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E Alternative Quantification of the Aggregate Impact of Social
Capital

In contrast with the quantification exercise in the main text, the supplementary exercise here main-

tains the model’s assumptions that all firms have the same size and that all new firms are spinoffs,

and uses coefficient estimates of departure hazards at parents in addition to coefficient estimates of

retention hazards at spinoffs.

E.1 Theoretical lower bound on the aggregate impact of social capital

We start by restating aggregate output (9) from Section 6:

X̄ = M̄x̄ = M̄ {q̄ µH + (1−q̄)[p0 µH + (1−p0)µL]} .

Aggregate output̄X increases with the economy-wide fraction of workers with known match qual-

ity q̄. Social capital therefore contributes to aggregate outputby raising the share of known workers

at every entrant.

To quantify the importance of social capital for aggregate performance, it is helpful to find

the economy-wide fraction of employees with known match quality q̄ in the absence of social

capital. We begin with the observation thatα = 0 implies qi(0) = 0 for all firms i. If there

is no networking at the parent, then spinoffs have to start with a completely unknown workforce.

Subsequently, the fraction of known workersqi,α=0(t) is determined entirely by the age of the firm.

From equation (7), we have

qi,α=0(t)− q∗ = −q∗ exp{−(δ + θγ + φp0)t}. (E.1)
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When it helps clarity, we abbreviate the rate of convergence with

η ≡ δ + θγ + φp0.

In the absence of social capital, the share of known workers at birth is zero so that the initial

deviation from steady state is−q∗. Subsequently, the share of known workers strictly increases

and becomes arbitrarily close toq∗ (a vanishing difference betweenqi,α=0(t) andq∗ as firm age

increases arbitrarily).

The Poisson process of birth and exit of firms at rateθ yields an exponential steady state

distribution of firm age with parameterθ. Concretely, the steady state fraction of firms with age

less thant is G(t) = 1 − exp{−θt}. Changing variable fromt to q, we obtain the steady state

fraction of firms with a share of known workers less thanq, Fα=0(q). We use equation (E.1) to

solve fort as a function ofq. Rearranging and taking natural logarithms of both sides, wehave

ln(q∗ − q) = ln(q∗)− ηt or t = [ln(q∗)− ln(q∗ − q)]/η.

Making the change of variable then yields

G[t(q)] = 1− exp{−(θ/η) ln(q∗)} exp{(θ/η) ln(q∗ − q)}

= 1− (q∗ − q)θ/η/(q∗)θ/η.

The steady state fraction of firms with a share of workers of known type less thanq is therefore

Fα=0(q) = 1−

(

q∗ − q

q∗

)θ/η

. (E.2)

Using the density associated with this distribution function, we integrate overq between0 and

q∗ and obtain a remarkably simple expression for the economy-wide averageq in the absence of

social capital:38

q̄α=0 =
1

1 + θ/η
q∗ =

φp0
δ + θ(1+γ) + φp0

. (E.3)

As the rate of growthη = (δ+θγ+φp0) of each firm’sqi(t) to the long-term known-worker share

38The density isfα=0(q) = (θ/η)[1/(q∗ − q)][1 − Fα=0(q)] so that the indeterminate integral overq becomes
∫

q dFα=0(q) = −[θq + ηq∗][1− Fα=0(q)]/[δ + θ(1+γ) + φp0].
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increases, or as the rate of firm exit and entryθ becomes small,̄qα=0 approachesq∗ under (4). The

reason is that the value ofq for all but the youngest firms will be nearq∗, or nearly all firms are

old. On the other hand, as the growth rate ofqi(t) to its long-term value becomes small, or as the

rate of firm entry and exit becomes large,q̄α=0 approaches zero. The reason now is that the value

of q for all but the oldest firms will be nearqi(0) = 0, or nearly all firms are young.

