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Problem Set 1: Suggested Solutions

1 Question 1

We have to find the autocovariance function for the stationary AR(2) process

yt = φ1yt−1 + φ2yt−2 + εt, (1)

where εt obeys our usual assumptions E[εt] = 0, E[ε2
t ] = σ2 ∀t, and E[εtεt−s] =

0 ∀t and s 6= 0. By definition, the autocovariance is

γ(s) ≡ E [(yt − E[yt]) (yt−s − E[yt−s])] , (2)

and can be viewed as a function of s. Taking expectations of (1) and using the
fact that E[yt] = const. by stationarity, we can conclude that E[yt] = 0 in the
case of (1). So, the autocovariance function (2) simplifies to γ(s) = E [ytyt−s]
here.

Multiplying (1) by yt−s on both sides and taking expectations, we find
that

γ(s) = E [ytyt−s] = φ1E [yt−1yt−s] + φ2E [yt−2yt−s]

= φ1γ(s − 1) + φ2γ(s − 2) where s ≥ 1 (3)

for an AR(2) process. Thus, the autocovariance function of an AR(2) process
follows a homogeneous second-order difference equation. To solve this differ-
ence equation, we could use the steps from section (1/25 and 1/27). (For a
derivation, see section 1.3 at the end of the answer to this question.) But we
actually need not go through all that to find the values of γ(s) recursively.

No matter whether we solve the difference condition in general terms or
simply want to use it recursively, we will always need two initial conditions
to determine γ(0) and γ(1). There are many ways to obtain γ(0) and γ(1),
three of them are considered here. First, the straight method of constructing
an equation system. Second, a more elegant derivation that switches back
and forth between the autocovariance and the autocorrelation function. And
third, the precise solution to the second-order difference equation.
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1.1 Equation system in γ(0), γ(1), and γ(2)

Start with γ(0). Multiply both sides of (1) by yt and take expectations to
obtain

γ(0) = E
[
(yt)

2
]

= φ1E [ytyt−1] + φ2E [ytyt−2] + E [εtyt]

= φ1γ(−1) + φ2γ(−2) + E
[
(εt)

2
]

or

γ(0) = φ1γ(1) + φ2γ(2) + σ2. (4)

For the last step, we made use of the symmetry property of the autocovari-
ance function, γ(−s) = γ(s). Applying (3) for s = 1 and s = 2 (and making
use of the symmetry property again), we find

γ(1) = φ1γ(0) + φ2γ(1) (5)

and

γ(2) = φ1γ(1) + φ2γ(0). (6)

Together, (4), (5) and (6) form a system of three linear equations in three
unknowns. Solving it yields the desired initial conditions.

1.2 Derivation of γ(s) via ρ(s)

The second way is a little more elegant. It involves the autocorrelation
function, too, which we are asked to derive anyway. By definition, the auto-
correlation function is

ρ(0) ≡ 1 and ρ(s) ≡ γ(s)

γ(0)
for s ≥ 1.

Thus, the difference equation (3) that applied to the autocovariance function,
carries over to the autocorrelation function, and

ρ(s) = φ1ρ(s − 1) + φ2ρ(s − 2) where s ≥ 1. (7)

For s = 1, this becomes

ρ(1) = φ1ρ(0) + φ2ρ(1) = φ1 + φ2ρ(1) =
φ1

1 − φ2
. (8)
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Once we have the two starting values ρ(0) = 1 and ρ(1) = φ1

1−φ2
, it is quite

straight forward to solve for ρ(2), ρ(3), and so forth. We can simply apply
the difference equation of the autocorrelation function (7) again and again:

ρ(2) = φ1ρ(1) + φ2ρ(0) =
φ1

2 + φ2(1 − φ2)

1 − φ2
,

ρ(3) = φ1ρ(2) + φ2ρ(1) =
φ1

3 + φ1φ2(2 − φ2)

1 − φ2
, (9)

...

With this at hand, we can derive γ(0) as

γ(0) = φ1γ(1) + φ2γ(2) + σ2 = φ1ρ(1)γ(0) + φ2ρ(2)γ(0) + σ2

=
1

1 − φ1ρ(1) − φ2ρ(2)
σ2 =

(1 − φ2)

Φ
σ2, (10)

where Φ ≡ (1 + φ2)
[
(1 − φ2)

2 − φ1
2
]
. Then, by (5)

γ(1) =
φ1

Φ
σ2. (11)

Finally, we can apply the difference equation of the autocovariance function
(3) again and again, and find:

γ(2) = φ1γ(1) + φ2γ(0) =
φ1

2 + φ2(1 − φ2)

Φ
σ2,

γ(3) = φ1γ(2) + φ2γ(1) =
φ1

3 + φ1φ2(2 − φ2)

Φ
σ2, (12)

...

