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1 Introduction

In this summary on difference equations and autoregressive processes you will
find that many of the seemingly complicated mathematical entities, such as
eigenvalues, diagonalized matrices, unit roots and non-stationary processes,
are nothing special after all. I will show in sections 3 and 4 that eigenvalues
are merely a little more advanced versions of the coefficient a in a linear
difference equation xt = axt−1. As is quite obvious for this difference equation
already, xt will grow bigger and bigger (explode) if a is larger than one.
Similarly, eigenvalues that exceed unity make a system of difference equations
explosive. As I will argue in section 5 for scalar difference equations, these
eigenvalues are nothing but solutions to polynomials. At least for the case
of a second-order difference equation, where a second-order polynomial is
involved, we all know how to handle this. A second-order polynomial is a
quadratic equation for which we used to find the solutions as early as in high
school. Finally, I take these concepts to a stochastic setting and consider
autoregressive processes in section 6. Again, it all reduces to very basic
and known concepts. An autoregressive process is non-stationary exactly
in the cases where a difference equation would be explosive. That is, an
autoregressive process xt = axt−1 + ε̃t is explosive when the little coefficient
a exceeds one.
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2 Linear first-order difference equations in one

variable

When only one variable is concerned, a linear first-order difference equation
takes the form

xt = axt−1 + bt. (1)

It is called a first-order difference equation because only one lag of x appears.
In this equation, a is a time-independent coefficient and bt is called the ‘forc-
ing term.’ When bt = 0, the simplest case, we call the difference equation
homogeneous, and otherwise non-homogeneous. When bt = b for all t, the
difference equation is said to be non-homogeneous but autonomous. Finally,
when bt is time-dependent, we call the difference equation non-homogeneous
and non-autonomous. A solution to the system is a function of the coeffi-
cients and time that satisfies (1) (along with a so-called ‘boundary condi-
tion’). As we will see soon, the general solution to the non-homogeneous,
non-autonomous system is

xt = c · at +
∑t

s=−∞ at−sbs when |a| < 1, (2)

and

xt = c · at +
∑∞

s=t(
1
a
)s−tbs when |a| > 1. (3)

The constant c is a real number to be determined. Note that the value
of xt is converging to

∑t
s=−∞ at−sbs if |a| < 1. It is exploding otherwise.

However, let’s defer a discussion of stability until section 2.2 and first derive
the solution.

2.1 Solving the difference equation

The single most useful principle to solve difference equations is called the
Superposition Principle. It says, the general solution to any linear difference
equation can be split up into to parts: First, the solutions to the homoge-
neous part of it and, second, any particular solution to the non-homogeneous
difference equation you like to use:

xgeneral
t = xcomplementary

t + xparticular
t . (4)
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The term xcomplementary
t denotes the solutions to the homogeneous part of

the difference equation. As surprising as this may seem, you will soon be
convinced that it must hold true for our equation (1). It is not much harder
to prove for the general case.

Finding the solution to the homogeneous part of (1) is simple. The ho-
mogeneous part is the remainder of (1) when you set bt = 0. For the solution
of it, simply plug (1) into itself recursively. That is, write

xcomplementary
t = axt−1 = a(axt−1) = a(a(axt−2)) = . . . = atx0. (5)

[You can check that this is a solution to (1) by plugging at−1x0 back into (1)
for xt−1 when bt = 0.] The function xcomplementary

t = atx0 is a solution to (1)
for any value of x0 that you like to choose. So, xt = atx0 is in fact a whole
family of solutions. We get to know all family members by varying through
x0 from negative to positive infinity. In the solutions (2) and (3), the x0 has
been replaced by a small c to indicate the arbitraryness of this constant. We
can only pin down the c to a concrete value if we have a boundary (or initial
condition) such as x0 = 1.7 or x−2000 = 42.

Let’s proceed to the solution of the non-homogeneous system. By the
Superposition Principle, it suffices to find one single or particular solution to
the non-homogeneous system, and we are done. The most convenient tool
around for this are lag and lead operators. You just need to know when to
apply which one. The rule is

Whenever |a| < 1, keep the difference equation in form (1) and
apply lag operators.

Whenever |a| > 1, divide the difference equation (1) by a and
apply lead operators.

The result will be one particular (but not the general solution) to the
linear difference equation.

Let’s take the case of |a| < 1. Rewrite the difference equation (1) in terms
of lag operators,

xt = aLxt + bt,

or

(1− aL)xt = bt.
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Hence, by the rules of the lag-operator,

xparticular
t =

bt

1− aL
= (1 + aL+a2

L
2+a3

L
3 + . . . )bt =

t∑
s=−∞

at−sbs. (6)

This is one particular solution to the non-autonomous linear difference equa-
tion (1). [You can verify that it is one by plugging xt−1 =

∑t−1
s=−∞ at−1−sbs

back into (1).] But it is not the only solution! From the Superposition Prin-
ciple we know that we need to add the complementary solution in order to
make things general. It is a surprising, but important property of the lag
(and lead) operator that it eliminates the complementary term. Applying
the Superposition Principle, and adding (6) to (5), we find the general so-
lution, as it was reported in the very beginning in (2). [Check by plugging
xt−1 = c · at−1 +

∑t−1
s=−∞ at−1−sbs into (1)]. Similarly, if |a| > 1, following the

same steps as above but using lead operators yields (3).

2.2 Stability

We say a difference equation is stable whenever the parameter a is strictly
less than one in absolute value, that is whenever |a| < 1. It becomes clear
from the solution to the homogeneous difference equation, (5), why we would
call it stable in that case. Whenever |a| < 1, our xt must decrease over time
and converge to zero. Consider

xcompl.
t = atx0

and suppose we start out with some x0 6= 0. Since |a| < 1, raising a to some
power t makes the coefficient at smaller and smaller as t increases. This
is true irrespective of whether a is positive or negative. Therefore xcompl.

t

converges to zero. It does so in a cycling pattern when a is negative since
then the coefficient at is positive in every second period, and negative in
every other period. When a is positive but less than one, xcompl.

t converges
straight to zero. So far so good for a homogeneous difference equation.