The smaller is̄qα=0 in the absence of social capital, the greater is the scope forsocial capital to

increase aggregate output. From equation (E.3) we therefore see that the potential effect of social

capital on aggregate output increases with the rate of spinoff creationθ and decreases with the rate

of employer learningφ.

We cannot computēqα>0 in the presence of social capital because we lack a closed-form solu-

tion for the distribution ofq in the population of firms when there is social capital (see Theorem 1

and its proof in Appendix B). Therefore we cannot compute the difference in the share of known

workers with and without social capital∆q̄ = q̄α>0 − q̄α=0. However, we can derive a formula

that establishes alower boundfor the increase in̄q attributable to social capital.

Consider a benchmark parent with a share of workers with knownmatch qualityqp(ti0) = q∗

and the case where a spinoff from the parent starts withqi(0) < q∗. From equation (6) we know

that the share of workers with known match quality at startupis

qi(0) = [1− qp(ti0)]ψ for ψ ≡ (1−γ)αp0 < 1. (E.4)

It follows that (1 − q∗)ψ < q∗ for the benchmark parent withqp(ti0) = q∗. Our evidence in the

next subsection will show that the case(1− q∗)ψ < q∗ is the empirically applicable one. For this

case we can state the following lemma.

Lemma 3. Suppose the condition(1− q∗)ψ < q∗ is satisfied. Then the bounds on the steady-state

distribution ofq in the presence of social capital are(1− q∗)ψ andq∗.

Proof. We will call the steady-state support[(1−q∗)ψ, q∗] theabsorbing interval. Consider a firm

in the absorbing interval, withqi(t) ∈ [(1 − q∗)ψ, q∗]. By the firm dynamics under equation B.1,

a firm in the absorbing interval cannot age to aq > q∗. The firm cannot be parent to a spinoff

with qi(0) < (1 − q∗)ψ because no parent has a known match-quality share larger than q∗ in the

absorbing interval, so that the lowest possibleq for a spinoff to start with isqi(0) = [1 − q∗]ψ.

Moreover, the largest possibleq for a spinoff from a parent in the absorbing interval isqi(0) =
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[1− (1− q∗)ψ]ψ. It it straightforward to show that[1− (1− q∗)ψ]ψ < q∗ by the condition of the

lemma.39 The interval[(1 − q∗)ψ, q∗] is therefore anabsorbing interval: no firm that enters this

interval can exit it other than by death, nor can its spinoffsstart outside the interval.

Next, consider a firm withqi(t) ∈ (q∗, 1]. This firm will age toq∗ from above or exit. All

spinoffs of this firm will start withqi(0) ∈ [0, (1 − q∗)ψ). Finally, consider a firm withqi(t) ∈

[0, (1 − q∗)ψ). This firm will evolve into the absorbing interval or exit. The maximal share of

workers with known match quality at a spinoff from this firm isψ because the least informed parent

atqp(ti0) = 0 spawns a spinoff withqi(0) = (1−0)ψ = ψ. For a sufficiently small social network

α, the best spinoff starts inside the absorbing interval withψ ≤ q∗, whereψ ≤ q∗ is equivalent

to α ≤ φ/[η(1 − γ)] by the definitions ofψ andq∗ in (E.4) and (4). We have thus shown for

sufficiently small social network sizeα ≤ φ/[η(1− γ)] that, beginning from a point in time when

there is a positive mass of firms in each of the intervals[0, (1− q∗)ψ), [(1− q∗)ψ, q∗], and(q∗, 1],

there will be a continual shift of the mass of firms into the absorbing interval[(1−q∗)ψ, q∗], or exit,

and no shift of the mass of firms out of this interval. Since themass of firms is constant, it follows

that as aget grows arbitrarily large the mass of firms outside the absorbing interval vanishes.

