, since
it increases the probability that the realization of � will be high. Hence, from the investors�
ex-ante perspective, an increase in �� increases the likelihood that investors commit a Type
II mistake. This, in turn, makes investors shift their concern from avoiding mainly a Type I
mistake to avoiding both types of mistakes. Since investors�incentives to acquire information
are high when investors care about both types of mistakes, this increases the demand for
information.

6.2 E¤ects of increasing public information on coordination
In the previous subsection we analyzed the relationship between an increase in �� and in-
vestors�precision choices. In this subsection we study the e¤ect of an increase in the precision
of public information on the probability of a successful investment. To provide a complete
analytical characterization of this result, we continue to assume that T = 1=2.29

Proposition 6 Let T = 1
2
; and suppose that the precision of public information increases.

1. If �� < 1
2
, then the ex-ante probability of a successful investment decreases.

2. If �� = 1
2
, then the ex-ante probability of a successful investment is unchanged.

3. If �� > 1
2
, then the ex-ante probability of a successful investment increases.

An increase in �� a¤ects the probability of a successful investment through three chan-
nels. First, it a¤ects the ex-ante distribution of �. Second, it a¤ects directly the value of
the threshold �� through an adjustment in investors� investment strategies (holding their
precision choices constant). Third, it leads indirectly to a change in �� by a¤ecting investors�
precision choices. We �nd that the second e¤ect is the dominant force that determines
whether the probability of a successful investment increases or decreases. Therefore, to un-
derstand the intuition behind this result it is enough to understand the direction of a change
in �� due to a change in ��, holding precision choices constant.
To understand how a change in �� a¤ects ��; recall that when making their decision,

investors care about the expected value of �, given by (���� + �xi) = (�� + �). An increase in
the precision of the prior leads an investor to assign a higher weight to his prior belief about
� and a lower weight to his private signal xi. When �� is high (i.e., �� > 1=2), investors
think that investment is likely to be successful and hence they set x� < ��: It follows that
an increase in �� would increase posterior expectations of investors who received signals
around the threshold signal. As a consequence, these investors would now choose to invest,
thus increasing the aggregate investment and lowering ��. The opposite is true for a low ��
29We explore the case when T 6= 1=2 in Section 5:1 of the online appendix.
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(�� < 1=2). Finally, for �� = 1=2 we have x� = ��, hence a change in �� has no e¤ect on ��

and the direct e¤ect is equal to 0.

6.3 Welfare consequences of a higher ��
In this section we turn our attention to welfare implications of more precise public informa-
tion. Since all investors are ex-ante identical and play a symmetric equilibrium, it is enough
to analyze the ex-ante utility of a single investor in order to determine welfare consequences
of an increase in the precision of public information. Recall that the ex-ante utility of an
investor who plays a symmetric equilibrium with precision choice � � is given by

U i (� �; � �) = �
Z ��(��)

�1

Z 1

x�(��)

TdF�� (xj�) dG�� (�)�
Z 1

��(��)

Z x�(��)

�1
(1� T ) dF�� (xj�) dG�� (�)

+

Z 1

��(��)

(1� T ) dG�� (�)� C (� �)

The total impact of a change in the precision of public information can be expressed as

dU i (� �; �)

d��
= �d�

�

d��
(1� F (x�j��)) g�� (��)

+

Z +1

��(��)

@

@��
(1� T ) [1� F�� (x�j�)] g�� (�) dxd�

�
Z ��(��)

�1

@

@��
T [1� F�� (x�j�)] g�� (�) dxd� (6)

The above equation states that an increase in the precision of the prior a¤ects welfare through
two channels. First, it changes the threshold for the fundamentals that determines whether
investment is successful, by a¤ecting the equilibrium strategies of investors in both stages
of the game (� � and x�). This is captured by the �rst term of the RHS of Equation (6).
Second, a change in �� a¤ects welfare by changing the probability with which investors make
correct decisions avoiding Type I and Type II mistakes. This is captured by the last two
terms on the RHS of Equation (6).
Despite its simplicity, it is di¢ cult to determine the sign of dU i (� �; �) =d��. One would

expect, however, that the e¤ect of a change in the probability of investment is dominant,
since, in coordination games, changes in public information have a disproportional e¤ect on
equilibrium play (see, for example, Morris and Shin, 2002, 2004). According to Proposition 6,
the probability of a successful investment is increasing in the precision of public information
when �� is large, and decreasing when �� is small. Thus, we should expect welfare to be
increasing when �� is high and decreasing when �� is low.30 In Section 5:2 of the online
appendix we provide results of numerical simulations that support this intuition.

30Proposition 6 states also that around �� = 1=2 the e¤ect of an increase in �� on investment is close to
0, hence in that region welfare is determined mainly by the change in the probability of mistakes.
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7 Discussion

7.1 Discussion of results
We have explored the motives and consequences of private information acquisition in global
games and the properties of the unique equilibrium in our game. We found that the para-
meters T and �� are key in determining the results. While the exact mechanism through
which T and �� a¤ect our conclusions depends on the speci�c question under study, the
main reason why these two parameters a¤ect our results is the same. Intuitively, T and ��
determine whether investors worry more about committing a Type I mistake or a Type II
mistake. For example, when T is high, the cost of committing a Type I mistake (investing
when investment is unsuccessful) is higher than the cost of committing a Type II mistake
(not investing when investment is successful). On the other hand, a low �� indicates that
investment is unlikely to be successful, so investors are less likely to commit a Type II mis-
take than Type I mistake. As a consequence, a high T and a low �� imply that x� and ��

are high� in particular, higher than ��. The opposite is true when T is low and �� is high.
Thus, the values of �� and T determine the relative positions of x�; ��, and ��.
The relative positions of x�, ��, and �� are key for our conclusions, since they determine

the sign of a change in �� and x� with respect to changes in the precision of private and public
information, and whether the distances between x� and �� and between �� and �� increase
or decrease in response to changes in � or ��. For example, whether investors over-acquire or
under-acquire information depends on the e¤ect that an increase in the precision of private
information has on the investment threshold ��. On the other hand, whether an increase
in the precision of public information crowds out private information acquisition depends
on the e¤ect that an increase in �� has on the marginal value of private information, which
is determined by the distances between x� and �� and between �� and ��. Each individual
result of the paper and the associated conditions on T and �� can be understood in this way.
Finally, the point f1=2; 1=2g in the fT; ��g space plays a special role. If T = 1=2, investors

care as much about a Type I mistake as they do about a Type II mistake, while if �� = 1=2
they assign the same probability to the investment being successful and unsuccessful. Thus,
investors choose a threshold for their signal such that they expect to invest and not invest
with equal probability, that is, x� = ��; which in turn implies �� = ��. As a consequence, a
marginal change in � or �� has no e¤ect on x� or ��.

