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1 Introduction

It is widely recognized that aggregate employment adjusts sluggishly in response to busi-

ness cycle shocks. This pattern has proven difficult to rationalize, however. In the standard

Real Business Cycle model, for example, shocks to total factor productivity are propagated

quickly to the labor market, and subsequent employment adjustments exhibit little of the

sluggishness seen in the data.

The dynamics of employment can be tied to frictions in the labor market, as mani-

fested in unemployed workers and unfilled job vacancies. Figure 1 depicts detrended series

for labor productivity, employment, and the ratio of vacancies to unemployment, often

referred to as market tightness.1 Fluctuations of productivity in the top panel are closely

tracked by swings in employment and market tightness, shown in the bottom panel. This

suggests an important role for frictions in explaining the link between productivity shocks

and employment adjustments.

The Diamond-Mortensen-Pissarides job matching model has been proposed as a frame-

work for understanding the relationship between employment adjustment and labor market

frictions. In an early theoretical analysis of this model, Pissarides (1985) showed that pro-

ductivity shocks can generate movements in market tightness that qualitatively resemble

those shown in Figure 1. The quantitative performance of the model in accounting for

these patterns has yet to be fully assessed, however. This paper attempts to fill this gap by

evaluating a standard version of the model in terms of its ability to propagate productivity

shocks to market tightness and employment.

In U.S. data, productivity shocks induce distinctive hump-shaped patterns of adjust-

ment in market tightness and employment, with employment lagging market tightness

by one quarter. We demonstrate that the calibrated matching model does not reproduce

these patterns: in simulated data, the response of market tightness closely mimics the

dynamics of productivity, exhibiting none of the sluggishness observed in the empirical

data. The employment response builds slightly for one quarter, then dies away quickly

in line with productivity. Thus, the matching model does not provide a mechanism for

propagating shocks in a realistic manner.

To gain further insight into the mechanics of propagation, we decompose the empirical

market tightness responses into separate vacancy and unemployment components. The

patterns of adjustment to productivity shocks are quite similar, albeit in opposite direc-
1The variables are detrended by regressing their logs on cubic time polynomials.
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tions, with vacancies and unemployment having roughly equal importance in explaining

the dynamics of market tightness. The standard matching model cannot reproduce this

pattern of sluggish vacancy adjustment, since it treats vacancies as a jump variable that

closely tracks market conditions.

These findings suggest that the empirical behavior of vacancies might be rationalized

by introducing costs that slow their adjustment. To this end, we extend the standard

matching model by introducing a sunk cost for creation of new job positions, which rises

with the number of positions created. Once created, positions remain active, whether filled

or unfilled, until destroyed by obsolescence. This modification transforms vacancies into

a predetermined variable, with entrant firms having an incentive to smooth the creation

of new positions. Simulated data from the creation cost version of the matching model

exhibit more realistic dynamics: productivity shocks lead to hump-shaped responses for

both market tightness and employment, resembling those observed in the empirical data.

We conclude that costs of creating new job positions may play a central role in account-

ing for the observed patterns of employment adjustment. While direct evidence on new

job openings is lacking, we are able to construct an indirect measure using data from the

Job Opening and Labor Turnover Survey (JOLTS), starting in 2001. The recent business

cycle recovery corresponds to a strong upward movement in new openings, leading the

upward adjustment of vacancies. Although this evidence is limited, it serves to reinforce

our conclusion that costs for creating new job positions, in conjunction with matching

frictions, can account for the sluggish labor market adjustment observed in the data.

Labor market dynamics in the matching context have previously been considered by

Fujita (2004), who stresses the inability of the matching model to explain the behavior of

gross worker flows and the dynamic correlations of unemployment and vacancies. Fujita

studies a version of the matching model in which job matches may separate endogenously,

and his results are driven in part by surges of vacancy postings following spikes in job

destruction. In Fujita (2003) the matching model with endogenous separation is expanded

to incorporate planning lags in vacancy creation along with “mothballing” of unfilled

vacancies by firms.

The present paper focuses on a simpler specification in which separation occurs for

exogenous reasons only, and it ties the dynamics of market tightness and employment

directly to the rapid adjustment of vacancies following productivity shocks. The paper

also shows that a simple sunk creation cost specification can yield significant improvements

in the model’s ability to explain labor market dynamics. In related work, Yashiv (2006)

2



evaluates a version of the matching model in which firms must incur a hiring cost upon

matching with workers. Increasing marginal hiring costs are shown to produce a more

realistic autocorrelation of vacancies. Propagation of shocks is not considered, however.

Several papers have demonstrated that embedding labor market frictions into the Real

Business Cycle model improves the model’s ability to propagate shocks. Merz (1995),

Andolfatto (1996), and Den Haan, Ramey, and Watson (2000), for example, combine the

Real Business Cycle model with standard versions of the matching model, while Burnside,

Eichenbaum, and Rebelo (1993), Burnside and Eichenbaum (1996), and Cogley and Nason

(1995) consider other types of frictions. These papers combine labor frictions with a

measure of intertemporal substitution in consumption. In the currrent paper, we establish

that the matching model can provide realistic propagation in the linear utility case, so

that intertemporal substitution is not necessary.

The paper proceeds as follows. Section 2 lays out a standard version of the job matching

model. Empirical evidence and evaluation of the standard model are presented in Section

3. Section 4 considers the role of vacancies in accounting for the poor performance of

the standard model. This section also introduces and evaluates a version of the matching

model that incorporates creation costs. Section 5 discusses the relationship between our

findings and the recent work on amplification of shocks in the matching model, and Section

6 concludes.

