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Covered Interest Rate Parity (CIP) relates the nominal interest rate in any economy,
the United States say, to the nominal interest rate in any other economy, Europe say,
and the forward premium on the nominal exchange rate between the two economies’
currencies:

Rysp = Rewr + f.

So, CIP states in a short equation that any nominal interest rate gain of USD cash
deposits over EUR cash deposits, Rysp — Rgyr Will be wiped out completed by the
depreciation of the USD against the EUR, as reflected in the forward premium f. For-
mally, the forward premium is defined as
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where F' is the nominal forward exchange rate between the USD and the EUR and F
is the nominal spot exchange rate between the USD and the EUR.

We say there is an arbitrage whenever
e there is no investment,

e there is no risk,

e but there is a profit.

In financial-market equilibrium, such a free lunch will not prevail for long. If there
is an arbitrage, market participants will exploit the opportunity, and prices adjust until
there is no more gain from an arbitrage.

So, financial-market equilibrium implies that there is no arbitrage. This means that
whenever

e there is no investment,
e and there is no risk,
e then there must not be a profit.

The present short note on Covered Interest Rate Parity (CIP) shows that no arbi-
trage implies that CIP holds in any financial-market equilibrium. A typical argument
in finance goes like this: “Dear reader, consider the following portfolio, an arbitrage



portfolio. It involves no investment, and no risk. But we know, that there cannot be a
profit to such a portfolio, therefore the following relationship must hold.” In our case,
the relationship that we want to hold is CIP. In a five step argument, we will look for
an international arbitrage portfolio that is prohibited from yielding a profit and then
presents us with CIP as a result.

One convenient portfolio to consider is the following one. It is not the only one;
in fact, it is the counterpart to the arbitrage portfolio that you see in lecture. Say, our
investor is an American citizen. She constructs her portfolio in five steps.

1.

Borrow 1 EUR on the European capital market for 30 days. After 30 days, pay
both principal and interest on this loan, (1 + Rgyr), to your European lender in
EUR. (Note that there is a risk because the USD/EUR exchange rate in 30 days
from now is uncertain. But our investor will conveniently get rid of the risk.)

Enter a forward contract. In this contract specify with your partner that you want
him to pay (1 + Rgur) EUR to you in exaclty 30 days from now. Also specify
that you will pay him exactly F' - (1 + Rgyr) dollars, no more and no less, in
30 days from now. With the (1 + Rgyr) EUR that you will recveive from your
forward contract partner, pay back the European lender in 30 days. (So, after
entering this contract, our investor has gotten rid of all risk, the second dot in the
no-arbitrage condition above is satisfied.)

Exchange the amount of EUR that you obtained (in step 1) for £ USD on the
spot market.

Give a loan of F USD to an American for 30 days, which yields F - (1 + Rysp)
in 30 days, including both principal and interest. (Since our investor has just
borrowed the same amount from a European lender, she has not made any net
investment. So, the first dot in the no-arbitrage above is now satisfied, too.)

Imagine the impossible for a moment. Imagine that the gain from this portfolio in
30days, FE- (14 Rusp), exceeded our investor’s payments to the European lender
in 30 days, F'-(1+ Rgyr)- That would be an arbitrage for her. Unfortunately, such
an arbitrage cannot exist. (Similarly, imagine a European investor had followed
the reversed steps with an American resident, borrowing 1 USD, and so forth.
Then he would get an arbitrage if F'- (1 + Rgur) exceeded E - (1 + Rysp).) We
can conclude that E - (1 4+ Rysp) = F - (1 + Rgyr) must hold in equilibrium,
where there is no arbitrage, and that is CIP after some reformulations.

The reformulations are:

E-(1+Rusp) = F-(1+ Rewr)
F
(1+ Rysp) = b (1 + Rgur)
1+Rusp = (1+f)-(14+Rgur) =14 Regur + f+ [ - Reur.

Note that f - Rgyr =~ 0 because both f and Rgyr are small (percentage) numbers. So,
multiplying them makes the term negligibly small, and we have CIP after all:

Rysp = Reur + f-