7.2 Comparison to games with linear-quadratic payo¤s
Our model is related to the literature on the role of information in games with linear-
quadratic payo¤s. In this type of game, investors� payo¤s depend on how closely their
action is to the average action taken by others and to the unknown state. In the context
of incomplete information games with private and public signals, these models were �rst
analyzed by Morris and Shin (2002). Angeletos and Pavan (2007) provide a very careful and
thorough analysis of this framework with an exogenous information structure. More recently,
Hellwig and Veldkamp (2009), Myatt and Wallace (2012), and Colombo et al. (2014) analyze
the e¤ects of adding costly information acquisition into this framework.
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Although global games and games with linear-quadratic payo¤s have a lot of common
features, our �ndings suggest that there are important di¤erences between these two setups
when introducing endogenous information. First, we �nd that whether an improvement in
public information is welfare enhancing or not depends crucially on the ex-ante beliefs about
the state, while in games with linear-quadratic payo¤s it depends on the relative informa-
tiveness of private and public information (Morris and Shin, 2002; Colombo et al., 2014).
Second, as shown by Tong (2007) and Colombo et al. (2014), in games with linear-quadratic
payo¤s, an increase in the precision of public information always decreases investors�incen-
tives to acquire private information and leads to a lower precision of private information in
equilibrium. In contrast, in our model public and private information can be complements
(see Section 6:1). Finally, Hellwig and Veldkamp (2009) and Colombo et al. (2014) show
that in a linear-quadratic model complementarities in actions always translate into comple-
mentarities in information acquisition. While this is true for a wide range of parameters in
our model, we show that there are cases in which this result does not hold for global games
(see Section 5).31

The di¤erence between our �ndings in the context of global games and the �ndings in
games with linear-quadratic payo¤s is due to the di¤erent role that information plays in
these two classes of models. In games with linear-quadratic payo¤s that feature strategic
complementarities in actions, an individual values information because it allows him to better
align his action both with the underlying fundamentals and with the actions of the other
investors.32 In contrast, in global games, an investor does not care about how closely his
action covaries with the fundamentals or with the actions of others, but rather whether he
observes a signal xi greater than his threshold x�i when � > �

�, or a signal xi smaller than
his threshold x�i when � < �

�. Thus, he cares about the tail probabilities of the conditional
distribution of xij�, since these tail probabilities determine the investor�s expected costs of
Type I and Type II mistakes (see Section 3:2:1).
To see why this di¤erence between the two models leads to very di¤erent conclusions,

consider an increase in the precision of the signal to all but one investor. In a model with
linear-quadratic payo¤s, when other investors choose to acquire more precise private infor-
mation their private signals become more anchored around the fundamentals. This increases
the value of additional information to investor i, since the extra information allows him to
better align his action with both the fundamentals and the actions of others. In contrast,

31Note that the way in which we introduce public information is slightly di¤erent from the way in which
public information is modeled in the games with linear-quadratic payo¤s of Hellwig and Veldkamp (2009)
and Colombo et al. (2014). In these models, public information is composed of a common prior and an
additional public signal that is drawn once the state has been realized. In our case, public information is
composed only of the common prior. In Colombo et al. (2014), changes in the precision of public information
are modeled as changes in the precision of the aggregate public signal. However, the qualitative results of
Colombo et al. (2014) would be unchanged if public information were modeled only through the prior, so
the comparisons between our models hold.
32Since our model features only strategic complementarities, we restrict our comparison to games with

linear-quadratic payo¤s that feature strategic complementarities. Typically, these games can feature either
strategic complementarities or substitutabilities in actions, depending on parameters.
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in a global game an investor cares about the change in the precision of the others only to
the extent that this change a¤ects the threshold for the fundamentals �� (if a change in the
precision of other investors had no e¤ect on ��; then his behavior would be unchanged!). In
particular, what matters is how the adjustment in ��, implied by a change in the precision
of others, increases or decreases the relevant tail probabilities (and hence the expected costs
of Type I and Type II mistakes). It turns out that the direction of this adjustment is gov-
erned by two parameters: the mean of the prior belief, ��, and the cost of investment, T .
Depending on these two parameters, the change in �� implied by a change in the precision of
other investors�signals can lead to an increase or a decrease in the relevant tail probabilities.
Hence, in global games, for some parameter values strategic complementarities in actions
fail to translate into strategic complementarities in information acquisition.
To summarize, we can conclude that the di¤erences between our �ndings in the context

of global games and the existing results for games with linear-quadratic payo¤s are due to
the fact that the value of additional information is very di¤erent across these two types of
models. In global games it is determined by the tail probabilities of the conditional joint
distribution of f�; xig, while in games with linear-quadratic payo¤s it is determined by the
covariances between investors�signals and the fundamentals.

8 Related literature

Our work is related to the literature on global games, information acquisition, and coordi-
nation games with linear-quadratic payo¤s. Global games were introduced by Carlsson and
van Damme (1993) in their seminal work as an equilibrium re�nement concept and further
extended by Frankel et al. (2003). This technique was �rst applied by Morris and Shin
(1998) to the context of currency crises, and since then it has been extensively used to model
economic phenomena featuring coordination problems (e.g., Dasgupta, 2007; Edmond, 2013;
Goldstein and Pauzner, 2005; Morris and Shin, 2004).
While the original global games models were static (they featured only one-shot coordi-

nation games), several authors extended these models to multi-stage games (see Angeletos
et al., 2007, and Dasgupta, 2007, among others). We contribute to this literature by consid-
ering a model in which investors have the choice to acquire more precise information before
playing the standard one-shot global game. Unlike these papers, in our model investors
make choices in the �rst period that in�uence the structure of the game they play in the
second period, whereas in the above papers investors repeatedly play a static global game.
In this respect, our work is most closely related to Angeletos and Werning (2006) and Chas-
sang (2008). However, none of these studies considers costly information acquisition and its
impact on the coordination game.
Costly information acquisition has been analyzed by Nikitin and Smith (2008) and Zwart

(2008) in the context of the Diamond and Dybvig (1983) model of bank runs. However, in
these two studies information acquisition is modeled as a binary decision to acquire a private
signal with a given precision, or not to acquire a signal at all, which is in contrast to our
setup where all investors observe private signals and have to choose their individual preci-
sion. Moreover, these papers do not analyze resulting ine¢ ciencies in information choices,
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characterize strategic complementarities, or discuss welfare implications of more precise pub-
lic information. Yang (2015) studies �exible information acquisition in coordination games
where agents can choose how much and what kind of information to acquire. This �exibility
leads to rational inattentive choices and encourages e¢ cient coordination, but it also restores
multiplicity of equilibria. This is contrary to our �ndings, where agents choose how much
information of a given type to acquire, which gives rise to a unique ine¢ cient equilibrium.
Our analysis utilizes results established by Szkup (2015), who characterizes comparative sta-
tics results with respect to public and private information in global games models. Finally,
Szkup and Trevino (2015) consider a discrete version of our model and test its predictions
experimentally.
Several papers investigate the e¤ect of changing the precision of private and public in-

formation in the context of global games. Heinemann and Illing (2002) analyze how changes
in the precision of private information a¤ect the unique equilibrium of the model devel-
oped in Morris and Shin (1998). Bannier and Heinemann (2005) present a two-stage model
in which a governmental agency chooses the precision of private signals in the �rst stage,
and then agents play a global game in the second stage with an exogenously given precision.
Iachan and Nenov (2014) analyze the equilibrium e¤ects of changes in the precision of private
information in a general class of global games of regime change.

