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Abstract

We study experimentally how changes in the information structure affect behavior in coor-

dination games with incomplete information (global games). We find two systematic departures

from the theory: (1) the comparative statics of equilibrium thresholds and signal precision are

reversed, and (2) as information becomes very precise subjects’behavior approximates the effi -

cient equilibrium of the game, not the risk dominant one. To organize our findings we extend

the standard global game model to allow for sentiments in the perception of strategic uncer-

tainty and study how they relate to fundamental uncertainty. We test the extended model by

eliciting first-order and second-order beliefs and find support for the sentiments mechanism:

subjects are over-optimistic about the actions of others when the signal precision is high and

over-pessimistic when it is low. Thus, we show how changes in the information structure can

give rise to sentiments that drastically affect outcomes in coordination games. This novel mech-

anism can help explain stylized facts and offer policy guidance for environments characterized

by strategic complementarities and incomplete information.
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1 Introduction

Many economic environments are characterized by coordination problems with strategic comple-

mentarities. Investment decisions, currency attacks, or political revolts illustrate situations where

decision makers would like to coordinate with others to attain certain outcomes. In addition to the
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strategic uncertainty that arises from not knowing the actions of others, in these environments deci-

sion makers also face uncertainty about the fundamentals that determine the state of the economy

(e.g., the profitability of the investment, the strength of the peg, or the strength of the political

regime). These situations are often modeled as coordination games with incomplete and asymmet-

ric information. The information structure of the game characterizes the degree of fundamental

uncertainty and affects the degree of strategic uncertainty faced by the players. In many of these

applications, however, outcomes seem to be driven by sentiments, that is, shifts in expectations

of economic activity that cannot be explained by shifts in fundamentals (see Angeletos and La’O

(2013), or Izmalkov and Yildiz (2010)).1

In this paper, we investigate theoretically and experimentally how changes in the information

structure give rise to sentiments that affect behavior in coordination games with incomplete in-

formation. We use global games as the setup to perform our analysis because they offer a unique

framework to study explicitly the effects of fundamental and strategic uncertainty on agents’be-

havior (see Carlsson and Van Damme (1993), Morris and Shin (1998, 2003)).2 In these games,

the precision of players’ signals determines the degree of fundamental and strategic uncertainty.

This leads to sharp theoretical predictions: in two-player settings, as the precision of information

increases (fundamental uncertainty decreases), equilibrium play is driven more by strategic un-

certainty and less by fundamental uncertainty. In the limit, as fundamental uncertainty vanishes,

players face maximal strategic uncertainty close to their indifference point and as a result the unique

equilibrium coincides with the risk dominant one.

In our experiment, we consider a standard global game model and vary fundamental uncer-

tainty exogenously (exogenous variations of signal precision) and endogenously (costly information

acquisition).3 We find that in both settings the vast majority of subjects use threshold strategies,

as suggested by the theory and consistent with the experimental evidence (see Heinemann, Nagel,

and Ockenfels (2004, 2009)). However, we find two systematic departures in the way that subjects

respond to changes in the information structure. First, the comparative statics of thresholds with

respect to precisions are reversed. Second, as the signal noise decreases, subjects’behavior tends

towards the effi cient threshold, not the risk-dominant one. These departures have significant wel-

fare effects and are more pronounced when the information structure is endogenously determined

by subjects. These departures also suggest that, contrary to the theoretical predictions, the per-

1For example, sentiments can explain why the success of FDI can be very different for countries with similar
fundamentals.

2Global games are coordination games with incomplete information where players observe noisy private signals
about payoffs. Some examples of applications are Angeletos et al. (2006), Angeletos and Werning (2006), Edmond
(2013), Goldstein and Pauzner (2005), Hellwig et al. (2006), or Szkup (2016). See Angeletos and Lian (2016) for an
excellent summary of this literature.

3We endogenize the information structure to study an environment where subjects can control the degree of funda-
mental uncertainty in an effort to better understand the relationship between fundamental and strategic uncertainty.
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ception of strategic uncertainty of subjects might be directly aligned to the degree of fundamental

uncertainty in the environment. That is, subjects become more certain about the action of their

opponent when signals become more precise.

To reconcile our findings with the theory, we extend the standard model of global games to allow

for situations where the perception of strategic uncertainty can be influenced by sentiments. This

extension is based on the observation that the expected payoffs in our model can be approximated

by the product of the expected value of the state (determined by the degree of fundamental uncer-

tainty) and the probability that the other player takes the risky action (which captures strategic

uncertainty). This simple observation suggests that sentiments can be related to either funda-

mental uncertainty (agents forming biased beliefs about the state of fundamentals) or to strategic

uncertainty (agents forming biased beliefs about the likelihood of their opponent taking a specific

action).4 However, when information is very precise, signals convey very accurate information

about the state, suggesting that, at least in the case of high precision, departures from the theory

are likely to be driven by a biased perception of strategic uncertainty. Therefore, we hypothesize

that our experimental findings are a result of sentiments that affect the perception of strategic

uncertainty. Moreover, we hypothesize that the nature of these sentiments (i.e., their sign and

magnitude) is directly related to the degree of fundamental uncertainty in the environment.

We test the sentiment-based mechanism of the extended model in further experimental sessions

by eliciting subjects’first- and second-order beliefs and we find support for our hypotheses. On

average, subjects form accurate first-order beliefs, especially with high precisions, supporting the

idea that sentiments related to fundamentals are an unlikely driver of our results. On the other

hand, elicited second-order beliefs indicate that subjects are overly optimistic about the desire of

their opponent to coordinate when information is very precise, and pessimistic when the signal

noise increases. This suggests that subjects anchor their perception of strategic uncertainty to the

degree of fundamental uncertainty, that is, that fundamental uncertainty determines the sentiments

in subjects’perception of strategic uncertainty.

The results of our experiments show how a bias in belief formation that has been extensively

studied in individual decision making can crucially affect outcomes in strategic environments by

altering the way in which players respond to changes in the information structure. The sentiments

that we identify, however, are different to the biases that are typically studied in the behavioral

literature because they affect the perception of strategic uncertainty, which is not present in in-

dividual decision making environments.5 ,6 We find that the sign and magnitude of the bias we
4The biased beliefs related to strategic uncertainty can be due, for example, to a player believing that her opponent

has a biased perception of fundamental uncertainty.
5 If the optimism/pessimism sentiments were related to the perception of fundamental uncertainty (beliefs about

the state), they would be closer to the biases studied in the individual decision making literature (see Weinstein
(1980) or Camerer and Lovallo (1999)).

6Even though the optimism/pessimism bias we identify is related to strategic and not fundamental uncertainty, our
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identify depend on the informativeness of the environment, which has important welfare implica-

tions for coordination problems. For example, more successful coordination can be attained when

information is very precise because it leads players to become overoptimistic about the likelihood

of a successful coordination. On the other hand, coordination failures are likely to occur under

very noisy information because players tend to become overly pessimistic about the likelihood of a

successful coordination.

Our results not only provide novel insights about behavior in coordination problems with incom-

plete information, but they also shed some light on some of the recent findings in macroeconomics

and finance. For example, in the context of business cycles, Bloom (2009) suggests that recessions

are accompanied with an increase in uncertainty, while Angeletos and La’O (2013) and Benhabib et

al. (2015) argue that recessions can be driven by sentiments. Our results provide a natural connec-

tion between these two seemingly unrelated ideas. As our results show, an increase in uncertainty

leads to negative sentiments about the likelihood of profitable risky investment (via pessimism

about others investing). This results in lower levels of aggregate investment, which leads to, or

amplifies, a recession. Our results can also inform policy making. For example, the mechanism

we identify can help to make the case for greater transparency in financial regulation. If we in-

terpret rolling over loans as a risky choice in environments with strategic complementarities (as in

Diamond and Dybvig (1983) or Goldstein and Pauzner (2005)), an increase in transparency can

lead to positive sentiments about the likelihood of others rolling over, which leads to fewer early

withdrawals and can result in greater financial stability.

This paper is related to the literature on equilibrium selection in coordination games. Harsanyi

and Selten (1988) define risk dominance and payoff dominance as two contrasting equilibrium

refinements for games with multiple equilibria. They suggest that in the presence of Pareto ranked

equilibria risk dominance is irrelevant since “collective rationality”should select the payoffdominant

equilibrium. However, experimental evidence highlights how strategic uncertainty can lead to

coordination failure in games with complete information and Pareto ranked equilibria (see Van

Huyck, Battalio, and Beil (1990, 1991), Cooper, DeJong, Forsythe, and Ross (1990, 1992), or

Straub (1995)).

Our setup with exogenous information structures is a discrete version of Morris and Shin (1998)

and the corresponding experimental treatments are related to Heinemann, Nagel, and Ockenfels

(2004) who test the predictions of Morris and Shin (1998). The setup with endogenous information

structures is related to Szkup and Trevino (2015) and Yang (2015) who endogenize the information

characterization of this bias is qualitatively consistent with the characterization of the related biases in the psychology
literature. For example, Moore and Cain (2007) show that subjects tend to be more pessimistic/underconfident when
tasks are more diffi cult, and that they become optimistic/overconfident for easier tasks. These results are consistent
with our characterization if we interpret the level of uncertainty as determining the level of diffi culty to coordinate
in a game.
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structure in global games by allowing players to choose the quality of their information, at a cost.

Other theoretical papers that endogenize information structures in coordination games include

Bannier and Heinemann (2005), Colombo, Femminis, and Pavan (2014), Hellwig and Veldkamp

(2009), Nikitin and Smith (2008), and Zwart (2008). Darai, Kogan, Kwasnica, and Weber (2017)

study experimentally how different types of public signals affect coordination outcomes in a similar

environment. Cornand and Heinemann (2014) and Baeriswyl and Cornand (2016) propose alter-

native ways of thinking of coordination in experiments about the closely related family of beauty

contest games. This paper also contributes to the literature that incorporates aspects of bounded

rationality to propose alternative equilibrium notions such as Nagel (1995), McKelvey and Palfrey

(1995), or Eyster and Rabin (2005).

The paper is structured as follows. Section 2 presents the theoretical benchmarks for the

treatments in the experiment. Section 3 presents the experimental design and the theoretical

predictions for the parameters used in the experiment. In Section 4 we present our experimental

findings and characterize the main departures from the theory. In Section 5 we propose an extention

to the model of Section 2 to reconcile our findings with the theory and we provide evidence to

support it. Section 6 discusses alternative explanations for the observed departures from the theory

and concludes.

2 The model

In this section, we describe the theoretical models that serve as benchmarks for our experiment.

We first describe the general version of our model where signals have heterogenous precisions across

players. A special case of this model, where precision is homogenous across players, corresponds to

the standard global game with exogenous information structures, as in Carlsson and van Damme

(1993) and Morris and Shin (2003). We then consider the case with endogenous information

structures that is composed of a first stage of costly information acquisition and a second stage

where players play the game with heterogeneous precisions.7

2.1 The setup

There are two identical players in the economy, i ∈ {1, 2}, who simultaneously choose whether to
take action A or action B. Action B is safe and always delivers a payoff of 0. Action A is risky

and has a cost T associated to it. Action A delivers a payoff of θ−T if it is successful and −T if it
fails, where θ ∈ R is a random variable that reflects the state of the economy. Action A succeeds

if both players choose action A and θ > θ (the state is high enough to make action A profitable),

7The details of the model with endogenous information structures can be found in Section B of the appendix.

5



or if θ ≥ θ (the state is high enough that the success of action A does not depend on player j’s

choice).8 Thus, players face the following payoffs:9

Success Failure

Action A θ − T −T
Action B 0 0

The state variable θ follows a normal distribution with mean µθ and variance σ
2
θ. Players do

not observe the realization of θ. However, each player i = 1, 2 observes a noisy private signal about

it:

xi = θ + σiεi,

where σi > 0 and εi ∼ N (0, 1). The noise εi is i.i.d. across players and we denote by φ(·) its
probability density function, and Φ(·) its cumulative distribution function. The precision of the
signal that each player receives is determined by its standard deviation, σi.10 In the model with

exogenous information structures σi = σj = σ.

2.2 Equilibrium

The equilibrium of the global game with heterogenous precisions follows the same intuition as the

standard global games with homogenous precisions (see, for example, Morris and Shin (2003)).

Since this intuition has been established in the literature, we skip the intermediate steps and refer

an interested reader to the online appendix for details.11

Let σ1, σ2 be the standard deviations of the signals of player 1 and player 2, respectively.

Suppose that each player uses a monotone strategy by which he chooses action A if his signal xi

is larger than a threshold x∗i , and he chooses action B otherwise. Given player j’s threshold x∗j ,

8θ and θ define, respectively, upper and lower dominance regions for the fundamental. This is a standard charac-
teristic of global games (see Morris and Shin (2003)).

9One can think of a number of applications where θ represents the relevant fundamentals. For example, it can
represent the return to a risky investment or the gain from overthrowing an oppressive regime. In the first case, the
action of players would be to invest (A) or not (B). In the second case, the action would be to engage in a political
protest (A) or not (B). We can think of T as an investment cost in the first case, or as an opportunity cost in the
second.
10The precision of a random variable that follows normal distribution is defined as the inverse of its variance. In

what follows we use higher precision, lower variance, or lower standard deviation interchangeably to describe the
informativeness of signals.
11The proofs of existence and uniqueness of equilibrium follow standard methods in the literature on global games.

However, our results are not simple corollaries of the existing papers. Most of the literature deals with either the
limiting case when the noise in the signals vanishes (Carlsson and van Damme, 1993, Frankel et al., 2003) or with a
continuum of players (as in Szkup and Trevino, 2015). The fact that there are is a discrete number of asymmetric
players and that the prior is proper results in significantly more complex conditions for uniqueness than typically
encountered in the literature.
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player i’s threshold x∗i is determined by the solution to the following indifference condition:

E
[
θPr

(
xj > x∗j |θ

) ∣∣∣x∗i , θ ∈ [θ, θ] ]+ E
[
θ
∣∣∣x∗i , θ > θ

]
− T = 0 (1)

which states that at the threshold signal x∗i player i is indifferent between taking action A and

taking action B.

The equilibrium in monotone strategies is described by a pair of thresholds {x∗1, x∗2} such that for
each player i = 1, 2, the threshold x∗i solves Equation (1) given that player j 6= i follows a threshold

x∗j . Similar to the results in the literature, the coordination game has a unique equilibrium as long

as the standard deviations of private signals are small enough compared to the standard deviation

of the prior, σθ. Moreover, as the precision of the signals increases, the optimal thresholds converge

to the risk-dominant threshold, which in our case is equal to 2T .12 The next proposition formalizes

these results.

Proposition 1 Let {σ1, σ2} be the standard deviations of players’signals. There exists a unique,
dominance solvable equilibrium in which both players use threshold strategies characterized by {x∗1(σ),

x∗2(σ)} if either:

1. σi
σθ
< Ki(θ, θ, µθ), i = 1, 2 holds, for any pair of (σ1, σ2),13 or

2. σθ > σθ, where σθ is determined by the parameters of the model.

Moreover as σi → 0, σj → 0 and σi
σj
→ c ∈ R this equilibrium converges to the risk-dominant

equilibrium of the complete information game.

The model with exogenous information structures corresponds to the case where σi = σj = σ,

and is similar to Carlsson and Van Damme (1993) or Morris and Shin (2003).

We will test experimentally the predictions of Proposition 1 in an effort to understand whether

subjects use threshold strategies and how these thresholds depend on the informativeness of signals

(determined by σ). In particular, the treatment variations in the signal precision will allow us to

approximate the path towards complete information with the objective to document empirically

whether thresholds “convergence”to a specific equilibrium of the complete information game. In

the treatments with costly information acquisition we endogenize the choice of signal precision to

study these questions when the path towards complete information is endogenously determined.

12The risk-dominant threshold in our game is the optimal threshold when a player assigns equal probability to the
other player taking either action.
13The derivation of the expression for Ki(θ, θ, µθ) can be found in the online appendix.
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2.3 Costly information acquisition

The model with endogenous information structures is a two-stage model where players first ac-

quire information and then play the coordination game described above. In the first stage each

player decides how much information about θ to acquire by choosing the standard deviation of his

signal, σi ∈ (0, σ]. If a player chooses not to acquire information he will observe a signal with a

default standard deviation σ. The cost of choosing a standard deviation σi is C (σi). The func-

tion C(·) is continuous, with C(σ) = 0, C ′(σ) = 0, C ′(σi) < 0, C ′′(σi) > 0, for all σ ∈ (0, σ),

and limσ→0+ C ′ (σi) = −∞. These assumptions imply that the cost of decreasing the standard
deviation is increasing, convex, that infinitesimal information acquisition is costless, and that the

marginal cost of acquiring better information converges to infinity as σ tends to 0. Once players

have chosen the precision of their signal, they play the coordination game as described above.

The model with endogenous information is solved by backward induction. In the second stage,

equilibrium behavior follows Proposition 1. In the first stage, players compare the benefit of being

better informed to the cost of information. Let B (σi; {σj , σ′i}) denote the benefit of choosing
standard deviation σi to player i when player j chooses standard deviation σj . Player j expects

player i to choose standard deviation σ′i and both players behave optimally in the coordination

stage given their beliefs (i.e., they follow the monotone strategies described above). The standard

deviations {σ∗1, σ∗2} constitute an equilibrium of the two-stage game if for each i = 1, 2 and each

j 6= i
∂

∂σi
B
(
σ∗i ;
{
σ∗j , σ

∗
i

})
= C ′ (σ∗i )

Section B of the Appendix contains a full solution and proof of existence of a symmetric equilibrium

for the game with costly information acquisition.14

2.4 Strategic uncertainty

In this section we briefly describe how strategic uncertainty in this game depends on the signal

precision, which is key to understand why equilibrium thresholds converge to the risk dominant

equilibrium as the signal noise vanishes. We will revisit these concepts in Section 5 when we extend

the model to reconcile the theory with our experimental findings.