2 Job Matching Model

Model description. We adopt a discrete-time version of the matching model presented

in Pissarides (2000, chap. 1). The model consists of a unit mass of persons who are

available for work and an infinite mass of firms. Let ut indicate the number of unemployed

workers in period t. Unemployed workers receive a flow payoff of b per period, which

may be interpreted as utility from leisure, home production, and unemployment insurance

payments. Firms may be either matched with a worker, unmatched and posting a vacancy,

or inactive. Let vt denote the number of vacancies posted in period t. Firms that post

vacancies must pay a posting cost of c per period.

At the start of each period, matched worker-firm pairs negotiate contracts that divide

the period t surplus according to the Nash bargaining solution, where π gives workers’

bargaining weight and separation constitutes the threat point. Given that they agree to

continue, an output level zt is produced during the period. Let zt evolve according to the

3



following process:

ln zt = ρ ln zt−1 + εt, (1)

where εt is normally distributed with mean zero and standard deviation σ. The realized

value of zt is observed by all agents in the economy at the start of each period, and

potential entrant firms choose whether or not to post vacancies in period t after observing

zt.

While production is taking place, unemployed workers and vacancy-posting firms at-

tempt to form matches. The net number of new matches created in period t is given

by the matching function m(ut, vt). We adopt the usual Cobb-Douglas specification with

constant returns to scale:

m(ut, vt) = Auα
t v1−a

t . (2)

A worker’s probability of finding a job in period t is Aθ1−α
t , while Aθ−α

t gives the prob-

ability of filling a vacancy, where θt = vt/ut indicates market tightness. Finally, matches

that produce in the current period separate with probability λ at the end of the period.

Equilibrium. Let St represent the value of surplus for a match that exists at the start

of period t. A worker in the ut pool receives the flow payoff b along with a proportion of

the future surplus from any match made in period t. Thus, the expected present value of

current and future payoffs for an unemployed worker is given by

Ut = b + βEt

[
Aθ1−α

t πSt+1 + Ut+1

]
, (3)

where β indicates the discount factor. Similarly, for a firm in the period t matching pool,

the expected present value of current and future payoffs is

Vt = −c + βEt

[
Aθ−α

t (1 − π)St+1 + Vt+1

]
. (4)

The value of a match that produces in period t is

Mt = zt + βEt

[
(1 − λ)St+1 + Ut+1 + Vt+1

]
, (5)

and equilibrium surplus is defined by

St = Mt − Ut − Vt. (6)

Plugging (3), (4), and (5) into (6) gives the evolution of the surplus:

St = zt − b + c + β
[
(1 − λ) − Aθ1−α

t π − Aθ−α
t (1 − π)

]
EtSt+1. (7)
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Because of free entry into the vacancy pool, Vt = 0 must hold for all t, yielding the

following equilibrium condition:

c = βEt

[
Aθ−α

t (1 − π)St+1

]
. (8)

Equations (7) and (8) determine equilibrium paths of St and θt for a given process zt. The

equilibrium law of motion for ut is

ut = ut−1 + λ(1 − ut−1) − Aθ1−α
t−1 ut−1. (9)

The second term on the right-hand side of (9) represents workers who had produced in

period t − 1 and separated at the end of the period. The third term represents workers

who formed new matches during period t − 1.

3 Propagation of Shocks

Empirical evidence. The job matching model predicts the behavior of market tightness

and employment for a given exogenous productivity process. We evaluate the model using

quarterly U.S. data on productivity, vacancies, unemployment, and employment.2

To characterize the dynamic relationship among those three variables, we first estimate

the following reduced-form vector autoregression (VAR):

A(L)

⎡⎢⎢⎣
ln zt

ln θt

ln et

⎤⎥⎥⎦ =

⎡⎢⎢⎣
εz
t

εθ
t

εe
t

⎤⎥⎥⎦ , (10)

where ln zt, ln θt and ln et denote the logs of labor productivity, market tightness and the

employment-population ratio, respectively; εz
t , εθ

t and εe
t are the reduced-form residuals

of the three equations; and A(L) is a lag polynomial matrix, with A(0) being the identity

matrix.
2Labor productivity is measured as real GDP divided by civilian employment, 16 years and over. For

market tightness we take quarterly averages of the index of newspaper help-wanted advertising divided

by the number of unemployed, 16 years and over. We measure employment as the ratio of employment,

16 years and over, to the civilian noninstitutional population. The sample period is 1951:Q1 to 2005:Q4.

Availability of the help-wanted index determines the length of the sample. All variables are detrended by

regressing their logs on cubic time polynomials prior to VAR estimation. The data were obtained from the

FRED II database maintained by the Federal Reserve Bank of St. Louis. Our analysis of labor market

dynamics builds on the pioneering work of Blanchard and Diamond (1989).
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In the context of evaluating the models presented in this paper, we are interested

in identifying the structural shock to labor productivity, and then tracing its effects on

the other two variables. For identification of the structural productivity shock, we adopt

a recursive identification scheme wherein the shock to productivity comes first in the

ordering. Under this identifying assumption, the reduced form residual εz
t is interpreted

as a structural shock to productivity.3

In addition, the productivity equation in the identified VAR allows market tightness

and employment to have feedback effects on labor productivity through the lagged values.

In fact, pairwise Granger causality tests between measured productivity and the other

two variables show that each variable has a statistically significant impact on productiv-

ity. These feedbacks derive from demand shocks, composition effects, and other factors.