9 Conclusions

In this paper we analyze the role of endogenous information in a global games model. We
show that in these games investors are prone to making two types of mistakes: investing
when investment is not pro�table, and not investing when investment is pro�table. We
study the e¤ect that precision choices have on the incidence of these two types of mistakes
in the coordination game and analyze how the value of more precise information is a¤ected
by prior beliefs, the behavior of other players, and the cost of investment.
We characterize conditions under which our game has a unique equilibrium and analyze

several aspects of it. First, we show that in general the choice of precision made by in-
vestors in the unique equilibrium is ine¢ cient. Depending on the parameters of the model,
investors acquire too much or too little information. We also show that even though there
are strategic complementarities in actions in the second stage, contrary to the �ndings of
Hellwig and Veldkamp (2009) and Colombo et al. (2014) for games with linear-quadratic
payo¤s, the strategic complementarities in actions do not always translate into strategic
complementarities in information acquisition.
We also consider the e¤ects of an increase in the precision of the prior on the incentives

to acquire private information, on the probability of a successful investment, and on welfare.
We characterize the cases where more precise public information crowds out the acquisition
of private information and the cases where private and public information might be com-
plements. We �nd that an increase in the precision of the common prior might increase
or decrease the probability of a successful investment and welfare, depending on the initial
conditions in the economy.
Our analysis highlights the di¤erences between global games and the closely related
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family of games with linear-quadratic payo¤s with costly information acquisition, which are
due to the fact that the value of additional information is very di¤erent across these two
models. While in global games the value of additional information is determined by the tail
probabilities of the conditional joint distribution of the fundamentals and private signals, in
games with linear-quadratic payo¤s it is determined by the covariances between investors�
signals and the fundamentals.
Our model abstracts from considerations of a strategic government that can choose the

precision of public information based on its own signal. Inclusion of a strategic government in
a global games setup has been analyzed in a standard speculative attack game by Angeletos
et al. (2006), Angeletos and Pavan (2013), and Goldstein et al. (2011). Exploring the issue
of strategic release of information in the model with endogenous information acquisition
is an important direction for further research. A shortcoming of the global games results
is that they restrict the precision of public information, relative to private information, to
ensure uniqueness of equilibria. It would be interesting to investigate whether endogenous
information acquisition can mitigate this critique. This issue is left for future research.
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A Appendix

In this appendix we provide all the proofs and derivations that have been omitted in the
main body of the paper. The appendix is divided into �ve sections. In Section A:1 we state
without proof preliminary results that are used to establish results reported in the paper
and in the proofs of the following subsections. The proofs of these results can be found in
the online appendix. In Section A:2 we provide proofs of results stated in Section 3:1 of the
paper (proof of Proposition 1). In Section A:3 we provide results stated in Section 3:2 of the
paper (derivation of Equation (4) and proofs of Lemma 1 and Theorem 1). In Sections A:4
and A:5 we provide the proofs of results reported in Sections 4 and 5. Finally, Section A:6
contains the proofs of results stated in Section 6.

A.1 Preliminary Results
A.1.1 Results used in Section 3

Lemma A.1 Consider the bene�t function Bi(�i; �).

1. Bi(�i; �) is strictly increasing in �i.

2. @Bi

@�i
is bounded from above.
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3. lim�i!1
@Bi

@�i
= 0.

4. For �i > �; @
2Bi

@�2i
< 0.

Lemma A:1 establishes that the bene�t function for investor i is increasing in his precision
choice, bounded, and concave. We will use this result in the proof of Theorem 1.

A.1.2 Results used in Section 4

Lemma A.2 Denote by � � (��) the equilibrium precision choice as a function of ��. Then
for each T , there exists a unique ��, call it �E� (T ), that solves

�� = b�� (T; � � (��) ; ��)
where

b�� (T; � � (��) ; ��) = � 
s

� � (��)

� � (��) + ��
��1 (T )

!
+

1p
� � (��) + ��

��1 (T )

Moreover, for all �� > �E� (T ) we have �� > b�� (T; � � (��) ; ��) ; and for all �� < �E� (T ) we
have �� < b�� (T; � � (��) ; ��).
We use Lemma A:2 to show that the information choice in the symmetric equilibrium is

generically ine¢ cient.

Lemma A.3 Let

b�� (T; �; ��) = ��r �

� + ��
��1 (T )

�
+

1p
� + ��

��1 (T )

1. If �� < b�� (T; �; ��) ; then @��

@�
< 0:

2. If �� = b�� (T; �; ��) ; then @��

@�
= 0:

3. If �� > b�� (T; �; ��) ; then @��

@�
> 0:

Lemma A:3 is used to determine whether investors over-acquire or under-acquire infor-
mation. For details and intuition behind this result, we refer an interested reader to Szkup
(2015).

A.1.3 Results used in Section 5

Lemma A:4 establishes what happens to the equilibrium threshold �� as � tends to in�nity.

Lemma A.4 As � !1, the threshold �� ! T .

Lemma A:4 characterizes the �global�behavior of the threshold �� as a function of � .
This result is key for our analysis and has been established by Szkup (2015).
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Lemma A.5 Let � be the precision of private information that investors are initially en-
dowed with, and let

b�� (T; �; ��) = ��r �

� + ��
��1 (T )

�
+

1p
� + ��

��1 (T )

1. Suppose that T > 1
2
.

(a) If �� � T; then �� is decreasing in � , for all � > � .
(b) If �� 2 (T; b�� (T; � ; ��)) ; then �� is initially decreasing in � , and then increasing

in � .

(c) If �� � b�� (T; � ; ��) ; then �� is increasing in � , for all � > � .
(d) For all � � � , b�� (T; �; ��) > T:

2. Suppose that T = 1
2
.

(a) If �� < 1
2
; then �� is decreasing in � , for all � > � .

(b) If �� = 1
2
; then �� is constant in � .

(c) If �� > 1
2
; then �� is increasing in � , for all � > � .

3. Suppose that T < 1
2
.

(a) If �� < b�� (T; � ; ��) ; then �� is decreasing in � , for all � > � .
(b) If �� 2 (b�� (T; � ; ��) ; T ) ; then �� is initially increasing and then decreasing in � .
(c) If �� � T; then �� is increasing in �; for all � > � .
(d) For all � � � , b�� (T; �; ��) < T:

A.1.4 Results used in Section 6

Lemma A.6 Let T = 1
2
.

1. If �� < 1
2
, then �� > 1

2
, @�

�

@��
> 0, and @��

@�
< 0.

2. If �� = 1
2
, then �� = 1

2
, @�

�

@��
= 0, and @��

@�
= 0.

3. If �� > 1
2
, then �� < 1

2
, @�

�

@��
< 0, and @��

@�
> 0.

Lemma A.7 Let T = 1
2
.

1. If �� < 1
2
; then @��

@��
> 0:

2. If �� = 1
2
; then @��

@��
= 0:

3. If �� > 1
2
; then @��

@��
< 0:
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A.2 Solving the model: t = 2
Proposition 1 For any given �, suppose that inf (supp(�)) > 1

2�
� 2� . Then the coordination

game has a unique equilibrium, in which all investors use threshold strategies x�i (�i;�); and
where investment is successful if and only if � � ��.

Proof. We will show that for any � such that inf (supp(�)) > 1
2�
� 2� ; there exists a unique

equilibrium in monotone strategies. To show that there are no other types of equilibria, one
can use the procedure of iterative deletion of dominated strategies (see, for example, Morris
and Shin, 2004). Since this step is standard in the literature, we do not repeat it here.
Suppose that the distribution of precision choices among investors is given by some dis-

tribution function � (�) with bounded support.33 Assume that all investors follow monotone
strategies and that those investors who chose the same precision level � in the �rst stage of
the game set the same threshold x� (�), above which they will invest in the second stage.
Moreover, let �� (�) be the threshold level for the fundamentals, such that if � > �� (�) then
investment is successful.
An equilibrium in monotone strategies has to satisfy the following payo¤ indi¤erence

condition
Pr (� � �� (�) jx� (�i)) = T ,�i 2 supp (�) (A.1)

as well as the critical mass condition

Pr (xi � x� (�i) j�� (�)) = 1� �� (A.2)

Equation (A.1) implies that in the case of a normal distribution, for all i 2 [0; 1] we have

x� (�i) =
�i + ��
�i

�� � ��
�i
�� +

(�i + ��)
1=2

�i
��1 (T )

