April 3, 2003

Due:	Tue, April 22
Instructor:	Marc-Andreas Muendler
E-mail:	muendler@ucsd.edu

1 Productivity Shocks with Initially Unbalanced Current Accounts

There are two periods and two countries. Home produces with $Y=A F(K)$ and Foreign with $Y^{*}=A^{*} F\left(K^{*}\right)$, where A and A^{*} are productivity parameters. Both countries' representative agents have the same period utility so that $U_{1}=$ $u\left(C_{1}\right)+\beta u\left(C_{2}\right)$ and $U_{1}^{*}=u\left(C_{1}^{*}\right)+\beta u\left(C_{2}^{*}\right)$. Assume period utility $u(\cdot)$ to be isoelastic. International financial market clearing $S+S^{*}=I+I^{*}$ determines the world interest rate r.

1. Suppose Home runs a current account surplus $C A_{1}>0$ during period 1 . How does an increase in Foreign productivity A_{2}^{*} during period 2 affect the current accounts in period 1?
2. Suppose again Home runs a current account surplus $C A_{1}>0$ during period 1. How does an increase in Home productivity A_{2} during period 2 affect the current accounts in period 1 ?
3. Consider equal proportional increases in Home and Foreign productivity A_{2} and A_{2}^{*}. How does this change affect world-wide investment $I_{1}+I_{1}^{*}$ during period 1? Does the answer depend on the elasticity of intertemporal substitution?

2 Exponential Period Utility

There are two periods. A country's representative household has the exponential period utility function

$$
u(C)=-\gamma \exp (-C / \gamma)
$$

with $\gamma \in(0, \infty)$ and maximizes lifetime utility $U_{1}=u\left(C_{1}\right)+\beta u\left(C_{2}\right)$ subject to

$$
C_{1}+R C_{2}=Y_{1}+R Y_{2} \equiv W_{1}
$$

where $R \equiv 1 /(1+r)$ is the price of tomorrow's consumption in terms of today's consumption and W_{1} is initial wealth. The value of W_{1} depends on R.

1. Derive the Euler equation and solve it for C_{2} as a function of C_{1}, R and β.
2. What is the optimal level of C_{1} considering W_{1}, R and β as given?
3. Differentiate this consumption function of C_{1} with respect to R (differentiate W_{1} with respect to R too) and show that

$$
\frac{d C_{1}}{d R}=-\frac{C_{1}}{1+R}+\frac{Y_{2}}{1+R}+\frac{\gamma}{1+R}(1-\ln (\beta / R))
$$

4. Derive the intertemporal elasticity of substitution of the exponential period utility $\left(-u^{\prime}(C) / C u^{\prime \prime}(C)\right)$.
5. Use this result to show that the derivative $d C_{1} / d R$ in part 3 can be expressed as

$$
\frac{d C_{1}}{d R}=\frac{\sigma\left(C_{2}\right) C_{2}}{1+R}-\frac{C_{2}}{1+R}+\frac{Y_{2}}{1+R}
$$

Interpret the three additive terms in this derivative.

3 Stochastic Current Account Model

There are infinitely many periods. A country's representative household has the linear-quadratic period utility function

$$
u(C)=C-\frac{a_{0}}{2} C^{2}
$$

with $a_{0} \in(0, \infty)$ and maximizes lifetime utility

$$
U_{1}=\mathbb{E}\left[\sum_{s=t}^{\infty} \beta^{s-t} u\left((1+r) B_{s}-B_{s+1}+\tilde{Z}_{s}\right)\right]
$$

subject to

$$
\sum_{s=t}^{\infty} R^{s-t} C_{s}=(1+r) B_{t}+\sum_{s=t}^{\infty} R^{s-t} \tilde{Z}_{s}
$$

where $R \equiv 1 /(1+r)$ and $\tilde{Z}_{t}\left(\equiv Y_{t}-G_{t}-I_{t}\right)$ is random net output.

1. Derive the stochastic Euler equation and show that C_{t} satisfies

$$
C_{t}=r R\left((1+r) B_{t}+\sum_{s=t}^{\infty} R^{s-t} \mathbb{E}\left[\tilde{Z}_{s}\right]\right)
$$

2. Show that then $C A_{t} \equiv B_{t+1}-B_{t}=\tilde{Z}_{t}-\mathbb{E}\left[\tilde{Z}_{t}\right]$.
3. Define $\Delta \tilde{Z}_{t} \equiv \tilde{Z}_{t}-\tilde{Z}_{t-1}$ and show that the quantity

$$
C A_{t}-\Delta \tilde{Z}_{t}-(1+r) C A_{t-1}
$$

is uncorrelated with $C A_{s}$ and $\Delta \tilde{Z}_{s}$ for all $s<t$. Is this finding related to the Hall's (1978) famous result that consumption follows a random walk?

4 Current Account and Terms of Trade

In a small open economy, the representative individual maximizes the lifetime utility function

$$
U_{t}=\sum_{s=t}^{\infty} \beta^{s-t} \frac{\left(X_{s}^{\gamma} M_{s}^{1-\gamma}\right)^{1-1 / \sigma}-1}{1-1 / \sigma}
$$

where X is consumption of an exported good and M consumption of an imported good. The country completely specializes in production of the export good. The endowment of this good is constant at Y. The representative individual faces the fixed world interest rate $r=(1-\beta) / \beta$ in terms of the real consumption index $C=X^{\gamma} M^{1-\gamma}$ (so a loan of 1 real consumption unit today returns $1+r$ real consumption units tomorrow). There is no investment or government spending.

1. Let p bet the price of the export goods in terms of the import good. So, a rise in p is an improvement in the terms of trade. Show that the consumption-based price index P in terms of imports is

$$
P=p^{\gamma} / \gamma^{\gamma}(1-\gamma)^{1-\gamma}
$$

2. Show that the home country's current account identity is

$$
B_{t+1}-B_{t}=r B_{t}+\frac{p_{t}\left(Y-X_{t}\right)}{P_{t}}-\frac{M_{t}}{P_{t}}
$$

What is the corresponding intertemporal budget constraint for the consumer?
3. Derive the first-order conditions of the consumer's problem. (Hint: Reformulate the utility function and budget constraint in terms of real consumption C.) What are the optimal paths for X and M ?
4. Suppose initial expectations are that p remains constant over time. There is an unexpected temporary fall in the terms of trade from p to $p^{\prime}<p$. What is the effect on the current account $C A_{t}=B_{t+1}-B_{t}$ from part 2?
5. No suppose foreign net wealth B is indexed to the import good M rather than to real consumption. Accordingly, let r denote the own-rate of interest in imports but assume again that $r=(1-\beta) / \beta$. How does a temporary fall in the terms of trade from p to $p^{\prime}<p$ affect the current account now? How do you explain differences, if any, to part 4 ?

