The Structure of Worker Compensation in Brazil, With a Comparison to France and the United States^{*}

Based on RAIS Annualized Average Monthly Wages

Naércio Aquino Menezes Filho[‡] Universidade de São Paulo

Marc-Andreas Muendler[¶]

Garey Ramey[§]

University of California, San Diego; CESifo

University of California, San Diego

November 21, 2006

^{*}We thank Andrea Curi, Tamara Wajnberg, and especially Jennifer Poole for excellent research assistance, and Paulo Furtado and the Brazilian Ministry of Labor for data access.

 $^{^{\}ddagger} naerciof@usp.br~(www.econ.fea.usp.edu/naercio)$

[¶]muendler@ucsd.edu (www.econ.ucsd.edu/muendler), corresponding. Ph: +1 (858) 534-4799.

[§]gramey@ucsd.edu (*www.econ.ucsd.edu/~gramey*)

1 Data

	Mean Log Wage			E	Employment Shares			
	Manuf	Serves	Comm	Agric	Manuf	Serves	Comm	Agric
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
77				Sector				
Year:	0.01.0	- 050	- 401	- 050	000	400	1 - 1	010
1990	8.016	7.953	7.461	7.352	.398	.433	.151	.018
1997	8.872	8.797	8.406	8.056	.288	.500	.171	.041
1990:				Educatio	n			
Some college or more	9.014	8.589	8.261	8.146	.093	.217	.070	.027
High school or less	7.913	7.776	7.400	7.330	.907	.783	.930	.973
1997:								
Some college or more	9.891	9.462	9.202	9.128	.103	.225	.069	.022
High school or less	8.754	8.604	8.347	8.032	.897	.775	.931	.978
1990:			(Occupatio	on			
White collar	8.469	8.124	7.503	7.718	.292	.660	.679	.131
Blue collar	7.829	7.620	7.372	7.297	.708	.340	.321	.869
1997:	1.025	1.020	1.012	1.201	.100	.040	.021	.005
White collar	9.288	8.923	8.420	8.727	.293	.720	.685	.092
Blue collar	8.699	8.475	8.377	7.988	.707	.280	.315	.908
1000				Gender				
<i>1990:</i>	0.174	0.040	7 5 40	F 401	700	FF 0	640	000
Male	8.174	8.040	7.549	7.421	.728	.558	.648	.802
Female	7.593	7.842	7.299	7.073	.272	.442	.352	.198
1997:	0.00-	0.001	0.400	0.004		For	00	·
Male	8.987	8.881	8.469	8.094	.744	.520	.625	.844
Female	8.536	8.706	8.301	7.854	.256	.480	.375	.156

Table 1: MEAN LOG WAGES AND EMPLOYMENT SHARES

Source: RAIS São Paulo state 1990 and 1997 (prime age workers in their highest-paying job). Wages in current USD (1990 and 1997 exchange rates). The log U.S. CPI change between 1990 and 1997 is .187.

	Manuf	Servcs	Comm	Agric	Total
	(1)	(2)	(3)	(4)	(5)
			Sector		
	.398	.433	.151	.018	1.000
		I	Education		
Primary School Education (or less)	.537	.550	.485	.806	.539
Some High School Education	.375	.239	.455	.172	.324
Some College Education	.034	.063	.028	.008	.046
College Graduate	.054	.148	.031	.013	.091
Total	1.000	1.000	1.000	1.000	1.000
		O	ccupation		
Professional or Managerial Occ.	.079	.224	.061	.043	.139
Technical or Supervisory Occ.	.096	.155	.328	.026	.155
Other White Collar Occ.	.117	.279	.288	.062	.212
Skill Int. Blue Collar Occ.	.551	.140	.166	.689	.317
Low-skill Int. Blue Collar Occ.	.157	.203	.156	.180	.177
Total	1.000	1.000	1.000	1.000	1.000
			Gender		
Female	.272	.442	.352	.199	.356
Male	.728	.558	.648	.801	.644
Total	1.000	1.000	1.000	1.000	1.000
Observations	2,364,007	$2,\!585,\!223$	894,885	109,786	5,953,901

Table 2: EMPLOYMENT SHARES 1990

Source: RAIS São Paulo state 1990 (prime age workers in their highest-paying job).