Substituting x� (�i) into Equation (A.2) and re-arranging, we getZ
�

 
��

�
1=2
i

�� � ��

�
1=2
i

�� +
(�i + ��)

1=2

�
1=2
i

��1 (T )

!
d� = ��

33The bounded support assumption follows from Assumptions A1, A2, and Lemma A:1.
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We need to show that there exists a unique �� that solves the above equation. It is
su¢ cient to show that the slope of the LHS is always strictly less than 1. Note that

@

@��

Z
�

 
��

�
1=2
i

�� � ��

�
1=2
i

�� +
(�i + ��)

1=2

�
1=2
i

��1 (T )

!
d�

=

Z
�

 
��

�
1=2
i

�� � ��

�
1=2
i

�� +
(�i + ��)

1=2

�
1=2
i

��1 (T )

!
��

�
1=2
i

d�

�
Z

1p
2�

��

�
1=2
i

d�

� 1p
2�

��
� 1=2

< 1

The last inequality follows from our assumption that ��=� 1=2 <
p
2�, which guarantees

a unique equilibrium in the second stage. A unique �� implies in turn a unique threshold
x� (�i). It follows that for an arbitrary distribution of precision choices, we have a unique
equilibrium in monotone strategies for the second stage of the game.

A.3 Solving the model: t = 1
Derivation of Equation (4) The ex-ante utility is given by

U i (�i; �) =

Z +1

�=�1

Z
xi�x�i (�i;�)

�
1f����(�)g � T

�
dF�i (xj�) dG�� (�)� C (�i)

Notice thatZ +1

�=�1

Z
xi�x�i (�i;�)

�
1f����(�)g � T

�
dF�i (xj�) dG�� (�)� C (�i)

=

Z 1

��

Z 1

x�
(1� T ) dF (xj�) dG (�)�

Z ��

�1

Z 1

x�
TdF (xj�) dG (�)� C (�i)

= �
Z ��

�1

Z 1

x�
TdF (xj�) dG (�)�

Z 1

��

Z x�

�1
(1� T ) dF (xj�) dG (�)

+

Z 1

��
(1� T ) dG (�)� C (�i)

Lemma 1 The bene�t, in terms of expected utility, of an increase in the precision of private
signals is equal to the reduction in the expected cost of mistakes due to a change in the ex-ante
joint distribution of (�; xi) implied by this increase, and is equal to

@Bi (�i; �)

@�i
=
1

2�i

1

�i + ��
�
1=2
i �

 
x�i � ��

�
�1=2
i

!
�
1=2
� �

 
�� � ��
�
�1=2
�

!
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Proof. Di¤erentiating Bi (�i;�) with respect to �i; we get

�T
�Z ��

�1

@x�i
@�i

f�i (x
�
i j�) g�� (�) d� +

Z ��

�1

1

2

x� � �
�i

f�i (x
�
i j�) g�� (�) d�

�
| {z }

Reduction in the expected cost of Type I mistake

� (1� T )
�Z 1

��

@x�i
@�i

f�i (x
�
i j�) g�� (�) d� +

Z 1

��

1

2

x� � �
�i

f�i (x
�
i j�) g�� (�) d�

�
| {z }

Reduction in the expected cost of Type II mistake

Evaluating the above integrals, we obtain the following expression for the reduction in
the expected cost of a Type I mistake:

� T @x
�
i

@�i
f�i;�� (x

�
i )G�i;�� (�

�jx�i )�
1

2�i
Tf�i;�� (x

�
i )G�i;�� (�

�jx�i )x�

� 1

2�i
TE [��jx�i ]�i;�� (x

�
i )G�i;�� (�

�jx�i ) +
1

2�i
Tf�i;�� (x

�
i ) g�i;�� (�

�jx�i ) (�i + ��)
�1=2 ,

where f�i;�� (x
�
i ) is the unconditional distribution of xi, g�i;�� (�

�jx�i ) is the conditional distrib-
ution of � given xi, and (�i + ��)

�1=2 is the standard deviation of the conditional distribution
of � given xi.
The reduction in the expected cost of a Type II mistake is similarly given by

� (1� T ) @x
�
i

@�i
f�i;�� (x

�
i ) (1�G�i;�� (��jx�i ))�

1

2�i
(1� T ) f�i;�� (x�i ) (1�G�i;�� (��jx�i ))x�

� 1

2�i
(1� T )E [��jx�i ] f�i;�� (x�i ) (1�G�i;�� (��jx�i )) +

1

2�i
(1� T ) f�i;�� (x�i ) g�i;�� (��jx�i ) (�i + ��)

�1=2

Using the PI condition and the fact that in equilibrium (1�G�i;�� (��jx�i )) = T , the �rst
three terms in the expression for the reduction in the cost of each type of mistake cancel
out. Thus, the total bene�t, in terms of expected utility, of an increase in the precision of
private signals is equal to

1

2�i
f�i;�� (x

�
i ) g�i;�� (�

�jx�i ) (�i + ��)
�1=2

Equivalently,
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=
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1=2
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�1=2
i

!
�
1=2
� �

 
�� � ��
�
�1=2
�

!

Theorem 1 Suppose that Assumptions A1 and A2 hold. Then we have the following:

1. There are no asymmetric equilibria in which investors choose di¤erent precision levels
in the �rst stage.
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2. There exists a symmetric equilibrium of the information acquisition game where all
investors choose the same precision � � in period 1 and equilibrium in period 2 is char-
acterized by a pair of thresholds f�� (�) ; x� (�)g :

3. There exists � < 1 such that if � > � , then there is a unique equilibrium in the

information acquisition game.

Proof. We �rst argue that there are no asymmetric equilibria. Suppose that � is non-
degenerate. By Proposition 1, we know that for any � there exists a unique equilibrium in
monotone strategies in the second stage of the game. Since all investors are in�nitesimally
small, it follows that no investor can in�uence the outcome of the second stage and hence
all investors take the equilibrium outcome as given. Moreover, Lemma A:1, together with
Assumption A2, implies that each investor�s problem at t = 1 has a unique solution.34 Since
all investors are ex-ante identical, this implies that they face the same decision problem and
that the optimal solution is the same for all of them. It follows that the distribution of
investors�precision choices is degenerate.
Next, we show that there exist symmetric equilibria. Denote by � the precision choice of

all investors other than i and let � �i (�) be the optimal precision choice of investor i, given
that all other investors choose precision � . By the Theorem of the Maximum, it follows that
� �i (�) is a continuous function of � . Since C

0(�) = 0; we know that � �i (�) > � . Assumption
A2 implies that there exists � <1 such that investors will never �nd it optimal to choose a
precision level �i > � . Therefore, we conclude that � �i (�) is a continuous function mapping
[� ; � ] into itself. By Brouwer�s Fixed Point Theorem, we know that � �i (�) has a �xed point,
which we call � �. This �xed point of � �i (�) is a symmetric equilibrium, since if an investor
believes that all other investors choose � �, his best-response is to choose � � himself.
Finally, we show that if the lowest possible precision choice, � , is high enough, then the

symmetric equilibrium is unique. To establish this result, we show that the slope of the
best-response function at the symmetric precision choice � is always positive and tends to 0
as � !1.
The derivative of investor i�s best-response function with respect to � , the precision choice

of all other investors, is given by

@� �i (�)

@�
= �

@2

@�i@�
Bi (� �i (�) ; �)

@2

@(�i)
2Bi (� �i (�) ; �)� @2

@(�i)
2C (� �i (�))

where

@2Bi (� �i (�) ; �)

@�i@�
= �1

2

1
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1
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�
1=2
i �
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�
�1=2
i