In the case of a non-homogeneous but autonomous difference equation
(where bt = b 6= 0 ∀t), stability would still only depend on the absolute value
of a. For |a| < 1, our xt would now converge to the so-called ‘steady state’
value. The ‘steady state’ is the value of xt, usually denoted by x̄, for which
xt = x̄ forever. That is, the ‘steady state’ is the one state of our dynamic
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system that will never be left if we reach it once. It is easy to find the
steady state in our autonomous first-order difference equation xt = axt−1 +b.
Setting xt = xt−1 = x̄, and solving out for x̄, we find x̄ = b/(1− a). As can
also be seen from (2), the general solution in the homogeneous case is then
xgeneral

t = x0a
t + b/(1−a). [Check by simplifying

∑t
s=−∞ at−sb in (2).] Thus,

whenever |a| < 1, the dynamic forces of the system take our xt back to the
steady-state no matter at what x0 we started out.

Even in the case of a non-autonomous difference equation, stability mainly
depends on the absolute value of a. If the sum

∑t
s=−∞ at−sbs is finite, the

power of the fact that |a| < 1 will always take us back to some non-explosive
path. The path won’t be steady, but our xt won’t blow up either. A param-
eter |a| < 1 dwarfs all forcing terms as long as

∑t
s=−∞ at−sbs is finite. That

is, as long as the bt’s don’t grow at a rate faster than 1/a.
Matters are totally different for |a| ≥ 1. A homogeneous difference equa-

tion with solution xcompl.
t = atx0 will explode. It will explode in a cycling

pattern if a is negative, and it will explode in a straight pattern if a is pos-
itive. Similarly, any non-homogeneous difference equation will be explosive
when |a| ≥ 1. For any finite (or infinite) sum

∑t
s=−∞ at−sbs, atx0 will make

the xt’s blow up each period by an amount ax0. So, there cannot be any
form of stability. These concepts will soon carry over to higher-dimensional
cases.

3 Linear first-order difference equations in n

variables

3.1 The case of n variables

Economists often have to deal with difference equation systems that involve
two or more variables. In principle, nothing changes. Just the names get
more fancy, and the solution methods more tedious. For example, the higher
order equivalents of the little coefficient a receive names such as ‘eigenval-
ues’ or ‘characteristic roots’ and are usually written as λ’s (lambdas). In
higher dimensions, these λ′s can become complex numbers. Instead of ask-
ing whether they are bigger or smaller than one in absolute value (as is most
appropriate for real numbers), people like to say these λ’s lie inside or outside
the unit circle— but they essentially mean the same. Pure mathematicians
would probably prefer to say that the λ’s are less or more than one in modu-
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lus because the modulus for complex numbers is the equivalent to an absolute
value for real numbers. Hence, higher-order systems will also be stable when-
ever these eigenvalues λ’s are strictly less than one in modulus; the systems
will be explosive as soon as one λ weakly exceeds one in modulus.

When solving first-order difference equations for n variables, the grand
objective is to get back to the simplest possible case where xt = λxt−1 + bt

as in (1) and the x′s are scalars. Consider a first-order difference equation in
n variables


x1

t

x2
t
...

xn
t


 =




a11 a12 · · · a1n

a21 a22
...

...
. . .

an1 . . . ann






x1
t−1

x2
t−1
...

xn
t−1


+




b1
t

b2
t
...
bn
t


 . (7)

This is still a first-order system because only one lag of the vector xt =
(x1

t , . . . , xn
t )
′ appears. Suppose for a moment that we were in the most lovely

of all cases: Suppose the big matrix A were a diagonal matrix with different
(real or complex) entries on the diagonal but zeros everywhere else. Then
we would be done. The big system would simply collapse to n equations of
the form xi

t = aiix
i
t−1 + bi

t. [Check.] And we know the solution to these: (2)
or (3).

The second most lovely case would be one in which we come as close to
the most lovely case as possible. Concretely, it is the case where A is as ugly
as it may be, but we can find a closely related equation system

x̂t = Λx̂t−1 + b̂t, (8)

where Λ is a diagonal matrix and we can recover the original xt = (x1
t , . . . , xn

t )
′

as xt = Px̂t, and the original bt as bt = Pb̂t for some related matrix P. This
second most lovely case occurs almost always in economics (it requires the
assumption that the eigenvalues are distinct). Clever mathematicians have
worked it out. Some call the procedure ‘diagonalizing’ A, others call it ‘find-
ing the eigenvalues’, still others call it ‘finding the characteristic roots’ of A.
Before we consider the special case of two variables in a detailed example,
let’s get a first understanding of the general procedure.

The idea is the following. Under certain regularity conditions any n × n
matrix A can be written as A = PΛP−1, where Λ is a diagonal n×n matrix
and P has full rank. The entries on the diagonal of Λ are called the n
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eigenvalues of A, and the columns of P are the n according eigenvectors of
A. Knowing this, we can transform any first-order difference equation system
in n variables, such as (7), in the following way.

First, find the eigenvalues of the matrix A and write them on the di-
agonal of another matrix, keeping all entries off the diagonal at zero. Call
that matrix of eigenvalues Λ. Second, find the according eigenvectors and
assemble them as the columns of the matrix P. Third, pre-multiply xt =
Axt−1 + bt = PΛP−1xt−1 + bt by P−1 to obtain x̂t = Λx̂t−1 + b̂t, where
x̂t ≡ P−1xt, x̂t−1 ≡ P−1xt−1, and b̂t ≡ P−1bt for all t. Fourth, since Λ is a
convenient diagonal matrix, the solutions to the system x̂t = Λx̂t−1 + b̂t are
all well known from (2) and (3). Hence, for each entry x̂i

t in the p-vector x̂t,
just use the general solution x̂i

t = ci · (λi)
t +
∑t

s=−∞(λi)
t−sb̂s when |a| < 1

(and the according solution when |a| > 1). The λi is the ith eigenvalue in
Λ. Now you will need n boundary conditions to precisely pin down all ci’s.
Finally, pre-multiply the solution x̂t by P again, in order to get the solutions
to the original xt. You’re done.

As will become clear in the following example with two variables soon,
the stability of the system will depend on the eigenvalues. Whenever all
eigenvalues are strictly less than one in modulus, the system will be stable. As
soon as one eigenvalue weakly exceeds unity, the system becomes explosive.