The models presented in this paper do not include these factors, but instead treat labor

productivity as an exogenous driving force. Accordingly, we evaluate the models based

on the identified productivity shocks, which most closely resemble the concept used in the

models.4

The exogenous component of productivity, denoted by ln ẑt, can be determined from

the structural shocks as follows:

Â11(L) ln ẑt = ε̂z
t , (11)

where Â11(L) is the estimated value of the polynomial in the first row and first column of

A(L), and ε̂z
t indicates the estimated structural shock from (10); The series ẑt is obtained

by taking ε̂z
t and the estimate of the lag polynomial associated with ln zt, Â11(L), from

(10). Further, to remove the feedback effects, we set the lag polynomials Â12(L) and

Â13(L), which are associated with labor market tightness and employment, respectively,

to zeros.

With the exogenous productivity series in hand, we may assess the cyclical behavior
3The system (10) was estimated with lag lengths of three quarters for each equation. Changing the lag

lengths has little effect on the results. Moreover, we tried other orderings and found that they changed

the results little. Notably, the ordering of the remaining two variables does not matter when productivity

is placed first in the ordering.
4A similar point has been made concerning the responses of the Solow residual to other macroeconomic

variables (see Evans (1992), for example).
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of ln θt and ln et by means of the following quasi-VAR system:5

B(L)

[
ln θt

ln et

]
= C(L) ln ẑt−1 + Dε̂z

t +

[
ηθ

t

ηe
t

]
, (12)

where B(0) is the identity matrix; ηθ
t and ηe

t are the innovations to ln θt and ln et in the

above system; and B(L), C(L) and D indicate a polynomial matrix, a polynomial vector

and a real vector, respectively.6 Impulse response functions to a one-standard-deviation

productivity shock, based on the system (12), are depicted in Figure 2. As seen in the top

panel, ln ẑt jumps by about 0.7 percent as a result of the shock, then returns monotonically

to its steady state after oscillating slightly for two quarters.7 The middle panel shows that

ln θ̂t responds immediately to the shock, jumping up by about 5 percent. Subsequent

adjustments follow a hump-shaped pattern, with ln θ̂t rising rapidly for four quarters and

peaking at roughly 12 percent above its steady state value. The variable ln êt, in the

bottom panel, does not jump in the period of the shock, but otherwise its response closely

mimics that of ln θ̂t, with a one-quarter lag and a peak of about 0.35 percent above the

steady state. This suggests that the adjustment of employment is closely tied to the

behavior of market tightness.

Figure 3 reports the correlations of ln θ̂t and ln êt with ln ẑt at various leads and lags,

providing alternative measures of the effects of productivity shocks on market tightness

and employment. Observe that market tightness and employment are highly correlated

with lagged values of exogenous productivity, with peak correlations at lags of 0-1 quarters

for market tightness and 1-2 quarters for employment.

Overall, the results indicate that productivity shocks are propagated only gradually to

the labor market, with market tightness and employment continuing to respond strongly

even as the productivity shock dies away. In other words, the adjustments are sluggish.
5In estimating the following system (12), we use lag lengths of three quarters in order to maintain

consistency with the previous specification.
6An alternative approach would be to take the estimated lag polynomial matrix in (10) and calculate the

impulse response functions under the restrictions A12(L) = A13(L) = 0. In this case, the impulse response

functions also measure the effects of the identified productivity shock under a no-feedback assumption,

but the effect of productivity on ln θt and ln et is still based on A21(L) and A31(L), that is, based on an

empirical system with endogenous productivity as explanatory variable. This alternative approach has

given us very similar results to the results we present in this paper.
7The estimated impulse response for ln �zt is very close to the one generated by the technology process

ln zt = 0.95 ln zt−1 + εt, with σ = 0.007, that is standard in RBC analysis.
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Calibration. We evaluate the matching model by comparing the estimates obtained

using simulated data to the empirical estimates reported above. The model is calibrated

at monthly frequency by matching steady state properties of the model to U.S. data.

Parameter choices are summarized in Table 1.

Consider first the steady state version of (9):

0 = λ(1 − u) − Aθ1−αu. (13)

Following Shimer (2005), we adopt a monthly worker matching probability of Aθ1−α =

0.45. Including marginally attached workers in the worker search pool gives an adjusted

unemployment rate of u = 0.08; see Castillo (1998). Equation (13) then implies a separa-

tion rate of λ = 0.039.

Next consider the parameters of the matching function. Estimates using micro data

suggest α = 0.50 as a reasonable estimate of the elasticity parameter; see Petrongolo and

Pissarides (2001). As discussed by Blanchard and Diamond (1989), vacancies have an

average duration of roughly three weeks, and thus the average vacancy filling rate is 0.33

per week. This implies a monthly rate of Aθ−α = 0.90. Combining these estimates yields

the value A = 0.636 for the scale parameter.

The monthly discount factor β is chosen to be 0.9967, which implies an annual interest

rate of 4 percent. We select the standard value for the worker’s bargaining weight, i.e.,

π = 0.5, given the lack of direct evidence. Based on our estimates from the preceding

section, the values ρ = 0.975 and σ = 0.0044 are used to parameterize (1) at monthly

frequency.8

It remains to specify the parameters b and c. Combining the steady state versions of

(7) and (8) gives the following expression:

z − b + c

1 − β[1 − λ − πAθ1−α − (1 − π)Aθ−α]
=

c

β(1 − π)Aθ−α
. (14)

The parameter choices specified thus far imply the steady state value θ = 0.5. Equation

(14) then contains two unknown variables, b and c. We solve this equation for c under a
8Note that the empirically identified productivity series (11) follows an AR(3) process at quarterly

frequency, whereas productivity in the model is assumed to follow an AR(1) process at monthly frequency.