So, we have completely described the evolution of the autocovariance function
without having to solve the difference equation explicitly.

1.3 Solving the difference equation γ(s)

If you love precision, you could make your life substantially more complicated
and solve the second-order difference equation of the autocovariance function
(3) explicitly. This was not required, but you may still find it interesting to
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see how the solution can be derived. (The solution itself will be ugly, so if
you don’t want to be disappointed, stop reading one paragraph before the
final answer. If you don’t care for the general solution, skip the rest of the
answer to question 1 right now.) For the general solution, let’s apply the
three-step procedure as outlined in section.

First, transform the second-order difference equation into a two-variable
system of order one:(

γs

γs−1

)
=

(
φ1 φ2

1 0

) (
γs−1

γs−2

)
≡ F ·

(
γs−1

γs−2

)
. (13)

The two eigenvalues of F satisfy det(F− λI2) = 0 and are thus

λ1,2 =
tr(F)

2
± 1

2

√
tr(F)2 − 4det(F) =

φ1

2
±

√(
φ1

2

)2

+ φ2, (14)

or, written into a matrix,

Λ ≡

 φ1

2
+

√(
φ1

2

)2
+ φ2 0

0 φ1

2
−

√(
φ1

2

)2
+ φ2


 .

Second, the according eigenvectors must satisfy the relationship Fei = λiei

for each eigenvalue (by definition). Standardizing the eigenvectors to ei =
(ei, 1)

T allows one to obtain

ei =
λi − F22

F21
= λi and P ≡ (e1, e2) =

(
λ1 λ2

1 1

)
.

Third, using the fact that FP = PΛ or F = PΛP−1, we can substitute
PΛP−1 for F in (13), pre-multiply both sides of (13) by P−1 and obtain a
‘decoupled’ system of two independent first-order difference equations. We
know the solution of such homogeneous first-order difference equations to
be of the form xt = c(λ)t for a certain initial value x0 = c or a boundary
condition. Hence, pre-multiplying our decoupled system with P again, the
solution to (13) must be(

γs

γs−1

)
=

(
λ1 λ2

1 1

) (
c1(λ1)

s

c2(λ2)
s

)
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or

γs = c1(λ1)
s+1 + c2(λ2)

s+1. (15)

Everything in (15) is known except for the two coefficients c1 and c2.
To find the exact solution that satisfies all of our assumptions on the au-
tocovariance function, we must formulate two boundary conditions. These
boundary conditions will determine the two coefficients that are left over, c1

and c2. One boundary condition comes from the general requirement that
γs = γ−s. In particular, the difference equation of the autocovariance func-
tion must ‘turn around’ at γ0, so that γ1 = γ−1. Let’s work with this. By
(15), γ1 = c1(λ1)

2 + c2(λ2)
2 and γ−1 = c1 + c2. Hence, the first boundary

condition requires that

c1(λ1)
2 + c2(λ2)

2 = c1 + c2. (16)

The other boundary condition comes from the special case of γ0 which must
equal γ0 = φ1γ1 +φ2γ2 +σ2 as we saw above in (4). From (15) we know that
γ0 = c1λ1 + c2λ2, γ1 = γ−1 = c1 + c2, and γ2 = c1(λ1)

3 + c2(λ2)
3. So, the

second boundary condition requires that

c1λ1 + c2λ2 = φ1(c1 + c2) + φ2(c1λ
3
1 + c2λ

3
2) + σ2. (17)

Taken together, the two initial conditions are a system of two linear equations
in the two unknowns c1 and c2. (Remember that we know the two eigenvalues
λ1 and λ2 already from above, (14), and remember to stop reading now if
you don’t want to be disappointed with the ugliness of the solution.)