One typically refers to strategic uncertainty as the uncertainty about the actions of other players

(see Van Huyck et al., 1990, or Brandenburger, 1996). According to this definition, strategic

uncertainty is high if a player is very uncertain about the behavior of others. In our model the key

14 In a monotone equilibrium the benefit of a higher precision comes from the reduction in the expected cost of
two types of mistakes: taking action A when action A is unsuccessful or when θ < T (Type I mistake) and choosing
action B when action A is successful and θ > T (Type II mistake). See Szkup and Trevino (2015) for an in-depth
discussion of these mistakes in a global game with a continuum of players.
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object that allows us to measure strategic uncertainty faced by player i is Pr
(
xj > x∗j |xi

)
, which

represents the probability that player i assigns to player j taking action A. If Pr
(
xj > x∗j |xi

)
is

close to 1/2 then player i deems each action by player j almost equally likely and hence faces high

strategic uncertainty. On the other hand, if Pr
(
xj > x∗j |xi

)
is close to 0 or 1 then he expects player

j to take a particular action, thus he faces little strategic uncertainty.

The extent of strategic uncertainty that players face in the game varies with σi. As σi decreases,

player i’s signal is closer to the state θ, so he is able to better estimate player j’s signal. Thus, if

he receives a high (low) signal, he believes that player j also receives a high (low) signal and he

assigns a higher probability to player j choosing action A (action B). Consider now the case where

player i observes the signal xi = x∗j , that is, a signal equal to his opponent’s threshold. In this

case, an increase in the precision of xi will increase strategic uncertainty since Pr
(
xj > x∗j |xi = x∗j

)
converges monotonically to 1/2. Thus, for signals around x∗j , the strategic uncertainty faced by

player i increases as σi decreases. This leads to the limit result in Proposition 1, first shown by

Carlsson and Van Damme (1993) for homogenous signal distributions.

To sum up, in this model a reduction of fundamental uncertainty (characterized by an increase

in the precision of private information) increases strategic uncertainty for intermediate signals (i.e.,

signals in the neighborhood of x∗i and x∗j ) and decreases strategic uncertainty for high or low

signals. In fact, it is the increase in strategic uncertainty for intermediate signals that determines

how player i adjusts his threshold when fundamental uncertainty decreases. Our experimental

results will allow us to test whether this relation between strategic and fundamental uncertainty is

consistent with the behavior of subjects.15

3 Experimental design

In this section we describe our experimental design and the predictions of the model that we test.

We implement a between subjects design that allows us to directly compare the behavior of subjects

across treatments.

There are three main dimensions in which our treatments vary: The nature of the information

structure (exogenous and endogenous), the precision of the private signals (for exogenous informa-

tion structures), and the way in which subjects choose actions (direct action choice and strategy

method). Table 1 summarizes our experimental design.

When the information is given to subjects exogenously (first 7 treatments in Table 1) we vary

the precision of the private signals in the following way: complete information (standard deviation

15Morris and Shin (2002, 2003) suggest using rank beliefs to measure strategic uncertainty, where rank beliefs are
defined as the beliefs that player i attaches to his opponent receiving a higher or lower signal than him. Despite the
theoretical advantages of studying rank beliefs (Morris, Shin and Yildiz, 2016), we believe that measuring strategic
uncertainty using players’beliefs regarding the action of the other players is more intuitive in an experimental setting.
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of 0), high precision (standard deviation of 1), medium precision (standard deviation of 10), and low

precision (standard deviation of 20). In the treatments with an endogenous information structure

(treatments 8 and 9 in Table 1) subjects have to choose the precision of their private signals from

the set of standard deviations of {1, 3, 6, 10, 16, 20}. In the treatments with direct action choice

subjects choose an action (A or B, i.e., risky or safe) after observing their signal, as in the model

described above. In the treatments with the strategy method for action choices subjects have to

report a cutoff value such that they would choose the risky action (A) if their signal is higher than

this cutoff and the safe action (B) if their signal is lower than the cutoff they report. Eliciting

thresholds in this way allows us to observe the evolution of thresholds over time.

We also run treatments with exogenous information structures where we elicit first and second

order beliefs (last 3 rows in Table 1).16 ,17

TREATMENT INFORMATION SIGNAL CHOICE BELIEF #

PRECISION OF ACTION ELIC ITATION SUBJECTS

1. COMPLETE INFORMATION EXOGENOUS PERFECT (sd = 0) D IRECT NO 22

2. EXOGENOUS / HIGH / ACTION EXOGENOUS HIGH (sd = 1) D IRECT NO 38

3. EXOGENOUS / HIGH / STRATEGY EXOGENOUS HIGH (sd = 1) STR . METHOD NO 20

4. EXOGENOUS / MEDIUM / ACTION EXOGENOUS MEDIUM (sd = 10) D IRECT NO 40

5. EXOGENOUS / MEDIUM / STRATEGY EXOGENOUS MEDIUM (sd = 10) STR . METHOD NO 24

6. EXOGENOUS / LOW / ACTION EXOGENOUS LOW (sd = 20) D IRECT NO 44

7. EXOGENOUS / LOW / STRATEGY EXOGENOUS LOW (sd = 20) STR . METHOD NO 20

8. ENDOGENOUS / ACTION ENDOGENOUS sd∈{1,3 ,6 ,10,16,20} D IRECT NO 40

9. ENDOGENOUS / STRATEGY ENDOGENOUS sd∈{1,3 ,6 ,10,16,20} STR . METHOD NO 44

10. EXOGENOUS/ HIGH / BELIEFS EXOGENOUS HIGH (sd = 1) D IRECT YES 22

11. EXOGENOUS / MEDIUM / BELIEFS EXOGENOUS MEDIUM (sd = 10) D IRECT YES 20

12. EXOGENOUS / LOW / BELIEFS EXOGENOUS LOW (sd = 20) D IRECT YES 16

Table 1: Experimental design

Each session of the experiment consists of 50 independent and identical rounds. The computer

randomly selects five of the rounds played and subjects are paid the average of the payoffs obtained

in those rounds, using the exchange rate of 3 tokens per 1 US dollar.

Subjects are randomly matched in pairs at the beginning of the session and play with the same

16 In each round, we elicit subjects’first order beliefs about the state θ after observing their signal. Once they
have chosen an action, we elicit their second order beliefs about the probability they assign to their opponent having
chosen actions A and B. Both elicitations of beliefs are incentivized using a quadratic scoring rule.
17Given our interest in studying fundamental and strategic uncertainty, one could think of eliciting beliefs of our

subjects to learn their beliefs about the state and about the action taken by their opponent. However, we first follow
a revealed preference approach and focus only on choice data to study how the behavior of the game varies with the
information structure. We do not elicit beliefs in the treatments corresponding to the first 9 rows of Table 1 because
we do not want to alter the individual reasoning of subjects by drawing attention to fundamental and strategic
uncertainty. However, once we identify systematic deviations from the theory in our data, we hypothesize that biases
in belief formation might be behind these results and test this hypothesis directly with these assitional treatments.
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partner in all rounds.18 To avoid framing effects the instructions use a neutral terminology. To

avoid bankruptcies subjects enter each round with an endowment of 24 tokens. From Table 2 we can

see that in the treatments with costly information acquisition even if subjects choose the precision

with the highest cost the lowest payoff they can get in a round is 0, in case of miscoordination.

Before starting the first paying round subjects have access to a practice screen where they can

generate signals (for the different available precisions if information is endogenous) and they are

given an interactive explanation of the payoffs associated to each possible action, given their signal

and the underlying state θ.

After each round subjects receive feedback about their own private signal, their choice of action,

the realization of θ, how many people in their pair chose action A, whether A was successful or

not, and their individual payoff for the round. In addition, in the treatments with endogenous

information subjects observe precision choices and can access the history of precision choices made

by both pair members over the previous rounds by pressing a button.

The experiment was conducted at the Center for Experimental Social Science at New York

University using the usual computerized recruiting procedures. Each session lasted from 60 to 90

minutes and subjects earned on average $30, including a $5 show up fee. All subjects were under-

graduate students from New York University.19 The experiment was programmed and conducted

with the software z-Tree (Fischbacher, 2007). There were a total of 18 sessions and 350 participants.

Our experiment is related to the work of Heinemann et al. (2004) (HNO04 henceforth) who

test the predictions of the model by Morris and Shin (1998) in the laboratory.20 It is also related

to Cabrales, Nagel, and Armenter (2007) and Duffy and Ochs (2012).

3.1 Theoretical predictions for the experiment

The theoretical model is governed by a set of parameters Θ =
{
µθ, σθ, θ, θ, T, {σi} , {C(σi)}

}
. In

the experiment:

18We choose fixed pairs, as opposed to random pairs, to be able to study coordination of information choices over
time. Due to the complexity of the setup with endogenous information structures, subjects might need time to learn
because information choices are not observable and equilibrium assumes that beliefs about information choices are
correct. Subjects choose consistently their level of precision, which “fixes”the beliefs about the information choices
within a pair. For this reason we believe that fixed pairs are better suited to study this environment. In order to test
if our results were due to the matching protocol, we run an additional session with random matching in each round
and high signal precision and find no significant effect resulting from the matching procedure.
19 Instructions for all treatments can be found at http://econweb.ucsd.edu/~itrevino/pdfs/instructions_st.pdf.
20Unlike HNO04, our focus is to understand how behavior in a global game depends on detailed exogenous and

endogenous variations of the information structure. Our experiment also differs from HNO04 in terms of implemen-
tation. HNO04 use uniform distributions for the state and for private signals and they give subjects in each round
a block of 10 independent situations (signals) and subjects have to choose an action for each signal before getting
feedback. They then get feedback about the 10 choices and move on to the next round where they face a new block of
10 decisions. They have 16 rounds of 10 situations each. Additionally, each game of HNO04 consisted of 15 players,
as opposed to our two-player case.

11



• The state θ is randomly drawn from a normal distribution with mean µθ = 50 and standard

deviation σθ = 50.

• The coordination region is for values of θ ∈ [0, 100), that is θ = 0 and θ = 100.

• The cost of taking action A is T = 18.

• For the treatments with endogenous information structures, precision choices and the associ-
ated costs are presented in the form of a menu of 6 precision levels, standard deviations, and

costs:21

Precision level 1 2 3 4 5 6
Standard deviation 1 3 6 10 16 20
Information Cost 6 5 4 2 1.5 1

Table 2: Precision choices

We decided not to have a default precision chosen for subjects in order to avoid status quo biases.

The reason to introduce a discrete choice set for precisions was to simplify the choice for subjects

and the data analysis. We believe six is a reasonable number of options to observe dynamics in the

level of informativeness that subjects choose, without losing statistical power.

Given these parametric assumptions we characterize the predictions of the model in the form

of two main hypotheses to be tested with our experiment:

Hypothesis 1 (Exogenous information) skip

a) Subjects use equilibrium threshold strategies in treatments with exogenous information struc-

tures and incomplete information.

b) Under complete information, subjects behave in accordance to the theoretical prediction of

multiplicity of equilibria.

c) Thresholds are increasing in precision and tend towards the risk-dominant threshold.

Hypothesis 2 (Endogenous information) skip

a) Subjects use threshold strategies for their preferred precision choices.

b) Subjects choose the unique equilibrium precision and threshold.

c) Thresholds are increasing in precision choices and tend towards the risk-dominant thresh-

old.22

21 In the remainder of the paper, we will refer to information choices as precision choices to be consistent with the
language used in the implementation of the experiment. We will use the term precision as a qualitative measure of
informativeness of the signals, that is we will compare levels of precision (low, medium, high), and not magnitudes
of standard deviations.
22 In general, in the model thresholds are increasing in the precision of information if µθ is high relative to T and

decreasing when µθ is low relative to T . Given our choice of parameters, we are in the former case.
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Hypothesis 1 pertains to the treatments where subjects are exogenously endowed with the same

signal precision or where they perfectly observe the state (treatments 1-7). Given the parameters

used in the experiment, the equilibrium threshold when subjects observe signals with high precision

(standard deviation of 1) is 35.31, for medium precision (sd of 10) it is 28.31, and with a low

precision (sd of 20) it is 18.73. When subjects have complete information about θ, the theory

suggests multiple equilibria.

Hypothesis 2 pertains to the treatments with endogenous information structures via costly

information acquisition. Part (a) of the hypothesis states that subjects choose a unique equilibrium

in threshold strategies, for a given precision choice. Part (b) aims to test the unique symmetric

equilibrium prediction for the parameters used in the experiment, which corresponds to coordinating

on choosing precision level 4 (sd of 10) and setting a symmetric threshold at 28.31. Implicit in this

prediction is that precision choices are strategic complements, which leads players to coordinate on

both precisions and actions. Given the parameters in the experiment, in part (c) of Hypothesis 2

we test the comparative statics of the thresholds in the coordination game with respect to precision

choices in the first stage, in case subjects do not choose the equilibrium precision.

To understand the intuition behind the predictions for comparative statics of thresholds and

precisions, note that thresholds will be low in general when µθ is high relative to T since this

makes the risky action more likely to succeed in expectation.23 This is stronger when the precision

of signals is low, since in this case players assign a high weight to the prior. Thus, for a low

precision of signals the model predicts low thresholds for our choice of parameters. An increase in

the precision of signals has two effects on players’behavior. First, they assign a lower weight to

the information contained in the prior. Second, it increases the correlation between the players’

signals, making it harder for a player to predict whether his opponent observes a signal higher or

lower than his own, which leads to higher strategic uncertainty for intermediate signals (close to the

thresholds). For our choice of parameters, this means that thresholds will increase as the precision

of signals increases. Finally, in the limit, as signals become perfectly informative, this increase in

strategic uncertainty leads players to choose the risk dominant equilibrium of the game, as in the

limit they assign probability 1/2 to the other player observing a signal higher or lower than their

own.

4 Experimental results

In this section we first explain our methodology to estimate thresholds, since they are the relevant

objects to study our hypotheses. We then investigate each of our hypotheses, and then we summa-
23See Heinemann and Illing (2002), Bannier and Heinemann (2005), Iachan and Nenov (2014), or Szkup and

Trevino (2015) for detailed theoretical discussions of comparative statics in global games with respect to precision of
information.
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rize the departures from the theoretical predictions found in the data to facilitate the introduction

of the extended model in Section 5.24

4.1 Estimation of thresholds

We say that a subject’s behavior is consistent with the use of threshold strategies if the subject uses

either perfect or almost perfect thresholds. A perfect threshold consists of taking the safe action B

for low values of the signal and the risky action A for high values of the signal, with exactly one

switching point (the set of signals for which a subject chooses A and the set of signals for which

he chooses B are disjoint). For almost perfect thresholds, subjects choose action B for low signal

values and action A for high signal values, but we allow these two sets to overlap for at most three

observations. These two types of behavior are illustrated in Figure 5 in the appendix.

Once we identify the subjects who use threshold strategies, we use two different methods to

estimate their thresholds. For the first method we pool the data of all the subjects who use

thresholds in each treatment and fit a logistic function with random effects (RE) to determine the

probability of taking the risky action as a function of the observed signal.25 The cumulative logistic

distribution function is defined as

Pr(A) =
1

1 + exp(α+ βxi)

We estimate the mean threshold of the group by finding the value of the signal for which

subjects are indifferent between taking actions A and B, that is, the value of the signal for which

they would take the risky action with probability 1
2 , which is given by −

α
β . As pointed out by

HNO04, the standard deviation of the estimated threshold, π
β
√

3
, is a measure of coordination and

reflects variations within the group. We call this the Logit (RE) method.

For the second method we take the average, individual by individual, between the highest signal

for which a subject chooses the safe action and the lowest signal for which he chooses the risky

action. This number approximates the value of the signal for which he switches from taking one

action to taking the other action. Once we have estimated individual thresholds this way, we take

the mean and standard deviation of the thresholds in the group. We refer to this estimate as the

Mean Estimated Threshold (MET) of the group.

24Most of the results reported from the experiment pertain to the last 25 rounds to allow for behavior to stabilize,
unless otherwise specified. This is particularly important for the treatments with endogenous information since
subjects first have to stabilize in their precision choices before we can estimate thresholds.
25For the treatment with endogenous information structures we pool the data of subjects according to the level of

precision chosen.
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4.2 Hypothesis 1: Exogenous information

To study part (a) of Hypothesis 1, we use the procedure described above to determine how many

subjects use thresholds strategies. We find that the behavior of 93.44% of subjects is consistent

with the use of threshold strategies.26 Table 3 shows the mean estimated thresholds for the different

treatments with exogenous information structures. Standard deviations are reported in parenthesis.

While we find that the vast majority of subjects uses threshold strategies, these thresholds differ

substantially from the thresholds predicted by the theory. In particular, we reject to the 1% and

5% levels of significance that the thresholds estimated for the high precision treatment coincide

with the theoretical equilibrium threshold of 35.31, using the MET and logit methods, respectively.

For the treatments with medium and low precision, we reject to the 1% level that subjects play the

equilibrium thresholds of 28.31 and 18.73, respectively, using both methods.27

Complete info High precision Medium precision Low precision
Logit (RE) 22.01 27.61 40.16 35.79

(7.15) (5.86) (9.13) (9.00)
MET 21.07 27.42 40.37 36.23

(11.85) (19.16) (18.77) (23.36)
Equilibrium x* 35.31 28.31 18.73
Risk dominant eq. 36 36 36

Table 3: Estimated thresholds and equilibrium predictions, exogenous information

We also reject part (b) of Hypothesis 1 with our data. In the treatment with complete infor-

mation all of our subjects use threshold strategies, and thus behave in accordance with a unique

equilibrium. This is consistent with the findings of HNO04, who document that subjects play

threshold strategies in coordination games with complete information. Moreover, the mean esti-

mated threshold for this treatment is close to the effi cient threshold of 18 (with 77.27% of subjects

in the complete information treatment using exactly the effi cient threshold). This is also consistent

with Charness, Feri, Melendez-Jimenez, and Sutter (2014) who show effi cient play in coordination

games under complete information.

Finally, we also reject part (c) of Hypothesis 1. The thresholds of subjects that are given either

a medium or a low precision exogenously are not statistically different from each other, but they

are statistically higher than the thresholds under high precision. This means that the estimated

thresholds are non-increasing on the precision of information and seem to display a convergence

26 In particular, 97.37% of subjects use thresholds for high precision, 92.5% for medium precision, and 90.91% for
low precision. This result is qualitatively similar to HNO04, even if HNO04 use a different metric to measure the use
of threshold strategies and have 10 decision situations in each round of the experiment.
27The thresholds estimated for high precisions are different to the risk dominant threshold to the 1% level. For the

treatments with medium and low precision we cannot reject the hypothesis that the estimated thresholds coincide
with the risk dominant threshold of 36.
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towards the effi cient threshold obtained under complete information, and not the risk dominant,

as the theory predicts.28 That is, a high precision of signals leads to more successful coordination

than what is suggested by the theory.29 As is shown in Table 9 in the appendix, this deviation is

payoff improving.