The monthly productivity process in the model is parameterized so that the time-aggregated quarterly

productivity series in the model can closely mimic the properties of the empirically identified quarterly

productivity process. Specifically, ρ = 0.975 and σ = 0.0044 allow us to closely match the variance and

first order autocorrelation of the quarterly productivity process.
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given value of b. To fix b, we exploit the fact that the variability of employment in the

matching model is highly sensitive to the level of b (Shimer (2005)); b is selected to match

the standard deviation of employment to its empirical value. This procedure yields the

choices b = 0.90 and c = 0.17.

In our view, this is a legitimate calibration procedure, given that there is little direct

empirical evidence on the value of b. Our choice of b may nonetheless be controversial.

Recent work has focused on the role of the b parameter in determining the ability of

the matching model to amplify productivity shocks. We are instead concerned with the

model’s ability to propagate shocks, which is a separate issue. In Section 5 below we

demonstrate that our propagation results continue to hold for lower values of b, under

which the model does not generate realistic amplification. Thus, the question of amplifi-

cation may be considered separately from our analysis of propagation.

Model evaluation. The model is solved by linearizing around the deterministic steady

state and computing the unique rational expectations solution. Using the solution, we

compute the monthly impulse response functions and then convert them into the quar-

terly responses by time averaging, so that the model’s responses are comparable to the

empirical responses. Quarterly impulse responses are reported in Figure 4. The posi-

tive productivity shock induces a sharp upward jump in market tightness, followed by a

monotonic decline that tracks the path of productivity. This response exhibits none of the

sluggish adjustment observed in the empirical impulse response.

This discrepancy shows up clearly in the cross correlations estimated from the simu-

lated data, depicted in Figure 5.9 In terms of the contemporaneous correlation between

productivity and market tightness, the standard model and observed data are reasonably

close, both exhibiting a high correlation between the two variables (0.99 in the model

vs. 0.92 in the data). However, the cross-correlations based on data generated from the

standard model fall sharply and symmetrically from their peak at zero lag. This contrasts

with the empirical correlations, which are flatter and show a pronounced negative phase

shift.

The impulse response of employment, shown in the bottom panel of Figure 4, exhibits

a counterfactually large jump on impact, followed by another large jump in the initial

quarter. Subsequent adjustments closely track the path of productivity. Cross correlations
9To compute the summary statistics of the model, we first generate 30,300 periods of simulated monthly

data and discard the first 300 periods. We then take quarterly averages to obtain 10,000 periods of data.
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of productivity and employment are given in the lower panel of Figure 5. The model

generates very high correlations between employment and productivity at lags of zero and

one quarters, while the empirical correlations are lower and have their peaks at lags of one

and two quarters. Thus employment responses are too sharp and too rapid.

It follows that the standard matching model generates unrealistic dynamics. Labor

market adjustments occur contemporaneously with or immediately following productivity

disturbances, displaying little of the sluggishness seen in the data.

4 Vacancy Dynamics

Empirical evidence. The poor performance of the standard model is tied to the dy-

namic behavior of vacancies. This can be seen by decomposing the adjustment of market

tightness into separate vacancy and unemployment components. For this purpose we

estimate the following quasi-VAR:

F (L)

[
ln vt

lnut

]
= G(L) ln ẑt−1 + Hε̂z

t +

[
ηv

t

ηu
t

]
, (15)

where ln vt and lnut represent the logs of vacancies and unemployment, respectively; ηv
t

and ηu
t are innovations to vacancies and unemployment, respectively; and F (L), G(L) and

H(L) indicate a polynomial matrix, a polynomial vector and a real vector, respectively.10

Figure 6 displays the estimated impulse responses generated by the empirical data and

by the model. The empirical impulse responses for vacancies and unemployment are nearly

identical, albeit of opposite sign: on impact the variables jump by about 2 percent, and

reach their peak responses four to five quarters later at roughly 6 percent from the steady

state. In the simulated data, vacancies jump by a full six percentage points on impact,

then move rapidly toward the steady state. Moreover, the unemployment response displays

little of the sluggishness seen in the empirical response.

These findings suggest that the poor performance of the matching model stems from

excessively rapid adjustment of vacancies. Introducing costs that induce smoothing of

vacancy adjustment has the potential to improve the model’s performance.

Matching model with vacancy creation costs. To explore the possibility that va-

cancy smoothing may improve model performance, we extend the standard model by
10As in the previous estimation, vacancies and unemployment are detrended by regressing on cubic

polynomial time trends prior to VAR estimation, and the lag lengths are set to three quarters.
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introducing a sunk cost for vacancy creation. Assume that potential entrant firms must

pay a cost of Knt for creating a new job position, where nt indicates the total number

of positions created in period t.11 Creation occurs at the start of the period, after zt is

observed. Once a position is created, it continues to exist, either filled or unfilled, until

eliminated by obsolescence. Firms post vacancies to fill newly created positions as well as

preexisting positions that become vacant for reasons other than obsolescence.

Let λo denote the probability that a job position becomes obsolete at the end of

a period. For an active worker-firm match, obsolescence means the worker enters the

unemployment pool in the following period, whereas the position disappears. Let λn

indicate the probability that an active worker-firm match experiences a non-obsolescence,

or “normal,” separation at the end of a period. In this case, both the worker and firm

enter the matching pools in the following period. The overall separation probability in the

extended model is λo + (1 − λo)λn.

