1 Delegated control over monetary policy

(This question is based on K. Rogoff, QJE 1985; D. Romer, q. 9.12)

Suppose that output is given by the Lucas supply function
\[y = \bar{y} + b(\pi - \pi^e). \]
(1)

The social welfare function is
\[S = \tilde{\gamma}y - \frac{a}{2}\pi^2. \]
(2)

The coefficient \(\tilde{\gamma} \) is a random variable with mean \(\mathbb{E}[\gamma] = \bar{\gamma} \) and variance \(\text{Var}(\tilde{\gamma}) = \sigma^2 \). This reflects the fact that political objectives can vary, depending on the political process and a change of goals. It would be nice to have a flexible central banker who could quickly adjust to the needs of the situation, that is a central banker who would pursue a relatively more expansionary policy whenever the realization of \(\tilde{\gamma} \) is high, and a relatively strict low-inflation policy whenever \(\tilde{\gamma} \) is low. What is the best choice of a central banker?

Let the central banker follow the objective function
\[S^{CB} = c\tilde{\gamma}y - \frac{a}{2}\pi^2, \]
(3)

where \(c \in \mathbb{R} \).

The timing of the model is as follows. The private sector decides \(\pi^e \) without knowledge of \(\tilde{\gamma} \). The central banker, however, chooses \(\pi \) after \(\tilde{\gamma} \) is known.

a) What is the central banker’s choice of \(\pi \) given \(\pi^e, \tilde{\gamma}, \) and \(c \)?

b) What expectation of inflation, \(\pi^e \), does a rational private sector choose?

c) What is the expected value of the true social welfare function (2)?

d) What value of \(c \) maximizes expected social welfare? Is the ‘optimal’ central banker more or less conservative (inflation averse) than the private sector? Interpret your result.
2 A simple model of overshooting

Suppose money demand takes the Cagan form

\[m^d_t - p_t = \phi y^d_t - \eta i_{t+1}, \]

(4)

where \(m^d_t \) denotes the logarithm of nominal money demand, \(p_t \) the logarithm of the price level, \(y^d_t \) the logarithm of aggregate demand and \(i_{t+1} \) the nominal interest rate (\(\approx \ln(1 + i_{t+1}) \)). The coefficients \(\phi \) and \(\eta \) are assumed to be positive. Money supply is constant,

\[m^s_t = \bar{m}. \]

(5)

In efficient international capital markets, uncovered interest parity (UIP) holds:

\[i_{t+1} = i^{*}_{t+1} + e_{t+1} - e_t, \]

(6)

where \(e_t \) denotes the logarithm of the nominal exchange rate. In this form, a high value of \(e_t \) means a weak currency. The logarithm of the real exchange rate is \(q_t = e_t + p^{*}_t - p_t \), so that a high value coincides with a depreciated real exchange rate.

Suppose that aggregate demand depends on the real exchange rate. It is high, whenever the real exchange depreciates (because exports benefit):

\[y^d_t = \delta(e_t + p^{*}_t - p_t). \]

(7)

For the model to be consistent, we require \(\delta \in (0, \frac{1}{\phi}) \). The full-employment level of aggregate supply is

\[y^a_t = \bar{y}. \]

(8)

Finally, suppose in Keynesian style that prices are not immediately set to the expected equilibrium level, but adjusted slowly. In particular, let prices obey the response function

\[p_{t+1} - p_t = \pi(y^d_t - y^a_t). \]

(9)

In order to further simplify the model, let’s standardize all foreign variables to constants \(p^*_t = i^{*}_{t+1} = 0 \), and let’s suppose that money markets
are always clearing immediately, $m_t^d = m_t^s = \bar{m}$. Then a simple Dornbusch model of overshooting can be built as a system in three equations:

\[\bar{m} - p_t = \phi y^d_t - \eta(e_{t+1} - e_t), \]
\[y^d_t = \delta(e_t - p_t) \quad \delta \in (0, \frac{1}{\phi}), \]
\[p_{t+1} - p_t = \pi(y^d_t - \bar{y}). \]

a) Find the steady-state values of the exchange rate and the price level ($e_{t+1} = e_t = \bar{e}$, $p_{t+1} = p_t = \bar{p}$).