	Manuf	Servcs	Comm	Agric	Total
	(1)	(2)	(3)	(4)	(5)
			Sector		
	.288	.500	.171	.041	1.000
			Education		
Primary School Education (or less)	.487	.489	.490	.755	.499
Some High School Education	.410	.285	.441	.223	.345
Some College Education	.037	.051	.033	.007	.042
College Graduate	.066	.175	.036	.015	.114
Total	1.000	1.000	1.000	1.000	1.000
		(Occupation		
Professional or Managerial Occ.	.072	.169	.057	.035	.117
Technical or Supervisory Occ.	.081	.190	.271	.014	.166
Other White Collar Occ.	.140	.361	.356	.043	.284
Skill Int. Blue Collar Occ.	.589	.089	.172	.856	.278
Low-skill Int. Blue Collar Occ.	.117	.191	.143	.053	.156
Total	1.000	1.000	1.000	1.000	1.000
			Gender		
Female	.256	.480	.375	.156	.384
Male	.744	.520	.625	.844	.616
Total	1.000	1.000	1.000	1.000	1.000
Observations	1,837,461	3,204,738	1,090,146	262,683	$6,\!395,\!028$

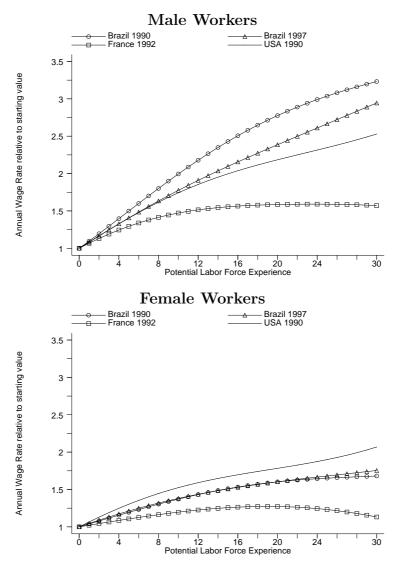
Table 3: EMPLOYMENT SHARES 1997

Source: RAIS São Paulo state 1997 (prime age workers in their highest-paying job).

2 Wage Structure in Manufacturing

Table 4. MANUFACTURING WA	Brazil 1990	Brazil 1997	France 1992	U.S. 1990
	(1)	(2)	(3)	(4)
Primary School Education (or less)	-1.075 $(.002)$	-1.000 $(.002)$	338 $(.009)$	526 $(.008)$
Some High School Education	923	881	256	404
	(.002)	(.002)	(.009)	(.007)
Some College Education	339	316	200	334
	(.003)	(.003)	(.009)	(.007)
College Graduate	~ /		064 (.016)	123 (.007)
Professional or Managerial Occupation	.856 $(.002)$.912 (.002)	.760 (.009)	.359 (.004)
Technical or Supervisory Occupation	.600	.632	.401	.206
	(.002)	(.002)	(.007)	(.004)
Other White Collar Occupation	.262	.249	.169	039
	(.002)	(.002)	(.011)	(.005)
Skill Intensive Blue Collar Occupation	.239	.225	.155	.083
	(.001)	(.001)	(.007)	(.003)
Potential Labor Force Experience	.095	.082	.069	.083
	(.0005)	(.0007)	(.003)	(.002)
Quadratic Experience Term	003 (.00005)	003 $(.00007)$	004 (.0002)	003 (.0001)
Cubic Experience Term	.00005 (2.29e-06)	.00008 (2.86e-06)	.0001 (1.00e-05)	.00007
Quartic Experience Term	-3.01e-07	-7.64e-07	-1.20e-06	-4.70e-07
	(3.24e-08)	(3.89e-08)	(1.00e-07)	(3.00e-08)
Female	.060	.070	.052	078
	(.005)	(.006)	(.024)	(.019)
Female \times Primary School Education (or less)	.106 $(.004)$.051 (.004)	0006 (.021)	.041 (.016)
Female \times Some High School Education	016 (.004)	058 $(.004)$	016 (.021)	009 (.015)
Female \times Some College Education	.018	005	.025	<i>019</i>
	(.005)	(.005)	(.021)	(.015)
Female \times College Graduate	~ /	~ /	062 (.029)	<i>022</i> (.015)
Female \times Professional or Managerial Occupation	101 $(.004)$	058 $(.005)$	049 (.016)	086 (.007)
Female \times Technical or Supervisory Occupation	173	250	<i>006</i>	.037
	(.003)	(.004)	(.011)	(.008)
Female \times Other White Collar Occupation	.088 $(.003)$.071 (.003)	.033 (.013)	.046 (.006)
Female \times Skill Intensive Blue Collar Occupation	208	167	045	043
	(.002)	(.003)	(.010)	(.008)
Female \times Potential Labor Force Experience	056	036	047	016
	(.0008)	(.001)	(.004)	(.003)
Female \times Quadratic Experience Term	.002	.002	.004	.0003
	(.0001)	(.0001)	(.0003)	(.0002)
Female \times Cubic Experience Term	00006 (4.35e-06)	00005 (5.63e-06)	0001 (1.00e-05)	.00000
Female \times Quartic Experience Term	7.06e-07	5.40e-07	1.20e-06	1.80e-08
	(6.32e-08)	(7.78e-08)	(1.10e-07)	(4.00e-08)
R^2 (within)	.508	.468	.817	.617
Residual degrees of freedom	2,326,428	1,828,049	23,920	148,992