In the extended model, the value of an unemployed worker, given by (3) in the standard

model, is now given by

Ut = b + βEt

[
(1 − λo)Aθ1−α

t πSt+1 + Ut+1

]
. (16)

Note that this expression is slightly different from the corresponding expression for the

standard model (3), as it reflects the possibility that newly formed matches are severed

due to job obsolescence. Similarly, (4) and (5), which represent the value of a vacant and

filled position, respectively, in the standard model, are replaced by

Vt = −c + βEt

[
(1 − λo)Aθ−α

t (1 − π)St+1 + (1 − λo)Vt+1

]
, (17)

Mt = zt + βEt

[
(1 − λo)(1 − λn)St+1 + Ut+1 + (1 − λo)Vt+1

]
. (18)

Observe that the expected future value of a vacant job position is affected by the obsoles-

cence probability, while expected future match surplus is further affected by the normal

separation probability. Substituting (16), (17), and (18) into the surplus sharing rule (6)

yields surplus evolution similar to the standard model (7), with slight modifications due

to the distinction between obsolescence and normal separation:

St = zt − b + c + β(1 − λo)
[
(1 − λn) − Aθ1−α

t π − Aθ−α
t (1 − π)

]
EtSt+1. (19)

11Importantly, marginal creation costs are assumed to be increasing in the total number of positions

created. This assumption can be motivated by adjustment costs based on scale or technology, scarcity of

profitable opportunities, or limited managerial resources. See the Conclusion for further discussion.
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Free entry equates the vacancy value to the creation cost:

Vt = Knt. (20)

Plugging (20) into the continuation value for a vacant job (17) relates new openings nt to

expected surplus:

Knt = −c + βEt

[
(1 − λo)Aθ−α

t (1 − π)St+1 + (1 − λo)Knt+1

]
. (21)

The implied laws of motion for unemployment and vacancies are

ut = ut−1 + (λo + (1 − λo)λn)(1 − ut−1) − (1 − λo)Aθ1−α
t−1 ut−1, (22)

vt = (1 − λo)vt−1 + (1 − λo)λn(1 − ut−1) − (1 − λo)Aθ−α
t−1vt−1 + nt. (23)

Importantly, vacancies become a predetermined variable in the extended model. The

existence of a sunk cost for creating job positions means unfilled positions have positive

value in equilibrium. This leads firms to repost vacancies following normal separations. As

a consequence, the vacancy pool will be affected by the numbers of new positions created

in prior periods.

The dynamic paths of the economy are determined by (19) and (21) under the laws

of motion for unemployment (22) and vacancies (23), and the exogenous productivity

process (1). To compute equilibria of the model, we first linearize the system around the

deterministic steady state and then find its unique rational expectation solution.

Calibration. First consider the steady state version of (22):

0 = (λo + (1 − λo)λn)(1 − u) − (1 − λo)Aθ1−αu. (24)

Additional information is needed to identify the parameters λo and λn. For this pur-

pose, we draw on the evidence from the Business Employment Dynamics (BED) program.

According to Faberman (2004), the quarterly job destruction rate in the private sector

averaged around 8 percent over the period 1990 through 2003, meaning that, on average,

92 percent of job positions filled at the start of a quarter remain filled one quarter later.

This suggests the following relationship:

λo + (1 − λo)λo + (1 − λo)2λo + (1 − λo)3
[
λn

(
(1 − Aθ−α)2 + Aθ−αλn

)
+(1 − λn)λn(1 − Aθ−α) + (1 − λn)2λn

]
= 0.08. (25)
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The first three terms in (25) indicate the probability that obsolescence occurs within the

quarter. The bracketed term incorporates the various patterns of normal separation and

rematching that culminate in an unfilled vacancy at the end of the quarter, given that ob-

solescence does not occur. Using our earlier measurements of matching and unemployment

rates, we solve (24) and (25) to obtain the values λo = 0.021 and λn = 0.018.

Next consider the steady state value of n. Our measured worker and firm matching

probabilities imply a steady state value θ = 0.50. From this we compute v = θu = 0.04.

The steady state version of (23) is

0 = −λov + (1 − λo)λn(1 − u) − (1 − λo)Aθ−αv + n, (26)

from which we obtain the value n = 0.024.

Finally, we must choose the parameters b, c, and K. Combining the steady state

versions of (19) and (20) results in the following expression:

z − b + c

1 − β(1 − λo)[1 − λn − πAθ1−α − (1 − π)Aθ−α]
=

Kn[1 − β(1 − λo)] + c

β(1 − λo)(1 − π)Aθ−α
. (27)

To facilitate comparison of the standard and creation cost models, we maintain the value

b = 0.90. The previous parameter choices together with the implied steady state values of θ

and n leave two unknowns c and K in (27). As we did for the calibration of the standard

model, we choose c and K to satisfy (27) as well as to match the empirical standard

deviation of employment. This procedure yields the values c = 0.13 and K = 26.94. In

Section 5 we demonstrate that our propagation results continue to hold for lower values

of b, assuming that the ratio of c to K remains constant for each value of b.

Model evaluation. We repeat the evaluation procedure described above for the cali-

brated creation cost model. Impulse responses of the creation cost model are shown in

Figure 7. The creation cost model yields much more realistic contemporaneous reactions

to a productivity shock: on impact, the responses of both market tightness and employ-

ment are close to their empirical values. This contrasts with the standard model, for which

the contemporaneous responses are much too large.

The creation cost model also exhibits a strong propagation effect. The simulated re-

sponse of market tightness builds in magnitude for four quarters, matching the timing of

the empirical response. Although the peak value of the simulated response is only about

half that of the empirical response, the creation cost model nevertheless affords an impor-

tant improvement relative to the standard model. Furthermore, the employment response
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in the creation cost model closely matches the empirical response, with the simulated

response lying within the 90 percent error band for all quarters. Notably, employment

jumps by a small amount at impact and attains its peak five quarters following the shock,

in common with the empirical response.