Solving the two equations for c1 and c2 yields

c1 = −(1 − (λ2)
2) σ2

Γ
and c2 =

(1 − (λ1)
2) σ2

Γ
, (18)

where Γ ≡ (1−λ1
2)(λ2 −φ1 −φ2λ2

3)− (1−λ2
2)(λ1 −φ1 −φ2λ1

3). These are
quite unpleasant expressions. Handing the problem over to a mathematical
software package at this point reduces our frustration, resolves the simpli-
fication of terms, and helps us find some even more unfriendly terms after
plugging the eigenvalues λ1 and λ2 (14) into (18). Since the resulting terms
for c1 and c2 are all ugly, ugly, ugly, the general solution does not become
much prettier, but we obtain it! It is, after a round of simplifications (and a
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movie would play a muted fanfare at this point):

γs =
1

Φ

X√(
φ1

2

)2
+ φ2

σ2 for s ≥ 0,

where Φ ≡ (1+φ2)
[
(1 − φ2)

2 − φ1
2
]

as in the quasi-solution (12) before (see
section 1.2) and

X ≡ (1 − φ2)
√

φ2
1 + 4φ2 ×

×



φ1

2
−

√(
φ1

2

)2

+ φ2




s

+


φ1

2
+

√(
φ1

2

)2

+ φ2




s


−φ1(1 + φ2)





φ1

2
−

√(
φ1

2

)2

+ φ2




s

−

φ1

2
+

√(
φ1

2

)2

+ φ2




s
 .

2 Question 2

An MA(2) process takes the form

yt = µ + εt + θ1εt−1 + θ2εt−2, (19)

with the usual conditions on εt. Before we proceed to specific values for the
coefficients, let’s derive the autocorrelation function ρ(s) ≡ γ(s)/γ(0) for an
MA(2) process in general terms. For this, it is most convenient to first find
the autocovariance function. Note that E[yt] = µ. So, the autocovariance of
yt becomes

γ(s) ≡ E [(yt − E[yt]) (yt−s − E[yt−s])]

= E [(εt + θ1εt−1 + θ2εt−2) (εt + θ1εt−s−1 + θ2εt−s−2)] (20)

in the case of an MA(2) process.
First apply this definition (20) to the variance of yt, i.e. to s = 0:

γ(0) = E
[
(εt + θ1εt−1 + θ2εt−2)

2
]

= E
[
ε2
t + θ2

1ε
2
t−1 + θ2

2ε
2
t−2 + 2θ1εtεt−1 + 2θ1θ2εt−1εt−2 + 2θ2εtεt−2

]
=

(
1 + θ2

1 + θ2
2

)
E

[
ε2
t

]
=

(
1 + θ2

1 + θ2
2

)
σ2.
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The cancellations are possible because all covariances of the εt’s with their
own lagged realizations are zero by assumption. Similarly, for s = 1 and
s = 2 we obtain

γ(1) = E [(εt + θ1εt−1 + θ2εt−2) (εt−1 + θ1εt−2 + θ2εt−3)]

= θ1E
[
ε2
t−1

]
+ θ1θ2E

[
ε2
t−2

]
= θ1 (1 + θ2)σ2

and

γ(2) = E [(εt + θ1εt−1 + θ2εt−2) (εt−2 + θ1εt−3 + θ2εt−4)]

= θ2E
[
ε2
t−2

]
= θ2σ

2,

respectively. From then on, the autocovariance function remains absolutely
inactive: γ(s) = 0 for s ≥ 3. Equipped with these insights, the autocorrela-
tion function is easily derived:

ρ(0) = γ(0)/γ(0) = 1,

ρ(1) =
γ(1)

γ(0)
=

θ1 (1 + θ2)

1 + θ2
1 + θ2

2

=
2
5

4
5

1 +
(

2
5

)2
+

(
1
5

)2 =
4

15
,

ρ(2) =
γ(2)

γ(0)
=

θ2

1 + θ2
1 + θ2

2

=
−1

5

1 +
(

2
5

)2
+

(
1
5

)2 = −1

6
,

ρ(s) = 0 for s ≥ 3,

where θ1 = 2
5

and θ2 = −1
5
.

3 Question 3

From the solution in question 1 (section 1.2) we know several facts about the
autocorrelation function of an AR(2) process. For one, the correlation of any
yt with itself must always be equal to one, ρ(0) = 1. Then, as we derived in
section 1.2, the autocorrelation of yt with its first lag yt−1 is ρ(1) = φ1/(1−φ2)
by (8). Together with the second-order difference equation (7)

ρ(s) = φ1ρ(s − 1) + φ2ρ(s − 2) where s ≥ 1

we can calculate ρ(s) for every lag s once we know φ1 and φ2. (We need not
know the variance of the underlying white-noise process εt because we got rid
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of the variance by standardizing ρ(s) = γ(s)/γ(0).) We can now calculate
ρ(s) step by step, starting with s = 2 and gradually proceeding to s = 5.
The following table summarizes the results.