3.2 The same but in 2 variables and for an autonomous

system

Let’s consider the case of n = 2 as an example. By way of doing so, we
can also derive some general formulas for both the eigenvalues and the eigen-
vectors in the two-variable case. Our objective is to find a solution to the
following autonomous first-order system of difference equations(

x1
t

x2
t

)
=

(
a11 a12

a21 a22

)(
x1

t−1

x2
t−1

)
+

(
b1

b2

)
, (9)

or xt = A2×2xt−1 + b. Again, if we were in the most lovely of all cases with
a21 = a12 = 0, we could simply use the solutions from the one-variable case,
(2) or (3). So, let’s ‘decouple’ the system and get to that case, that is, let’s
find (

x̂1
t

x̂2
t

)
=

(
λ1 0
0 λ2

)(
x̂1

t−1

x̂2
t−1

)
+

(
b̂1

b̂2

)
, (10)
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where the xi
t and bi can be recovered from the x̂i

t and b̂i. We proceed in five
steps and make use of the Superposition Principle. Over the course of the first
four steps we will find the solution to the homogeneous difference equation
xt = Axt−1. Then, in a fifth and last step, we will derive a particular solution
to the non-homogeneous but autonomous system.

First we go after the eigenvalues. By definition, the eigenvalues of an
n× n matrix A are the n (possibly non-distinct) values of λ that satisfy the
equation

det[A−λ · In] = 0, (11)

where In is the n× n identity matrix and det[·] denotes the determinant. In
the 2× 2 case, this means that

det

[(
a11 − λ a12

a21 a22 − λ

)]
= 0.

Writing these conditions out, we find

(a11 − λ) (a22 − λ) − a21a12 = λ2 − tr(A)λ + det(A) = 0,

where tr(A) denotes the trace of A. Hence, the two values of λ that satisfy
(11) in the 2 × 2 case are the roots of a quadratic equation. In particular,
they are

λ1,2=
tr(A)

2
± 1

2

√
[tr(A)]2 − 4det(A). (12)

So, in the 2× 2 case we simply need to know the trace and the determinant
of A and we are done.

Second, let’s find the according eigenvectors. The ith eigenvector of the
matrix A is defined as the vector ei that solves the equation

Aei = eiλi. (13)

Note that if we find one vector that satisfies (13), then we actually found
a whole bundle of them. Since we can multiply both sides of (13) by any
number and still satisfy it, we can multiply ei by any number and still sat-
isfy (13). Therefore, we can choose the eigenvector that we prefer. Many
mathematicians like to find the special eigenvector that has length one in
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Euclidean space. However, there is a much more convenient eigenvector to
pick in the 2×2 case: The eigenvector that has a y-coordinate of one.1 With
this convenient standardization, we only need to find the x-coordinate of the
eigenvector. That is, we only need to find ei in

A·
(

ei

1

)
=

(
ei

1

)
· λi.

This is a system in two equations, and can be written out as

a11ei + a12 = λiei

a21ei + a22 = λi.

Two equations and only one unknown ei? As it turns out, these two equations
are always identical by virtue of λi being an eigenvalue. [Check.] Solving
either one of the two equations, we find the eigenvector ei that corresponds
to the eigenvalue i:

ei =

(
λi−a22

a21

1

)
. (14)

Third, we can make use of these definitions for our (homogeneous) second-
order difference equation xt = Axt−1. For that, let’s write the eigenvalues
and the eigenvectors into two matrices, Λ and P:

Λ ≡
(

λ1 0
0 λ2

)
and P ≡ (e1, e2) =

(
λ1−a22

a21

λ2−a22

a21

1 1

)
. (15)

The order of the eigenvalues and eigenvectors does not matter, but it must be
the same in both matrices Λ and P. From the definition of the eigenvector
(13) we know that we can write AP = PΛ. Now suppose that the two
eigenvalues are distinct. Then we can invert P because it must have full rank
for distinct eigenvalues [check], and post-multiply both sides of AP = PΛ
with P−1. Hence,

A = PΛP−1.

1 It is permissible to rule out a y-coordinate of zero because we wouldn’t have started
the whole procedure if there had been a column vector with a zero y-coordinate in A in
the first place.
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This is perfect for our purposes. We can simply plug the result into our
homogeneous difference equation system xt = Axt−1 and get

xt = PΛP−1xt−1.

Pre-multiplying the entire thing by P−1 and defining x̂t ≡ P−1xt for all t,
we have a transformed system that we can solve:

x̃t = Λx̂t−1.

We cannot only solve it, we even know the solutions from the scalar case, (2)
or (3). Hence,

x̂t =

(
c1(λ1)

t

c2(λ2)
t

)
. (16)

Fourth, we can recover our original variable xt from x̂t as xt = Px̂t. So,
finally, we have the desired general solution for our homogeneous first-order
difference equation system in two variables, xt = Axt−1:

xt =

(
λ1−a22

a21

λ2−a22

a21

1 1

)(
c1(λ1)

t

c2(λ2)
t

)
. (17)

The constants c1 and c2 need to be determined by two boundary conditions.
Fifth, if we finally find any particular solution to our original, autonomous

difference equation xt = Axt−1+b, we are done. The Superposition Principle
tells us that we just need to add such a particular solution and the solution to
the homogeneous system, (17). Any autonomous linear difference equation
system has a steady state (under some regularity condition). This steady
state is the simplest particular solution that we can find. Try it. Suppose
there is a steady state for which xt = xt−1 = x̄. Then, the original difference
equation becomes x̄ = Ax̄+b. Hence, (In−A)x̄ = b and, in the 2× 2 case,

x̄ = (I2 −A)
−1

b = 1
1−det(A)−tr(A)

(
1− a21 a12

a21 1− a11

)
b. (18)

As long as det(A)+tr(A) 6= 1, the steady state exists. (So we have just
proven to ourselves that any autonomous linear difference equation system
in two variables has a steady state if det(A)+tr(A) 6= 1). Note that the term
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(I2 −A)−1 b resembles the scalar case closely, where
∑t

s=−∞ at−sb = b
1−a

(if
|a| < 1).

We don’t know whether the steady state is stable, that is, whether the
economy will converge to it or not. This will depend on the eigenvalues. If at
least one eigenvalue weakly exceeds unity in absolute value (or modulus), the
steady state is unstable. That is, once we leave it, we can never return. If, on
the other hand, all eigenvalues are strictly less than one in absolute value, the
system is stable and we always converge back to the steady state no matter
how far we were apart initially. In any case, an economy which starts out in
the steady state will never leave it unless it is hit by an exogenous shock.