The proof for a large social network sizeα > φ/[η(1 − γ)] (so thatψ > q∗) is a little more

involved. Note that spinoffs from a parent in the intervalqi(t) ∈ [0, 1 − q∗/ψ) start withqi(0) ∈

(q∗, ψ] for large network size. To establish that the steady-state support [(1 − q∗)ψ, q∗] is also

the absorbing interval for large network size, we need to show that spinoffs stop entering into the

adjacent intervalqi(0) ∈ (q∗, ψ] as parent aget grows arbitrarily large. It is useful to state the

following sequence of equivalent inequalities, which all follow from the single condition of the

lemma(1− q∗)ψ < q∗:

(1− q∗)ψ < q∗ ⇔ 1−
q∗

ψ
< (1− q∗)ψ <

ψ

1 + ψ
< q∗.

Figure E.1 depicts the respective points. Note that parentsin the adjacent interval(q∗, ψ] spawn

spinoffs that start in the intervalqi(0) ∈ [(1 − ψ)ψ, (1 − q∗)ψ). As a consequence, no new firm

starts below the lower threshold(1 − ψ)ψ = ψ
∑1

t=0(−ψ)
t, and incumbent firms evolve into the

absorbing interval or exit, so that the mass of firms in the left-most interval[0, (1−ψ)ψ) vanishes.

39For a spinoff to start withqi(0) = q∗, the parent must haveqi(t) = 1 − q∗/ψ. Note that another parent with
qi(t) = (1 − q∗)ψ must have a higher share of known workers because(1 − q∗)ψ > 1 − q∗/ψ is equivalent to
the condition of the lemma(1 − q∗)ψ < q∗. Therefore a spinoff from a parent with(1 − q∗)ψ, which starts with
qi(0) = [1− (1− q∗)ψ]ψ, must start strictly belowq∗. Figure E.1 depicts the three points{1− q∗/ψ, (1− q∗)ψ, q∗}.
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Figure E.1: Illustration of Lemma 3

In turn, parents at(1 − ψ)ψ or above spawn spinoffs at or below{1 − (1 − ψ)ψ)}ψ < ψ. As

a consequence, no new firm starts above the upper threshold{1 − (1 − ψ)ψ}ψ = ψ
∑2

t=0(−ψ)
t

anymore, and incumbent firms evolve towards the absorbing interval or exit, so that the mass of

firms in the upper part of the adjacent interval[{1 − (1 − ψ)ψ)}ψ, ψ] vanishes. Thus the upper

threshold above which no startup enters isψ
∑2T

t=0(−ψ)
t, which converges toψ/(1 + ψ) from

above as2T = 0, 2, 4, 6, 8, . . . grows arbitrarily large. The lower threshold below which nostartup

enters isψ
∑2T+1

t=0 (−ψ)t, which converges toψ/(1 + ψ) from below as2T + 1 = 1, 3, 5, 7, 9, . . .

grows arbitrarily large. (Parents atψ/(1 + ψ) spawn spinoffs withψ/(1 + ψ), while parents with

qi(t) < ψ/(1 + ψ) spawn spinoffs withqi(0) > ψ/(1 + ψ) and vice versa.) Since the upper

threshold ultimately crossesq∗ (becauseψ/(1+ψ) < q∗), no new firm starts outside the absorbing

interval anymore. The mass of firms is constant, so it followsthat asT grows arbitrarily large the

mass of firms outside the absorbing interval vanishes also for large social network size.

Lemma 3 states that, in the presence of social capital, all new firms in steady state are founded

with a share of workers with known match quality at least as large as(1 − q∗)ψ. In the absence

of social capital, new firms start with a known match-qualityshare of zero. By the empirically

confirmed condition of the lemma, all new firms start with a known match-quality share lower than

the known match-quality share in very old firms, which is intuitively plausible. In the following

Proposition, we use Lemma 3 to establish a lower bound on the impact of spinoff-mobilized social

capital onq̄.