!
�
1=2
� �

 
�� � ��
�
�1=2
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!
1

2

� 2�
� 1=2 (� + ��)

(x�i � ��) (x� � ��)�
��
�1=2

� 1
�(��1(��))

�
If �i = � , then x�i = x� and the above expression is necessarily positive. Thus, at the
symmetric equilibrium, the slope of the best-response function is positive.
34See the online appendix.
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Let E = f� j� = � �i (�)g be the set of all symmetric equilibrium precision choices. Then
the numerator of @� �i (�) =@� is positive for all � 2 E; since �i = � . By Lemma A:1 and
Assumption A2, we know that the denominator is negative, hence it follows that

@� �i (�)

@�
> 0; � 2 E

Note that, by the convexity of the cost function (Assumption (A2)), we have the following
result 8� 2 E:

@� �i (�)

@�

����
�i=�

�
@2

@�i@�
Bi (�i; �) j�i=�

� @2

@(�i)
2Bi (� �i (�) ; �) j�i=�

After computing the relevant derivatives, we �nd that the above inequality can be expressed
as

@� �i (�)
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1
2

�1=2�2�
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i �

��
�1=2

� 1
�(��1(��))

�
Note that

lim
�!1

1

2

� 1=2� 2�
(� + ��)

(x�i � ��) (x� � ��) = 0

lim
�!1

��
� 1=2

� 1

� (��1 (��))
= � 1

� (��1 (T ))
< 0

lim
�!1

�
3� + ��
2 (� + ��)

� ��
2 (� + ��)

(x� � ��) (x� � ��)
�
=
3

2

The last expression follows from the fact that lim�!1 (x
� � ��) = 0. Hence, we conclude

that

lim
�!1

@� �i (�)

@�
j�i=� = 0

It follows that for a given set of parameters fT; ��; ��g ; there exists � (T; ��; ��) < 1 such
that for all � � � we have @� �i (�) =@� j�i=�� < 1. Since fT; ��; ��g 2 [T ; T ]� [��; ��]� [� �; � �]
is a compact subset of R3, and since @� �i (�) =@� j�i=� is continuous, there exists a value of � ,
independent of fT; ��; ��g, such that @� �i (�) =@� j�i=�� < 1 < 1 for all � � � .

A.4 Spillover e¤ects and the ine¢ ciency of equilibrium
Lemma A.8 There exists an e¢ cient choice of precision, � ��.

Proof. The e¢ cient choice of precision, if it exists, is a solution to the following problem:

max
[�;1)

Bi (� ; �)� C (�)

The �rst derivative of the above equation is given by

Bi1 (� ; �) +B
i
2 (� ; �)� C 0 (�)
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By LemmaA:1, we know that @Bi=@�i is bounded from above and that lim�!1B
i
2 (� ; �) =

0. Finally, by Assumption A2 lim�!1C
0 (�) = 1. Hence, there exists �E such that no

� > �E can be a solution to the above maximization problem. But this implies that we
are looking for a maximum of a continuous function over a compact subset of R, hence
Bi (� ; �)�C (�) must attain a maximum in

�
� ; �E

�
. Since Bi (� ; �)�C (�) is di¤erentiable,

it has to be the case that either the e¢ cient precision choice � �� satis�es the �rst-order
condition or � �� = � .

Proposition 2 Consider the equilibrium precision choice � �. For any T 2 (0; 1), if �� 6=
�E� (T ) then the equilibrium precision choice is ine¢ cient.

Proof. Recall that the equilibrium precision choice satis�es

@Bi (� �; � �)

@�i
� C 0 (� �) = 0

while the e¢ cient precision choice � �� either is equal to � or, if � �� > � , satis�es

@Bi (� �; � �)

@�i
� @B

i (� �; � �)

@�
� C 0 (�) = 0

Therefore, a necessary condition for the equilibrium choice to be e¢ cient is that @U (� �; � �) =@�
= 0. Note that

@Bi (� �; � �)

@�
= �@�

�

@�

"
1� �

 
x�i � ��

�
�1=2
i

!#
�

 
�� � ��
�
�1=2
�

!

Hence, @Bi (� �; � �) =@� = 0 if and only if @��=@� j�=�� = 0.
However,

@��

@�

����
�=��

= 0 () �� = �

 s
� � (��)

� � (��) + ��
��1 (T )

!
+

1p
� � (��) + ��

��1 (T )

By Lemma A:2, we know that for each T there exists a unique �� that satis�es the above
equation, which implies that generically the equilibrium precision choice is ine¢ cient.

Proposition 3 Consider the investors�equilibrium precision choices.

1. If �� > �E� (T ) ; then investors locally over-acquire information.

2. If �� = �E� (T ) (and T � 1
2
), then investors choose the locally e¢ cient level of infor-

mation.

3. If �� < �E� (T ) ; then investors locally under-acquire information.
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Proof. Note �rst that the derivative of investor i�s ex-ante utility function U i with respect
to the precision choice of other investors, � , is given by

U i2 (�i; �) = B
i
2 (�i; �) = �

@��

@�

 
1� �

 
�� � x�i
�
�1=2
i

!!
�
1=2
� �

 
�� � ��
�
�1=2
�

!

Thus, its sign is determined by @��=@� . Next, recall that the equilibrium precision choice
satis�es

Bi1 (�
�; � �)� C 0 (� �) = 0

On the other hand, the �rst derivative of the planner�s objective function with respect to �
is given by

Bi1 (� ; �) +B
i
2 (� ; �)� C 0 (�)

It follows that if Bi2 (�
�; � �) > 0; then a small increase in the investors�precision choices

� would increase each investor�s ex-ante utility, that is, investors locally under-acquire in-
formation. Similarly, if Bi2 (�

�; � �) < 0; then a small decrease in � would lead to a higher
welfare, that is, investors locally over-acquire information.
The above discussion implies that in order to establish whether investors locally over-

acquire or under-acquire information, we need to establish the sign of @��=@� j�=��. By Lemma
A:3; we know that if �� > b�� (T; �; ��) then @��=@� > 0, and if �� < b�� (T; �; ��) then
@��=@� < 0. By Lemma A:4; we know that if �� > �E (T ) then �� > b�� (T; � � (��) ; ��)
and if �� < �E (T ) then �� < b�� (T; � � (��) ; ��). It follows that for all �� > �E (T ) we
have @��=@� j�=��. > 0; and for all �� < �E (T ) we have @��=@� j�=��. < 0. Thus, if �� >
�E� (T ) then B

i
2 (�

�; � �) < 0, implying that a small decrease in precision from its equilibrium
level would actually increase investors�welfare. On the other hand, if �� < �E� (T ) then
Bi2 (�

�; � �) > 0; implying that a small increase in precision from its equilibrium level would
actually increase investors�welfare.
Finally, consider the case where �� = �E (T ). In that case, @��=@� j�=��. = 0. If T � 1=2,

then Lemma A:5 implies that an increase or a decrease in � will lead to an increase in ��

and hence it will have a negative impact on investor i�s utility. Therefore, it follows that
investors acquire the locally e¢ cient level of information. On the other hand, if T < 1=2,
then Lemma A:5 implies that both an increase and a decrease in � will lead to a decrease
in ��, hence it will have a positive impact on investor i�s utility. It follows that investors
acquire an ine¢ cient level of information, and that either a decrease or an increase in their
precision choices would lead to an increase in welfare.

A.5 Strategic complementarities in information acquisition
Proposition 4 De�ne

�SC (� ; ��; T ) � T +
1p
� + ��

��1 (T )

1. Suppose that T > 1
2
.
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(a) If �� =2
�
T; �SC (� ; ��; T )

�
; then information choices are strategic complements.