Using the Superposition Principle we can finally add the particular solu-
tion (18) (the steady state) to the complementary solution (17). This yields
the general solution

xt =

(
λ1−a22

a21

λ2−a22

a21

1 1

)(
c1(λ1)

t

c2(λ2)
t

)
+ x̄, (19)

where the steady state x̄ = (I2−A)−1b is given by (18) and the eigenvalues

satisfy λ1,2 = tr(A)
2
± 1

2

√
tr(A)2 − 4det(A) by (12). The coefficients c1 and

c2 need to be determined by two boundary conditions.
With the solution (19), we can now make an argument about the stability

of the system in more formal language: As can be seen from (19), the stabil-
ity properties that we first encountered in section 2.2 directly carry over to
the more general case of a system in two variables. Whenever at least one
eigenvalue λi exceeds one in absolute value (or in modulus if λi is complex),
our xt will blow up. Consider the vector (c1(λ1)

t, c2(λ2)
t)′. Each period we

add an increment c1λ1 to this vector. When |λ1| ≥ 1, this increment is non-
decreasing and there is no way that we could find an xt that converges to x̄.
Right in the opposite, xt will tend to infinity. When |λ1| < 1 and |λ2| < 1,
however, the added increment is getting ever smaller over time. Thus, the
vector (c1(λ1)

t, c2(λ2)
t)′ converges to a zero-vector and, as a result, the term

xt − x̄ must go to zero. That is, xt converges to the steady state level over
time whenever both eigenvalues are less than one in modulus.

A non-autonomous system can be solved along similar lines, but the ex-
pressions for the forcing term will be more complicated, and there is no steady
state in general.
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4 Linear difference equations of order p

4.1 The general case

Following the same procedure, we will handle higher-order difference equa-
tions by conveniently reducing them to the cases before. As it will turn out,
we have in fact already solved higher order difference equations. Consider
any pth-order difference equation in the scalar variable yt

yt = φ1yt−1 + φ2yt−2 + . . . + φpyt−p + bt. (20)

Such an equation can always be rewritten as a first-order difference equation
in p variables. Don’t be surprised. This is almost trivial:


yt

yt−1
...

yt+1−p


 =




φ1 φ2 · · · φp

1 0 · · · 0
...

. . .
...

0 · · · 1 0






yt−1

yt−2
...

yt−p


+




bt

0
...
0




= F·




yt−1

yt−2
...

yt−p


+




bt

0
...
0


 . (21)

We simply write all the coefficients φ1, . . . , φp into the first row of the matrix
F, plug ones into all entries below the diagonal and zeros elsewhere. The
result is clearly a first-order system in the p-vector yt ≡ (yt, yt−1, . . . , yt+1−p)

′.
By following precisely the procedure in section 3.1, we can find the eigenvalues
and eigenvectors and solve (21) in just the same way as before.

This would even hold true for a pth-order system in n variables. Suppose
the n-vector yt follows a pth-order difference equation

yt = Φ1yt−1 + Φ2yt−2 + . . . + Φ2yt−2 + bt,

where the Φi are n × n matrices, and bt is an n-vector. Such an equation
can always be rewritten in stacked form as


yt

yt−1
...

yt+1−p


 =




Φ1 Φ2 · · · Φp

In 0n · · · 0n
...

. . .
...

0n · · · In 0n






yt−1

yt−2
...

yt−p


 +




bt

0
...
0


 ,
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where 0n is an n× n matrix full of zeros, 0 is an n-vector of zeros, and In is
the n× n identity matrix. Again, with the general method from section 3.1,
we can solve this system.

4.2 The same but in 2 variables

Let’s apply our findings to the case of a second order difference equation in
a scalar variable yt. As outlined above, the second-order difference equation

yt = φ1yt−1 + φ2yt−2 + bt (22)

can be rewritten as a first-order difference equation system in two variables:(
yt

yt−1

)
=

(
φ1 φ2

1 0

)(
yt−1

yt−2

)
+

(
bt

0

)
, (23)

or yt = Fyt + bt. In section 3.2 we derived convenient formulas for a first-
order difference equation in two variables. We first found the solution to the
homogeneous difference equation. Using the Superposition Principle, we then
added any particular solution of the non-homogeneous system and obtained
the general solution. Let’s follow the same procedure again. Formula (12)
gives us the eigenvalues. Since tr(F) = φ1 and det(F) = −φ2, we find

λ1,2 = φ1

2
± 1

2

√
φ2

1 + 4φ2. (24)

You may have noted before that the eigenvalues of a 2× 2 matrix are closely
related to the roots of a quadratic equation. In the case of difference equa-
tions, the eigenvalues of the p × p matrix F are in fact equivalent to the p
characteristic roots of the homogeneous difference equation. After all, a pth-
order homogeneous difference equation is nothing but a pth-order polynomial.
More on that in section 5.

The according eigenvectors are, by formula (14),

e1,2 =

(
λ1,2

1

)
=

(
φ1

2
± 1

2

√
φ2

1 + 4φ2

1

)
. (25)

Finally, using result (17), we find the solution to the homogeneous second-
order difference equation yt = φ1yt−1 + φ2yt−2(

yt

yt−1

)
=

(
λ1 λ2

1 1

)(
c1(λ1)

t

c2(λ2)
t

)
,
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or

yt = ĉ1(λ1)
t + ĉ2(λ2)

t. (26)

In (26), we conveniently defined ĉi ≡ ciλi. We can always do that because
the ĉi will ultimately be determined correctly by the boundary conditions.

We can find the general solution to the non-homogeneous difference equa-
tion (22) by invoking the Superposition Principle once more. Provided that
both eigenvalues are less than unity in modulus, the general solution is

yt = ĉ1(λ1)
t + ĉ2(λ2)

t + 1
(1−λ1L)(1−λ2L)

bt, (27)

where 1
(1−λ1L)(1−λ2L)

bt is a particular solution to the second-order non-autonomous
difference equation yt = φ1yt−1+φ2yt−2+bt. Why this is the case will become
clear in the following section.

5 The equivalence of eigenvalues and charac-

teristic roots in difference equations

This section is devoted to one sole goal: to show that all the fancy techniques
that we applied to scalar difference equations in the preceding section 4 are
no different from high school mathematics. We simply used more elaborate
terms for it.

5.1 The general scalar case

Polynomials have characteristic roots. For example, quadratic equations
such as az2 + bz + c = 0 have two roots that solve them for z. Namely,
z1,2 = −b±√b2−4ac

2a
. Quadratic equations are second-order polynomials. Higher

order polynomials have p such roots. There is an extremely powerful theo-
rem in algebra, the Fundamental Theorem of Algebra. You may not have
encountered this name for the theorem yet, but you most likely know it from
high school, too. The Fundamental Theorem of Algebra tells us that any
pth-order polynomial can be factored into exactly p (possibly non-distinct)
terms, and each of these terms involves one characteristic root. So, for any
pth-order polynomial in a real number z

zp + d1z
p−1 + d2z

p−2 + . . . + dp−1z + dp = 0
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we can find p (possibly non-distinct) characteristic roots λ1, λ2, . . . , λp.
Using these characteristic roots we can rewrite the polynomial in equivalent
terms as

zp + d1z
p−1 + d2z

p−2 + . . . + dp−1z + dp = 0

⇔ (λ1 − z) (λ2 − z) (λ3 − z) · · · (λp − z) = 0.