Figure 5 reports cross correlations for both the standard and creation cost models,

along with the empirical correlations. As far as the dynamics of market tightness and

productivity, the creation cost model generates highly realistic phasing, with peak correla-

tions spread out over lags of 0-3 quarters. This contrasts dramatically with the standard

model, where the correlations fall sharply from their peak at zero lag. Similar observations

hold for employment.

We conclude that the calibrated creation cost model successfully reproduces key fea-

tures of the empirical data, encompassing the impact effects of shocks and the timing

of the market tightness and employment responses. In particular, the extended model

provides a mechanism for propagating shocks in a realistic manner. Compared with the

standard model, the creation cost model offers a clear improvement in explaining labor

market dynamics.

Sources of propagation. The dynamic properties of the creation cost models are linked

to the behavior of vacancies. This is illustrated in Figure 8, which depicts the vacancy and

unemployment responses of the model along with those estimated from the empirical data

based on (15). In the creation cost model, vacancies jump by 2.5 percent in the period of

the shock, close to the 2 percent jump observed empirically. The vacancy response for the

creation cost model also displays a pronounced hump shape.

This contrasts sharply with the vacancy response for the standard model, shown in

Figure 6, where vacancies jump by over six percentage points on impact and the response

dies away quickly. We conclude that the behavior of vacancies is a key factor underlying

the improved performance of the creation cost model relative to the standard model.

The impulse responses for unemployment are presented in the bottom panel of Figure

8. Although the simulated response exhibits an unrealistically small jump on impact,

subsequent unemployment dynamics are qualitatively similar to the empirical dynamics.

For the standard model, the jump in unemployment on impact is more realistic, but the

subsequent dynamics do not resemble the empirical responses, as may be seen in Figure

6.12

12It should be noted that employment and unemployment are rigidly linked in the matching framework
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In the creation cost model, adjustments in the stock of vacancies are driven by a rich

pattern of underlying flows. To evaluate this pattern we decompose the net change in the

vacancy stock into separate gross outflows and inflows, using (23):

Δvt = −λovt−1︸ ︷︷ ︸
obsolescence

−(1 − λo)Aθ−α
t−1vt−1︸ ︷︷ ︸

hires

+ (1 − λo)λn(1 − ut−1)︸ ︷︷ ︸
repostings

+ nt︸︷︷︸
new openings

.

Observe that the net changes comprise gross outflows due to obsolescence and hires, to-

gether with gross inflows due to repostings following normal separations and new openings.

Figure 9 plots the impulse responses for these gross flows.13 The graph clearly shows that

vacancy adjustment is driven almost entirely by new openings and hires. Furthermore,

the inflows from new openings lead the outflows from hires, which are tied to the timing

of the matching process. In the four quarters following the shock, new opening inflows

exceed hiring outflows, accounting for the propagation effect observed in Figure 8.

According to Figure 9, entrant firms spread out the creation of new positions following a

shock. This smoothing behavior arises in a familiar way from the assumption of increasing

marginal creation costs. Moreover, since job positions are durable, entrant firms will not

choose to leave the vacancy pool once they have entered it, either initially or following

a normal separation. These factors together underlie the sluggish vacancy adjustment

observed in the creation cost model. Similar reasoning applies with respect to negative

productivity shocks: a lower volume of new openings reduces marginal creation costs,

causing entrant firms to spread out their responses; and durability means that reductions

in new openings have a more persistent effect on the vacancy stock.

Evidence from JOLTS. Although new openings play a crucial role in shaping vacancy

adjustment in the creation cost model, the available vacancy data do not permit a direct

empirical assessment of this role. JOLTS, however, does provide information about va-

cancy stocks, quits, layoffs, and hires for 2001:Q1 to 2006:Q1, and this allows us to obtain

considered here, since the framework abstracts from labor force participation. A more complete specifica-

tion would incorporate movements into and out of the labor force, which might generate a more empirically

valid unemployment response while preserving the realistic employment response.
13The responses in Figure 9 are expressed in levels, as opposed to the responses in Figures 6 and 8,

which are expressed in logs.
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an indirect measure of new openings via the following stock-flow relationship:

vact = (1 − λo)vact−1 + quitst − hirest + nt. (28)

Our calibration of the model suggests λo = 0.021 as a reasonable estimate of the monthly

vacancy withdrawal rate. We can combine this figure with the JOLTS data to impute an

estimate of nt from (28).

Consider the first quarter of 2001, which we view as the most typical within the limited

JOLTS sample. For this quarter, the ratio of cumulative hires to end-of-quarter vacancy

stock is about 3.5. Our imputed inflow of new openings amounts to 1.5 times the end-

of-quarter stock. Thus, new openings amount to nearly half of total hires within the

quarter.

Figure 10 plots indices of imputed new openings, vacancies, hires, and quits, based on

quarterly averages of the monthly series and treating 2001:Q1 as the base period. The four

series fluctuate by comparable amounts over the sample period, and, in particular, new

openings exhibit significant variability. Moreover, new openings move strongly upward in

2003:Q2, leading the upward movement of vacancies by roughly four quarters. The upward

movements of hires and quits lag those of new openings and are less steep. Based on this

limited evidence, it appears that new openings adjust sooner and by a greater magnitude

in comparison with the other components.

5 Amplification and Propagation

Recent research has considered the amplification of shocks in the context of the job match-

ing model.14 Attention has focused on the sensitivity of model-generated volatility to the

unemployment payoff b. In the absence of other information, our calibration exploits this

sensitivity by selecting the value b = 0.90 in order to match the empirical standard devia-

tion of employment. It is of interest, however, to assess the robustness of our propagation

results to the selection of this parameter.