Table 4: MANUFACTURING WAGES IN BRAZIL, FRANCE AND THE U.S.	•
---	---


Sources: RAIS São Paulo state manufacturing 1990 and 1997 (prime age workers in their highest-paying job), Abowd, Kramarz, Margolis and Troske (2001) for France and the U.S., controlling for establishment fixed effects. Estimates for Brazil relative to college graduates, for France and the U.S. relative to workers with post-graduate degree. Standard errors in parentheses (insignificant point estimates at the five percent level in *italics*).

	Brazil 1990	Brazil 1997	France 1986^a	U.S. 1990
	(1)	(2)	(3)	(4)
Professional or Managerial Occupation	$ \begin{array}{c} 1.329 \\ (.002) \end{array} $	$ \begin{array}{r} 1.384 \\ (.002) \end{array} $	$.952 \\ (.002)$	$.532 \\ (.003)$
Technical or Supervisory Occupation	$.756 \\ (.002)$.812 (.002)	.417 $(.001)$	$.256 \\ (.004)$
Other White Collar Occupation	$.338 \\ (.002)$	$.326 \\ (.002)$.147 $(.002)$	019 (.005)
Skill Intensive Blue Collar Occupation	.246 $(.001)$.227 $(.002)$	$.170 \\ (.001)$	$.091 \\ (.003)$
Potential Labor Force Experience	$.094 \\ (.0005)$.069 $(.0007)$.040 $(.0006)$.078 $(.002)$
Quadratic Experience Term	004 $(.00006)$	003 $(.00008)$	001 $(.00003)$	003 $(.0001)$
Cubic Experience Term	.00007 (2.48e-06)	.00006 (3.09e-06)	.00002	.00006
Quartic Experience Term	-5.90e-07 (3.50e-08)	-6.67e-07 (4.21e-08)	-9.40e-08	-4.00e-07 (3.00e-08)
Female	$.098 \\ (.003)$	$.093 \\ (.005)$	069 $(.005)$	045 $(.013)$
Female \times Professional or Managerial Occupation	$^{158}_{(.004)}$	043 $(.005)$	079 $(.005)$	$^{156}_{(.006)}$
Female \times Technical or Supervisory Occupation	$^{166}_{(.003)}$	266 $(.004)$	$.006 \\ (.003)$.031 $(.008)$
Female \times Other White Collar Occupation	$.127 \\ (.003)$.134 $(.003)$.051 $(.003)$	$.039 \\ (.007)$
Female \times Skill Intensive Blue Collar Occupation	$^{232}_{(.002)}$	$^{183}_{(.003)}$	016 $(.004)$	055 $(.008)$
Female \times Potential Labor Force Experience	$^{056}_{(.0009)}$	041 $(.001)$	011 $(.0009)$	021 (.003)
Female \times Quadratic Experience Term	.002 $(.0001)$.002 $(.0001)$	$.0005 \\ (.00005)$.0004 $(.0002)$
Female \times Cubic Experience Term	00006 (4.70e-06)	00005 (6.09e-06)	-1.00e-05	.000 (1.00e-05)
Female \times Quartic Experience Term	7.17e-07 (6.82e-08)	6.23e-07 (8.41e-08)	6.10e-08 (1.00e-08)	-4.70e-09 (5.00e-08)
R^2 (within) Residual degrees of freedom	.424 2,326,434	.376 1,828,055	.729 388,272	.592 149,000

Table 5: MANUFACTURING WAGES IN BRAZIL, FRANCE AND THE U.S.