The p characteristic roots are functions of the parameters d1, . . . , dp of the
original polynomial.

This line of thought is often applied to difference equations, too. To see
how, take our pth-order scalar difference equation (20) in section 4.1,

yt = φ1yt−1 + φ2yt−2 + . . . + φpyt−p + bt,

retain the part of it that is a homogeneous difference equation, and rewrite
that homogeneous difference equation as

(1− φ1L− φ2L
2 − . . .− φpL

p)·yt = 0 (28)

in lag operators. Due to the properties of the lag operator, the term (1 −
φ1L−φ2L

2− . . .−φpL
p) in (28) can be considered equivalent to the following

polynomial

(1− φ1z
−1 − φ2z

−2 − . . .− φpz
−p) = 0. (29)

It is equivalent in the sense that if we know how to factor this polynomial in
z into p factors, we can also factor the term (1− φ1L − φ2L

2 − . . .− φpL
p)

into the same p factors, simply replacing the z’s with L’s. This may seem
surprising at first. It really isn’t. See the idea at work in the following
paragraphs. [To convince yourself now, expand a second-order polynomial in
z of the form (1− λ1z

−1) (1− λ2z
−1) and a second-order polynomial in L of

the form (1− λ1L) (1− λ2L) to see that this equivalence is right. You can
repeat that procedure for any higher-order polynomial.]

Unfortunately, we usually do not immediately know the characteristic
roots of a polynomial of the form (1 − φ1z

−1 − φ2z
−2 − . . . − φpz

−p) = 0
where the z’s are raised to negative powers. However, we do generally know
the characteristic roots of a polynomial where the z’s are raised to positive
powers. So, let’s simply multiply (29) through by zp and obtain

zp − φ1z
p−1 − φ2z

p−2 − . . .− φp = 0. (30)
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This expression is called the associated polynomial of the difference equation
(20). By the Fundamental Theorem of Algebra, the associated polynomial
can be factored into p terms of the form

(λ1 − z) (λ2 − z) (λ3 − z) · · · (λp − z) (31)

= zp − φ1z
p−1 − φ2z

p−2 − . . .− φp−1z − φp

= 0.

The λi’s are also called the characteristic roots of the difference equation.
Now let’s take this finding back to our original pth-order difference equa-

tion, written with lag operators in the form (28). We know that (λ1 − z) ·
· · · (λp − z) = 0. Thus, in order to return to the first polynomial (29), we
can multiply (31) by z−p again and obtain

1− φ1z
−1 − φ2z

−2 − . . .− φp−1z
−p+1 − φpz

−p

=

(
λ1

z
− 1

)(
λ2

z
− 1

)(
λ3

z
− 1

)
· · ·
(

λp

z
− 1

)
(32)

= 0.

Simply divide each of the p factors by z. Now let’s use the fact that the
lag-operator L is behaving as if it were a real number z−1. So, substitute L

for λ in (32) and obtain

= (λ1L− 1) (λ2L− 1) (λ3L− 1) · · · (λpL− 1)

= (1− λ1L) (1− λ2L) (1− λ3L) · · · (1− λpL) (33)

= 0.

The equality holds because we can multiply each factor by −1 since the
polynomial is equal to 0. And, after all, we have found an extremely handy
expression for the original difference equation (20):

(1− λ1L) (1− λ2L) · · · (1− λpL) · yt = bt. (34)

As mysterious as it may have looked initially, the lag operator in a polyno-
mial behaves like the inverse of a real number. The last expression (34) may
reconcile you. We know that we can re-write an expression (1− λL) · yt = bt

as yt = bt/ (1− λL) =
∑t

s=−∞ λt−sbs if we have only one λ.2 Expression (34)

2 Strictly speaking, this infinite sum of past bt only results if λ is strictly less than one
in absolute value; an infinite sum of future bt follows if λ is strictly bigger than one in
absolute value.
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re-iterates that insight for more than one lag of yt. We can now write the ex-
pression (1− λ1L) · · · (1− λpL) yt = bt as yt = bt/ [(1− λ1L) · · · (1− λpL)].
So, yt is nothing but a complicated summation of the past bt.

We have called the p characteristic roots of the pth-order difference equa-
tion lambdas as well. For a good reason. As it turns out, these λ1, . . . , λp

are exactly equal to the p eigenvalues of the difference equation (20), and its
vector version (21), in section 4.1. In general:

Factoring the pth-order polynomial (1−φ1L−φ2L
2−. . .−φpL

p)·yt

as

(1− λ1L) (1− λ2L) · · · (1− λpL) · yt

is equivalent to finding the p eigenvalues λ1, . . . , λp of the matrix
F in the vector version of the difference equation,


yt

yt−1
...

yt+1−p


 =




φ1 φ2 · · · φp

1 0 · · · 0
...

. . .
...

0 · · · 1 0






yt−1

yt−2
...

yt−p


+




bt

0
...
0




= F·




yt−1

yt−2
...

yt−p


+




bt

0
...
0


 .

Rather than proving the above statement in general terms, let’s turn
to the more intuitive case of a second-order difference equation in the next
section. The above result is somewhat ironic. It tells us, in fact, that all the
complicated sounding concepts such as eigenvalues and characteristic roots
are nothing but what we used to derive in high-school exercises. We are
still not doing anything different but factoring polynomials. We have merely
found more fancy applications.