Proposition 4. Suppose the condition(1 − q∗)ψ < q∗ is satisfied. Then the lower bound on the
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increase inq̄ attributable to spinoff-mobilized social capital equals

∆q̄min =
θ(1− q∗)ψ

δ + θ(1+γ) + φp0
. (E.5)

Proof. This expression is the difference betweenq̄α=0 from (E.3) and the same integral with the

lower limit (1 − q∗)ψ instead of zero. Since the limits of integration are the bounds on the true

steady-state distribution ofq, the latter integral computes what the value ofq̄α>0 would be if all

new firms were born withqi(0) = (1− q∗)ψ. Since(1− q∗)ψ is actually the lower bound forqi(0)

for all firms, andqi(0) evolves towardsq∗ at the same rate for alli, the distribution used to compute

q̄qi(0)=(1−q∗)ψ is first-order stochastically dominated by the true distribution of q in the population

of firms. It follows thatq̄qi(0)=(1−q∗)ψ < q̄.

The expression∆q̄min increases with network sizeα sinceψ = (1−γ)αp0 increases withα.

The expression also increases withθ, the rate of entry and exit of new firms, because social capital

operates by increasing the share of workers with known matchquality at new firms. Finally, the

expression decreases withφ, the rate of employer learning, since employer learning is asubstitute

for the employee learning embodied in social capital (note thatq∗ increases withφ).

To quantify the lower bound impact of social capital onq̄ in (E.5), we use estimates from the

following subsection.

E.2 Calibrating the steady-state proportion of known match quality q̄ with
and without social capital

The entry rate of spinoffs in our model isθ. In this calibration exercise, we maintain our model’s

assumption that all new firms are spinoffs. In line with this assumption, we use the rate at which

new firms enter as our measure ofθ. We compute this rate for each year in our sample and divide

the number of new firms entering in that year by the number of existing firms (see Table E.1). For

our final estimate ofθ, we average these rates over all seven sample years, which yieldsθ = 0.0816.

Though this is an unweighted average, it is virtually identical to the employment-weighted average

(0.0814).

The separation hazard for team members of any tenure with a spinoff firm is constant atδ +

θγ. If we setγ to zero as for our main quantification exercise (Section 6 andAppendix D), the

separation hazard for team members equalsδ. We can estimate the separation hazard for team
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Table E.1: ESTIMATES OF THEENTRY RATE θ

1995 1996 1997 1998 1999 2000 2001 Average

Number of Firms 564,129 573,953 618,630 645,704 668,765 700,636 754,893 646,673
Incumbent 523,575 533,028 564,294 597,168 617,750 647,972 702,067 597,979
New 40,554 40,925 54,336 48,536 51,015 52,664 52,826 48,694

Entry Rateθ 0.0775 0.0768 0.0963 0.0813 0.0826 0.0813 0.0752 0.0816

Source: RAIS 1995-2001, employee spinoff firms.
Note: Definition of employee spinoff (quarter-workforce criterion) as described in MRT.

members separately for each time period, using our regression results. Our preferred specification

is that of Table 3 in the main text. For each period, the sum of the coefficients on the team indicator

β and the retention hazard for non-team workers yields an estimate of1 − δ, the retention hazard

for team members. As our estimate of the retention hazard fornon-team workers we use the

sample mean of the retention indicator for non-team workersin the regression sample of Table 3.

Table E.2 reportsβ, the retention hazard for non-team workers, andδ for each periodt+1, . . . , t+6.

We use the average overt+1, . . . , t+6 as the estimate ofδ with which we calibrate our model.

Calibration of the employer learning rateφ, the unconditional probabilityp0 that a random

match will be high quality, and the social network sizeα is more involved. We need to know

1 − qi0(τ), the proportion of the non-team worker cohort that was hiredat the founding time of

firm i and that is ofunknownmatch quality when the cohort has tenureτ .

We start by restating how we infer the learning rateφ, similar to our derivations for the main

calibration exercise in Appendix D. From the proof of Proposition 1, we know that the difference

between the average retention hazards for team members and non-team workers (the retention

hazard gap) equalsβ = [1 − qi0(τ)][φ(1−p0)+θαp0]. This difference is equal to the coefficients

on the team indicatorβ in our retention hazard regressions in Table 3. Note that, indiscrete time,

the share of workers employed in the previous yearτ who are still employed in the current year

τ+1 depends on the share of workers that were of unknown match quality in the previous yearτ .

