Section 3. Simple Regression – OLS Estimators

1. Last time: Lines, Population Linear Regression
2. Estimators of β_0, β_1
3. Least Squares Estimators
4. OLS Assumptions
1. Review: Lines, Clouds and Pop. Linear Regression

- e.g. Demand for Coffee, Global warming, CA test scores and student-teacher ratios
- Decide which parameters in population we care about (β_0, β_1)
 - just like we did with μ
- Draw a sample and estimate parameters
 - just like we did with μ
- Construct CI for parameters, test hypotheses, make predictions.
 - just like..
Coffee Example (with a line)

What’s the slope of the line?

About how many cups would you sell at $1?
Global Warming Example

Is the slope statistically different from zero?
The estimated regression line shows a negative relationship between test scores and the student-teacher ratio. If class sizes fall by 1 student, the estimated regression predicts that test scores will increase by 2.28 points.

\[\text{TestScore} = 698.9 - 2.28 \times STR \]
2. Estimators of β_0, β_1

- Decide which parameters in population we care about (β_0, β_1)
 - we chose Pop. Linear Regression
- Draw a sample and estimate parameters
- Which estimates to use?
- We’d like something with nice properties:
 - unbiased, $E(b_i) = \beta_i$
 - consistent, $b_i \xrightarrow{p} \beta_i$
 - efficient, $V(b_i)$ is smallest
 - with an approximately normal distribution.
3. The Ordinary Least Squares (OLS) Estimators

- Try \(b_0 \) and \(b_1 \) that minimize the sum of \(e_i^2 \)
 \[
 \sum_{i=1}^{n} e_i^2
 \]
 where \(e_i = Y_i - (b_0 + b_1 x) \)

- Why this one? Well, it’s analogous to what we asked for in the population.
- And it seems like a nice property in the sample.
- Deriving formulae for OLS estimators..
 (S&W p. 143)
Minimize \(\sum e_i^2 = \sum (y_i - (b_0 + b_1 x_i))^2 \) by choice of \(b_0, b_1 \)

First order conditions:

\[
\frac{\partial \sum e_i^2}{\partial b_0} = 0, \quad \frac{\partial \sum e_i^2}{\partial b_1} = 0
\]

\[
0 = \frac{\partial \sum e_i^2}{\partial b_0} = \frac{\sum (y_i - (b_0 + b_1 x_i))^2}{\partial b_0} = \frac{\partial (y_i - (b_0 + b_1 x_i))^2}{\partial b_0} + \frac{\partial (y_2 - (b_0 + b_1 x_2))^2}{\partial b_0} + \ldots
\]

\[
= 2e_i \frac{\partial e_i}{\partial b_0} + \ldots
\]

\[
= 2e_i(-1) + 2e_2(-1) + \ldots + 2e_N(-1) = 2(-1) \sum e_i = 0
\]

\(\iff \sum e_i = 0 \neq 1 \)

\[
0 = \frac{\partial \sum e_i^2}{\partial b_1} = \frac{\sum (y_i - (b_0 + b_1 x_i))^2}{\partial b_1} = \frac{\partial (y_i - (b_0 + b_1 x_i))^2}{\partial b_1} + \frac{\partial (y_2 - (b_0 + b_1 x_2))^2}{\partial b_1} + \ldots
\]

\[
= 2e_i \frac{\partial e_i}{\partial b_1} + \ldots
\]

\[
= 2e_i(-x_i) + 2e_2(-x_2) + \ldots + 2e_N(-x_N) = -2 \sum e_i x_i
\]

\(\iff \sum e_i x_i = 0 \neq 2 \)
2. F.O.C. \(\xi c_i = 0 \), \(\xi x_i = 0 \), now solve for \(b_0 \), \(b_1 \).

\[
\xi [y_i - (b_0 + b_1 x_i)] = 0 \Rightarrow \frac{1}{N} \xi y_i - \frac{1}{N} \xi (b_0 + b_1 x_i) = 0
\]

\[
\bar{y} = \frac{1}{N} \sum b_0 + b_1 \bar{x} \Rightarrow b_0 = \bar{y} - b_1 \bar{x}
\]

\[
0 = \xi (y_i - (b_0 + b_1 x_i)) x_i \Rightarrow \xi x_i y_i - b_0 \xi x_i - b_1 \xi x_i^2 = 0
\]

\[
\frac{1}{N} \xi x_i y_i - b_0 \bar{x} - b_1 \frac{\xi x_i^2}{N} = 0
\]

\[
\frac{1}{N} \xi x_i y_i - (\bar{y} - b_1 \bar{x}) \bar{x} - b_0 \frac{\xi x_i^2}{N} = 0
\]

\[
\frac{1}{N} \xi x_i y_i - \bar{y} \bar{x} = b_1 \frac{\xi x_i^2}{N} - b_0 \bar{x}^2
\]

(Use lemma again)

\[
\frac{1}{N} \xi (x_i - \bar{x})(y_i - \bar{y}) = b_1 \left(\frac{\xi x_i^2}{N} - \bar{x}^2 \right) = b_1 \frac{\xi (x_i - \bar{x})^2}{N}
\]

\[
\Rightarrow b_1 = \frac{\xi (x_i - \bar{x})(y_i - \bar{y})}{\xi (x_i - \bar{x})^2}/N
\]
The OLS Estimator, Predicted Values, and Residuals

The OLS estimators of the slope β_1 and the intercept β_0 are:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n}(X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n}(X_i - \bar{X})^2} = \frac{s_{XY}}{s_X^2} \tag{4.8}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1\bar{X}. \tag{4.9}$$

The OLS predicted values \hat{Y}_i and residuals \hat{u}_i are:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1X_i, \ i = 1, \ldots, n \tag{4.10}$$

$$\hat{u}_i = Y_i - \hat{Y}_i, \ i = 1, \ldots, n. \tag{4.11}$$

The estimated intercept ($\hat{\beta}_0$), slope ($\hat{\beta}_1$), and residual (\hat{u}_i) are computed from a sample of n observations of X_i and $Y_i, \ i = 1, \ldots, n$. These are estimates of the unknown true population intercept (β_0), slope (β_1), and error term (u_i).
The Least Squares Assumptions

\[Y_i = \beta_0 + \beta_1 X_i + u_i, \ i = 1, \ldots, n, \] where:

1. The error term \(u_i \) has conditional mean zero given \(X_i \), that is, \(E(u_i | X_i) = 0 \);
2. \((X_i, Y_i), \ i = 1, \ldots, n\) are independent and identically distributed (i.i.d.) draws from their joint distribution; and
3. \((X_i, u_i)\) have nonzero finite fourth moments.
Next time..

- Confidence intervals for β_0 and β_1
- Examples