5.2 The same but for a second-order difference equa-

tion

Take a second-order difference equation

yt = φ1yt−1 + φ2yt−2 + bt
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as in (22). This difference equation can be rewritten with lag operators as(
1− φ1L− φ2L

2
)
yt = bt. (35)

We want to find the characteristic roots of this process in order to see whether
it is stable or not. (It is stable iff both characteristic roots are strictly less
than one in modulus.) For this purpose, we want to factor the expression
(1− φ1L− φ2L

2) into two terms so that

(1− λ1L) (1− λ2L) yt = bt. (36)

We know from section 5.1 above that the expression (1− φ1L − φ2L
2) = 0

is behaved like a polynomial of the form (1− φ1z
−1 − φ2z

−2) = 0. This looks
a little ugly, but we need not worry because we know the solutions to the
associated polynomial

z2 − φ1z − φ2 = 0. (37)

From our quadratic formula we remember that the two roots solving (37) are

z1,2 = λ1,2 =
φ1 ±

√
φ1

2 + 4φ2

2
. (38)

From the general derivations in section 5.1 (see (32) and 33) we know that
these characteristic roots λ1,2 are the characteristic roots in the expression
(1− λ1L) (1− λ2L) yt. And we were looking for these roots. Hence, the
second-order difference equation (22) can be factored as(

1− 1

2

(
φ1 −

√
φ1

2 + 4φ2

)
L

)
×(

1− 1

2

(
φ1 +

√
φ1

2 + 4φ2

)
L

)
yt = bt. (39)

We know even more. The characteristic roots of this process will either both
be real (whenever φ2 ≥ −φ2

1/4) or both complex (whenever φ2 < −φ2
1/4).

Suppose they are real. When will the eigenvalues be less than unity in
absolute value? We can derive some conditions. One is: If φ2 is positive, then
at least one eigenvalue exceeds unity iff |φ1| > 1. To see this, consider the
case where φ2 is zero. Then, the roots in (38) simplify to φ1 and zero. Now
consider φ2 bigger than zero. Then one root will exceed |φ1| and the other
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root will fall below zero if φ1 is positive (and above zero if φ1 is negative).
Hence, whenever φ2 is positive, at least one eigenvalue exceeds unity if and
only if φ1 exceeds unity in absolute value. [You can prove some further
relationships along these lines.]

Finally, let’s think about the statement that the characteristic roots of
the associated polynomial λ1,2 are equivalent to the eigenvalues of the matrix
F in the system(

yt

yt−1

)
=

(
φ1 φ2

1 0

)(
yt−1

yt−2

)
+

(
bt

0

)

= F·
(

yt−1

yt−2

)
+

(
bt

0

)
.

We have derived the eigenvalues of F in section 4.2. Browsing back to formula
(24), we find these eigenvalues to be

λ1,2 =
φ1 ±

√
φ1

2 + 4φ2

2
.

No surprise, they are exactly the same as the characteristic roots in (38)
above. So, again, we didn’t do anything more fancy in section 4.2 than solve
the simple quadratic equation

λ2 − φ1λ− φ2 = 0

for λ.

6 Autoregressive Processes

6.1 The general scalar case

An autoregressive process of order p is defined as

yt = φ1yt−1 + φ2yt−2 + . . . + φpyt−p + c + ε̃t. (40)

It is called autoregressive because yt depends on its own lagged values (auto
means ‘self’ in Latin) in a linear manner (regressively). This expression
looks very familiar, doesn’t it? It is in fact nothing but an old known, a
linear difference equation of order p as we saw it before in (20). There is only
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one difference. The new ‘forcing term’ c + ε̃t consists of two components.
The coefficient c is just a constant real number. The other component is the
crucial one: ε̃t is taken as a random variable now.

In all autoregressive processes the error terms, or disturbances, ε̃t are
assumed to obey certain requirements on their distribution. There are three
layers of these requirements. The first layer is the least restrictive and is
always assumed to be satisfied. We want the errors ε̃t to have a constant
mean of zero, a constant and finite variance, and a constant autocovariance
of zero. In statistical notation, we want

E [ε̃t] = 0 ∀t, (41)

Var(ε̃t) = E
[
ε̃t

2
]

= σ2
ε ∀t, (42)

and

Cov(ε̃t, ε̃t−s) = E [ε̃tε̃t−s] = 0 ∀t, s 6= t (43)

for all our ε̃t
′s.

Sometimes we might prefer to have the error terms not only uncorrelated,
but even independent across time. That is, we want to strengthen (43) and
make the ε̃t

′s independent and identically distributed error terms

ε̃t ∼ i.i.d., (44)

where (41) and (42) are still assumed to hold. This kind of distribution of the
error terms is called white noise, and is the second layer of requirements. We
finally reach a third layer of requirements when we assume that the ε̃t

′s are
not only independent and identically distributed, but that they are normal
random variables. That is

ε̃t
iid∼ N(0, σ2

ε ) ∀t. (45)

This kind of distribution is often called Gaussian white noise after Gauss,
the ‘inventor’ of the normal distribution.

As it turns out, none of these layers of distributions of the disturbances
ε̃t matters for the main properties of an autoregressive process such as (40)
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above. That’s why it’s so nice to have these layers satisfied.3 The key
property of the autoregressive process is its so-called stationarity. In order to
work with autoregressive processes in a sensible manner, we need stationarity
to be satisfied. As it will turn out soon, stationarity is intimately tied to the
stability of the according homogeneous difference equation. So we are back
to our standard analysis of eigenvalues.

There are various forms of stationarity. One is called covariance (or weak)
stationarity. Another one is called strong stationarity. Before considering the
concepts more formally in section 6.2, let’s move a little ahead and simply
state a fact about weak stationarity in terms that are known to us. The
statement is the following:

An autoregressive process of order p,

yt = φ1yt−1 + φ2yt−2 + . . . + φpyt−p + c + ε̃t,

is covariance stationary if the related homogeneous difference
equation of order p,

yt = φ1yt−1 + φ2yt−2 + . . . + φpyt−p,

is stable. That is, whenever all p eigenvalues (or characteristic
roots) of the homogeneous difference equation are less than one
in modulus.

So, what we want to do is have a look at the eigenvalues (or characteristic
roots) of the homogeneous difference equation

yt = φ1yt−1 + φ2yt−2 + . . . + φpyt−p.

In section 4.1 we have seen how we can find the eigenvalues of any such homo-
geneous difference equation. We have also seen that the system is explosive
as soon as one eigenvalue weakly exceeds one in modulus. On the other

3 It can be shown that the following statements hold for more complicated processes of
the errors, too. In particular, any invertible so-called ARMA process can be transformed
into a pure autoregressive process of infinite order (AR(∞)). One extremely convenient
property about polynomials is that infinite-order polynomials are not essentially different
from finite polynomials. Hence, very similar concepts as the ones discussed here apply in
general. The AR(∞) representation of any invertible ARMA process is stationary if all of
the infinitely many characteristic roots are less than one in modulus.
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hand, the system is stable as long as all eigenvalues are strictly less than
unity. So, whenever all characteristic roots of the according homogeneous
difference equation are strictly less than one in modulus, the autoregressive
process (40) is covariance stationary.