s = (1 − φ2)ρ(s) =
ρ(s) for
ϕ1 = .6,
ϕ2 = −.2

ρ(s) for
ϕ1 = −.6,

ϕ2 = .2
0 1 − φ2 1.0000 1.0000
1 φ1 0.5000 −0.7500
2 φ2

1 + φ2(1 − φ2) 0.1000 0.6500
3 φ3

1 + φ1φ2(2 − φ2) −0.0400 −0.5400
4 φ4

1 + φ2
1φ2(3 − φ2) + φ2

2(1 − φ2) −0.0440 0.4540
5 φ5

1 + φ3
1φ2(4 − φ2) + φ1φ

2
2(3 − 2φ2) −0.0184 −0.3804

The autocorrelation dies out faster when ϕ1 is positive. That is, a negative
ϕ1 causes more persistence in correlation than a positive ϕ1 of the same
magnitude. The cycling is ‘less rapid’ in the case of a positive ϕ1, whereas
the sign alters every period when ϕ1 is negative. (These patterns prevail for
longer lags than 5, too.)

4 Question 4

Any ARMA(p,q) process can be rewritten in lag operators as(
1 − φ1L − φ2L

2 − . . . − φpL
p
)
yt =

(
1 + θ1L + θ2L

2 + . . . + θqL
q
)
εt. (21)

Each of the two sums in lag-operators can be viewed as closely related to a
certain polynomial. For an AR(p) process, this polynomial is

1 − φ1z − φ2z
−2 − . . . − φpz

−p = 0,

and for an MA(q) the polynomial is

1 + θ1z + θ2z
−1 + . . . + θqz

−q = 0.

Multiplying the former polynomial by zp and the latter by zq, we obtain the
so-called associated polynomials. The associated polynomial for an AR(p)
process thus becomes

zp − φ1z
p−1 − φ2z

p−2 − . . . − φp = 0. (22)
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It is of order p. Similarly, for an MA(q) the associated polynomial is of order
q:

zq + θ1z
q−1 + θ2z

q−2 + . . . + θq = 0. (23)

By the Fundamental Theorem of Algebra, any finite polynomial of order
n can be factored into (up to) n factors that involve the n, possibly not
distinct roots of the polynomial. As shown in section (1/25 and 1/27), the p
characteristic roots of an AR(p) process are equivalent to the eigenvalues of
the corresponding difference equation. Similarly, the q characteristic roots of
an MA(q) process are equivalent to the eigenvalues of the difference equation
that they obey. Therefore, the ARMA(p,q) process in (21) can be rewritten
as

(1 − λ1L)(1 − λ2L) · · · (1 − λpL) yt = (1 − ω1L)(1 − ω2L) · · · (1 − ωqL) εt,
(24)

where λ1, . . . , λp are the p (possibly non-distinct) eigenvalues of the AR(p)
process and the ω1, . . . , ωq are the q (possibly non-distinct) eigenvalues of
the MA(q) process. If there is any pair of identical eigenvalues in the two
processes, ωi = λj say, then the ARMA(p,q) process is overparametrized. By
simply cancelling the according factors on both sides of (24) we can reduce
it to an ARMA (p − 1,q − 1) process.

Let’s consider the concrete example of the question where an ARMA(2,2)
process has parameters φ1 = −1

5
, φ2 = 12

25
, θ1 = 3

5
, θ2 = − 4

25
. So, the

ARMA(2,2) process can be written as(
1 +

1

5
L − 12

25
L

2

)
yt =

(
1 +

3

5
L − 4

25
L

2

)
εt.

The eigenvalues of the AR(2) process are equal to the roots of the associated
polynomial z2 + 1

5
z − 12

25
= 0, which are z1 = 3

5
and z2 = −4

5
. Similarly, the

eigenvalues of the MA(2) process are nothing but the roots of the associated
polynomial z2 + 3

5
z − 4

25
= 0, which are z1 = 1

5
and z2 = −4

5
. Therefore, the

process can be rewritten in factored form as(
1 − 3

5
L

) (
1 +

4

5

)
Lyt =

(
1 − 1

5
L

) (
1 +

4

5
L

)
εt
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or (
1 − 3

5
L

)
yt =

(
1 − 1

5
L

)
εt.

This is an ARMA(1,1) process with yt = 3
5
yt−1 + εt − 1

5
εt−1. The pro-

cess was overparametrized as an ARMA(2,2) process, and is now correctly
parametrized.
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