To address this issue, we recalibrate the standard and creation cost versions of the

matching model under the alternative values b = 0.65 and b = 0.4. Table 2 gives the

values of the parameter c that are implied by the free entry condition in the standard

model. For the creation cost model, our calibration procedure does not pin down both c

14See Hagedorn and Manovskii (2005), Hall (2005), Hornstein, Krusell, and Violante (2005), Mortensen

and Nagypál (2005), and Shimer (2005).
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and K in these cases, since the model cannot match the empirical volatility of employment

under lower values of b. We handle this by fixing the ratio of K to c at the value determined

in the original calibration, i.e., K/c = 207.23.

Table 3 presents standard deviations of employment, market tightness, unemploy-

ment, and vacancies calculated using empirical and simulated data. The empirical values

are based on the estimated systems (12) and (15). For both the standard and creation

cost versions of the matching model, the value b = 0.90 produces a close match with the

standard deviations of employment and vacancies, while market tightness and unemploy-

ment display insufficient volatility. The table also shows that lower values of b imply lower

standard deviations, as previous authors have stressed.

Tables 4 and 5 present the cross correlations in tabular form. As the tables demon-

strate, lowering the value of b has a minuscule effect on the dynamic relationships between

market tightness, employment, and productivity. Thus, our findings with respect to the

model’s dynamic performance are unaffected by the level of the b parameter. More broadly,

the amplification and propagation properties of the matching model can be viewed as sep-

arate dimensions. The unemployment payoff greatly affects amplification, but our results

show that the unemployment payoff has no effect on propagation.

6 Conclusion

The job matching model has become the standard framework for analyzing the business

cycle behavior of vacancies, unemployment, and employment. The model has met with

considerable empirical success in accounting for the size and variability of these mag-

nitudes, along with the gross flows of jobs and workers.15 In this paper, however, we

demonstrate that the model fails to capture key dynamic properties of labor market ad-

justment. The sluggish adjustment observed in the empirical data does not emerge from

the matching model in its standard form, where the rapid responses of vacancies induce

counterfactually sharp adjustments of market tightness and employment.

We extend the matching model by introducing a simple specification of sunk costs for

creating new job positions. Creation costs cause entrant firms to smooth vacancy creation

over time. This leads to much more realistic dynamics: in simulated data, productivity

shocks induce contemporaneous responses and subsequent adjustment patterns that closely
15See, for example, Andolfatto (1996), Den Haan, Ramey, and Watson (2000), Mortensen (1994),

Mortensen and Pissarides (1994), Merz (1995, 1999) and Yashiv (2006).
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mimic those found in the empirical data.

Although the creation cost model performs well in capturing the main features of the

empirical dynamics, the magnitudes of the peak responses in the simulated data fall short

of the empirical magnitudes. This shows up in the excessively high conditional correla-

tions of market tightness and employment with lags of productivity. Our creation cost

specification could be extended to incorporate planning lags that might induce bunching

of vacancy creation several quarters after a shock. Such bunching might also occur if es-

tablished job positions could be “mothballed” following a normal separation; shocks might

then lead to reposting of a large number of mothballed vacancies after several quarters.

These ideas, explored in Fujita (2003), represent important avenues for future research.

A number of further extensions may be of interest. Diseconomies in new job creation,

associated with increasing marginal creation costs, could be considered in greater detail.

These may arise from explicit costs of adjustment at the establishment or firm level,

limited availability of key capital inputs, or technical constraints associated with R&D

activity. Aggregate adjustment may be influenced by entry and exit of establishments.

These factors may introduce important additional sources of propagation, including the

possibility of longer-run feedbacks from the labor market to productivity. Relatedly, the

assumed equivalence of newly created and preexisting job positions could be modified by

incorporating a vintage structure, whereby new jobs enjoy higher productivity. This would

permit the endogenous obsolescence of jobs and the turnover of workers to be considered

as separate flows within a common framework.16 Finally, we have ignored the effects of

cyclical variation in the relative sizes of the pools of unemployed workers, workers out of

the labor force but available for work, and workers out of the labor force and unavailable.

Changes in the characteristics of these pools may, however, represent another important

source of longer-run propagation effects.

16Aghion and Howitt (1994), Caballero and Hammour (1994), and Mortensen and Pissarides (1998),

for example, analyze endogenous obsolescence in models that combine embodied technological progress

with search/matching frictions. None of those papers distinguish between worker and job turnover. In

recent work, Hornstein, Krusell, and Violante (2004) adopt a specification similar to ours for purposes of

analyzing the unemployment experiences of the U.S. and Europe. They focus on comparison of steady

states, however, rather than cyclical adjustment.
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Table 1: Benchmark Parameter Values

symbol description standard creation
cost

λ total separation rate 0.039 n.a.
λo obsolescence rate n.a. 0.021
λn normal separation rate n.a. 0.018
α elasticity parameter for matching function 0.50 same
A scale parameter for matching function 0.636 same
β discount factor 0.9967 same
π worker bargaining weight 0.5 same
ρ autoregressive parameter for productivity process 0.975 same
σ standard deviation of productivity innovation 0.0044 same
b unemployment payoff 0.90 same
c vacancy posting cost 0.17 0.13
K creation cost parameter n.a. 26.94