4.3 Hypothesis 2: Endogenous information

In order to investigate part (a) of Hypothesis 2 we need to first establish stability of individual

precision choices when information is endogenously chosen by subjects. We find that subjects

choose, on average, the same precision for more than 22 out of the last 25 rounds of the experiment.

Figure 6 in the appendix shows the transition matrix of precision choices in the last 25 rounds of

the experiment.30 The entry aij of the matrix shows the probability of choosing precision level j

in t+ 1, given that a subject chose precision level i at t, for i, j ∈ [1, 6] and t > 25. By looking at

the diagonal entries of the transition matrix, we can see that most precision levels (except for level

5) are absorbent states.31 Given this stability result, we characterize subjects by their preferred

precision choice.

Table 4 shows the percentage of subjects that choose each precision for the last 25 rounds of

the experiment.32 Notice that the most popular precision choice is the equilibrium precision (level

4).

28We abuse language slightly and talk about convergence in behavior when the signal noise decreases. Given
the discrete nature of experiments, it is not correct to make statements about convergence. We are aware of this
limitation, but we use this term to give an intuitive interpretation to our results.
29Similar effi cient thresholds are found in a robustness check with high precision and random rematching in every

round, suggesting that the effi cient play that we observe in the experiment when signals are very precise is not due
to repeated game effects.
30This includes precision choices in treatments with a direct action choice and with the strategy method. We

aggregate the data because the distributions of precision choices are not statistically different between these two
treatments. This was expected since the treatment effect is in the second stage of the game.
31Less than 5% of subjects chose precision 5 and their behavior in the second stage was mostly random.
32Precision choices in the first rounds are not very dissimilar to the precision choices portrayed in Table 4. In

particular, if we compare the choices of the first 5 rounds with the choices of the last 5 rounds of the experiment, we
observe the following proportion of choices, by precision level (the first number corresponds to the first 5 rounds and
the second to the last 5 rounds). Level 1: 16.2% vs 13.8%; level 2: 11.9% vs 4%; level 3: 25% vs 19%; level 4: 21.4%
vs 36.8%; level 5: 4.8% vs 4%; level 6: 20.7% vs 22.4%. We observe the highest shift in precision choices to be in
favor of the equilibrium precision level 4.
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Precision Standard Cost Precision choices
level deviation in last 25 rounds
1 1 6 14.7%
2 3 5 3.7%
3 6 4 18.4%
4* 10 2 36.9%
5 16 1.5 3.9%
6 20 1 22.4%

Table 4: Precision choices in the last 25 rounds, endogenous information

We now analyze the use of threshold strategies, given each subject’s preferred precision choice.

We find that 100% of subjects choosing precision levels 1, 2, or 3 use threshold strategies. For

precision level 4, 93.75% of the subjects use threshold strategies. For precision level 6, 75% of

the subjects use threshold strategies and 25% always choose either action A or B. This suggests

that when subjects invest in more precise information their behavior is more likely to be consistent

with the use of threshold strategies. In total, 90% of the subjects in the endogenous information

treatment with direct action choice use threshold strategies for their most preferred precision choice.

This implies that the theoretical prediction of subjects using threshold strategies is robust also under

endogenous information, and thus we find support for Part (a) of Hypothesis 2.

To study part (b) of Hypothesis 2, we first look at how individual decisions in the game depend

on individual precision choices. Then, we study behavior at the pair level to estimate thresholds,

since they depend on both precision choices within a pair.

Figure 1 plots the cumulative distribution function (pooled over all subjects) to illustrate the

probability of choosing the risky action for each signal realization, by precision levels. The value of

the signal for which subjects choose the risky action with probability 0.5 determines a threshold.

Looking at the intersection of the curves corresponding to the different precision levels with the

0.5 horizontal line, from left to right, we can see that, in general, thresholds are larger for lower

precisions. This suggests that the subjects who acquire more precise information choose the risky

action more often in an effort to coordinate, which is consistent with our findings under exogenous

information, but in stark contrast to the theoretical predictions. We also see that lower precision

levels exhibit less steep CDFs, indicating higher dispersion among the subjects that choose lower

precisions.

We perform two regression estimations for the treatments with endogenous information (direct

action choice and strategy method, respectively) and find strong support for the finding that as

subjects choose higher precisions they try to coordinate more often on the risky action (see Tables

10 and 11 in the appendix).

In order to compare thresholds to equilibrium predictions we need to categorize precision choices
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Figure 1: Probability of taking the risky action, by precision choices

within a pair, since thresholds depend on the precision choices of both pair members. We define

individual convergence in precision as a situation where a subject chooses the same precision level

for the last 25 rounds, with at most three deviations. We say that a pair exhibits non-stable

behavior if at least one of its members does not converge individually in his precision choice. A

pair that has stability but not convergence is a pair in which both members converge individually

in their own precision choices, but the levels at which they converge are more than one level apart.

We define weak convergence as pairs in which both members converge individually to a level of

precision and these two precision levels are at most one level away from each other. We say that a

pair exhibits full convergence if both members converge individually to the same level of precision

for the last 25 rounds of play.33

To estimate thresholds we focus on weak and full convergence and we restrict our attention to

pairs that coordinate on high precision (levels 1 and 2), medium precision (levels 3 and 4), and low

precision (levels 5 and 6). These correspond to the diagonal entries of Table 5, which summarizes

the combinations of precision choices across pairs that exhibit weak convergence. Approximately

two thirds of the total number of pairs exhibit weak convergence in precision, with the majority

converging to a medium precision, which corresponds to the theoretical prediction.

33Table 12 in the appendix shows all the combinations of precision choices made by the different pairs in our
experiment (for both treatments with endogenous information). The diagonal entries correspond to the pairs that
exhibit full convergence.
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High Medium Low
H 10.00% 13.81% 3.05%
M 40.00% 16.67%
L 16.48%

Table 5: Weak convergence of precision choices, endogenous information

With these results in hand, in Table 6 we compare the mean thresholds of pairs that converge to

high, medium, and low precision to the thresholds predicted by the theory.34 As we can see, subjects

who choose the equilibrium precision (medium) choose, on average, the equilibrium threshold. In

particular, we cannot reject the hypothesis that the thresholds estimated for these subjects using

the MET and logit methods are different from the equilibrium threshold of 28.31. This means that

the subjects that coordinate on a medium precision behave on average in accordance to the unique

equilibrium suggested by the theory, unlike those who converge to either a high or low precision.

This supports part (b) of Hypothesis 2.

Complete info High precision Medium precision Low precision
RE Logit 22.01 24.99 30.30 74.62

(7.15) (7.44) (12.32) (21.48)
MET 21.07 25.29 27.84 50.65

(11.85) (9.27) (17.65) (28.65)

Equilibrium x*
Info 1 Info 2
35.31 33.88

Info 3 Info 4
31.61 28.31

Info 5 Info 6
22.82 18.73

Risk dominant eq. 36 36 36

Table 6: Estimated thresholds and equilibrium predictions, endogenous information

However, we can see from Table 6 that part (c) of Hypothesis 2 is rejected. When the precision

of information is endogenous the thresholds are actually decreasing in precision and, again, tend

towards effi ciency and not risk dominance. As shown in Table 13 in the appendix, the deviation

that leads subjects to behave more effi ciently under a higher signal precision is welfare improving,

even if subjects pay a higher cost to acquire the most precise information.

To understand why the qualitative results with an endogenous information structure are starker

than with an exogenous one, we turn our attention to the treatments where thresholds are elicited in

every round using the strategy method. By looking at the evolution of thresholds over time (Figures

7 and 8 in the appendix) we see that the stability of individual thresholds and the convergence

of thresholds within a pair depend on the level of precision only when subjects choose it. When

34Since we define weak convergence to high precision as pairs that converge to precision levels 1 or 2, medium
precision as pairs that converge to precision levels 3 or 4, and low precision as pairs that converge to precision levels 5
or 6, for each precision (high, medium, or low) we include the two predictions that correspond to each of the precision
levels (1 and 2, 3 and 4, or 5 and 6), as well as the risk dominant equilibrium, i.e. the threshold prediction when the
signal noise converges to zero.
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precision is exogenously determined we see no significant differences in stability and convergence of

thresholds across levels of precision. This suggests that we cannot exogenously manipulate subjects

to have more stable individual behavior and better coordination within a pair by endowing them

with more precise information. However, when the precision is endogenously chosen the subjects

from pairs that choose a high precision show, on average, very stable individual thresholds and

they converge to very similar thresholds within a pair. The individual and pair-wise convergence is

weaker for subjects in pairs that choose medium precisions, and even more so for those who choose

low precisions. We can interpret these results as reflecting the possibility that subjects “self-select”

when allowed to choose the precision of their information, thus leading to starker departures from

the theoretical predictions.

4.4 Summary of departures from the theoretical predictions

Our experimental analysis above highlights two main empirical departures from the theoretical

predictions: (1) thresholds tend to decrease as signals become more precise, rather than increase,

as predicted by the theory, and (2) as the signal precision increases, thresholds tend towards the

effi cient threshold, rather than the risk dominant one. This systematic path to convergence towards

effi ciency illustrates an underlying force in the game that is not captured by the theory. These two

stark discrepancies in our data with respect to the theoretical predictions are illustrated in Figure

2, which plots the estimated thresholds for exogenous and endogenous information structures (solid

and dashed blue lines, respectively) and the theoretical predictions for the different noise levels (red

dash-dotted line) and a horizontal line at the risk dominant equilibrium.
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Figure 2: Theoretical predictions and estimated thresholds for exogenous and endogenous informa-
tion structures.
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5 Alternative model and further experimental results

In this section we propose a simple extension to the standard model presented in Section 2. This

extension is based on the notion that sentiments, which result in biases in belief formation, can

lead to behavior consistent with our findings. We then test this hypothesis experimentally and

show that support for the mechanism based on sentiments. In Section 6 we discuss the suitability

of alternative equilibrium notions that assume bounded rationality (such as QRE, limited depth

of reasoning, or correlated equilibria) and argue that, unlike our extended model, these alternative

models cannot fully organize our experimental findings.

In order to understand what could be driving these deviations from the theory it is useful to go

back to the benchmark model of Section 2 and focus on what happens in the limit, as the signal

noise goes to zero, that is σi → 0 for i = 1, 2. In this case, one can show that the indifference

condition of player i ∈ {1, 2} is approximately given by35

Pr
(
xj ≥ x∗j |x∗i

)
E [θ|x∗i ] = T (2)

Equation (2) tells us that when players’signals are very precise their equilibrium behavior is

determined by the fundamental uncertainty (captured by E [θ|x∗i ]) and the strategic uncertainty
(captured by Pr(xj ≥ x∗j |x∗i )) that players face in equilibrium. This suggests that, under the

assumption that players best-respond to their beliefs, deviations from the theoretical predictions

can be driven by subjective (or biased) perceptions of fundamental and/or strategic uncertainty.

We refer to these subjective perceptions as sentiments (see Angeletos and La’O (2013), or Izmalkov

and Yildiz (2010)). Note, however, that as σi → 0 then E [θ|xi] → xi, and thus the task of

computing the expected value of θ becomes rather simple. This suggests that, at least in the case

of high precision, departures from the theory observed in the experiment are unlikely to be driven

by a biased perception of fundamental uncertainty due to sentiments, but rather by sentiments

that affect the perception of strategic uncertainty. Motivated by this observation, we extend our

baseline model to allow for sentiments that bias the beliefs about the action of the other player.36

5.1 Model with sentiments

For simplicity, we focus on the case with exogenous information structures where all signals are

drawn from the same distribution with mean θ and standard deviation σ. For each i = 1, 2 and

j 6= i, let Pri

(
xj ≥ x∗j |xi

)
denote the subjective probability that player i assigns to player j taking

35One can show that for a suffi ciently small σ, the LHS of Equation (1) is approximately equal
E [θ|x∗i ] Pr

(
xj ≥ x∗j |xi∗

)
. This can be deduced from the fact that in the limit as σ → 0, the indifference condi-

tion becomes x∗i Pr
(
xj ≥ x∗j |x∗i

)
= T .

36We elicit first and second order beliefs when we test our extended model and find that subjects indeed have a
biased perception of strategic, but not fundamental uncertainty.
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the risky action. We consider a specific form of additive bias, or sentiment, where Pri

(
xj ≥ x∗j |xi

)
is given by

Pr i
(
xj ≥ x∗j |xi

)
=

∞∫
θ=−∞

[
1− Φ

(
x∗j − θ
σ
− αk

)]
φ (θ|xi) dθ. (3)

That is, αk denotes player i’s bias when estimating the probability that the other player takes the

risky action.37 Let αk ∈ {α1, α2, ..., αN} where, αk < αk+1. Note that when αk = 0, player i forms

correct (Bayesian) beliefs about player j’s choice of action. If αk > 0 then the probability that

player i assigns to player j acting is biased towards taking the risky action (positive sentiments

about coordination), while if αk < 0 the bias is towards player j taking the safe action (negative

sentiments about coordination).

The sentiments captured by αk can arise from biased second-order beliefs if, for example, player

i believes that player j extracts the information from his private signal xj in a biased way. That is, if

player i believes that player j computes his posterior mean as if his signal was xj = θ+σεj +σαk.38

This interpretation is consistent with the formulation of the subjective probability in Equation (3).

Thus, one can interpret αk as measuring player i’s overconfidence about player j taking the risky

action, which results from player i’s beliefs about player j’s overestimation of the value of the state

θ.39

We denote the types of players i and j as the tuples {{xi, αk} , {xj , αl}} and assume that the
presence of the opponent’s bias is common knowledge but not its magnitude. Instead, player i

believes that αl ∈ {α1, α2, ..., αN} and assigns probability g (αl) to player j’s bias being equal to

αl, for each l = 1, ..., N . Thus, each player is uncertain not only about the signal that the other

player observes but also about the magnitude of his opponent’s bias. Finally, while player i takes

into account the possibility that player j has positive or negative sentiments about the probability

that he himself takes the risky action, player i thinks that his own assessment of the probability

that player j’s takes the risky action is objective.40

Let x∗i (αk) denote the threshold above which player i takes the risky action when his bias is

equal to αk.

Definition 2 (Sentiments equilibrium) A pure strategy symmetric Bayesian Nash Equilibrium

in monotone strategies is a set of thresholds {x∗i (ak)}Nk=1 for each player i = 1, 2 such that for each

37To economize on notation we denote the conditional distribution of θ given xi by φ (θ|xi).
38We still refer to αk as player i’s bias (and not player j’s) because the bias αk is part of player i’s belief about

player j’s beliefs.
39Note that the formulation of the subjective probability of Equation (3) is also consistent with other interpretations.

For example, it could be the result of introducing uncertainty about the threshold used by player j in equilibrium. If
we define the set of N possible thresholds that player j can use as

{
x∗jk
}N
k=1

, where x∗jk = x∗j − σαk, then Equation
(3) would correspond to the probability that player i ascribes to player j taking the risky action when he believes
that player j’s equilibrium threshold is x∗jk.
40This is similar to the literature on overconfidence (see for example García et al., 2007).
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i and each k = 1, ..., N , the threshold x∗i (ak) is the solution to

N∑
l=1

g (αl)

θ∫
θ

θ

[
1− Φ

(
x∗j (αl)− θ

σ
− αk

)]
φ (θ|x∗i (αk)) dθ +

∞∫
θ

θφ (θ|x∗i (αk)) dθ = T (4)

where x∗j (αl) is the threshold of player j 6= i when he exhibits sentiments derived from the bias αl,

l ∈ {1, ..., N}.41

Notice that we now have 2N equilibrium conditions. Any set of thresholds
{
x∗i (αk) , x

∗
j (αl)

}
k,l=1,...,N

that solves this system of equations constitutes an equilibrium. The next proposition establishes

that the extended model has a unique equilibrium with sentiments when the noise of the private

signals is small enough.

Proposition 3 Consider the extended model.

1. There exists σ > 0 such that for all σ ∈ (0, σ] the extended model has a unique equilibrium in

monotone strategies which is symmetric. In this equilibrium x∗ (αk) > x∗ (αl) for all k < l

where k, l ∈ {1, ..., N}.

2. As σ → 0 we have

x∗ (αk)→ x∗ for all k ∈ {1, ..., N} (5)

where

x∗ =
T

N∑
k=1

g (αk) Φ
(
αk√

2

) .42

The above proposition states that the extended model has a unique equilibrium in monotone

strategies when private signals are suffi ciently precise, similarly to the standard model. In the

unique equilibrium of the extended model the thresholds are decreasing functions of players’biases.

This is intuitive since a higher bias αk for player i reflects positive sentiments implying that, for any

signal xi, player i assigns a higher probability to player j taking the risky action. The second part of

the proposition states that in the limit players use the same threshold regardless of the magnitude

of their bias. Thus, the dispersion of the thresholds of players with different sentiments decreases

41Since player i has to take into account that the threshold of player j depends on the magnitude of his own bias,
the indifference condition of player i with bias αk includes the summation over all possible biases that player j may
have.
42More precisely, the above limit applies if and only if T

/(
ΣNk=1g (αk) Φ

(
αk/
√

2
))

≤ θ. If
T
/(

ΣNk=1g (αk) Φ
(
αk/
√

2
))

> θ then in the limit x∗ (αk) = θ for all k = 1, ..., N . For more details see Section
C of the Appendix.
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as the noise in the private signals disappears.43 Different from the standard model, the threshold in

the limit differs in general from the risk-dominant threshold (2T ), depending on the distribution of

the biases. For example if αk’s increase when precision increases (sentiments lead to more optimism

as information becomes more precise), the limiting threshold tends to the welfare effi cient threshold

T , while if αk’s decrease as precision increases (sentiments lead to more pessimism as information

becomes more precise) the limiting threshold tends to θ. If αk = 0 for all k = 1, ..., N then we

recover the risk-dominant threshold in the limit, as in the standard model.

5.2 The extended model and the data

We first use our extended model to interpret the experimental results of Section 4 by computing

the average value of αk that would be consistent with the observed thresholds for the different

precisions in the treatments with exogenous and endogenous information structures. As we can

see in Figure 3, the high thresholds associated with low precisions (high standard deviation) in our

data are consistent with a negative bias of a large magnitude, which can be interpreted as reflecting

negative sentiments about the other player taking the risky action. Note that as signals become

more precise, the bias reflects less pessimism and then shifts to optimism when it becomes positive.