(b) If �� 2
�
T; �SC (� ; ��; T )

�
; then there is a lack of strategic complementarities.

2. Suppose that T = 1
2
. Then information choices are always strategic complements.

3. Suppose that T < 1
2
.

(a) If �� =2
�
�SC (� ; ��; T ) ; T

�
; then information choices are strategic complements.

(b) If �� 2
�
�SC (� ; ��; T ) ; T

�
; then there is a lack of strategic complementarities.

Proof. Let �i be investor i�s precision choice and let � be the precision choice of all other
investors. Recall that the cross-partial derivative of the ex-ante utility function with respect
to �i and � is given by

@2U

@�i@�
= � 1

�i

1

�i + ��
�
1=2
i �
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i

!
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!
[x�i � ��]

@��

@�

From the above expression, we see that a higher precision chosen by other investors increases
investor i�s incentives to acquire information if and only if @��=@� and x�i ��� are of opposite
sign. We investigate the conditions when this is the case.
We consider �rst the special case of T = 1=2. In that case, since

x�i � �� =
�i + ��
�i

(�� � ��) and
@��

@�
/ �1

�
(�� � ��)

@��=@� and x�i � �� are of opposite sign, hence @2U=@�i@� > 0. Since the slope of the best-
response function evaluated at the symmetric precision choice is positive (see the proof of
Theorem 1), an increase in the precision choices by others encourages investor i to acquire
more information.
Next, consider the case when T > 1=2. In this case

x�i � �� =
�i + ��
�i

(�� � ��) +
p
�i + ��
�i

��1 (T )

and
@��

@�
/ �1

�
(�� � ��)�

1

�

1p
� + ��

��1 (T )

Suppose �rst that �� � T . By Lemma A:5; we know that @��=@� < 0 for all � . Moreover,
by Lemma A:4 we know that �� ! T . Thus, �� must converge to T from above, implying
that

x�i � �� =
�i + ��
�i

(�� � ��) +
p
�i + ��
�i

��1 (T )

� �i + ��
�i

(T � ��)

� 0
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Therefore, if T > 1=2 and �� � T; then @��=@� < 0 and x�i � �� > 0. Thus, in this case
precision choices are strategic complements.
Now, assume that � � �SC . Note that if T > 1=2; then

�SC > b� (T; � ; ��)
Therefore, by Lemma A:5 we know that if � � �SC , then for all � 2 [� ;1), @��=@� > 0.
Since lim�!1 �

� (�) = T , �� converges to T from below, that is, for all � 2 [� ;1) we have
�� (�) < T . This implies that

x�i � �� �
�i + ��
�i

�
T � �SC

�
+

p
�i + ��
�i

��1 (T ) � 0

where the last inequality is strict for all �i > � . Thus, if T > 1=2 and �� > �SC ; we have
x�i � �� � 0 and @��=@� > 0; hence information choices are strategic complements.
Next, we show that if �� 2

�
T; �SC

�
, then information choices are not strategic com-

plements. Fix �� 2
�
T; �SC

�
and note that, since �� > T , by Lemma A:5 we know that

@��=@� > 0 for large enough � . De�ne

" = �SC � ��
Since lim�!1 �

� (�) = T , for large enough � we have

�� > T � "
2

Then

�� � �� > T �
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2
�
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�
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2
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�
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��1 (T )� "
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=
"

2
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Thus

x�i � �� >
�i + ��
�i

�
"

2
� 1p

� + ��
��1 (T )

�
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p
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�i
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=
�i + ��
�i

"

2
+

p
�i + ��
�i

�
�
p
�i + ��p
� + ��

+ 1

�
��1 (T )

It follows that for all �i close to � , we have

x�i � �� > 0

Hence, for �i close to � and � large enough, we have x�i � �� > 0 and @��=@� > 0. This in
turn implies that there are pairs f�i; �g such that a marginal increase in � decreases investor
i�s incentives to acquire information, hence for �� 2

�
T; �SC

�
information choices are not

strategic complements.
An analogous argument can be used to prove the result when T < 1=2.
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A.6 Transparency and welfare
A.6.1 Trade-o¤ between public and private information

Proposition 5 Let T = 1
2
. There exist cuto¤s b�� and b�+, with b�� < 1

2
< b�+; such that the

following hold:

1. If �� =2 (b��; b�+) ; then private and public information are substitutes.
2. If �� 2 (b��; b�+) ; then private and public information are complements.

Proof. We are interested in the sign of the e¤ect of an increase in the precision of public
information on private information acquisition, that is, we want to determine the conditions
under which

d� �i
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1� @��i
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����
�i=��

is positive and those under which it is negative.
First, note that, as shown in the proof of Theorem 1,

1

1� @��i
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Thus, it is enough to determine the sign of @� �i =@��j�i=��, where
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By Lemma A:1, @2U=@2�i is negative; therefore, the sign of @� �i =@�� is determined by the
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The above expression implies that a change in �� a¤ects the investors�incentives to ac-
quire information through three channels: (i) by changing the joint density of f�; xig (passive
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information e¤ect, captured by the term on the �rst line), (ii) by changing the informative-
ness of the prior, which a¤ects the investor�s investment strategy (active information e¤ect,
captured on the second line), (iii) it a¤ects the change in the equilibrium threshold ��, since
an increase in the precision of the prior a¤ects the other investors�investment strategies (co-
ordination e¤ect, captured on the third line). We investigate under which conditions each of
these e¤ects encourages an individual investor to acquire more or less information.
The above observations are independent of the value of T . However, in the remainder of

this proof we assume that T = 1=2; to simplify the analysis substantially, while not a¤ecting
the underlying logic of our arguments.
The sign of the passive information e¤ect is determined by

1

� � + ��
� 1

2��
+
1

2
(�� � ��)2 (A.3)

Now note that since � � > � > ��, Lemma A:6 implies that at �� = 1=2 the above expression
is negative. On the other hand, for low and high enough �� the term (�� � ��)2 is large,
hence the above expression is positive. Next, note that for all �� < 1=2, as �� increases
towards 1=2, hence the vakue of �� � �� is decreasing and the value of � � is increasing (see
Lemma A:7). Thus, there exists a value of ��, call it ��, such that �� < 1=2 and we have

1

� � (��) + ��
� 1

2��
+
1

2

�
��
�
��
�
� ��

�2
= 0

where we explicitly note that both the equilibrium precision level � � (��) and the threshold
�� (��) are functions of ��. Moreover, it follows that for all �� 2 (��; 1=2] the expression
(A.3) is positive.
Similarly, for all �� > 1=2, as �� increases from 1=2, the value of �� � �� increases and

the value of � � decreases (see Lemma A:7). Thus, there exists a value of ��, call it �+, such
that �+ > 1=2 and
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� � (�+) + ��
� 1

2��
+
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2
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��
�
�+
�
� ��

�2
= 0

It also follows that for all �� 2 [1=2; �+) the expression (A.3) is positive.
Since

�1
2

1

�

1

� + ��
� 1=2�

�
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��1=2

�
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�� � ��
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�1=2
�

!
< 0

there exist �� and �+, with �� < 1=2 < �+, such that if �� 2 (��; �+) then the passive
information e¤ect is strictly positive. If �� 2 f��; �+g ; then the passive information e¤ect
is 0, and if �� =2 [��; �+] then the passive information e¤ect is strictly negative.
The sign of the active information e¤ect is determined by

(x� � ��) @x
�
i
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=
��
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And since
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< 0

the active information e¤ect is always negative. Notice that the sign of the active information
e¤ect takes into account only the partial e¤ect of a change in �� on x�i (keeping �

� constant).
The e¤ect of �� on �� is taken into account in the expression for the coordination e¤ect below.
Finally, consider the coordination e¤ect. The sign of this e¤ect is given by
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since � 1=2=�� > 1=
p
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And since
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�1=2
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< 0

the coordination e¤ect is always negative.
From the above analysis, we see that the active information e¤ect and the coordination

e¤ect always discourage information acquisition. Moreover, when �� = 1=2 both e¤ects
are 0. On the other hand, depending on ��, the passive information e¤ect can encourage
or discourage information acquisition. When �� = 1=2, the passive information e¤ect is
positive. In this case the other two e¤ects are 0, so for �� in the neighborhood of 1=2 an
increase in the precision of public information leads to an increase in information acquisition.
Finally, we see that if �� � �� or �� � �+; then all the above e¤ects are negative, hence an
increase in the precision of private information leads to less information acquisition.
Below we show that there exists an interval of values for ��, that includes 1=2, such

that if �� takes a value in that interval then more precise public information leads to more
private information acquisition, and if �� takes a value outside that interval then more public
information leads to less private information acquisition.
We �rst investigate when the cross-partial derivative @2U

@�i@��

���
�i=��

is greater than 0. Note

�rst that the cross-partial derivative @2U
@�i@��

���
�i=��

can be re-written as
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#

where the factor pre-multiplying the expression in square brackets is always negative.
Using the earlier observations, we employ the following strategy for the proof: We show

below that the term in the square brackets is increasing in �� when �� 2 (��; 1=2) and
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decreasing in �� when �� 2
�
1=2; �+�

�
. Once we establish these two claims, then it will follow

immediately that there exist values of ��, which we call b�� and b�+, such that �� < b�� <
1=2 < b�+ < �+ and where @2U

@�i@��

���
�i=��

> 0 if and only if �� 2 (b��; b�+) ; and @2U
@�i@��

���
�i=��

< 0

otherwise.
For notational purposes, de�ne

� (��) �
"

1

� � + ��
� 1

2��
+
1

2
(�� � ��)2 + � � (x� � ��)

@x�i
@��

����
�i=��

+ �� (x
� � ��)

@��

@��

����
�i=��

#

Di¤erentiating � (��) with respect to ��; we obtain
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Note that @��=@�� is always less than 0. Moreover, if �� < 1=2; then: (1) (�� � ��) > 0,
(2) @��=@�� > 0, and (3) @��=@� � < 0. Lemmas 14 and 15 in the online appendix show
that if �� < 1=2; we also have (4) @2��

@��@��
< 0, (5) @2��

@��@��
< 0, and (6) @� �=@�� > 0. Note,

however, that (1), (2), and (4) imply that the expression in the �rst set of brackets above
is negative. Similarly, (1), (2), (3), (5), and (6) imply that the expression in the second set
of brackets is also negative. Therefore, we conclude that if �� 2 (��; 1=2) ; then � (��) is
continuously decreasing. This proves the existence of b�� such that for all �� 2 (b��; 1=2) ;
we have @2U

@�i@��

���
�i=��

> 0 and that for all �� < b��, @2U
@�i@��

���
�i=��

< 0.

Using analogous reasoning, we consider the case when �� 2
�
1=2; �+�

�
. Recall that

@��=@�� < 0. Moreover, if �� > 1=2, then (1) (�� � ��) < 0, (2) @��

@��
> 0, and (3) @��

@�� > 0.

In the online appendix we show that if �� > 1=2; we also have (4) @2��

@��@��
< 0, (5) @2��

@��@��
> 0,

and (6) @��

@��
< 0. Comparing these observations for �� > 1=2 with those for �� < 1=2, we

see that the signs of most of these quantities are now reversed compared to the case when
�� < 1=2. Thus, we �nd that if �� 2

�
1=2; �+�

�
then � (��) is continuously increasing. It

follows that there exists b�+ such that for all �� 2 (1=2; b�+) we have @2U
@�i@��

���
�i=��

> 0; and

that for all �� > b�+, @2U
@�i@��

���
�i=��

< 0.
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A.6.2 E¤ects of increasing public information on coordination

Proposition 6 Let T = 1
2
; and suppose that the precision of public information increases.

1. If �� < 1
2
; then the ex-ante probability of a successful investment decreases.

2. If �� = 1
2
; then the ex-ante probability of a successful investment is unchanged.

3. If �� > 1
2
; then the ex-ante probability of a successful investment increases.

Proof. The change in the probability of a successful investment due to a change in �� is

dPr (� > ��)

d��
=
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"
1� �

 
�� � ��
�
�1=2
�

!#

= �� 1=2� �

 
�� � ��
�
�1=2
�

!�
d��

d��
+
1

2��
(�� � ��)

�
where

d��

d��
=
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+
@��

@� �
� d�

�

d��

That is, the total change in �� in response to a change in �� is the sum of the partial change in
�� due to a change in ��, holding investors�information precision choices constant (captured
by @��=@��), and the change in �� due to changes in precision choices caused by an increase
in �� (captured by @��=@� � � d� �=d��).
We now analyze d��=d�� in more detail. Note that

@��

@��
= �2 �

��

@��

@� �

Thus, @��=@�� and @��=@� � are always of opposite sign. Moreover, by Proposition 5 we know
that for all �� =2 (b��; b�+), d� �=d�� < 0. Therefore, we conclude that as long as �� =2 (b��; b�+),

sgn

�
d��

d��

�
= sgn

�
@��

@��

�
Next, suppose that �� 2 (b��; b�+). In this case, according to Proposition 5, d� �=d�� > 0

and hence @��=@�� and @��=@� � � d� �=d�� are of opposite sign. Therefore, in this case we
have to compare the magnitudes of these derivatives to determine the conditions under which
@��=@�� is positive and those under which it is negative. We start by noting that

d� �

d��
=
d� �i
d��

=
1

1� @��i
@�

���
�=��

@� �i
@��

����
�i=��

(A.4)

More precisely, the total e¤ect of a change in �� on the unique equilibrium precision choice
� � is equal to the product of the change in investor i�s precision choice � �i , holding other
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investors�precision choices constant (@� �i =@��) and evaluated at the equilibrium precision
level � �, and a multiplier e¤ect due to the adjustment in the precision choices of other
investors. Now
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i
since the numerator is maximized when �� = �� and C 00 (�) > 0. Since j�� � ��j is increasing
as �� moves away from 1=2 and �� is restricted to belonging to (b��; b�+), we can show that

@� �
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�i=��

<
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2
(� � � ��)

�� (3� �
2 + � 2� )

where we used the fact that (�� � b��)2 < (�����)
��(�����) (see the proof of Proposition 5).