Table 2: Alternative Parameter Values

symbol standard creation
cost

b 0.40 0.65 0.9 0.40 0.65 0.90
c 1.01 0.59 0.17 0.78 0.455 0.13
K n.a. 161.65 94.30 26.94
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Table 3: Standard Deviations

empl. market vacancies unempl.
tightness

empirical 0.0078 0.2976 0.1310 0.1790
standard model

b = 0.90 0.0083 0.2084 0.1203 0.0919
0.65 0.0023 0.0573 0.0323 0.0260
0.40 0.0013 0.0334 0.0188 0.0152

creation cost model
b = 0.90 0.0079 0.1951 0.1082 0.0884

0.65 0.0022 0.0549 0.0302 0.0251
0.40 0.0013 0.0320 0.0176 0.0147

Notes: empl.: employment. unempl.: unemployment. Reported statistics
are based on logged values of the corresponding series expressed as quarterly
averages of the monthly series. Volatilities of the empirical data are conditional
on the productivity process identified by (11). Those of empirical employment
and market tightness series are based on the estimated system (12), and those
of vacancies and unemployment series are based on the estimated system (15).
To compute the summary statistics of the model, we first generate 30,300
periods of simulated monthly data and discard the first 300 periods. We then
take quarterly averages to obtain 10,000 periods of data. Parameter values for
generating the artificial data from the two models are put together in Table 1
and Table 2.
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Table 4: Cross correlations between market tightness at t and productivity at t + i

i = −3 −2 −1 0 1 2 3
empirical 0.82 0.89 0.93 0.92 0.86 0.81 0.75
standard model

b = 0.90 0.79 0.86 0.94 0.99 0.94 0.86 0.79
0.65 0.80 0.87 0.95 1.00 0.95 0.87 0.80
0.40 0.80 0.87 0.95 1.00 0.95 0.87 0.80

creation cost model
b = 0.90 0.91 0.96 0.98 0.96 0.89 0.81 0.75

0.65 0.92 0.96 0.98 0.96 0.89 0.82 0.75
0.40 0.92 0.96 0.98 0.96 0.89 0.82 0.75

Notes: Reported statistics are based on logged values of the corresponding series
expressed as quarterly averages of the monthly series. Cross correlations of the
empirical data are conditional on the productivity process identified by (11). Those
of empirical employment and market tightness series are based on the estimated
system (12), and those of vacancies and unemployment are based on the estimated
system (15). To compute the summary statistics of the model, we first generate
30,300 periods of simulated monthly data and discard the first 300 periods. We
then take quarterly averages to obtain 10,000 periods of data. Parameter values for
generating the artificial data from the two models are put together in Table 1 and
Table 2.

Table 5: Cross correlations between employment at t and productivity at t + i

i = −3 −2 −1 0 1 2 3
empirical 0.85 0.91 0.92 0.85 0.80 0.74 0.69
standard model

b = 0.90 0.85 0.92 0.98 0.96 0.89 0.82 0.75
0.65 0.86 0.93 0.99 0.98 0.90 0.83 0.76
0.40 0.86 0.93 0.99 0.98 0.91 0.83 0.76

creation cost model
b = 0.90 0.94 0.97 0.96 0.91 0.83 0.76 0.70

0.65 0.95 0.98 0.97 0.92 0.84 0.77 0.71
0.40 0.95 0.98 0.97 0.92 0.85 0.78 0.71

Notes: see the notes for Table 4.

24



Figure 1: Cyclical movements of labor productivity, market tightness, and employment
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Notes: Data are expressed as log deviations from the cubic polynomial trends.
Monthly employment and market tightness series are converted into quarterly
data by averaging. Shaded areas indicate NBER dated recessions. Labor
productivity: real GDP divided by the number of employed. Employment:
employment-population ratio. Market tightness: the number of help-wanted
ads divided by the number of unemployed. See footnote 2 for more details of
the data sources.
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Figure 2: Empirical impulse responses to one-s.d. productivity shock
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Notes: The impulse responses are based on the estimated system (12). Dotted
lines are 90% confidence bands computed via Monte-Carlo simulations with
1, 000 replications under the assumption of normality of the error term.
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Figure 3: Empirical cross correlations
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Notes: The above graphs plot the empirical cross correlations presented in
Tables 4 and 5. See notes for the tables.
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Figure 4: Comparison of impulse responses: empirical vs. standard model
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Notes: See notes for Figure 2 for explanation of empirical impulse responses.
Quarterly impulse responses of the model plotted above are obtained by time-
averaging the monthly impulse responses. Parameter values used for solving
the model are summarized in Table 1. The size of the productivity shock for
the model is chosen to match one standard deviation of the productivity shock,
empirically identified at quarterly frequency.
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Figure 5: Comparison of cross correlations
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Notes: The above graphs plot the cross correlations presented in Tables 4 and
5. The correlations for the models correspond to the b = 0.9 case. See notes
for those tables.
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Figure 6: Comparison of vacancy and unemployment responses: empirical vs. standard
model
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Notes: The empirical responses are based on the estimated system (15). Quar-
terly impulse responses of the model plotted above are obtained by time-
averaging the monthly impulse responses. Parameter values used for solving
the model are summarized in Table 1. The size of the productivity shock for
the model is chosen to match one standard deviation of the productivity shock
that is empirically identified by using the quarterly observations.
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Figure 7: Comparison of impulse responses: empirical vs. creation cost model
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Figure 8: Comparison of vacancy and unemployment responses: empirical vs. creation
cost model

5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Response of Vacancies

 

 

Creation cost Model
Empirical

5 10 15 20 25 30
−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0
Response of Unemployment

quarters

Notes: See notes for Figure 8.
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Figure 9: Gross flows of vacancies in the creation cost model
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t−1vt−1,
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Figure 10: JOLTS data
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Notes: We computed out new openings implied by the vacancy stock-flow rela-
tionship (28) by using the monthly JOLTS observations on quits, hires and end-
of-the-period stock of vacancies, and the calibrated obsolescence rate λo = 0.021.
Quarterly averages are then computed. The above figure plots indices that treat
2001:Q1 as the base period.
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