When information is very precise, subjects’behavior is consistent with a large positive bias that

reflects positive sentiments about the other player taking the risky action.

0 10 20
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0.5

1
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Figure 3: Average additive biases consistent with estimated thresholds.

Figure 3 suggests that our experimental results can be reconciled with the theory of our extended

model. The behavior portrayed in Figure 3 can be intuitively understood. When subjects face a lot
43To understand this, note that a player with a higher bias always uses a lower threshold. Thus, if thresholds were

not converging to the same limit as σ → 0 then a player with a higher bias who receives the threshold signal would
expect both a lower payoff from the risky action when the risky action is successful and a lower probability that the
risky action is successful compared to a player with lower bias who receives his threshold signal. This follows from
the observation that as σ → 0 each player expects that the other player observes the same signal. But this means
that the expected payoff from taking risky action is lower for a player with high bias at his threshold signal than that
of a player with low bias at his threshold signal, which is a contradiction.
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of uncertainty about the state (low precision) they may become pessimistic about the intention of

their opponent to coordinate on the risky action (due to, for example, believing that their opponent

forms pessimistic beliefs about the state when the signal noise is high). As a result, subjects behave

much more conservatively than predicted by the theory. On the other hand, subjects might believe

that others are very willing to take the risky action when information is very precise (due to, for

example, overconfidence in their valuation of the state), even if the theory suggests a high strategic

uncertainty in this case. As a result, subjects attempt to coordinate for a wider range of signals

than what is suggested by the theory. Thus, the behavior of subjects suggests that their perception

of strategic uncertainty might be directly aligned with the level of fundamental uncertainty in the

environment, which is in contrast to the standard model that implies that they can move in opposite

directions (see Section 2). Our extended model admits this characterization when the biases αk

that reflect sentiments are decreasing in the signal noise σ.

In the next section we test this hypothesis experimentally.

5.3 Experimental test of the extended model

Even if Figure 3 suggests that the extended model can organize our experimental findings, we still

have to test whether the mechanism based on sentiments is driving the results of Section 4. To test

the hypothesis that our experimental results are indeed driven by a biased perception of strategic

uncertainty we run additional sessions where we elicit subjects’first- and second-order beliefs. The

experimental protocol of these sessions is identical to the one with exogenous information structures

(for high, medium, and low precisions), except for two additional questions that asked subjects to

report their best guess about the state θ (after observing their private signals) and the probability

they assign to their opponent taking the risky action (after choosing their own action and before

getting feedback).44

The elicited beliefs allow us to understand the subjects’perception of fundamental uncertainty

(via their reports about the value of the state) and of strategic uncertainty (via their reports

about the probability of their opponent taking the risky action) and thus identify the type of

sentiments that might arise under different signal precisions. We focus first on subjects’first-order

beliefs and confirm our hypothesis that the observed departures from the theory are not driven by

sentiments about fundamentals. We then analyze the elicited second-order beliefs and investigate

whether subjects exhibited pessimism about the action of others when the signal precision is low

and optimism when the signal precision is high.

44The elicitation of first and second order beliefs was incentivized using a quadratic scoring rule.
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5.3.1 Preliminaries

Before we analyze elicited beliefs we estimate the thresholds for these additional sessions to confirm

that the departures from the theory presented in Section 4 are also present in the new data set. As

we can see in Table 7, when we elicit beliefs the estimated thresholds are decreasing in precision,

consistent with our previous results. These results are starker than those of the treatments with

exogenous precisions and no belief elicitation, and they are similar to the thresholds with endogenous

information structures. Figure 9 in the appendix plots the thresholds under these three treatment

conditions. These starker thresholds can be due to the salience created by the elicitation of beliefs.

It has been documented that eliciting beliefs might affect the way subjects play the game by

accelerating best-response behavior (see Croson, 2000, Gächter and Renner, 2010, or Rutström

and Wilcox, 2009).45 This is intuitive because belief elicitation forces subjects to think about

fundamental and strategic uncertainty, thus putting more structure to their thought process. The

thresholds of Table 7 will serve as the reference thresholds for the analysis that follows.

High precision Medium precision Low precision
Logit (RE) 19.24 28.76 40.72

(4.71) (8.76) (11.02)
MET 19.24 29.36 39.85

(7.64) (22.61) (27.92)
Equilibrium x* 35.31 28.31 18.73
Risk dominant eq. 36 36 36

Table 7: Estimated thresholds and equilibrium predictions, belief elicitation.

5.3.2 Perception of fundamental uncertainty

Let θBi denote the stated belief of subject i about θ. Table 8 shows the mean and median differences

in absolute value between the stated beliefs about the state and the true state (|θBi −θ|), and between
the stated beliefs about the state and the observed signal (|θBi −xi|), for each level of precision. As
expected, subjects rely on their signals more and form more accurate beliefs about the state when

signals are very precise, and this decreases as signals become noisier.

|θBi − θ| |θBi − xi|
Precision High Medium Low High Medium Low
Mean 1.19 10.41 19.59 0.83 7.02 12.24
Median 0.88 7.38 17.45 0.55 4.81 9.99
St. dev. 3.79 28.33 14.57 3.84 27.5 12.72

Table 8: Differences in absolute value between first order beliefs, the true state, and observed
signals, by precision.
45For a survey on belief elicitation, see Schotter and Trevino (2015).
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To evaluate the accuracy of subjects’first order beliefs, we estimate the weights assigned to

the private signal and to the prior when forming beliefs about θ. We can see in Table 14 in the

appendix that subjects put higher weights on the private signal as its precision increases and that

the mean and median weights are not statistically different to the Bayesian weights for high and

medium precision. For a low precision subjects seem to assign a higher weight to private signals

than Bayes’rule implies.46

To summarize, the fact that subjects set significantly lower thresholds than those suggested by

equilibrium when the signal precision is high is unlikely to be explained by biases in beliefs about

fundamentals, since in this case subjects seem to form first order beliefs relatively well.

5.3.3 Perception of strategic uncertainty

In this section, we study second order beliefs to test whether sentiments about the behavior of

others can explain the results presented in Section 4.

In Figure 4 we compare the elicited and theoretical beliefs about the probability of the opponent

taking the risky action for a given signal. For illustration purposes, we divide the space of private

signals into intervals of length 10 and calculate the average belief reported for the signals that fall

into each interval (blue solid line).47 The theoretical (Bayesian) beliefs are portrayed in the red

dashed line. We also plot the average action of the subjects that observed those signals, which

approximates the true probability of taking the risky action. That is, we look at the actions taken

by the subjects that observe the signals in each interval and calculate the frequency with which

they, as a group, took the risky action.48 This line helps us to understand if the beliefs of subjects

were correct.

The graphs in Figure 4 support our hypothesis. Average beliefs are in general higher than equi-

librium beliefs for a high signal precision. The opposite is true for low signal precision.49 Thus, the

significantly lower thresholds associated with a high precision in Table 7 can be explained by the

positive sentiments that reflect optimistic beliefs about the intention of the opponent to coordinate

46One might ponder that subjects can exhibit base rate neglect and that this could explain some of the observed
departures, but this is not the case. As Table 15 in the Appendix shows, even if all players neglected the prior
the corresponding thresholds would still be increasing in the precision of signals and converge to the risk-dominant
equilibrium from below.
47We do this because reported beliefs can be noisy across subjects and we observe finitely many realization of

signals.

48 If the subject took the safe action we assign a 0 and if he took the risky action we assign a 1. We then average
these numbers across all the signals that fall into each interval and get a number between 0 and 1 that represents the
true probability with which subjects took the risky action.
49The high reported beliefs for negative signals are mainly due to a low number of observations and subjects

who observe low signal reporting a 50-50 chance of their opponent taking either action for any signal realization in
the treatment with low precision. This supports our hypothesis that a high fundamental uncertainty leads to the
perception of high strategic uncertainty.
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High precision (σ = 1) Medium precision (σ = 10) Low precision (σ = 20)

Figure 4: Average beliefs about the action of the opponent and theoretical probabilities, by signal
realization.

(left panel of Figure 4). In particular, at the estimated threshold of 19.24 we can see that sub-

jects assign a significantly higher probability to their opponent coordinating than what the theory

suggests, thus rationalizing this behavior. Likewise, the significantly higher thresholds associated

with a low precision can be explained by negative sentiments that translate into pessimistic beliefs

about the intention of the opponent to coordinate (right panel of Figure 4). Notice that elicited

beliefs are more aligned to equilibrium beliefs for medium precision (center panel of Figure 4). This

is also consistent with the estimated thresholds of Table 7, since the mean thresholds of subjects

in this treatment are not statistically different from the equilibrium prediction. The distributions

of elicited and equilibrium beliefs are statistically different to each other to the 1% level of signifi-

cance using a Kolmogorov-Smirnov test, for all levels of precision. Finally, we note that the beliefs

reported by subjects are very close to the true actions observed in the experiment, suggesting that

the behavior that we observed can be rationalized in the context of our extended model where

beliefs are correct. Figure 10 in the appendix reports the same graphs as Figure 4 for rounds 11-50

(as opposed to rounds 26-50 as in Figure 4) to show that this sentiment-based behavior is present

early in the experiment, so it is not a product of excessive learning.50

Therefore, the results of these additional sessions are in line with the predictions of our extended

model and provide evidence of a biased perception of strategic uncertainty. In particular, we

show that sentiments switch from negative to positive as we move from an environment with high

fundamental uncertainty to one with low fundamental uncertainty.

50 In Figure 10 we do not take into account the first 10 rounds because there is a lot of noise in the data, possibly
due to subjects being acquainted with the interface and understanding the game.
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6 Discussion and conclusions

Our extended model of global games that incorporates sentiments is related to the models that

incorporate aspects of bounded rationality to propose alternative notions of optimal behavior.

Before concluding, we briefly discuss some of these alternative models in the context of our game

and argue that they are unlikely to explain the departures from the theory that we have identified.

Cursed equilibrium One equilibrium concept that incorporates bounded rationality simi-

larly to us is the concept of Cursed Equilibrium (Eyster and Rabin, 2005). This model also relaxes

the assumption that players form correct beliefs about their opponents, and does so in a very par-

ticular way. Let λ measure the degree of “cursedness” of a player. With probability λ, a player

believes that his opponent randomizes his action choice uniformly and with the remaining proba-

bility he forms Bayesian beliefs. Therefore, λ = 0 corresponds to full rationality and λ = 1 to full

cursedness.

This specific departure from Bayesian beliefs cannot organize our findings. In our game, λ = 0

corresponds to the standard model where equilibrium thresholds converge to the risk-dominant

threshold as σ → 0. On the other hand, with λ = 1 the resulting equilibrium thresholds would be

even closer to the risk-dominant threshold of 2T since in this case players expect their opponents

to randomize their actions uniformly.51 As a consequence, regardless of what value λ takes and

whether it varies with the information structure, cursed equilibrium predicts that the thresholds

will converge to the risk dominant equilibrium as the noise in the private signals vanishes, which is

inconsistent with our experimental findings.

Quantal response equilibrium Another alternative equilibrium concept that is widely used

to organize experimental data is quantal response equilibrium (QRE). Unlike our extended model

that allows for “mistakes”in belief formation, QRE assumes that players form correct beliefs, but

that they sometimes make mistakes when choosing an action.52 According to QRE, deviations

from the Nash Equilibrium actions are less likely to occur when the cost of taking the wrong action

increases.

Following Goeree, Holt, and Palfrey (2016), let λ measure the responsiveness of a player to ex-

pected payoffs. When λ = 0 a player does not respond to expected payoffs and randomizes between

actions, and when λ → ∞ the player plays a best-response consistent with Nash Equilibrium.
51Best-responding to full cursedness is equivalent to the best response in a risk dominant equilibrium. It is impor-

tant to notice that the mechanism behind the limiting result in standard global games that states that the unique
equilibrium converges to the risk dominant equilibrium as the signal noise vanishes is based on the idea that in the
limit agents form uniform beliefs about the behavior of their opponent (see Carlsson and Van Damme, 1993, and
Morris and Shin, 2003, where this is embedded in the notion of Laplacian beliefs).
52 In particular, our extended model relaxes rationality in belief formation and assumes that players best-respond

to beliefs, while QRE assumes that players form correct beliefs and relaxes the assumption of best-responses.
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Define ωiA = F (λ (UiA − UiB)) as the probability with which player i chooses action A, where

F corresponds to a strictly increasing continuously differentiable CDF, UiA is player i’s expected

payoff of taking action A and UiB is player i’s expected payoff of taking action B.

While QRE can explain some characteristics of the thresholds we observe (such as the observed

frequency of perfect and almost perfect thresholds across precision levels) it is unlikely to explain

why the observed thresholds tend to decrease and converge to the effi cient equilibrium as informa-

tion becomes more precise. This is because choosing the “wrong”action is more costly, in terms of

differences in expected utility, when signals are precise since in this case players can predict well

whether the risky action will be successful or not.53 As such, QRE would suggest that players

will use similar thresholds to those predicted by standard global games when information is very

precise. Thus, QRE by itself cannot explain why, as the signal precision increases, the estimated

thresholds decrease and seem to converge to the effi cient threshold.

Level-k reasoning Another possible way to explain our findings is to think about how differ-

ent signal precisions can affect the level of reasoning of subjects according to models like level-k and

cognitive hierarchy. These models assume that players have limited depths of reasoning, referred

to as “levels,”with a player who can perform k levels of reasoning called a level-k type. Level-0

are assumed to be non-strategic types who randomize their actions according to a pre-specified dis-

tribution, and all players of level-k with k > 1 best respond to their exogenous belief distribution

over lower types (see Strzalecki (2014) for a general formulation of this model).

In the context of global games, Kneeland (2016) shows that the results from HNO04 are more

in line with a model of limited depth of reasoning than with equilibrium play. In particular, level-

k explains the use of threshold strategies under complete information (as is found in our data).

However, in order for this model to organize our finding about reversed comparative statics of

thresholds with respect to precisions and to generate the observed distribution of second-order

beliefs, one would need to assume that both the behavior of level-0 players and the distribution

of types vary with the signal precision.54 Thus, while the level-k model could potentially explain

53To see how QRE can explain the observed frequency of perfect and almost perfect thresholds across precision
levels note that as signals get closer to the equilibrium threshold players grow uncertain about whether the risky
action will be successful or not. For these signals, the expected cost of making a mistake is larger as signals become
more precise because subjects’beliefs about the state become more accurate and correlated within a pair. In contrast,
for a low precision the expected cost of making a mistake for signals close to the threshold is not as large since there is
more uncertainty about the fundamentals and about the beliefs of the opponent, since signals are not very correlated.
This implies that we should see a clear switching point for subjects under high precision (a perfect threshold in Figure
5) and we should see subjects alternating between actions for the signals closer to the threshold under a low precision
(an almost-perfect threshold in Figure 5), which is indeed the case.
54Alaoui and Penta (2015) interpret the level-k model as an optimization problem where players perform a cost-

benefit analysis to determine the level of reasoning they use in the game. In the context of our experiment, one
could imagine that different precisions can affect the distribution of levels played because the signal precision affects
the expected payoff, and thus the benefit of taking the risky action. Even if this can imply a different proportion of
level-0 players for different precisions, it does not affect the way in which a level-0 player behaves. If level-0 behavior
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our results, it requires strong assumptions about the relationship between signal precision and

the primitives of the level-k belief hierarchy. In contrast, our extended model has an intuitive

interpretation that does not require strong assumptions on primitives to get predictions consistent

with the data.

Conclusions In this paper we have studied how changes in the information structure affect

behavior in global games. We identify two main departures from the theoretical predictions: (1)

the comparative statics of thresholds with respect to signal precisions are reversed, and (2) as

the signal noise decreases, subjects’behavior tends towards the effi cient threshold, not the risk-

dominant one. These results are starker when precisions are endogenously chosen by subjects and

when beliefs are elicited. Our analysis suggests that subjects’perception of strategic uncertainty

is determined by sentiments that anchor this perception to the level of fundamental uncertainty in

the environment. This is in contrast to the mechanism of the theory where strategic uncertainty

increases for intermediate signals as fundamental uncertainty decreases.

To reconcile our findings with the theory, we propose a model where players can form biased

beliefs about the action of their opponent, that is, they can have a biased perception of strategic

uncertainty that reflects sentiments. This extended model can predict the type of thresholds that

we observe in the experiment. The noise of the private signals affects sentiments by making subjects

optimistic about the desire of their opponent to coordinate when information is very precise, and

pessimistic when the signal noise increases. We test the mechanism of this extended model by

eliciting subjects’first and second order beliefs and find evidence that subjects’beliefs are indeed

biased in this way.

Our results document how a bias in belief formation can crucially affect outcomes in a game. In

particular, the optimism/pessimism bias that we identify and characterize in this paper is different

to the one typically studied in the behavioral literature that focuses mainly on individual decision

making environments. The bias we identify is intrinsic to strategic environments, since it affects

the perception of strategic uncertainty. Moreover, we show how the extent of this bias depends on

the informativeness of the environment. This characterization of the bias, however, is consistent

with the findings in the psychology literature if we interpret situations of high uncertainty as being

“harder”. In particular, the negative sentiments that arise under high fundamental uncertainty are

reminiscent of the underconfidence and pessimism that arise in individual decision making when

tasks are harder, and the positive sentiments under low uncertainty are similar to the overconfidence

or optimism that arise in individual decision making for easier tasks (see e.g., Moore and Cain

(2007)).

depended on the informativeness of the environment, then level-0 players would be somewhat strategic, thus violating
the main postulate in the literature about level-0 players being non-strategic.
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The departures from the theory that we identify have important welfare considerations. Our ex-

tended model and the evidence that supports it propose a novel mechanism to understand behavior

in environments characterized by strategic complementarities and incomplete information.

Our results can also shed some light on recent stylized facts in macroeconomics. For exam-

ple, our mechanism explains how recessions can be associated with an increase in uncertainty by

noticing that an increase in uncertainty leads to negative sentiments about the likelihood of a

profitable risky investment (via pessimism about others investing). This leads to lower levels of

investment, which amplify a recession. This observation reconciles the views of Bloom (2009) and

Angeletos and La’O (2013) and Benhabib et al. (2015). In terms of policy making, our results

suggest that greater transparency in financial regulation might be beneficial in environments with

strategic complementarities, like bank runs. In this case, an increase in transparency can lead to

positive sentiments about the likelihood of others rolling over their loans, which leads to less early

withdrawals and greater financial stability.
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Appendix

A Additional experimental results
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Figure 5: Examples of perfect and almost perfect thresholds.