We then have:

β(τ+1) = [1− qi0(τ)](φ−φp0 + θαp0). (E.6)

For τ = t+ 1, this equation simplifies to

β(t+2) = φ−φp0 + θαp0 (E.7)
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Table E.2: ALTERNATIVE PARAMETER ESTIMATES

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 Average

Retention hazard gapβ 0.0732 0.1058 0.0601 0.0432 0.0364 0.0207
Non-team worker

retention hazard rate 0.7169 0.6081 0.7171 0.7641 0.7929 0.7817 0.7301
Team-member separation rateδ 0.2099 0.2861 0.2228 0.1928 0.1707 0.1976 0.2133
Unknown match qual. sh.1− qi0 1 0.5680 0.4079 0.3437 0.1954
Employer learning rateφ 0.5117 0.3159 0.1743 0.4417 0.3609
Unconditional match qual.p0 0.8442 0.7477 0.5427 0.8195 0.7385
Social network sizeα 0.3794 0.4283 0.5902 0.3908 0.4472

Notes: The retention hazard gapβ is the coefficient estimate for the team members indicator inthe retention regression
in Table 3 (first row). The non-team worker retention hazard is the predicted retention rate from all regressors of
Table 3, except the team indicator. The separation rateδ is one less the sum ofβ and the predicted non-team worker
retention hazard. The share of unknown match quality in a non-team worker cohort1−qi0 is1 att+1 by convention and
follows equation (E.9) with firm age. The employer learning rateφ follows from (E.10), the unconditional probability
of high match qualityp0 from (E.7), and social network sizeα from (E.11).

because, as stated for the main calibration exercise in the text, we take the share of non-team

workers of known match quality to be zero at the beginning of aspinoff’s second (instead of the

first) year of operation, so1− qi0(t+1) = 1.

Equation (E.6) can also be rewritten in terms of growth factors so that the constantsφ andp0

drop out:
β(τ+2)

β(τ+1)
=

1− qi0(τ+1)

1− qi0(τ)
. (E.8)

Using1− qi0(t+1) = 1 (from our convention that the share of non-team workers of known match

quality is zero at the beginning of the second year) and combining it with the above equation allows

us to infer

1− qi0(τ+1) = [1− qi0(τ)]β(τ+2)/β(τ+1) (E.9)

recursively forτ+1 = t+2, . . . , t+5. Table E.2 shows the results.

Now we rewrite in discrete time the expression for the relative change in the share of known

match quality workers from the proof of Lemma 2, and obtain

qi(τ+1)− qi(τ)

qi(τ)
=

1− qi(τ)

qi(τ)
φp0 + [1−qi(τ)] (φ−φp0 + θαp0)

after settingγ to zero. Note that this relationship also applies to the non-team worker cohort and

its known match-quality shareqi0(τ). Expressing the same relationship in terms of the unknown
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match-quality share1− qi0(τ) yields

[1− qi0(τ+1)]− [1− qi0(τ)]

1− qi0(τ)
= −φ− θαp0 + [1− qi0(τ)](φ−φp0 + θαp0)

after some manipulation. Using equations (E.6) and (E.8) inthat last expression allows us to

solve forφ in terms of the retention hazard gap coefficients, the share of non-team workers with

unknown match quality[1− qi0(τ)] andθαp0:

φ = [1− qi0(τ)]β(t+ 2)−
[1− qi0(τ+1)]− [1− qi0(τ)]

[1− qi0(τ)]
− θαp0. (E.10)

