Section 4. Multiple Regression: Assumptions and Implications

1. The LS assumptions for Multiple Regression
2. The two innocuous assumptions
3. The additional assumption on X’s
4. Why assume Linear Population Regression?
5. Why optional homoskedasticity assumption?
The Multiple Regression Model

The multiple regression model is

\[Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \cdots + \beta_k X_{ki} + \epsilon_i, \; i = 1, \ldots, n. \] (5.7)

where:

- \(Y_i \) is the \(i \)th observation on the dependent variable; \(X_{1i}, X_{2i}, \ldots, X_{ki} \) are the \(i \)th observations on each of the \(k \) regressors; and \(\epsilon_i \) is the error term.

- The population regression line is the relationship that holds between \(Y \) and the \(X \)'s on average in the population:

\[E(Y|X_{1i} = x_1, X_{2i} = x_2, \ldots, X_{ki} = x_k) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k. \]

- \(\beta_1 \) is the slope coefficient on \(X_1 \), \(\beta_2 \) is the coefficient on \(X_2 \), etc. The coefficient \(\beta_1 \) is the expected change in \(Y_i \) resulting from changing \(X_{1i} \) by one unit, holding constant \(X_{2i}, \ldots, X_{ki} \). The coefficients on the other \(X \)'s are interpreted similarly.

- The intercept \(\beta_0 \) is the expected value of \(Y \) when all the \(X \)'s equal zero. The intercept can be thought of as the coefficient on a regressor, \(X_{0i} \), that equals one for all \(i \).
The OLS Estimators, Predicted Values, and Residuals in the Multiple Regression Model

The OLS estimators $\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_k$ are the values of b_0, b_1, \ldots, b_k that minimize the sum of squared prediction mistakes $\sum_{i=1}^{n} (Y_i - b_0 - b_1X_{1i} - \cdots - b_kX_{ki})^2$. The OLS predicted values \hat{Y}_i and residuals \hat{u}_i are:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1X_{1i} + \cdots + \hat{\beta}_kX_{ki}, \ i = 1, \ldots, n, \ \text{and}$$

$$\hat{u}_i = Y_i - \hat{Y}_i, \ i = 1, \ldots, n.$$ \hspace{1cm} (5.11)

(5.12)

The OLS estimators $\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_k$ and residual \hat{u}_i are computed from a sample of n observations of $(X_{1i}, \ldots, X_{ki}, Y_i), \ i = 1, \ldots, n$. These are estimators of the unknown true population coefficients $\beta_0, \beta_1, \ldots, \beta_k$ and error term, u_i.
1b. Four MR Assumptions

The Least Squares Assumptions in the Multiple Regression Model

\[Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \cdots + \beta_k X_{ki} + u_i, \ i = 1, \ldots, n, \] where:

1. \(u_i \) has conditional mean zero given \(X_{1i}, X_{2i}, \ldots, X_{ki} \), that is,
 \[E(u_i | X_{1i}, X_{2i}, \ldots, X_{ki}) = 0; \]
2. \((X_{1i}, X_{2i}, \ldots, X_{ki}, Y_i), i = 1, \ldots, n \) are independently and identically distributed (i.i.d.) draws from their joint distribution;
3. \((X_{1i}, X_{2i}, \ldots, X_{ki}, u_i) \) have nonzero finite fourth moments; and
4. there is no perfect multicollinearity.
2. Two fairly innocuous assumptions

- Why worry about assumptions?
 Can opener joke
 One-armed economist joke
 Tools are more useful if assumptions are few and plausible

- #2) Random sampling
- #3) Finite 4th moments
3. Multicollinearity: The additional assumption on X’s

- Now that we have additional X’s, the correlation of X’s matters
 We saw that in the OVB formula
- If X’s are perfectly correlated the OLS coefficients are undefined
- How would you know if the assumption were violated.. Stata will let you know.
- So this is also pretty innocuous.
4. Why assume (#1), linear pop. regression?

• What if population regression is not linear?
 – E.g. from car prices

• What does LS estimate if \(\text{E}(u|X) \neq 0 \)?

• Where did we need linear \(\text{E}(u|X) = 0 \)?
 – For unbiased estimates

Why do we need unbiased estimates?
 – We can get consistency and CI even without assumption #1.

What are we estimating if
Coffee Demand – Looks linear
5. Why Assume Homoskedasticity?

A) Efficiency

• $V(u_i)$ doesn’t depend on i

• Examples

• Why assume that?

- Gauss-Markov Theorem tells you that OLS estimators $b_0 ... b_k$ are minimum variance (among unbiased estimates) if you assume homoskedasticity and linear pop. Regression in addition to other assumptions.

\textit{Nice result but homoskedasticity is generally not relevant assumption.}
5. Why Assume Homoskedasticity?

B) Simpler Std. Errors

- The std. Error formula under heteroskedasticity is a mess (White)
- Under homoskedasticity it’s simpler

Bottom line: Linearity and homoskedasticity are restrictive assumptions and we avoid them if possible.
FIGURE 4.7 An Example of Heteroskedasticity

Like Figure 4.4, this shows the conditional distribution of test scores for three different class sizes. Unlike Figure 4.4, these distributions become more spread out (have a larger variance) for larger class sizes. Because the variance of the distribution of \(u \) given \(X \), \(\text{var}(u|X) \), depends on \(X \), \(u \) is heteroskedastic.