Prec 1 Prec 2 Prec 3 Prec 4 Prec 5 Prec 6

Prec 1

Prec 2

Prec 3

Prec 4

Prec 5

Prec 6



0.95 0.03 0 0 0 0.02
0.08 0.74 0.08 0.05 0 0.05
0 0.02 0.87 0.09 0 0.02
0 0 0.04 0.92 0.02 0.02
0.01 0.01 0.10 0.15 0.58 0.15
0.01 0 0.02 0.04 0.03 0.90


Figure 6: Transition matrix of precision choices in the last 25 rounds, endogenous information.

Precision High Medium Low
Realized payoffs 34.54 33.3 29.71

(8.82) (13.48) (9.65)
Expected equilibrium 23.62*** 29.1*** 31.44***
payoffs (8.77) (10.42) (5.97)
Expected constrained 29.26*** 31.58*** 31.68***
effi cient payoffs (7.11) (10.83) (5.96)
First-best complete 36.71*** 39.46*** 39.8***
information payoffs (6.4) (10.89) (4.56)
Different from realized payoffs at the ***1% ; **5% ; *10% level

Table 9: Average payoffs and effi ciency benchmarks, exogenous information.
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Variable Action {A,B}= {0,1}
Precision 1*signal 0.178***

(0.03)
Precision 2*signal 0.191***

(0.05)
Precision 3*signal 0.096***

(0.01)
Precision 4*signal 0.088***

(0.01)
Precision 5*signal 0.062***

(0.02)
Precision 6*signal 0.057***

(0.01)
Constant -3.559***

(0.46)
N 1000
Clustered (by sub ject) standard errors in parentheses; * sign ificant at 10% ; ** sign ificant at 5% ; *** sign ificant at 1%

Table 10: Random effects logit: risky action as a function of precision, endogenous information and
direct action choice.

Variable Reported threshold
Precision 2 6.25

(4.00)
Precision 3 10.65***

(3.48)
Precision 4 10.78***

(3.39)
Precision 5 12.87***

(3.66)
Precision 6 12.54***

(3.23)
Constant 20.66***

(5.14)
N 1100
Clustered (by sub ject) standard errors in parentheses; * sign ificant at 10% ; ** sign ificant at 5% ; *** sign ificant at 1%

Table 11: Random effects OLS: reported threshold as a function of precision, endogenous informa-
tion and strategy method
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Choice of pair member 2
Prec 1 Prec 2 Prec 3 Prec 4 Prec 5 Prec 6

Prec 1 7.24% 2.19% 5.71% 4.29% 1.24% 1.52%
Choice Prec 2 0.57% 0.29% 3.52% 0.10% 0.19%
of pair Prec 3 5.43% 14.00% 0.57% 5.33%
member Prec 4 20.57% 1.71% 9.05%

1 Prec 5 0.10% 4.00%
Prec 6 12.38%

Table 12: Combination of precision choices, endogenous information.

Precision High Medium Low
Realized payoffs 32.94 26.16 18.11

(7.25) (8.61) (12.97)
Expected equilibrium 31.06*** 30.83*** 33.63***
payoffs (6.65) (6.66) (5.75)
Expected constrained 31.21*** 30.97*** 33.84***
effi cient payoffs (6.83) (6.84) (5.90)
First-best complete 35.25*** 35.02*** 37.80***
information payoffs (6.61) (6.62) (5.71)
Different from realized payoffs at the ***1% ; **5% ; *10% level

Table 13: Average payoffs and effi ciency benchmarks, endogenous information.

Evolution of thresholds over time. Figure 7 shows the average difference in absolute value

between the threshold that a subject reports in one period with respect to his threshold in the

previous period, for each precision level when information is exogenous and for subjects in pairs

that coordinate on high, medium, and low precisions when information is endogenous. The vertical

bar at period t illustrates how much, on average, a subject changes the value of his own threshold in

period t with respect to the threshold he reported in period t− 1. Figure 8 illustrates convergence

within a pair by plotting the average difference in absolute value between the reported thresholds of

both members of each pair in each period, for each precision level with exogenous and endogenous

information structures. The vertical bar at period t illustrates how much, on average, subjects

coordinate their actions with their pair member during that period.

Additional analysis: weights given to private signals under belief elicitation. We

assume that beliefs are linear in the prior mean and in their signal (as Bayes’rule prescribes) but

we allow for the possibility that players use non-Bayesian weights. In particular, we postulate that

subject i’s stated belief θBi satisfies θ
B
i = wixi + (1− wi)µθ. According to Bayes’rule, the correct

weight of the private signal is wBayesx = σ−2

σ−2+σ−2
θ

. To estimate wi for each subject i, using the above

formula, we back out these weights for the last 25 rounds. We then take the average of the implied
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Figure 7: Convergence of individual thresholds, strategy method treatments.
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Figure 8: Convergence of thresholds within pairs, strategy method treatments.
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Figure 9: Theoretical predictions and estimated thresholds for exogenous and endogenous informa-
tion structures

High precision (σ = 1) Medium precision (σ = 10) Low precision (σ = 20)

Figure 10: Average beliefs about the action of the opponent and theoretical probabilities for rounds
11-50, by signal realization.

weights to obtain subject i’s average weight wi.55

55To compute average weight wi we discard the rounds in which the estimated weights wit are lower than −2 or
larger than 3. The interval [−2, 3] contains more than 95% of all estimated wit’s (and virtually all for the case of high
precision). This eliminates the weights that seem to be a result of mistakes (e.g., reporting a belief of −586 when
signal was −4.02). Note that a weight above 1 implies that a subject updated his belief towards the signal, but his
reported belief lies further from the prior mean than the signal. On the other hand, a weight lower than 0 implies
that a subject updated his belief away from the private signal. Typically, we observed the weights to fall outside the
interval [0, 1] when signals were close to the mean of the prior (for example, the signal is 49 and the stated belief is
52, resulting in a weight of −2).While these beliefs are hard to justify from a Bayesian point of view, they are not
completely unreasonable.
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Precision High Medium Low

wBayesi 0.99 0.96 0.86
Mean (wi) 0.98 0.97 0.93
Median (wi) 1.00 0.94 0.98
St. dev. (wi) 0.04 0.12 0.17

Table 14: Estimated weights given to private signals, by precision.

Precision High Medium Low
Thresholds with base rate neglect 35.43 30.36 24.65
Thresholds without base rate neglect 35.31 28.31 18.73

Table 15: Thresholds predicted by the theory when players neglect the prior and when they do not,
by precision

B Baseline model with heterogenous precisions - FOR ONLINE

PUBLICATION

In this section we provide the proofs of the claims stated in Section 2. We first focus on the global

game with heterogenous precisions and then extend it to the two stage game with costly information

acquisition.

B.1 Model with exogenous information

B.1.1 Relation to monotone supermodular games

We first prove that the coordination game with heterogenous precisions belongs to the class of

monotone supermodular games as defined by Vives and Van Zandt (2007). Following their notation,

define N = {1, 2} as the set of players indexed by i. Let the type space of player i be a measurable
space (Ωi,Fi). Denote by (Ω0,F0) a state space that is capturing the residual uncertainty.56 We

let F−i be the product σ−algebra ⊗k 6=iFk. Let player i’s interim beliefs be given by a function

pi : Ωi →M−i, where M−i is the set of probability measures on (Ω−i,F−i). Finally, let Ai = {0, 1}
be the action set of player i, A be the set of action profiles and ui : A × Ω → R be the payoff

function.

Definition 4 A game belongs to the class of monotone supermodular games if
56 In a global games setting we usually interpret (Ωi,Fi) to be the space of possible signals that agent i receives,

while (Ω0,F0) corresponds to the measurable space of the underlying parameters of the game.
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1. The utility function ui(ai, a−i, ω) is supermodular in own actions, ai, and has increasing

differences in (ai, a−i) and in (ai, ω).

2. The belief map pi : Ωi →M−i is increasing with respect to a partial order onM−i of first-order

stochastic dominance.

In our case, the type space is defined as follows: Ω0 = R, Ωi = R for i = 1, 2, where ω0 = θ,

ωi = θ̂i, ωj = θ̂j and Fi = B(R), a Borel σ-algebra on R, i = 0, 1, 2. The set of probability measures

M−i is simply the set of joint normal probability distributions over (Ω−i,F−i) conditional on the
realization of ωi.The belief mapping pi : Ωi →M−i maps θ̂i into the posterior distribution of (θ, θ̂j)

using Bayes’rule. Finally, the underlying utility function for player i is given by

u(ai, aj , θ) = 1{ai=1}

[
θ
[
1{θ∈[θ,θ]}1{aj=1} + 1{θ>θ}

]
− T

]
and the expected utility of player i is:

vi(ai, aj , θ) = 1{ai=1}

∫ ∞
−∞

∫ ∞
−∞

θ
[
1{θ∈[θ,θ]}1{sj(θ̂j)=1} + 1{θ>θ}

] 1

σ̂i

1

σj
φ

(
θ − θ̂i
σ̂i

)
φ

σj
(
θ̂j − θ̃j

)
σ̂2
j

 dθ̂jdθ

−T
where sj : Ωj → Aj is a measurable strategy of player j.

We proceed now by extending the following result from Van Zandt and Vives (2007) for un-

bounded utility functions.

Proposition 5 (van Zandt and Vives) Assume that a game Γ belongs to the class of monotone

supermodular games. Furthermore, assume that the following hold:

1. Each Ωk is endowed with a partial order,

2. Ai is a complete lattice,

3. ∀ai ∈ Ai , ui(ai, ·) : Ω→ R is measurable,

4. ui is bounded.

5. ui is continuous in ai.57

Then, there exist a least and a greatest Bayesian Nash Equilibrium of the game Γ and each

one of them is in monotone strategies.

57When Ai is finite this condition is vacuous.
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The fact that global games in general belong to the class of monotone supermodular games was

noted first by Vives (2005) and Van Zandt and Vives (2007).

It is straightforward to see that the game with heterogenous precisions also belongs to this class

of games. However, the utility function in our model does not satisfy the restrictions imposed in

Proposition 5 as it is unbounded.58 We now show that the result of Vives and Van Zandt (2007)

can be extended to integrable, potentially unbounded utility functions.

Proposition 6 Assume that the game Γ belongs to the class of monotone supermodular games.

Furthermore, assume that conditions (1) − (3) of Proposition 1 are satisfied, and that u satisfies

the following assumption:

(1C) There exists a measurable function h that is integrable with respect to p(ω−i|ωi) for all ωi,
all ω−i, and |u| < h.

Then there exists a least and a greatest Bayesian Nash Equilibrium of the game Γ and each one

of them is in monotone strategies.

Proof. We prove the above result in two steps. First, assuming that the greatest best reply

mapping βi is well-defined, increasing, and monotone, we show that the greatest Bayesian Nash

Equilibrium (BNE) exists. Then, we show that under the above conditions βi is indeed well-defined,

increasing, and monotone.

Step 1: Suppose that βi, is well-defined, increasing and monotone and u satisfies assumption

(1C). Then we can repeat the argument of Van Zandt and Vives (2007) to show that there is

a greatest and least BNE in monotone strategies. We can relax the boundedness assumption,

since under assumption (1C) we can interchange the order of limit and integration invoking the

Lebesgue Dominated Convergence Theorem. Since this is the only step in that proof that requires

boundedness of the utility function, we are done.

Step 2: Here we need to establish that βi is well-defined and increasing. Then, the monotonicity

of βi will follow from Proposition 11 in Van Zandt and Vives (2007). The only diffi cult part of this

step is to show that βi is well-defined, and more precisely that it is a measurable function of ωi.

For this purpose we extend the proof of Lemma 9 in Ely and Peski (2006) to cover more general

measurable functions. The rest of argument follows from Van Zandt (2010).

Fix ai ∈ Ai and define Ui(ωi, ωj) := ui(ai, sj(ωj), ωi, ω−i). We need to show that a function

πi : Ai × Ωi → R defined by

πi(ai, ωi) =

∫
Ω−i

Ui(ωi, ω−i)dp(ω−i|ωi)

58However, note that u is bounded from below by − (|θ|+ T ) which in integrable with respect to the measure µF
implied by a player’s posterior belief.
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is measurable in ti. To prove this we use a result by Ely and Peski (2006):

Lemma (Ely and Peski) Let A and B be measurable sets and g : A×B → [0, 1] be a jointly

measurable map. If m : A → ∆B (where ∆B denotes the set of probability measures defined on

B) is measurable, then the map Lg : A→ R defined as Lg(a) =
∫
g(a, ·)dm(a) is measurable.

Note however, that the proof of their lemma is essentially unchanged if we allow g : A×B → R,
as long as g is integrable and bounded from below by an integrable function h. In this case,

there exists a sequence of simple functions gn such that gn → g, so by the extended Monotone

Convergence Theorem (Ash, 2000) we have
∫
gndv →

∫
gdv for a measure v defined on A × B.

Hence we conclude that πi : Ai × Ωi → R is a measurable function of ωi. The rest of the proof

follows directly from Van Zandt (2010) Section 7.5. Monotonicity of βi follows from Proposition

11 in Van Zandt and Vives (2007).

B.1.2 Equilibrium uniqueness

In order to facilitate notation when solving the model, we rewrite the condition for threshold

strategies in terms of the posteriors that players hold about the fundamental θ, as in Hellwig

(2002). Note that this is straightforward since the posterior about θ held by player i, θ̂i, is a linear,

strictly increasing function of the signal he observes, xi. Therefore, player i will take the risky

action whenever his posterior belief about θ, given his signal realization of xi, is higher than the

posterior of θ that corresponds to player i’s optimal threshold:

a(xi;σ) =

{
1 iff θ̂i ≥ θ̂

∗
i (σ)

0 iff θ̂i < θ̂
∗
i (σ)

where θ̂
∗
i =

µθσ
2
i+x

∗
i σ

2
θ

σ2
i+σ

2
θ
. In order to write the condition of player j in terms of his posterior belief,

notice that

x∗j − θ
σj

=
σj

(
θ̂
∗
j − θ̃j

)
σ̂2
j

where θ̃j =
σ2
θθ+σ

2
jµθ

σ2
j+σ

2
θ
.

The expected payoff of taking the risky action for player i = 1, 2, conditional on observing signal

xi and given that the other player follows a threshold strategy with switching point θ̂
∗
j is:

vi(xi, x
∗
j ;σ) =

1

σ̂i

θ∫
θ

θφ

(
θ−θ̂i
σ̂i

)1− Φ

σj
(
θ̂
∗
j − θ̃j

)
σ̂2
j

 dθ +
1

σ̂i

∞∫
θ

θφ

(
θ−θ̂i
σ̂i

)
dθ − T (6)

This notation is used for all proofs in this appendix.

Lemma 1 The payoff for player i of taking the risky action, vi(xi, x∗j ;σ), is increasing in his
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own signal xi, and decreasing in the other player’s threshold x∗j , for i, j = 1, 2, i 6= j.

Proof. (1) Note that θ̂i is an increasing function of xi, i.e. ∂θ̂i
∂xi

> 0. Thus, it is enough to show

that the payoff of taking the risky action is increasing with respect to the posterior mean of θ, θ̂i.

Taking a partial derivative of (6) wrt θ̂i yields:

−
θ̄∫
θ

θ
1

σ̂2
i

φ′

(
θ − θ̂i
σ̂i

)1− Φ

σj
(
θ̂
∗
j − θ̃j

)
σ̂2
j

 dθ −
∞∫
θ̄

θ
1

σ̂2
i

φ′

(
θ − θ̂i
σ̂i

)
dθ

Applying integration by parts to the second term of the above expression and simplifying we see

that this term is equal to

θ̄
1

σ̂i
φ

(
θ̄ − θ̂i
σ̂i

)
+

(
1− Φ

(
θ̄ − θ̂i
σ̂i

))
> 0 (7)

Similarly, applying integration by parts to the first term of the above derivative we obtain

−

θ 1

σ̂i
φ

(
θ − θ̂i
σ̂i

)1− Φ

σj
(
θ̂
∗
j − θ̃j

)
σ̂2
j

θ̄
θ

+

θ̄∫
θ

1

σ̂i
φ

(
θ − θ̂i
σ̂i

)1− Φ

σj
(
θ̂
∗
j − θ̃j

)
σ̂2
j

 dθ +

θ̄∫
θ

θ
1

σ̂iσj
φ

(
θ − θ̂i
σ̂i

)
φ

σj
(
θ̂
∗
j − θ̃j

)
σ̂2
j

 dθ (8)

Putting (7) and (8) together we get:

θ̄
1

σ̂i
φ

(
θ̄ − θ̂i
σ̂i

)
+

(
1− Φ

(
θ̄ − θ̂i
σ̂i

))
− θ̄ 1

σ̂i
φ

(
θ̄ − θ̂i
σ̂i

)1− Φ

σj
(
θ̂
∗
j − θ̃j

)
σ̂2
j


+θ

1

σ̂i
φ

(
θ − θ̂i
σ̂i

)1− Φ

σj
(
θ̂
∗
j − θ̃j

)
σ̂2
j

+

θ̄∫
θ

1

σ̂i
φ

(
θ − θ̂i
σ̂i

)1− Φ

σj
(
θ̂
∗
j − θ̃j

)
σ̂2
j

 dθ

+

θ̄∫
θ

θ
1

σ̂iσj
φ

(
θ − θ̂i
σ̂i

)
φ

σj
(
θ̂
∗
j − θ̃j

)
σ̂2
j

 dθ > 0 (9)

since θ̄ 1
σ̂i
φ
(
θ̄−θ̂i
σ̂i

)
> θ̄ 1

σ̂i
φ
(
θ̄−θ̂i
σ̂i

)(
1− Φ

(
σj

(
θ̂
∗
j−θ̃j

)
σ̂2
j

))
. Since θ̂i is an increasing linear function

of xi, this proves the first claim.

(2) Similarly, we note that the posterior θ̂
∗
j is strictly increasing in x

∗
j . Hence, it is enough to
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show that the derivative of the payoff of taking the risky action for player i with respect to θ̂
∗
j is

negative. But the partial derivative of (6) wrt θ̂
∗
j is given by

−
θ̄∫
θ

θ
σj

σ̂iσ̂
2
j

φ

(
θ − θ̂i
σ̂i

)
φ

σj
(
θ̂
∗
j − θ̃j

)
σ̂2
j

 dθ < 0

This establishes that vi(xi, x∗j ;σ) is decreasing in x∗j .