Our last step is to solve forαp0. To do this, note that Figures 1 and 2 in the main text show

a peak at 42-48 months (3.5-4 years) of tenure for the departure hazards of parent workers to

spinoffs. It is reasonable to assume that social networks are fully formed by then, so we can use

the departure hazard to spinoffs for workers with 42-48 months of tenure to help calibrateαp0. As

our measure of departure hazard, we average the probabilityestimate at 42-48 months of tenure

(shown in Figure 3) for parents below or at the median size with the probability estimate for parents

above median size, yielding an overall departure hazard estimate of0.1101.40 Settingγ to zero,

this departure hazard equals

0.1101 = αp0[1− qi0(t+ 4)]. (E.11)

Using the unknown match-quality share[1− qi0(t+4)] among non-team workers only, instead

of a firm’s overall unknown match quality share[1 − qi(t + 4)], presupposes that all workers at

the parent with three-and-a-half to four years of tenure arenon-team workers. Also note that the

correct formula for the departure hazard is multiplied byθ. That is because the true departure

hazard would be computed over all existing firms, not just parents. Since we condition on firms

that actually have spinoffs, and the larger parents have spinoffs every year, a conservative approach

is to assume that the parent has a spinoff with probability one in every year.

Equation (E.11) produces an estimate ofαp0 equal to 0.3203. Plugging this value into equa-

tion (E.10) yields estimates ofφ for τ = t+ 1, ..., t+ 4. Regardless ofτ , however, the coefficient

40Probability estimates are obtained from parent-year fixed effects regression of the departure hazard to spinoff on
the set of tenure bin indicators, conditional on worker characteristics as in Table 3 as well as current occupations, the
log monthly wage and a full set of gender interactions. The probability estimate for workers with 42-48 months of
tenure is the coefficient on a dummy for this tenure bin plus the predicted value from remaining regressors (including
the constant for the omitted tenure bin coefficient of 60 to 72months). The probability estimate is 0.2034 for firms
below median size, and 0.0168 for firms above median size. Median size is 62 employees.
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β(t + 2) is the same in all calculations ofφ. Once we haveφ, we can use equation (E.7) to solve

for p0 = 1− [β(t+2)− θαp0]/φ and equation (E.11) to solve forα = 0.1101/{p0[1− qi0(t+4)]}.

Table E.2 reports the results.

The above estimates allow us to compute the lower bound on theaggregate impact of social

capital under the maintained assumptions of the model. We first verify that the condition of

Lemma 3 holds empirically. By the preceding estimates,ψ = αp0 = 0.3203, andq∗ can be

computed using the estimates from Table E.2 in (4) to obtainq∗ = 0.5555. We then have0.1424 =

(1− q∗)ψ < q∗ = 0.5555.

We can therefore use the estimates in the last column of TableE.2 to compute the lower bound

on the relative counterfactual drop in̄q (the economy-wide fraction of employees with known

match quality) that would occur if spinoff-mobilized social capital were absent. Similar to the

computations in the main text, our measure is the ratio

∆q̄min

q̄α=0

.

Using our estimates from Table E.2 in the formulas (E.5) and (E.3), we obtain∆q̄min = 0.0207 and

q̄α=0 = 0.4747, yielding a counterfactual 4.4 percent increase inq̄ attributable to spinoff-mobilized

social capital.

F Sectoral and Occupational Characteristics of Spinoffs

To further characterize properties of spinoffs, we tabulate frequencies of employee spinoffs by

sector and tabulate frequencies of occupations within spinoffs.