6.2 Covariance stationarity

So far we have tied together quite substantial things. We have seen that
eigenvalues of difference equations are nothing but the characteristic roots of
certain polynomials as we know them from high-school. We have also seen
that we can factor any difference equation using lag operators and these char-
acteristics roots. Let’s finally embed covariance stationarity in this frame-
work.

We still need a good definition of stationarity. For the purpose of this
section, covariance stationarity proves to be particularly well suited. It is
also the concept of stationarity that most time-series econometricians mean
when they talk about stationarity. Covariance stationarity, also called weak
stationarity, is less restrictive than strong stationarity. It is therefore also the
more natural concept to impose on stochastic process such as our pth-order
autoregressive process

yt = φ1yt−1 + φ2yt−2 + . . . + φpyt−p + c + ε̃t

in (40).
A serially correlated random variable yt is a random variable that is cor-

related with its own past realizations. Our autoregressive yt in (40) is an
example of a serially correlated random variable. The mean and the variance
of a serially correlated random variable are nothing special, simply E [yt]
and Var(yt). The so-called autocovariance is the covariance of yt with its
own lagged realizations. That is, the autocovariance of yt is Cov(yt, yt−s) =
E [(yt − E [yt]) · (yt−s − E [yt−s])]. Thus, Var(yt) = Cov(yt, yt−s) iff s = 0.
With this at hand, we can state the definition of covariance stationarity for
a stochastic process yt.

A serially correlated random variable yt is said to be covariance
stationary if, at all times t,

E [yt] = µ
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and

E [(yt − µ) (yt−s − µ)] =

{
γ(s) for s 6= 0
σ2

y for s = 0

are satisfied.

That is, both the mean and the variance of yt must be time-independent
and finite. In addition, the autocovariance must be finite and only a function
of the time-lag s. The autocovariance must not depend on the time t at which
we look at it. Note that, by the properties of the expectations operator E [·],
γ(s) = γ(−s). [Check.]

Let’s see how our pth-order autoregressive process (40) fits into the pic-
ture. For now, let’s assume that it satisfies one of the three requirement of
stationarity and see how far we get. Let’s pretend that the mean of yt is
finite and time-independent: E [yt] = µ. Then, taking expectations of both
sides of (40) yields

E [yt] = φ1E [yt−1] + φ2E [yt−2] + . . . + φpE [yt−p] + c.

Under the assumption that yt is stationary, this expression simplifies to

µ = φ1µ + φ2µ + . . . + φpµ + c,

or

E [yt] = µ =
c

1− φ1−φ2− . . .− φp
. (46)

So, if it is stationary, we can conveniently rewrite the autoregressive process
(40) as

yt − µ = φ1 (yt−1 − µ) + φ2 (yt−2 − µ) + . . . + φp (yt−p − µ) + ε̃t. (47)

With this expression, it is particularly simple to derive the autocovariance of
yt given that it is stationary. We simply multiply (47) by yt−s − µ and take
expectations:

γ(s) = Cov (yt, yt−s) = E [(yt − µ) · (yt−s − µ)]

= E[ (φ1 (yt−1 − µ) + . . . + φp (yt−p − µ) + ε̃t) · (yt−s − µ)]

= φ1E [(yt−1 − µ) (yt−s − µ)] + . . . + φpE [(yt−p − µ) (yt−s − µ)]

= φ1γ(s− 1) + . . . + φpγ(s− p) (48)
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for s 6= 0. In the step from the second to the third line we made use of
the fact that E [ε̃t (yt−s − µ)] = 0 since yt−s can only be a function of all the
shocks that have occured up to period t − s and, by assumption (43), the
disturbances are not correlated over time.

The fact that (48) holds for any autoregressive process, so that γs =
φ1γs−1 + . . . + φpγs−p, is an extremely interesting result. It says that the
autocovariance of yt, γ(s), follows a homogeneous difference equation of or-
der p. But not only that. The autocovariance γ(s) follows exactly the same
homogeneous difference equation as yt itself! The result is not only interest-
ing. It is highly convenient, too. We know under what conditions a pth-order
homogeneous difference equation is stable. It is stable if and only if all the
characteristic roots of the associated polynomial are less than one in modu-
lus. So, first of all, γ(s) is indeed only a function of the lag s and not of time
t. Second, it is finite if and only if the p characteristic roots of the homoge-
neous difference equation yt = φ1yt−1 +φ2yt−2 + . . . +φpyt−p are all less than
one in modulus. Hence, given our initial assumption that E [yt] = µ is not
time-dependent, we can infer that the second requirement on stationarity is
satisfied.

So, let’s consider the third requirement for stationarity, that the variance
of yt be time-independent and finite. Multiplying (47) by yt − µ, taking
expectations, and making use of the fact that E [ε̃t (yt−1 − µ)] = 0, yields

Var (yt) = E [(φ1 (yt−1 − µ) + . . . + φp (yt−p − µ) + ε̃t) (yt − µ)]

= φ1γ(1) + . . . + φpγ(p) + σ2
ε , (49)

[Check.] Note that the variance is certainly time-independent if the auto-
covariances γ(1), . . . , γ(p) are. Since σ2

ε is finite by (42), and the coeffi-
cients φ1, . . . , φp are finite, all depends on these autocovariances. But we
just saw in the paragraph before that these autocovariances are finite when-
ever E [yt] = µ and the eigenvalues of the homogeneous difference equation
yt = φ1yt−1 + φ2yt−2 + . . . +φpyt−p are less than one in modulus. So, the last
thing we need to show is that E [yt] = µ is finite whenever the eigenvalues are
less than one in modulus. Let’s do that in the concluding section. Before we
finally close this all, let’s get some more intuition and consider a particular
example where covariance stationarity fails.
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6.3 A simple non-stationary process

A particularly neat example of failing covariance stationarity is the random
walk . A random-walk is a first-order difference equation with a unit root:

yt = yt−1 + ε̃t. (50)

This is clearly a first-order difference equation. In fact, it is nothing but
our very first difference equation (1) in a specific new form. We have just
replaced the x with a variable y, have assumed that a = 1, and have made
the forcing term stochastic. Remember that the little coefficient a is exactly
what we later preferred to call the eigenvalue of a difference equation. When
we rewrite the difference equation (50) in lag operators as