Theorem 1 There exists a unique, dominance solvable equilibrium of the coordination game

in which both players use threshold strategies characterized by (x∗1, x
∗
2) if either:

1. σi
σθ
< Ki(θ, θ, µθ), i = 1, 2 holds, for any pair of (σ1, σ2), or

2. σθ > σθ, where σθ is determined by the parameters of the model.

Proof. As proven above, the coordination game belongs to the class of monotone supermodular

games and therefore we know that there are a least and a greatest Bayesian Nash Equilibria in

monotone strategies. To prove the theorem, we only need to show that these equilibria are the

same, i.e. that there is a unique equilibrium in threshold strategies. For ease of exposition, we

perform the analysis in terms of thresholds over posterior beliefs, (θ̂
∗
1, θ̂
∗
2). Uniqueness of these

thresholds imply uniqueness of thresholds over signals (x∗1, x
∗
2).

Let, si(θ̂
∗
i ) be a threshold strategy of player i with switching point θ̂

∗
i such that si(θ̂

∗
i ) = 1 (risky

action) if θ̂i ≥ θ̂
∗
i and si(θ̂

∗
i ) = 0 (safe action) if θ̂i < θ̂

∗
i , where θ̂i is the posterior belief that player

i holds about θ after observing signal xi, for i = 1, 2. Then the equilibrium conditions are given by

the following equations:

v1(θ̂
∗
1, θ̂
∗
2;σ) ≡ 1

σ̂1

∫ θ

θ
θφ

(
θ−θ̂∗1
σ̂1

)1− Φ

σ2

(
θ̂
∗
2 − θ̃2

)
σ̂2

2

 dθ+
1

σ̂1

∫ ∞
θ

θφ

(
θ−θ̂∗1
σ̂1

)
dθ − T = 0

(10)

v2(θ̂
∗
2, θ̂
∗
1;σ) ≡ 1

σ̂2

∫ θ

θ
θφ

(
θ−θ̂∗2
σ̂2

)1− Φ

σ1

(
θ̂
∗
1 − θ̃1

)
σ̂2

1

 dθ+
1

σ̂2

∫ ∞
θ

θφ

(
θ−θ̂∗2
σ̂2

)
dθ − T = 0

(11)

where θ̂
∗
i =

σ2
iµθ+σ2

θx
∗
i

σ2
i+σ

2
θ
, σ̂i =

√
σ2
i σ

2
θ

σ2
i+σ

2
θ
and θ̃i =

σ2
iµθ+σ2

θθ

σ2
i+σ

2
θ
for i = 1, 2. Note that both equations

determine θ̂
∗
j in terms of θ̂

∗
i . Without loss of generality we analyze the behavior of θ̂

∗
2 as a function
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of θ̂
∗
1 in the (θ̂

∗
1, θ̂
∗
2) space and rewrite equations (10) and (11) as:

v1(θ̂
∗
1, w1(θ̂

∗
1;σ);σ) = 0 (12)

v2(w2(θ̂
∗
1;σ), θ̂

∗
1;σ) = 0 (13)

where θ̂
∗
2 = wi(θ̂

∗
1;σ) for θ̂

∗
2 as defined by the equation that characterized player i’s payoff function,

for i = 1, 2. Then any θ̂
∗
1 that solves simultaneously both equations defines an equilibrium threshold

for player 1 and the associated threshold for player 2 is simply given by θ̂
∗
2 = w1(θ̂

∗
1;σ).

Consider first equation (12). Define θ
∗
1 as the unique solution to the following equation:

∞∫
θ̄

θ
1

σ̂1
φ

(
θ − θ∗1
σ̂1

)
dθ − T = 0

Similarly, denote by θ∗1 the unique solution to the following equation:

∞∫
θ

θ
1

σ̂1
φ

(
θ − θ∗1
σ̂1

)
dθ − T = 0

The first of the above conditions corresponds to the situation when player 2 never takes the risky

actions while the second condition corresponds to the situation where player 2 always chooses to

take the risky action. Note that -∞ < θ∗1 < θ
∗
1 < ∞ and therefore it follows that θ̂

∗
1 is finite

(and θ̂
∗
1 ∈

[
θ∗1, θ

∗
1

]
). Recall that by lemma 1, the LHS of (12) is increasing in θ̂

∗
1 and decreasing

in θ̂
∗
2. It follows then that as θ̂

∗
1 → θ∗1, θ̂

∗
2 → −∞ and as θ̂

∗
1 → θ

∗
1, θ̂

∗
2 → ∞. Therefore w1(θ̂

∗
1;σ)

has asymptotes at θ∗1 and θ
∗
1. Similarly define θ

∗
2 and θ

∗
2 for player two. By lemma 1 we conclude

that w2(θ̂
∗
1;σ) is bounded above by θ

∗
2 and below by θ∗2. Finally, let θ∗min = min {θ∗1, θ∗2} and

θ∗max = max
{
θ
∗
1, θ
∗
2

}
so that θ∗min is the smallest and θ

∗
max is the largest threshold that can be

rationalized.

Using the implicit function theorem we can find the derivative of w1(θ̂
∗
1;σ) wrt θ̂

∗
1:

dw1(θ̂
∗
1)

dθ̂
∗
1

=

∫ θ
θ θ

1
σ̂1
φ
(
θ−θ̂∗1
σ̂1

)
1
σ2
φ
(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

)
dθ + Ṽ 1

σ2
θ+σ2

2

σ2
θ

∫ θ
θ θ

1
σ̂1
φ
(
θ−θ̂∗1
σ̂1

)
1
σ2
φ
(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

)
dθ

> 0
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where

Ṽ1 = 1− Φ

(
θ̄−θ̂∗1
σ̂1

)
+ θ

1

σ̂1
φ

(
θ̄−θ̂∗1
σ̂1

)
Φ

σ2

(
θ̂
∗
2−

σ2
θ θ̄+σ

2
2µθ

σ2
θ+σ2

2

)
σ̂2

2


+θ

1

σ̂1
φ

(
θ−θ̂∗1
σ̂1

)1− Φ

σ2

(
θ̂
∗
2−

σ2
θθ+σ

2
2µθ

σ2
θ+σ2

2

)
σ̂2

2


+

∫ θ

θ

1

σ̂1
φ

(
θ−θ̂∗1
σ̂1

)(
1− Φ

(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

))
dθ > 0

is strictly positive (since both θ̂
∗
1 and θ̂

∗
2 are finite - see the discussion above).

Similarly, we calculate the derivative of w2(θ̂
∗
1;σ) wrt θ̂

∗
1:

dw2(θ̂
∗
1)

dθ̂
∗
1

=

σ2
θ+σ2

1

σ2
θ

∫ θ
θ θ

1
σ̂2
φ
(
θ−θ̂∗2
σ̂2

)
1
σ1
φ
(
σ1(θ̂

∗
1−θ̃1)

σ̂2
1

)
dθ∫ θ

θ θ
1
σ̂2
φ
(
θ−θ̂∗2
σ̂2

)
1
σ1
φ
(
σ1(θ̂

∗
1−θ̃1)

σ̂2
1

)
dθ+Ṽ2

> 0

where Ṽ2 a strictly positive constant and is defined in analogously to Ṽ1.

Note that a suffi cient condition for uniqueness is

dw1(θ̂
∗
1)

dθ̂
∗
1

>
dw2(θ̂

∗
1)

dθ̂
∗
1

> 0

This translates in the following inequality:

∫ θ
θ
θ 1
σ̂1
φ
(
θ−θ̂∗1
σ̂1

)
1
σ2
φ
(
σ2(θ̂

∗
2−θ̃2)
σ̂22

)
dθ + Ṽ 1

σ2θ+σ
2
2

σ2θ

∫ θ
θ
θ 1
σ̂1
φ
(
θ−θ̂∗1
σ̂1

)
1
σ2
φ
(
σ2(θ̂

∗
2−θ̃2)
σ̂22

)
dθ

>

σ2θ+σ
2
1

σ2θ

∫ θ
θ
θ 1
σ̂2
φ
(
θ−θ̂∗2
σ̂2

)
1
σ1
φ
(
σ1(θ̂

∗
1−θ̃1)
σ̂21

)
dθ∫ θ

θ
θ 1
σ̂2
φ
(
θ−θ̂∗2
σ̂2

)
1
σ1
φ
(
σ1(θ̂

∗
1−θ̃1)
σ̂21

)
dθ + Ṽ 2

Doing some algebraic manipulations, we get that the expression above is equivalent to

Ṽ1∫ θ
θ
θ 1
σ̂1
φ
(
θ−θ̂∗1
σ̂1

)
1
σ2
φ
(
σ2(θ̂

∗
2−θ̃2)
σ̂22

)
dθ

+

Ṽ2∫ θ
θ
θ 1
σ̂2
φ
(
θ−θ̂∗2
σ̂2

)
1
σ1
φ
(
σ1(θ̂

∗
1−θ̃1)
σ̂21

)
dθ

+

Ṽ1Ṽ2(∫ θ
θ
θ 1
σ̂1
φ
(
θ−θ̂∗1
σ̂1

)
1
σ2
φ
(
σ2(θ̂

∗
2−θ̃2)
σ̂22

)
dθ
)(∫ θ

θ
θ 1
σ̂2
φ
(
θ−θ̂∗2
σ̂2

)
1
σ1
φ
(
σ1(θ̂

∗
1−θ̃1)
σ̂21

)
dθ
)

>
σ2

1

σ2
θ

+
σ2

2

σ2
θ

+
σ2

1σ
2
2

σ4
θ
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A suffi cient condition for this inequality to hold is to have:

σ21
σ2θ

<
Ṽ1∫ θ

θ
θ 1
σ̂1
φ
(
θ−θ̂∗1
σ̂1

)
1
σ2
φ
(
σ2(θ̂

∗
2−θ̃2)
σ̂22

)
dθ

and
σ22
σ2θ

<
Ṽ2∫ θ

θ
θ 1
σ̂2
φ
(
θ−θ̂∗2
σ̂2

)
1
σ1
φ
(
σ1(θ̂

∗
1−θ̃1)
σ̂21

)
dθ

Take the first expression, for player 1 (the result is analogous for player 2). We want to find a

lower bound for the RHS, i.e. a lower bound for the numerator of the RHS and an upper bound

for the denominator of the RHS.

We consider first the denominator
∫ θ
θ θ

1
σ̂1
φ
(
θ−θ̂∗1
σ̂1

)
1
σ2
φ
(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

)
dθ. We can rewrite this term

as ∫ θ

θ
θ

1

σ̂1
φ

(
θ − θ̂∗1
σ̂1

)
1

σ2
φ

(
σ2(θ̂

∗
2 − θ̃2)

σ̂2
2

)
dθ

=
1√

σ̂2
1 + σ2

2

φ

 θ̂
∗
1 − Ω√
σ̂2

1 + σ2
2

∫ θ

θ
θ

1√
σ̂2

1σ
2
2

σ̂2
1+σ2

2

φ

θ −
σ̂2

1Ω+σ2
2θ̂
∗
1

σ̂2
1+σ2

2√
σ̂2

1σ
2
2

σ̂2
1+σ2

2

 dθ

≤ 1√
σ̂2

1 + σ2
2

1√
2π

θ∗max

(
σ̂2

1 + σ2
2 + σ̂2

1
σ2

2

σ2
θ

)
− σ̂2

1
σ2

2

σ2
θ
µθ

σ̂2
1 + σ2

2

+
1√
2π

√
σ̂2

1σ
2
2

σ̂2
1 + σ2

2


where Ω ≡ (σ2

θ+σ2
2)

σ2
θ

θ̂
∗
2 −

σ2
2

σ2
θ
µθ.

We now look at the numerator Ṽ1. Note that∫ θ

θ

1

σ̂1
φ

(
θ−θ̂∗1
σ̂1

)(
1− Φ

(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

))
dθ

≥
[

Φ

(
θ−θ̂∗1
σ̂1

)
− Φ

(
θ−θ̂∗1
σ̂1

)](
1− Φ

(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

))

where θ̃2 ≡
σ2
θθ+σ

2
2µθ

σ2
θ+σ2

2
and therefore

Ṽ1 > 1− Φ

(
θ−θ̂∗1
σ̂1

)
−
[

Φ

(
θ−θ̂∗1
σ̂1

)
− Φ

(
θ−θ̂∗1
σ̂1

)]
Φ

(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

)

+θ
1

σ̂1
φ

(
θ̄−θ̂∗1
σ̂1

)
Φ

σ2

(
θ̂
∗
2−

σ2
θ θ̄+σ

2
2µθ

σ2
θ+σ2

2

)
σ̂2

2

+ θ
1

σ̂1
φ

(
θ−θ̂∗1
σ̂1

)1− Φ

σ2

(
θ̂
∗
2−

σ2
θθ+σ

2
2µθ

σ2
θ+σ2

2

)
σ̂2

2
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We can bound the last two terms of the RHS of the above expression by

1

σ̂1
φ

(
θ̄−θ∗min

σ̂1

)θΦ
σ2

(
θ∗min−

σ2
θ θ̄+σ

2
2µθ

σ2
θ+σ2

2

)
σ̂2

2

+ θ

1− Φ

σ2

(
θ∗max−

σ2
θθ+σ

2
2µθ

σ2
θ+σ2

2

)
σ̂2

2


Therefore, suffi cient conditions for uniqueness are:

σ2
2

σ2
θ

<
1− Φ

(
θ−θ̂min

σ̂1

)
−
[
Φ
(
θ−θ̂min
σ̂1

)
− Φ

(
θ−θ̂max

σ̂1

)]
Φ
(
σ2(θ̂max−θ̃2)

σ̂2
2

)
+ 1

σ̂1
φ
(
θ̄−θ∗min
σ̂1

)
κ2

1√
2π

 1√
2π

+
θσ2

2

(
1+

σ2
2
σ̂2

1

)
−σ̂2

1

σ2
1
σ2
θ

σ̂2
1+σ2

2


σ2

1

σ2
θ

<
1− Φ

(
θ−θ
σ̂2

)
+ 1

σ̂2
φ
(
θ̄−θ
σ̂2

)
κ1

1√
2π

 1√
2π

+
θσ2

1

(
1+

σ2
1
σ̂2

2

)
−σ̂2

2

σ2
2
σ2
θ

σ̂2
2+σ2

1



Where κi := θΦ

σ2

(
θ∗min−

σ2
θθ̄+σ

2
2µθ

σ2
θ

+σ2
2

)
σ̂2

2

+ θ

1− Φ

σ2

(
θ∗max−

σ2
θθ+σ

2
2µθ

σ2
θ

+σ2
2

)
σ̂2

2


If such conditions hold, 0 < dw2(θ̂

∗
1;σ)

dθ̂
∗
1

< dw1(θ̂
∗
1;σ)

dθ̂
∗
1

∀θ̂∗1 ∈ [θ∗1, θ
∗
1]. This means that the least and

greatest Bayesian Nash equilibria of the game, as described by our Corollary in the first section

of the appendix, coincide. Therefore, there is a unique equilibrium in thresholds strategies. This

proves the first part of the theorem.

The proof for the second part of the theorem follows directly from the proof of the above result.

Namely, recall that to prove uniqueness we have to find conditions under which the functions w1(θ̂
∗
1)

and w2(θ̂
∗
1) are such that

dw1(θ̂
∗
1)

dθ̂
∗
1

>
dw2(θ̂

∗
1)

dθ̂
∗
1

Note that as σθ →∞ we have

lim
σθ→∞

σ2
θ + σ2

1

σ2
θ

→ 1 and lim
σθ→∞

σ2
θ + σ2

2

σ2
θ

→ 1
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Therefore

dw1(θ̂
∗
1)

dθ̂
∗
1

=

∫ θ
θ θ

1
σ̂1
φ
(
θ−θ̂∗1
σ̂1

)
1
σ2
φ
(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

)
dθ + Ṽ 1

σ2
θ+σ2

2

σ2
θ

∫ θ
θ θ

1
σ̂1
φ
(
θ−θ̂∗1
σ̂1

)
1
σ2
φ
(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

)
dθ

→

∫ θ
θ θ

1
σ1
φ
(
θ−x∗1
σ1

)
1
σ2
φ
(
x∗2−θ)
σ2

)
dθ + Ṽ 1∫ θ

θ θ
1
σ1
φ
(
θ−x∗1
σ1

)
1
σ2
φ
(
x∗2−θ)
σ2

)
dθ

> 1

and

dw2(θ̂
∗
1)

dθ̂
∗
1

=

σ2
θ+σ2

1

σ2
θ

∫ θ
θ θ

1
σ̂2
φ
(
θ−θ̂∗2
σ̂2

)
1
σ1
φ
(
σ1(θ̂

∗
1−θ̃1)

σ̂2
1

)
dθ

Ṽ2 +
∫ θ
θ θ

1
σ̂2
φ
(
θ−θ̂∗2
σ̂2

)
1
σ1
φ
(
σ1(θ̂

∗
1−θ̃1)

σ̂2
1

)
dθ

→

∫ θ
θ θ

1
σ2
φ
(
θ−x∗2
σ2

)
1
σ1
φ
(
x∗1−θ
σ1

)
dθ

Ṽ2 +
∫ θ
θ θ

1
σ2
φ
(
θ−x∗2
σ2

)
1
σ1
φ
(
x∗1−θ
σ1

)
dθ

< 1

since, as we argued in the proof of the first part of the theorem, Ṽ1 and Ṽ2 are strictly positive.

By continuity of the above expressions we conclude that for any σ1 and σ2 there exists σθ (σ1, σ2)

such that if σθ > σθ (σ1, σ2) we have a unique equilibrium in the coordination game.