Now recall that we assumed that the lower bound for the precision choice of players, � ,
is such that the multiplier e¤ect is less than 6.35 This implies that

d� �

d��
< 6� � �

2
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�� (3� �
2 + � 2� )

With the above observations, we are ready to determine the sign of d��

d��
when �� 2

(b��; b�+). We will consider two cases separately: (1) �� 2 (b��; 1=2), and (2) �� 2 (1=2,b�+).
Recall that when �� < 1=2 then @��=@� � < 0, in which case
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= 0

Similarly, @��=@� � > 0 when �� > 1=2, in which case
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+
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@� �
d� �

d��
< 0

35The magnitude of the multiplier e¤ect depends on the slope of the best-response function ��i (�) and
potentially can take any value in (0;1). However, by choosing appropriately high � , one can not only ensure
that the multiplier e¤ect is �nite, but also control its absolute magnitude. The assumption made in Section
3:3 is that � is high enough that the multiplier e¤ect is smaller than 6. See also Footnote 16.
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The above inequalities in turn imply that, under our assumptions on parameters,
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Going back to the expression for dPr (� � ��) =d��, note that by Lemma A:6 we know

that
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The result follows immediately then from the fact that
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Derivation of Equation (6) Di¤erentiate the ex-ante utility with respect to ��, and note
that
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Using the above observations and simplifying the terms that include d��=d��, we obtain

dU

d��
= �

Z ��

�1

@

@��
T [1� F�� (x�j�)] g�� (�) dxd� +

Z 1

�+

@

@��
(1� T ) [1� F�� (x�j�)] g�� (�) dxd�

� d�
�

d��
(1� F (x�j��)) g�� (��)

References

[1] Angeletos, G.-M., C. Hellwig, and A. Pavan (2006), �Signalling in a Global Game:
Coordination and Policy Traps,�Journal of Political Economy, 114(3), pp. 452-484.

[2] Angeletos, G.-M., C. Hellwig, and A. Pavan (2007), �Dynamic Global Games of Regime
Change: Learning, Multiplicity and Timing of Attacks,�Econometrica, 75(3), pp. 711-
756.

[3] Angeletos, G.-M. and A. Pavan (2004), �Transparency of Information and Coordination
in Economies with Investment Complementarities,�American Economic Review, 94(2),
pp. 91-98.

[4] Angeletos, G.-M. and A. Pavan (2007), �E¢ cient Use of Information and Social Value
of Information,�Econometrica, 75(4), pp. 1103-1142.

44



[5] Angeletos, G.-M. and A. Pavan (2013), �Selection-Free Predictions in Global Games
with Endogenous Information and Multiple Equilibria,�Theoretical Economics, 8(3),
pp. 883-938.

[6] Angeletos, G.-M. and I. Werning (2006), �Crises and Prices: Information Aggregation,
Multiplicity, and Volatility,�American Economic Review, 96(5), pp. 1720�1736.

[7] Atkeson, A. (2000), �Rethinking Multiple Equilibria in Macroeconomic Modeling: Com-
ment,�NBER Macroeconomics Annual 2000, 15, pp. 162-171.

[8] Bannier, C. and F. Heinemann (2005), �Optimal Transparency and Risk-Taking to
Avoid Currency Crises,� Journal of Institutional and Theoretical Economics, 161(3),
pp. 374-391.

[9] Caballero, R. and R. Lyons (1992), �External E¤ects in U.S. Procyclical Activity,�
Journal of Monetary Economics, 29, pp. 209-226.

[10] Carlsson, H. and E. van Damme (1993), �Global Games and Equilibrium Selection,�
Econometrica, 61(5), pp. 989-1018.

[11] Chassang, S. (2008), �Uniform Selection in Global Games,�Journal of Economic The-
ory, 139, pp. 222 �241.

[12] Colombo, L., G. Femminis, and A. Pavan (2014), �Information Acquisition and Wel-
fare,�Review of Economic Studies, 82 (3), pp. 1438-1483.

[13] Cooper, R. (1999). �Coordination Games: Complementarities and Macroeconomics,�
Cambridge University Press.

[14] Dasgupta, A. (2007), �Coordination and Delay in Global Games,�Journal of Economic
Theory, 134, pp. 195 �225.

[15] Diamond, D. and P. Dybvig (1983), �Bank Runs, Deposit Insurance, and Liquidity,�
Journal of Political Economy, 91(3), pp. 401-419.

[16] Edmond, C. (2013), �Information Manipulation, Coordination and Regime Change,�
Review of Economic Studies, 80(4), pp. 1422�1458.

[17] Frankel, D., S. Morris, and A. Pauzner (2003), �Equilibrium Selection in Global Games
with Strategic Complementarities,�Journal of Economic Theory, 108, pp. 1�44.

[18] Goldstein, I. and A. Pauzner (2005), �Demand-Deposit Contracts and the Probability
if Bank Runs,�Journal of Finance, 60(3), pp. 1293-1327.

[19] Goldstein, I., E. Ozdenoren, and K. Yuan (2011) �Learning and Complementarities in
Speculative Attack,�Review of Economic Studies, 78(1), pp. 263-292.

[20] Hall, R., O. Blanchard, and G. Hubbard (1986), �Market Structure and Macroeconomic
Fluctuations,�Brookings Papers on Economic Activity, vol. 1986(2), pp. 285-338.

[21] Hall, R. (1987), �Productivity and the Business Cycle,�Carnegie-Rochester Conf. Ser.
Public Policy, 27, pp. 421-444.

[22] Hauk, E. and S. Hurkens (2001), �Secret Information Acquisition in Cournot Markets,�
Economic Theory, 18(3), pp. 661-681.

[23] Heinemann, F. and G. Illing (2002), �Speculative Attacks: Unique Equilibrium and
Transparency,�Journal of International Economics, 58(2), 2002, 429-450.

[24] Hellwig, C. (2002), �Public Information, Private Information, and the Multiplicity of
Equilibria in Coordination Games,�Journal of Economic Theory 107(2), pp. 191�222.

45



[25] Hellwig, C. and L. Veldkamp (2009), �Knowing What Others Know: Coordination
Motives in Information Acquisition,�Review of Economic Studies, 76, 223�251.

[26] Hwang, H. (1993), �Optimal Information Acquisition for Heterogenous Duopoly Firms,�
Journal of Economic Theory, 59, pp. 385-402.

[27] Iachan, F. and P. Nenov (2014), �Information Quality and Crises in Regime-Change
Games,�Journal of Economic Theory, 158, pp. 739�768.

[28] Morris, S. and H. Shin (1998), �Unique Equilibrium in a Model of Self-Ful�lling Cur-
rency Attacks,�The American Economic Review, 88(3), pp. 587-597.

[29] Morris, S. and H. Shin (2002), �Social Value of Public Information,�The American
Economic Review, 92(5), pp. 1521-1534.

[30] Morris, S. and H. Shin (2004), �Coordination Risk and Price of Debt,�European Eco-
nomic Review, 48, pp. 133�153.

[31] Myatt, D. and C. Wallace (2012), �Endogenous Information Acquisition in Coordination
Games,�Review of Economic Studies, 79 (1), pp. 340-374.

[32] Nikitin, M. and T. Smith (2008), �Information Acquisition, Coordination, and Funda-
mentals in a Financial Crisis,�Journal of Banking and Finance, 32(6) , pp. 907�914.

[33] Radner, R. and J. Stiglitz (1984), �A Nonconcavity in the Value of Information,� in
Boyer and Kihlstorm, eds. Bayesian Models in Economic Theory, Elsevier Science Pub-
lisher, pp 33-52.

[34] Szkup, M. (2015), �Information Structure and Comparative Statics in Simple Global
Games,�working paper, UBC.

[35] Szkup, M. and I. Trevino (2015), �Costly Information Acquisition in a Speculative
Attack Model: Theory and Experiments,�working paper, NYU.

[36] Tong, H. (2007), �Disclosure Standards and Market E¢ ciency: Evidence from Analysts�
Forecasts,�Journal of International Economics, 72, pp. 222�241.

[37] Veldkamp, L. (2011), Information Choice in Macroeconomics and Finance, Princeton
University Press.

[38] Yang, M. (2015), �Coordination with Flexible Information Acquisition,� Journal of
Economic Theory, 158, pp. 721�738.

[39] Zwart, S (2008), �Liquidity Runs with Endogenous Information Acquisition,�Economic
Letters, 100(1), pp. 64�67.

46