b) Express both $(e_{t+1} - e_t)$ and $(p_{t+1} - p_t)$ as functions of e_t, p_t and exogenous variables. Find the two functional relationships between p_t and e_t that satisfy $e_{t+1} - e_t = 0$ and $p_{t+1} - p_t = 0$. Draw them in a phase diagram with p_t on the y-axis and e_t on the x-axis. Complete the phase diagram indicating the motion of the system (using the conditions for $e_{t+1} - e_t \geq 0$ and $p_{t+1} - p_t \geq 0$).

Finally, add a line to the diagram that obeys a ‘no-arbitrage condition’ as mandated by UIP: $p_t - \bar{p} = -\hat{\theta}(e_t - \bar{e})$ for some $\hat{\theta} > 0$. (The $\hat{\theta}$ is not quite the same as in the original Dornbusch model since we have no uncertainty here.)

c) Is the steady-state stable? If not, what is the unique stable (“saddle”) path given a steady-state of \bar{p} and \bar{e}?

d) Suppose all variables except for p_t respond immediately to a monetary shock.

What is the new steady-state? Draw a new ‘no-arbitrage’ line.

What happens to e_t right after a reduction in the monetary base from \bar{m} to \bar{m}'? How do e_{t+s} and p_{t+s} evolve over time?

3 Dynamics of the simple model of overshooting

Consider the simple model of overshooting from question 2 again:

\[\bar{m} - p_t = \phi y^d_t - \eta(e_{t+1} - e_t), \]
We are interested in the behavior of the system around the steady-state.

\[y^d_t = \delta(e_t - p_t) \quad \delta \in (0, \frac{1}{\phi}), \quad (14) \]

\[p_{t+1} - p_t = \pi(y^d_t - \bar{y}). \quad (15) \]

a) Using (14) and the steady-states of \(\bar{e} \) and \(\bar{p} \) that you found in question 2a), express \(y^d_t - \bar{y} \) as a function of \(e_t - \bar{e} \) and \(p_t - \bar{p} \).

b) Using (13) along with the results in 2a) and 3a), express \(e_{t+1} - \bar{e} \) as a function of \(\frac{1}{\eta}(e_t - \bar{e}) \) and \(\frac{1}{\eta}(p_t - \bar{p}) \).

c) Using (14) and (15) along with the results in 2a), express \(p_{t+1} - \bar{p} \) as a weighted sum of \(e_t - \bar{e} \) and \(p_t - \bar{p} \).

From now on, assume that \(\pi = \frac{1}{\eta} \) and \(\phi = 3 \) for simplicity.

d) Write your findings from 3b) and 3c) into a system of two difference equations that takes the form

\[
\begin{pmatrix}
 e_{t+1} - \bar{e} \\
 p_{t+1} - \bar{p}
\end{pmatrix} = A \cdot
\begin{pmatrix}
 e_t - \bar{e} \\
 p_t - \bar{p}
\end{pmatrix}.
\]

(16)

Find the eigenvalues and eigenvectors of the system (you may, of course, simply plug your previous results into the formulas from section.)

[Hint: An intermediate result is \(\text{tr}(A) = \frac{2(\delta + \eta)}{\eta} \) and \(\det(A) = 1 - \frac{(1 - 2\eta)\delta}{\eta^2} \).]

e) Is the system stable? That is, do the exchange rate and price levels converge to the steady-state?

If not, set the coefficient of the unstable root to zero. Then, using the simplified system (16) and the results from 2a), express \(p_{t+1} \) as a function of \(e_{t+1} \) and exogenous variables. Draw this function into the phase diagram from question 2 (Remember that \(\delta < \frac{1}{\phi} \).)

What did you just find? What is the intuition for the fact that the economy obeys this relationship?