The above bound depends on the information acquisition choices made by players. However, it

is easy to show existence of a uniform bound. To do so, recall first that

Ṽ1 = 1− Φ

(
θ̄−θ̂∗1
σ̂1

)
+ θ

1

σ̂1
φ

(
θ̄−θ̂∗1
σ̂1

)
Φ

σ2

(
θ̂
∗
2−

σ2
θ θ̄+σ

2
2µθ

σ2
θ+σ2

2

)
σ̂2

2


+θ

1

σ̂1
φ

(
θ−θ̂∗1
σ̂1

)1− Φ

σ2

(
θ̂
∗
2−

σ2
θθ+σ

2
2µθ

σ2
θ+σ2

2

)
σ̂2

2


+

∫ θ

θ

1

σ̂1
φ

(
θ−θ̂∗1
σ̂1

)(
1− Φ

(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

))
dθ > 0

and in particular

Ṽ1 > 1− Φ

(
θ̄−θ̂∗1
σ̂1

)
> 0

Recall that σ̂1 =

√
σ2

1σ
2
θ

σ2
1+σ2

θ
and that σ2

1 ≤ σ2
0 where σ

2
0 is the precision of a private signal if player 1

did not acquire any information. Let σ2,B
θ be an arbitrary lower bound on σ2

θ such that σ
2,B
θ > 0.

If at σ2
θ = σ2,B

θ we have dw1(θ̂
∗
1)

dθ̂
∗
1

> dw2(θ̂
∗
1)

dθ̂
∗
1

then we are done. Otherwise, we have to show that there
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exists a bound on σ2
θ that is higher than σ

2,B
θ for which dw1(θ̂

∗
1)

dθ̂
∗
1

> dw2(θ̂
∗
1)

dθ̂
∗
1

independent of values of

σ1 and σ2.

To do so we start by finding uniform bounds on θ̂
∗
1. Note that, for any σ1 and σθ, the lowest

threshold that player 1 can possible choose (which we denote by θ∗1 (σθ, σ1)) is determined by

equation ∫ ∞
θ

1

σ̂2
1

θφ

(
θ − θ∗1
σ̂1

)
dθ = T

which corresponds to the situation in which the other player always chooses to take the risky action

(and where we suppressed the dependence of θ∗1 on(σθ, σ1)). This can be written as

θ∗1

(
1− Φ

(
θ − θ∗1
σ̂1

))
+ σ̂1φ

(
θ − θ∗1
σ̂1

)
= T (14)

By the implicit function theorem we have

∂θ∗1
∂σ̂1

= −
θ∗1φ

(
θ−θ∗1
σ̂1

)
θ−θ∗1
σ̂2

1
+ φ

(
θ−θ∗1
σ̂1

)
+

(θ−θ∗1)2

σ̂2
1

φ
(
θ−θ∗1
σ̂1

)
(

1− Φ
(
θ−θ∗1
σ̂1

))
+

θ∗1
σ̂1
φ
(
θ−θ∗1
σ̂1

)
+

θ−θ∗1
σ̂1

φ
(
θ−θ∗1
σ̂1

) < 0

So as σ̂1 increases θ∗1 decreases, which implies that an increase in σ
2
θ decreases θ

∗
1 while an increase

in σ1 increases θ∗1. In the same way we can show that the highest threshold that player 1 can

possible choose (denoted by θ
∗
1) is also decreasing in σ̂1. Therefore, θ∗1 is minimized at σ1 = σ0 and

σθ →∞. This implies that

Ṽ1 > 1− Φ

(
θ̄−θ̂∗1
σ̂1

)
> K1

where

K1 ≡ 1− Φ

(
θ̄ − limσθ→∞θ

∗
1 (σθ, σ0)

σ̂1

)
This establishes a bound on Ṽ1 that is independent of σθ, σ0. Note that by symmetry this is also a

lower bound on Ṽ2.

We now show that we can also bound other term appearing in the expression for the derivative

uniformly. But

∫ θ

θ
θ

1

σ̂2
φ

(
θ−θ̂∗2
σ̂2

)
1

σ1
φ

(
σ1(θ̂

∗
1−θ̃1)

σ̂2
1

)
dθ <

1

2π

[
θ − θ

] 1

σ̂2

1

σ1

Below, when we discuss the first stage of the game we show that the benefit from acquiring in-

formation tends to zero as σi → 0 and therefore, given our assumptions on the cost function, i.e.

C ′ (σi) > 0 and limσi→∞C
′ (σi) → ∞, there is a bound on the precision choice, call it σmin

i , such
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that player i will never choose to acquire a lower standard deviation than σmin
i . Therefore,

∫ θ

θ
θ

1

σ̂2
φ

(
θ−θ̂∗2
σ̂2

)
1

σ1
φ

(
σ1(θ̂

∗
1−θ̃1)

σ̂2
1

)
<

1

2π

[
θ − θ

] 1

σ̂2

1

σ1

≤ 1

σ̂2

1

σmin
1

1

2π

[
θ − θ

]
Finally, note that σ̂2 is increasing in σθ and σ2 and so σ̂2 is minimized at σθ = σBθ (our exogenous

lower bound on σθ) and σ2 = σmin
2 and denote by σ̂min

2 the posterior standard deviation of θ for

player 2 when σθ = σBθ and σ2 = σmin
2 . Then

∫ θ

θ
θ

1

σ̂2
φ

(
θ−θ̂∗2
σ̂2

)
1

σ1
φ

(
σ1(θ̂

∗
1−θ̃1)

σ̂2
1

)
≤ K2

where

K2 ≡
1

σ̂min
2

1

σmin
1

1

2π

[
θ − θ

]
Therefore, we have

dw1(θ̂
∗
1)

dθ̂
∗
1

=

∫ θ
θ θ

1
σ̂1
φ
(
θ−θ̂∗1
σ̂1

)
1
σ2
φ
(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

)
dθ + Ṽ 1

σ2
θ+σ2

2

σ2
θ

∫ θ
θ θ

1
σ̂1
φ
(
θ−θ̂∗1
σ̂1

)
1
σ2
φ
(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

)
dθ

=
σ2
θ

σ2
θ + σ2

2

+
Ṽ1

σ2
θ+σ2

2

σ2
θ

∫ θ
θ θ

1
σ̂1
φ
(
θ−θ̂∗1
σ̂1

)
1
σ2
φ
(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

)
dθ

≥ σ2
θ

σ2
θ + σ2

2

+
σ2
θ

σ2
θ + σ2

2

K1

K2

≥ σ2
θ

σ2
θ + σ2

0

+
σ2
θ

σ2
θ + σ2

0

K1

K2

where we used the fact that σ2
2 ≤ σ2

0. Note that as σ
2
θ →∞ we have σ2

θ

σ2
θ+σ2

0
+

σ2
θ

σ2
θ+σ2

0

K1
K2
→ 1+ K1

K2
> 1

and therefore there exists a bound on σ2
θ, call it σ

2,P1
θ such that if σ2

θ > σ2,P1
θ then dw1(θ̂

∗
1)

dθ̂
∗
1

> 1

irrespective of σ1 and σ2.59

Following the same steps us above we can show that there exists a bound on σ2
θ, which we

denote by σ2,P2
θ , such that if σ2

θ > σ2,P2
θ then dw2(θ̂

∗
1)

dθ̂
∗
1

< 1 and σ2,P2
θ is independent of σ1 and σ2.

Setting σθ = max
{
σ2,P1
θ , σ2,P2

θ

}
proves the second part of the theorem.

Lemma 2 Suppose that σi → 0, σj → 0 and σi
σj
→ c where c ∈ R+. If the above game has a

unique equilibrium then this equilibrium converges to the risk-dominant equilibrium of the complete

59We use the superscript P1 to emphasize the fact that this restriction follows from equilibrium condition of player
1.
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information game, i.e. x∗i → 2T and x∗j → 2T .

Proof. Player i’s expected payoff of taking the risky action is given by:

θ∫
θ

θ

(
1− Φ

(
x∗j − θ

τ
−1/2
2j

))
(τ i + τ2)1/2 φ

θ − τ ix
∗
i+τθµθ
τ i+τθ

(τ i + τ θ)
−1/2

 dθ+

∞∫
θ

θ (τ i + τ2)1/2 φ

θ − τ ix
∗
i+τθµθ
τ i+τθ

(τ i + τ θ)
−1/2

 dθ − T = 0

where τ i = σ−2
i , i = 1, 2. We perform the following substitution in the above integrals

z = (τ i + τ θ)
1/2

[
θ − τ ix

∗
i + τ θµθ
τ i + τ θ

]
Then, the indifference condition of player i becomes

L∫
L

[
z

(τ i + τ θ)
1/2

+
τ ix
∗
i + τ θµθ
τ i + τ θ

]1− Φ

x∗j − z

(τ i+τθ)1/2 −
τ ix
∗
i+τθµθ
τ i+τθ

τ
−1/2
2j

φ (z) dz

+

∞∫
L

[
z

(τ i + τ θ)
1/2

+
τ ix
∗
i + τ θµθ
τ i + τ θ

]
φ (z) dz − T = 0

where

L =
θ − τ ix

∗
i+τθµθ
τ i+τθ

(τ i + τ θ)
−1/2

and L =
θ − τ ix

∗
i+τθµθ
τ i+τθ

(τ i + τ θ)
−1/2

We now take the limit as τ1 and τ2 tend to ∞ and τ1/τ2 → c ∈ R. We suppose that

limτ i→∞ x
∗ < θ in which case, the indifference conditions become

x∗,limi

1− Φ

 lim
τ i,τ j→∞
τ i/τ j→c

x∗j − x∗i
τ
−1/2
j

−T= 0

x∗,limj

1− Φ

 lim
τ i,τ j→∞
τ i/τ j→c

(
τ i
τ j

)1/2 x∗i − x∗j
τ
−1/2
j

−T= 0

where x∗,limi and x∗,limj denote the thresholds in the limit. It is easy to see that in the limit we must

have x∗,limi = x∗,limj .60 But if x∗,limi = x∗,limj then the above equations imply that τ1/2
j

(
x∗j − x∗i

)
→ 0.

It follows that x∗,limi = x∗,limj = 2T .

The above argument was made under assumption that x∗,limi < θ and x∗,limj < θ. It is straight-

forward to see that it cannot be the case that x∗,limi > θ and x∗,limj > θ. Thus, suppose that

60 If for example x∗,limi > x∗,limj then the above equations imply that x∗,limi = T while x∗,limj =∞ which cannot be
the case as a player in the limit will never use a threshold larger than θ
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x∗,limi = x∗,limj = θ. In that case the indifference condition in the limit as τ i, τ j → ∞ and

τ i/τ j → c ∈ R converges to

L∫
−∞

θ

1− Φ

 lim
τ i,τ j→∞
τ i/τ j→c

x∗j − x∗i
τ
−1/2
j

φ (z) dz+

∞∫
L

θφ (z) dz − T = 0

where

L = lim
τ i,τ j→∞
τ i/τ j→c

θ − τ ix
∗
i+τθµθ
τ i+τθ

(τ i + τ θ)
−1/2

The LHS of the resulting indifference equation is decreasing in L. Thus, if we can show that at

L =∞ the LHS is strictly larger than 0 we would arrive at a contradiction. But note that is L =∞
then the indifference equations are given by

∞∫
−∞

θ

1− Φ

 lim
τ i,τ j→∞
τ i/τ j→c

x∗j − x∗i
τ
−1/2
j

φ (z) dz = T and

∞∫
−∞

θ

1− Φ

 lim
τ i,τ j→∞
τ i/τ j→c

(
τ i
τ j

)1/2 x∗i − x∗j
τ
−1/2
j

φ (z) dz = T

These two equations can be satisfied simultaneously if and only if τ−1/2
j

(
x∗j − x∗i

)
→ 0 which

implies that θ = 2T . But this is a contradiction since θ > 2T . So x∗,limi = x∗,limj < θ.

It is easy to verify that 2T corresponds to a threshold such that if θ ≥ 2T then taking the

risky action is a risk-dominant action and if θ < 2T not taking the safe action is a risk-dominant

function.

B.1.3 Model with costly information acquisition

Note that the analysis of the model with heterogenous information described above corresponds to

the equilibrium of the second stage of the model with costly information acquisition, conditional

on precision choices made by players in the first stage. Thus, what remains is to solve for the

information acquisition stage.

Theorem (Existence) There exists a symmetric pure-strategy Bayesian Nash Equi-

librium of the game with information acquisition.

We first prove two simple claims and two corollaries that will make the proof of existence

straightforward.

Claim 1 Bi (σi;σj) is a decreasing function of σi, that is Bi1 (σi;σj) ≤ 0.

Proof. Since u(θ, ai) has the single crossing property in (θ, ai), and that the signal xi and the

unknown parameter θ are affi liated, the claim then follows from Theorem 1 in Persico (2000).

Claim 2 The marginal benefit of increasing the precision of player i converges to zero

as the signal noise for player i vanishes, i.e. limσi→0
∂
∂σi

Bi (σi;σj) = 0.
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This proof is very lengthy and can be obtained from the authors by request. It requires to

show that in the limit ∂
∂σi

x∗i (σi, σj) is bounded and to verify that all the integrals in the expression

for the marginal benefit converge to zero.

From the above results we have the following immediate corollaries:

Corollary 1 The best response functions for both players are well defined.

Proof. Since the cost function is strictly decreasing in σi and tends to infinite as σi → 0, and since

Bi(σi, σj) is positive and stays bounded for each σj , we know that for each σj there is a unique

choice of σi, holding beliefs of both players constant.

Corollary 2 In any equilibrium of the game both players choose to acquire information

(increase the precision of their signals).

Proof. This follows from the fact that the marginal cost of acquiring information is continuous

and equal zero at σi = σ0, together with the fact that the marginal benefit of lowering σi is strictly

positive for σi > 0.61

Existence. Suppose that player j believes that whenever he chooses a precision σj , player i will

make the same choice. Holding player j’s beliefs fixed, we showed above that the best response

function

σ∗i (σj) = max
σi∈[0,σ0]

Ui (σi, σj)

is well defined. Since Ui (σi, σj) is continuous in σi and σj , by the Theorem of the Maximum

we conclude that σ∗i (σj) is a continuous function. σ
∗
i (·) is also a self-map: σ∗i : [0, σ0] → [0, σ0].

Hence, by Brower’s Fixed Point Theorem, σ∗i (·) has a fixed point. This implies that there exists a
σj such that if player j believes that player i chooses σi = σj player i will find it optimal to choose

such a σi, that is σ∗i (σj) = σj .

C Proofs of the model with biases in belief formation - FOR ON-

LINE PUBLICATION

In this Section we prove Proposition 3 from the main text. We first show that the equilibrium

exists and is unique in the limit as σ → 0. Then, we show that there exists σ̄ > 0 such that for all

σ < σ̄ the model with biased beliefs has a unique equilibrium. We find it more convenient to work

with precisions of signals and the prior, denoted by τx and τ θ, respectively, rather than standard

deviations. 62

We will make use of two results:
61Note that above we established that Bi1 ≤ 0 and limσi→0 Bi1 = 0. It can be shown that Bi1(si, σj) 6= Bi1(s′i, σj)
∀si 6= s′i. It follows then that Bi1(σi, σj) < 0 whenever σi > 0. That is, decreasing σi (increasing the precision)
strictly increases the gross payoff for player i.
62Recall that precision of a random variable distributed according to N

(
µ, σ2

)
is defined as τ = σ−2.
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Lemma 7 Consider a sequence {cn}∞n=1 ⊂ [a, b]. If every convergent subsequence of cn has the

same limit L, then cn is convergent sequence with a limit L.

Proof. By contradiction. Suppose that {xn}∞n=1 does not converge to L. Then there exists ε > 0

such that for every k ∈ N there exists n ≥ k such that

|xn − L| ≥ ε

Construct a subsequence {xnk}
∞
k=1 where the k-th element of the subsequence is the smallest element

of sequence {xn}∞n=1 such that n ≥ k and |xn − L| ≥ ε. Since {xnk}
∞
k=1 ⊂ [a, b] it follows by

the compactness of [a, b] that {xnk}
∞
k=1 has a convergent subsequence and that this subsequence

converges to L. But this contradicts the construction of {xnk}
∞
k=1. Thus, it must be the case that

{xn}∞n=1 does converge to L.

Note that this result allows us to focus on convergent subsequences in our analysis of limiting

behavior of thresholds and then, if we confirm the hypothesis of the above Lemma, we know this

limiting behavior is passed onto the sequence itself.

Lemma 8 Let F : Ω → Rn where Ω is a rectangular region of Rn. Let J (x) be the Jacobian of

the mapping F . If J (x) is a diagonally dominant matrix with strictly positive diagonal then F is

globally univalent on Ω.63

Proof. See Parthasarathy (1983).

Suppose that players use thresholds {x∗ (αl)}Nl=1 where x
∗ (αl) is the threshold used by a player

with bias αl. Given the vector of thresholds {x∗ (αk)}Nk=1 the indifference condition for a player

with bias αk is given

V
(
x∗ (αk) , {x∗ (αl)}Nl=1

)
=

θ∫
θ

θ

[
1− Φ

(
x∗ (αl)− θ
τ
−1/2
x

− αk

)]
f (θ|x∗ (αk)) dθ+

∫ ∞
θ

θf (θ|x∗ (αk)) d−T = 0

where

f (θ|x∗ (αk)) = (τx + τ θ)
1/2 φ

(
θ − τxx∗(αk)+τθµθ

τx+τθ

(τx + τ θ)
−1/2

)
63A square matrix A is called strictly diagonally dominant if |Aii| >

∑
j 6=i
|Aij | for each row i.
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Our goal is to show that the system of equations defined by

V
(
x∗ (α1) , {x∗ (αl)}Nl=1

)
= 0

...

V
(
x∗ (αN ) , {x∗ (αl)}Nl=1

)
= 0

has a unique solution. The proof boils down to establishing that the mapping V : RN → RN

defined by the LHS of the above system of equations is univalent, which, by the Gale-Nikaido

Theorem, implies that there exists a unique vector of thresholds that satisfies the above system

of indifference conditions. As Lemma 8 indicates, it is enough to show that the Jacobian of V is

diagonally dominant.