Table F.1 shows the distribution of both new and existing firms by sector and knowledge inten-

sity. Following MRT and the definitions in the paper, we restrict the sample of new firms to those

with at least five employees at foundation so as to separate employee spinoffs. Compared to ex-

isting firms, new firms and especially employee spinoffs occur slightly less frequently in Brazil’s

non-high-tech sector by the OECD (2001) classification. In contrast, new firms and especially

spinoffs are founded more frequently than existing firms in the high-tech manufacturing sector and

in knowledge-intensive services. Looking at individual industries, employee spinoffs are founded

considerably less frequently than existing firms in commerce and the hospitality industry (hotels

and restaurants). In contrast, spinoffs occur particularly frequently compared to the distribution
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Table F.1: DISTRIBUTION OF NEW FIRMS BY SECTOR AND KNOWLEDGE INTENSITY

OECD (2001) classification, New Firmsa Existing
CNAE 1-digit sector Spinoffs Divest. Unrelated Firmsb

Non-high-tech sectors 81.7% 82.4% 82.8% 84.4%
High-tech manufacturingc 2.4% 2.6% 1.5% 1.8%
Knowledge-intensive servicesd 15.3% 14.5% 14.9% 13.3%

Agriculture and fishery 1.6% 1.7% 1.3% 1.6%
Mining, food processing and textiles 8.1% 8.2% 8.1% 5.9%
Manufacture of wood, metal products, chemicals 8.7% 8.2% 7.0% 6.5%
Manufacture of machinery and equipment 2.9% 3.0% 2.3% 2.1%
Utilities and construction 7.2% 6.1% 8.5% 3.3%
Commerce, repair services, hotels and restaurants 40.3% 50.0% 46.2% 50.5%
Transport, telecommunication, finance, insurance 4.9% 4.6% 3.4% 4.1%
Real estate activities and business services 17.8% 10.8% 13.0% 14.5%
Education, health, social and public services 4.2% 3.8% 4.4% 5.3%
Other social or personal services 3.7% 2.9% 4.8% 5.8%
Unknown .6% .5% .8% .4%

aNew firms with at least five employees.
bIncludes all formal sector firms reported in RAIS, includingthose withnatureza juridicacoded as Public admin-

istration, State-owned limited liability company, State-owned closed corporation, Corporation with some state control,
Cooperative, Consortium, Business group, or Branch of foreign company.

cIncludes High-tech and Medium-high-tech manufacturing.
dIncludes Telecommunication, Finance and insurance, Business services (excluding real estate activities), Educa-

tion and health services.

Source: RAIS 1995-2001.
Notes: High-tech and knowledge-intensity classification according to OECD (2001) based onCNAE4-digit industry.
Entry size is the total of founding employees with employment at any time during the new firm’s first year.
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Table F.2: OCCUPATION SHARES AT SPINOFF, TEAM VS. NON-TEAM

Employees in
Team Nonteam
(1) (2)

Prof. or Manag’l. Occ. .139 .098
(.0004)∗∗∗ (.0003)∗∗∗

Tech’l. or Superv. Occ. .174 .166
(.0004)∗∗∗ (.0004)∗∗∗

Unskilled Wh. Collar Occ. .160 .173
(.0004)∗∗∗ (.0004)∗∗∗

Skilled Bl. Collar Occ. .407 .396
(.0005)∗∗∗ (.0005)∗∗∗

Unskilled Bl. Collar Occ. .120 .168
(.0003)∗∗∗ (.0004)∗∗∗

Observations 954,326 819,331

Source: RAIS 1995-2001, workers at employee spinoff firms in the founding year.
Notes: Definition of employee spinoff (quarter-workforce criterion) as described in MRT. Occupations at present
employer. (Table 2 reports previous occupations at last employer.) Standard errors in parentheses.

of existing firms in real estate and business services, construction, and the manufacture of wood,

metal products, and chemicals.

Table F.2 reports the frequencies of occupations within non-team workers and team workers

at spinoffs in their founding years. Within white-collar occupations, the relatively more skill

intensive professional/managerial and technical/supervisory occupations are more frequent among

the team members (who previously worked for the same parent firm), whereas the unskilled white-

collar occupations are less frequent than among the non-team workers (who did not work for

the parent firm). Similarly within blue-collar occupations, the more skill intensive occupations

are also more frequent among the team members than among non-team members. As Table 2

documents, team members also used to work in more skill intensive occupations at their previous

employer than did (trackable) non-team members.
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