(1− aL)yt = ε̃t (51)

this becomes even more clear. The little a is playing the role of the eigenvalue.
As soon as the little a takes the unpleasant value of one, things don’t work
any more. First of all, we cannot divide (51) through by (1− L) any longer
because, by the rules of the lag operator, we are only allowed to do so if
|a| < 1. (Using lead operators won’t help either since 1

a
= 1, too.) Second, yt

will not be stationary any more. To see this, let’s first go back to our most
primitive tool: recursion. We only applied it once in all these five sections,
that was in (5) in section 2. This doesn’t say that recursion has not been of
much use. Right in the opposite, all our subsequent derivations depended on
this early recursion argument. Let’s use recursion once more:

yt = yt−1 + ε̃t = yt−2 + ε̃t−1 + ε̃t = . . . =

t∑
s=−∞

ε̃s. (52)

So, if yt follows a random walk, none of the past shock loses importance over
time. In fact, yt is a simple, unweighted sum of all past shocks, and an ε̃t

realization at a time close to the infinite past matters just as much for yt

today as did the shock yesterday. This is very different to the case of a first-
order autoregressive process where the a is (just a tiny little bit) less than
one. For yt = .99999·yt−1+ ε̃t, yesterday’s shock would matter a tiny little bit
more than the shock two periods ago, but a whole lot more than the shock
100.000 periods ago which only receives a weight of (.99999)100.000 = .36788
for yt 100.000 periods later. This shows that there is an essential difference
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between a = 1 and a = .99999 even though they may be indistinguishable in
any real data.

To make covariance stationarity fail, it is enough that one of the three
requirements in the definition (p. 22) is violated. The easiest requirement to
check is the variance of yt. Without loss of generality suppose that y0 = 0.
That is, suppose there was a period in this infinitely long lasting stochastic
process, call it t = 0, in which all past observations of ε̃t, namely ε̃−1, ε̃−2,
. . . happened to cancel each other. Now, to show that a random walk is
not covariance stationary, let’s go for a proof by contradiction. Suppose a
random walk were covariance stationary. Then Var (y0) must be finite. With
this, we can consider the variance of y1 one period after the period in which
all past ε̃t miraculously canceled without loss of generality.

Var (y1) = Var (y0 + ε̃1) = Var (y0) + σ2
ε ,

where the last step follows from the fact that the disturbances ε̃t are not
correlated over time (recall requirement (43)). By the same token, we can
also take the variance of yT at some future time T > 1. By recursion, we
soon find

Var (yT ) = Var

(
y0 +

T∑
s=1

ε̃s

)
= Var (y0) + T · σ2

ε ,

where the last step again follows from the fact that the disturbances ε̃t are not
correlated over time. [Check.] Clearly, the variance is time-dependent now.
Not only that, it is even tending to infinity as T goes to infinity. We have
successfully contradicted our initial assertion that yt is stationary. We cannot
even start under the (wrong) assumption that Var (y0) is finite. Var (y0) is
as infinite at t = 0 as it is in any other period.

What can we do with such a nasty process to make it well behaved?
We can domesticate it. Time-series econometricians call this domestication
procedure ‘differencing’. By ‘differencing’ they mean that you should pre-
multiply your original (and nasty) process by a difference term (1−L). Doing
that in the case of our random walk (50), we find

(1− L)yt = yt − yt−1 = ε̃t.

Thus, the first difference of a random walk yt follows the same process as ε̃t.
However, ε̃t is stationary by assumptions (41), (42), and (43). [Check.] So,
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differencing makes nasty processes stationary again. In the case of a random
walk, differencing once resolves the problem. In even nastier cases where
processes have more than one unit root, repeated differencing will take care
of the problem.

We have seen that unit roots make stochastic processes explosive in the
sense that the variance of the serially correlated random variable becomes
infinite. Similarly, roots that exceed one in absolute value will cause non-
stationarity. By another nice property of polynomials, repeated differencing
will even make processes with roots that exceed one in modulus stationary
again.

6.4 Stationarity of a finite autoregressive process

One thing remains to show from section 6.2: that the mean of a pth-order
stochastic process is constant and finite if all characteristic roots of the asso-
ciated polynomial are less than one in modulus. All arguments in section 6.2
were based on this assumption, E [yt] = µ for all t. If we can prove this, we
have finally shown that characteristic roots below one in modulus guarantee
covariance stationarity. We will have proven beyond reasonable doubt that

An autoregressive process of order p,

yt = φ1yt−1 + φ2yt−2 + . . . + φpyt−p + c + ε̃t,

is covariance stationary if the related homogeneous difference
equation of order p,

yt = φ1yt−1 + φ2yt−2 + . . . + φpyt−p,

is stable. That is, whenever all p eigenvalues (or characteristic
roots) of the homogeneous difference equation are less than one
in modulus.

Let’s go. Take expectations of both sides of (40) to find

E [yt] = φ1E [yt−1] + φ2E [yt−2] + . . . + φpE [yt−p] + c.

Suppose the expectations were time-dependent indeed. Then we can write
this difference equation in lag operators as

(1− φ1L− φ2L
2 − . . .− φpL

p)E [yt] = c

⇐⇒ (1− λ1L) (1− λ2L) · · · (1− λpL) E [yt] = c, (53)
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where we made use of the derivations in section 2.2, of (32) and (33) in
particular. So, if all eigenvalues λ1, . . . , λp are less than one in modulus, we
can bring the factors (1− λ1L), . . . , (1− λpL) in (53) over to the other side
one by one. Consider the first one. Divide both sides of (53) by (1− λ1L).
This yields c

1−λ1L
= c

1−λ1
since c is a finite constant. Repeat this with the

next one to find c
(1−λ2L)(1−λ1)

= c
(1−λ2)(1−λ1)

, and so forth. Finally, we obtain

E [yt] =
c

(1− λ1) (1− λ2) · · · (1− λp)
=

c

1− φ1 − φ2 − . . .− φp
.

Hence, E [yt] is both finite and constant whenever c is constant and all eigen-
values λ1, . . . , λp are less than one in modulus.

That’s it.

We have shown to ourselves: The eigenvalues of the matrix in a system of
linear difference equations determine the stability of this system. The system
is explosive when at least one eigenvalue exceeds unity. In the case of scalar
difference equations, these very same eigenvalues can also be interpreted as
the characteristic roots of an associated polynomial. So, in fact, we don’t do
anything more sophisticated but factor polynomials when we solve difference
equations. Finally, when time-series econometricians talk about unit roots
or roots outside the unit circle, they don’t say anything new either. They
just solve a polynomial and tell us that a stochastic process is explosive when
these roots are bigger than unity.
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