 $^a\mathrm{Abowd}$ et al. (2001) do not report the estimation results for France 1992 underlying their wage variability measures (see our Table 7).

Sources: RAIS São Paulo state manufacturing 1990 and 1997 (prime age workers in their highest-paying job), Abowd et al. (2001) for France and the U.S., controlling for establishment fixed effects (metropolitan area indicator for France not reported). Estimates for Brazil relative to college graduates, for France and the U.S. relative to workers with post-graduate degree. Standard errors in parentheses (insignificant point estimates at the five percent level in *italics*).

Sources: RAIS São Paulo state manufacturing 1990 and 1997 (prime age workers in their highest-paying job), Abowd et al. (2001) for France 1992 and the U.S. 1990. Wage levels relative to zero experience wage levels from wage component estimates (Table 4). Calculations for France 1992 and the U.S. 1990 based on Abowd et al.'s (2001) estimates and summary statistics.

Figure 1: Potential experience profiles in Brazil, France and the U.S.

	Brazil 1990	Brazil 1997	France 1992	U.S. 1990
	(1)	(2)	(3)	(4)
Male worker:		$\mathbf{Education}^{a}$		
College Degree	2.516	2.412	1.376	1.693
Some College	1.793	1.758	1.057	1.073
Primary School (or less)	.859	.888	.920	.885
Female worker:				
College Degree	2.556	2.556	1.488	1.746
Some College	1.855	1.854	1.101	1.062
Primary School (or less)	.970	.990	.935	.930
Male worker:		$\mathbf{Occupation}^b$		
Professional or Managerial	2.355	2.488	2.139	1.432
Technical or Supervisory	1.821	1.882	1.493	1.228
Other White Collar	1.299	1.283	1.184	.962
Skill-intensive Blue Collar	1.270	1.252	1.168	1.087
Female worker:				
Professional or Managerial	2.128	2.348	2.037	1.313
Technical or Supervisory	1.532	1.466	1.484	1.275
Other White Collar	1.419	1.377	1.224	1.006
Skill-intensive Blue Collar	1.031	1.059	1.116	1.041
		\mathbf{Gender}^{c}		
Female worker	.893	.915	.803	.899

Table 6: Relative Manufacturing Wages in Brazil, France and the U.S.

^aRelative to worker with some or complete high school education, controlling for occupation.

^bRelative to non-skill-intensive blue collar occupations, controlling for education.

^cFemale relative to male workers, controlling for education and occupation.

Sources: RAIS São Paulo state manufacturing 1990 and 1997 (prime age workers in their highestpaying job), Abowd et al. (2001) for France 1992 and the U.S. 1990. Wage levels relative to comparison-group wage levels from component estimates (Table 4). For France and the U.S., wage prediction of college graduates reassigned to predicted fixed effects component.

0.5.			Correlation with				
	Mean	St.Dev.	$\ln w_i$	$x_i \widehat{\beta}$	$\widehat{\psi}_j$	$\widehat{\varepsilon_i}$	
	(1)	(2)	(3)	(4)	(5)	(6)	
Brazil 1990							
Log Annual Wage $(\ln w_i)$	8.019	.785	1.000				
Worker Characteristics $(x_i\widehat{\beta})$.962	.491	.667	1.000			
Establishment-Fixed $(\widehat{\psi}_j)$	7.056	.203	.358	.160	1.000		
Residual $(\widehat{\varepsilon}_i)$.000	.550	.700	.000	000	1.000	
Brazil 1997							
Log Annual Wage $(\ln w_i)$	8.872	.778	1.000				
Worker Characteristics $(x_i\hat{\beta})$.878	.441	.622	1.000			
Establishment-Fixed $(\widehat{\psi}_j)$	7.994	.267	.435	.161	1.000		
Residual $(\widehat{\varepsilon}_i)$	000	.549	.705	000	000	1.000	
France 1992^a							
Log Annual Wage $(\ln w_i)$	10.158	.414	1.000				
Worker Characteristics $(x_i\widehat{\beta})$.637	.287	.791	1.000			
Establishment-Fixed $(\widehat{\psi}_j)$	9.521	.172	.581	.237	1.000		
Residual $(\widehat{\varepsilon}_i)$.000	.190	.457	003	.000	1.000	
U.S. 1990							
Log Annual Wage $(\ln w_i)$	10.174	.544	1.000				
Worker Characteristics $(x_i\hat{\beta})$.672	.271	.598	1.000			
Establishment-Fixed $(\widehat{\psi}_j)$	9.502	.266	.610	.242	1.000		
Residual $(\widehat{\varepsilon}_i)$.000	.350	.627	029	.000	1.000	