C.1 Equilibrium in the limit as τx →∞

We first establish uniqueness of equilibrium in the limit as the precision of private signals tends to

infinity. Throughout this section it is convenient to make the following substitution in the players’

indifference conditions:

z =
θ − τxx∗(αk)+τθµθ

τx+τθ

(τx + τ θ)
−1/2

The payoff indifference condition becomes

L(θ,x∗(αk))∫
L(θ,x∗(αk))

[
z

(τx + τ θ)
1/2

+
τxx

∗ (αk) + τ θµθ
τx + τ θ

]1− Φ

x∗ (αl)− z

(τx+τθ)1/2 −
τxx∗(αk)+τθµθ

τx+τθ

τ
−1/2
x

− αk

φ (z) dz

+

∞∫
L(θ,x∗(αk))

[
z

(τx + τ θ)
1/2

+
τxx

∗ (αk) + τ θµθ
τx + τ θ

]
φ (z) dz − T = 0 (15)

where

L (θ, x∗ (αk)) =
θ − τxx∗(αk)+τθµθ

τx+τθ

(τx + τ θ)
−1/2

and L
(
θ, x∗ (αk)

)
=
θ − τxx∗(αk)+τθµθ

τx+τθ

(τx + τ θ)
−1/2

We now compute the limit as τx →∞ of the LHS of Equation (15). It is straightforward to show

that for a suffi ciently high τx we have x∗ (αk) ∈
[
T − δ, θ + δ

]
for some δ > 0. Thus, it follows

that x∗ (αk, τx) has a convergent subsequence. In what follows we work with this subsequence.

However, to keep notation simple we slightly abuse notation and talk about limiting behavior

x∗ (αk, τx) as τx →∞, rather than behavior of x∗ (αk, τ
n
x) where τnx is an increasing sequence with

limn→∞ τnx =∞.
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Claim 9 We have

1. limτx→∞ x
∗ (αl, τx) = limτx→∞ x

∗ (αk, τx) for all k, l ∈ {1, ..., N}.64

2. limτx→∞
[
τ

1/2
x (x∗ (αl, τx)− x∗ (αk, τx))

]
∈ R

Proof. (Part 1)We establish this by contradiction. Wlog suppose that l < k. It is straightforward

to see that for a suffi ciently high τx we have x∗ (αl, τx) > x∗ (αk, τx) so that a player who has a

higher bias uses a lower threshold. Therefore, limτx→∞ x
∗ (αl, τx) ≥ limτx→∞ x

∗ (αk, τx).

Now suppose that limτx→∞ x
∗ (αl, τx) > limτx→∞ x

∗ (αk, τx). It follows that for some m ∈
{1, ..., N} we have

lim
τx→∞

x∗ (αm, τx)− lim
τx→∞

x∗ (αk, τx) ≤ 0 then lim
τx→∞

x∗ (αm, τx)− lim
τx→∞

x∗ (αl, τx) < 0

At this point we have to consider two cases: (1) limτx→∞ x
∗ (αl, τx) < θ and (2) limτx→∞ x

∗ (αl, τx) =

θ.65 Since the argument in both cases is analogous we consider only the case when limτx→∞ x
∗ (αl, τx) <

θ.

If limτx→∞ x
∗ (αl, τx) < θ then

lim
τx→∞

L
(
θ, x∗ (αl, τx)

)
=∞ = lim

τx→∞
L
(
θ, x∗ (αk, τx)

)
Therefore, the indifference condition of a player with bias αk converges to

T =

N∑
m=1

g (αm)

∞∫
−∞

x∗ (αk)

[
1− Φ

(
−z − αk + lim

τx→∞

[
τ1/2
x (x∗ (αm, τx)− x∗ (αk, τx))

])]
φ (z) dz

Now, let n ≤ k denote the lowest bias such that limτx→∞ [x∗ (αk, τx)− x∗ (αn, τx)] ≤ 0, that is for

all αm < αn we have

lim
τx→∞

[x∗ (αk, τx)− x∗ (αn, τx)] > 0

64 Intutively, if x∗ (αl) > x∗ (αk) then a player at with bias αl when he receives a higher signal not only is sure that
a player with bias αk or lower takes a risky action but also expects to earn x∗ (αl) when the risky action is successful.
On the other hand, a player with bias x∗ (αk) can at most expect all players with bias αk or lower take a risky action
and expects to receive x∗ (αk) when the risky action is successful. In the limit, this implies that either a player with
bias αl strictly prefer taking the risky action to taking the safe action or a player with bias αk strictly prefer taking
safe action rather than the risky action. Either statement contradicts the definition of threshold signals.
65 In the limit as τx → ∞ a player will never set a threshold x∗ (αk) strictly above θ since in this case there

exists ε > 0 such that x∗ (αk) − ε > θ, and using this lower threshold leads to a strictly higher payoff for all
θ ∈ [x∗ (αk)− ε, x∗ (αk)).
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Then,

T =
N∑
m=1

g (αm)

∞∫
−∞

x∗ (αk)

[
1− Φ

(
−z − αk + lim

τx→∞

[
τ1/2
x (x∗ (αm, τx)− x∗ (αk, τx))

])]
φ (z) dz

=
N∑

m=n

g (αm)

∞∫
−∞

x∗ (αk)

[
1− Φ

(
−z − αk + lim

τx→∞

[
τ1/2
x (x∗ (αm, τx)− x∗ (αk, τx))

])]
φ (z) dz

≤
N∑

m=n

g (αm)

∞∫
−∞

x∗ (αk)φ (z) dz

<
N∑

m=n

g (αm)

∞∫
−∞

x∗ (αl)φ (z) dz

=
N∑

m=n

g (αm)

∞∫
−∞

x∗ (αl)

[
1− Φ

(
−z − αl + lim

τx→∞

[
τ1/2
x (x∗ (αm, τx)− x∗ (αk, τx))

])]
φ (z) dz

≤
N∑
m=1

g (αm)

∞∫
−∞

x∗ (αl)

[
1− Φ

(
−z − αl + lim

τx→∞

[
τ1/2
x (x∗ (αm, τx)− x∗ (αk, τx))

])]
φ (z) dz = T

where the strict inequality follows from the assumption that x∗ (αl) > x∗ (αk), and the fifth line

follows from observation that

lim
τx→∞

x∗ (αm, τx)− lim
τx→∞

x∗ (αk, τx) ≤ 0 then lim
τx→∞

x∗ (αm, τx)− lim
τx→∞

x∗ (αl, τx) < 0

Thus, we arrived at a contradiction.

(Part 2) As before we need to differentiate between the case where (1) limτx→∞ x
∗ (αl, τx) < θ

and (2) limτx→∞ x
∗ (αl, τx) = θ. Since the arguments in both cases are similar, we again only

consider here the first case.

We know that limτx→∞ x
∗ (αl, τx) = limτx→∞ x

∗ (αl, τx) for all l, k ∈ {1, ..., N}. Denote this
limit by x∗.

Now, suppose that there exist k and l such that

lim
τx→∞

[
τ1/2
x (x∗ (αk, τx)− x∗ (αl, τx))

]
∈ {−∞,+∞}

Wlog assume that l < k. Then we know that for a suffi ciently high τx we have x∗ (αk, τx) <

x∗ (αl, τx). Therefore

lim
τx→∞

[
τ1/2
x (x∗ (αk, τx)− x∗ (αl, τx))

]
<∞

So suppose that limτx→∞
[
τ

1/2
x (x∗ (αk, τx)− x∗ (αl, τx))

]
= −∞. Since x∗ (αk, τx) < x∗ (αl, τx)
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for all m 6= l, k we have

lim
τx→∞

[
τ1/2
x (x∗ (αk, τx)− x∗ (αm, τx))

]
≤ lim

τx→∞

[
τ1/2
x (x∗ (αl, τx)− x∗ (αm, τx))

]
and

lim
τx→∞

[
τ1/2
x (x∗ (αk, τx)− x∗ (αk, τx))

]
= 0 = lim

τx→∞

[
τ1/2
x (x∗ (αl, τx)− x∗ (αkl, τx))

]
But then, in the limit we have

T =

N∑
m=1

g (αm)

∞∫
−∞

x∗
[
1− Φ

(
−z − αk − lim

τx→∞

[
τ1/2
x (x∗ (αm)− x∗ (αk))

])]
φ (z) dz − T

<

N∑
m=1

g (αm)

∞∫
−∞

x∗
[
1− Φ

(
−z − αk − lim

τx→∞

[
τ1/2
x (x∗ (αm)− x∗ (αl))

])]
φ (z) dz − T = T

which is a contradiction. Thus, limτx→∞
[
τ

1/2
x (x∗ (αk, τx)− x∗ (αl, τx))

]
> −∞.

With the above result we can now compute the limit of {x∗ (αk)}Nk=1 as τx → 0.

Lemma 10 Let x∗ be the limit of limτx→∞ x
∗ (αk, τx) = x∗. Then,

x∗ =
1

N∑
m=1

g (αm) Φ
(
αm√

2

) if
1

N∑
m=1

g (αm) Φ
(
αm√

2

) ≤ θ
x∗ = θ otherwise

Proof. Suppose that
1

N∑
m=1

g (αm) Φ
(
αm√

2

) ≤ θ
Define

κ (k, 1) ≡ lim
τx→∞

τ1/2
x [x∗ (αk)− x∗ (α1)] ∈ R

where the observation that κ (k, 1) ∈ R follows from Claim 9. As τx →∞ the indifference condition

for a player with bias αm, m ∈ {1, ..., N} converges to

x∗
N∑
m=1

g (αm)

∞∫
−∞

[1− Φ (−z − αk − κ (m, 1)− κ (1, k))]φ (z) dz = 0
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Note that κ (1, k) = −κ (k, 1), and therefore the indifference condition is given by

x∗
N∑
m=1

g (αm)

∞∫
−∞

[1− Φ (−z − αk − κ (m, 1) + κ (k, 1))]φ (z) dz − T = 0

or

x∗
N∑
m=1

g (αm) Φ

(
αk + κ (m, 1) + κ (k, 1)√

2

)
− T = 0

Thus, we arrive at the following system of N − 1 unknowns (the unknown being {κ (m, 1)}Nm=1):

x∗
N∑
m=1

g (αm) Φ

(
α1 + κ (m, 1) + κ (1, 1)√

2

)
− T = 0

...

x∗
N∑
m=1

g (αm) Φ

(
αN + κ (m, 1) + κ (N, 1)√

2

)
− T = 0

where the first equation corresponds to the indifference condition of a player with bias α1 in the

limit, the second equation corresponds to the indifference condition of a player with bias α2 and so

on. By inspection, one can verify that the solution to this equation is

κ (m, 1) = αm − α1, for all m ∈ {1, ..., N}

Moreover, this is a unique solution. To see this, note that equations 2 to N above are a set of N−1

non-linear equations in N − 1 unknowns.66 It is straightforward to show that the Jacobian of this

system is diagonally dominant which, by Lemma 8 implies that this system has a unique solution.

It follows that

x∗ =
T

N∑
m=1

g (αm) Φ
(
αm√

2

)
If T > θ

N∑
m=1

g (αm) Φ
(
αm/
√

2
)
then x∗ converges to θ. We prove this by contradiction. Suppose

that x∗ (αk)’s do not converge to θ. Since we know that limτx→∞ x
∗ (αk) ∈

[
T, θ

]
it follows that in

this case we must have limτx→∞ x
∗ (αk) < θ and so

L = lim
τx

θ − τxx∗(αk)+τθµθ
τx+τθ

(τx + τ θ)
−1/2

=∞

66There are only N − 1 independent constants κ (k, l) since κ (k, k) = 0, κ (k, l) = κ (l, k), and κ (k, l) = κ (κ,m) +
κ (m, l).
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We perform the substitution z =
[
θ − τxx∗(αk)+τθµθ

τx+τθ

]
/ (τx + τ θ)

−1/2 in the indifference equation of

a player with bias αk, k ∈ {1, ..., N} and take the limit as τx →∞ to obtain

N∑
m=1

g (αm)

∞∫
−∞

x∗ [1− Φ (−z − αk − κ (m, 1)− κ (1, k))]φ (z) dz = 0,

where

κ (k, l) = lim
τx→∞

τ1/2
x [x∗ (αk)− x∗ (αl)] ∈ R

and so κ (k, l) = κ (k, 1)− κ (1, l) = κ (k, 1) + κ (l, 1). Evaluating the resulting integrals, we arrive

at the system of equations:

x∗
N∑
m=1

g (αm) Φ

(
α1 + κ (m, 1) + κ (1, 1)√

2

)
− T = 0

...

x∗
N∑
m=1

g (αm) Φ

(
αN + κ (m, 1) + κ (N, 1)√

2

)
− T = 0

But we showed above that this system has a unique solution

x∗ =
T

N∑
m=1

g (αm) Φ
(
αm√

2

) > θ

by assumption. This is a contradiction since x∗ was supposed to be smaller than θ. It follows that

x∗ = θ.

The argument presented above establishes that any convergent sequence x∗ (αk, τ
n
x)→ x∗, where

x∗ = T/
[
ΣN
m=1g (αm) Φ

(
αm/
√

2
)]
if T/

[
ΣN
m=1g (αm) Φ

(
αm/
√

2
)]
< θ and x∗ = θ otherwise. But

then from Lemma it follows that x∗ (αk, τx)→ x∗. Thus, we established Part (2) of Proposition 3

C.2 Uniqueness of equilibrium away from the limit

In this section we prove part 1 of Proposition 3, that is we show that there exists τx such that for

all τx > τx the model with biased beliefs has unique equilibrium.

Lemma 11 There exists τx such that if τx > τx then the model has unique equilibrium in monotone

strategies.
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Proof. To establish this result it is enough to show that for a suffi ciently high τx

∂Vk
∂x∗ (αk)

−
∑
l 6=k

∣∣∣∣ ∂Vl
∂x∗ (αk)

∣∣∣∣ > 0 for all k ∈ {1, ..., N} ,

which implies that the Jacobian of the mapping V is diagonally dominant. Using the expressions

for the derivatives reported above we have

∂Vk
∂x∗ (αk)

−
∑
l 6=k

∂Vl
∂x∗ (αk)

=
N∑
l=1

g (αl)
τx

τx + τ θ

θ∫
θ

[
1− Φ

(
x∗ (αl)− θ
τ
−1/2
x

− αk

)]
(τx + τ θ)

1/2 φ

(
θ − τxx∗(αk)+τθµθ

τx+τθ

(τx + τ θ)
−1/2

)
dθ

+

N∑
l=1

g (αl)
τx

τx + τ θ

θ∫
θ

θτ1/2
x φ

(
x∗ (αl)− θ
τ
−1/2
x

− αk

)
(τx + τ θ)

1/2 φ

(
θ − τxx∗(αk)+τθµθ

τx+τθ

(τx + τ θ)
−1/2

)
dθ

−g (αk)
τ θ

τx + τ θ

θ∫
θ

θτ1/2
x φ

(
x∗ (αl)− θ
τ
−1/2
x

− αk

)
(τx + τ θ)

1/2 φ

(
θ − τxx∗(αk)+τθµθ

τx+τθ

(τx + τ θ)
−1/2

)
dθ

−
∑
l 6=k

g (αl)

θ∫
θ

θτ1/2
x φ

(
x∗ (αl)− θ
τ
−1/2
x

− αk

)
(τx + τ θ)

1/2 φ

(
θ − τxx∗(αk)+τθµθ

τx+τθ

(τx + τ θ)
−1/2

)
dθ

+Positive Terms

where
∑
l 6=k

∣∣∣ ∂Vl
∂x∗(αk)

∣∣∣ in the above expression is captured by
∑
l 6=k

g (αl)

θ∫
θ

θτ1/2
x φ

(
x∗ (αl)− θ
τ
−1/2
x

− αk

)
(τx + τ θ)

1/2 φ

(
θ − τxx∗(αk)+τθµθ

τx+τθ

(τx + τ θ)
−1/2

)
dθ

We focus on the first four terms in the above derivative and notice that they simplify to

N∑
l=1

g (αl)
τx

τx + τ θ

θ∫
θ

[
1− Φ

(
x∗ (αk)− θ
τ
−1/2
x

− αk

)]
(τx + τ θ)

1/2 φ

(
θ − τxx∗(αk)+τθµθ

τx+τθ

(τx + τ θ)
−1/2

)
dθ

−
N∑
l=1

g (αl)
τ θ

τx + τ θ

θ∫
θ

θτ1/2
x φ

(
x∗ (αl)− θ
τ
−1/2
x

− αk

)
(τx + τ θ)

1/2 φ

(
θ − τxx∗(αk)+τθµθ

τx+τθ

(τx + τ θ)
−1/2

)
dθ
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To show that the above term is strictly positive for a high τx, in each of the above integrals we

make the substitution

z =
θ − τxx∗(αk)+τθµθ

τx+τθ

(τx + τ θ)
−1/2

Then, the above integrals become

N∑
l=1

g (αl)
τx

τx + τ θ

L(θ,αk)∫
L(θ,αk)

1− Φ

x∗ (αk)− z

(τx+τθ)1/2 −
τxx∗(αk)+τθµθ

τx+τθ

τ
−1/2
x

− αk

φ (z) dz

−
N∑
l=1

g (αl)
τ θ

τx + τ θ

L(θ,αk)∫
L(θ,αk)

{[
z

(τx + τ θ)
1/2

+
τxx

∗ (αk) + τ θµθ
τx + τ θ

]
×

τ1/2
x φ

x∗ (αk)− z

(τx+τθ)1/2 −
τxx∗(αk)+τθµθ

τx+τθ

τ
−1/2
x

− αk

φ (z)

}
dz

where

L
(
θ, αk

)
=
θ − τxx∗(αk)+τθµθ

τx+τθ

(τx + τ θ)
−1/2

and L (θ, αk) =
θ − τxx∗(αk)+τθµθ

τx+τθ

(τx + τ θ)
−1/2

Since limx∗ (αk) ≤ θ we have L (θ, αk) → −∞ as τx → ∞ and that limτx→∞ L
(
θ, αk

)
> −∞.

Therefore,

lim
τx→∞

 ∂Vk
∂x∗ (αk)

−
∑
l 6=k

∂Vl
∂x∗ (αk)


≥

N∑
l=1

g (αl)

L∫
−∞

[
1− Φ

(
−z − αk + lim

τx→∞

[
τ1/2
x (x∗ (αl)− x∗ (αk))

])]
φ (z) dz

−
(

lim
τx→∞

τ θ
τx + τ θ

) N∑
l=1

g (αl)

L∫
−∞

x∗τ1/2
x φ

(
−z − αk + lim

τx→∞

[
τ1/2
x (x∗ (αl)− x∗ (αk))

])
φ (z)

> 0

It follows that there exists a large enough τx, call it τx,k, such that if τx > τx,k then the k-th row

of the Jacobian of mapping V is dominated by its diagonal entry. Define

τx = max
k∈{1,...,N}

τx,k
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Then for all τx ≥ τx the Jacobian of mapping V is diagonally dominant, which, by Lemma 8,

establishes the claim.
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