 Table 7: VARIABILITY OF MANUFACTURING WAGES IN BRAZIL, FRANCE AND THE

 U.S.

^aMeans converted to USD (December 31st, 1990).

Sources: RAIS São Paulo state manufacturing 1990 and 1997 (prime age workers in their highestpaying job), Abowd et al. (2001) for France 1992 and the U.S. 1990. Estimates for all three countries from establishment-fixed effects wage regressions relative to other blue-collar occupations, *not* controlling for education to achieve comparability (Table 5). Statistics based on estimation sample. The log U.S. CPI change between 1990 and 1997 is .187.

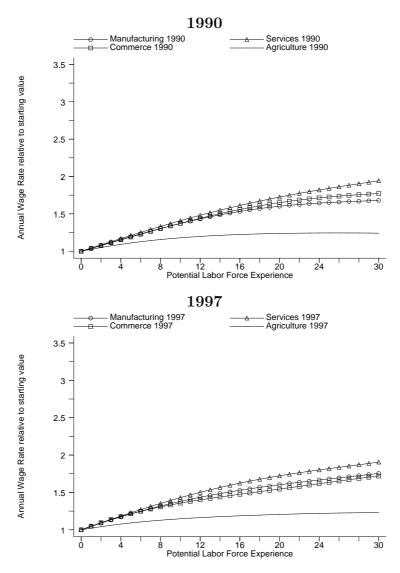
3 Sectoral Comparisons for 1990 and 1997

	Manufact.	Services	Commerce	Agriculture
	(1)	(2)	(3)	(4)
Primary School Education (or less)	-1.075 (.002)	948 (.002)	-1.229 (.005)	-1.247 (.014)
Some High School Education	923 (.002)	848 (.002)	-1.115 (.005)	-1.061 (.014)
Some College Education	339 (.003)	303 (.003)	374 (.007)	518 (.022)
Professional or Managerial Occupation	.856 (.002)	.623 $(.002)$.654 (.004)	.467 (.008)
Technical or Supervisory Occupation	.600 (.002)	.497 (.002)	.221 (.002)	.343 $(.011)$
Other White Collar Occupation	.262 (.002)	.237 (.002)	.090 (.002)	.130 (.008)
Skill Intensive Blue Collar Occupation	.239 (.001)	.314 (.002)	.171 (.002)	065 $(.004)$
Potential Labor Force Experience	.095 (.0005)	.081 (.0006)	.065 (.0006)	.060
Quadratic Experience Term	003 (.00005)	003 (.00007)	001 (.00008)	002 (.0002)
Cubic Experience Term	.00005 (2.29e-06)	.00005 (2.92e-06)	00003 (3.89e-06)	.00003 (8.60e-06)
Quartic Experience Term	-3.01e-07 (3.24e-08)	-3.17e-07 (4.06e-08)	7.35e-07 (5.83e-08)	-3.31e-07 (1.21e-07)
Female	.060 (.005)	255 (.004)	388 (.009)	438 (.031)
Female \times Primary School Education (or less)	.106 $(.004)$.215 (.003)	.397 (.008)	.394 (.029)
Female \times Some High School Education	016 (.004)	.130 (.003)	.326 (.008)	.256 $(.030)$
Female \times Some College Education	.018 $(.005)$.080 (.004)	.175 (.010)	.099 $(.041)$
Female \times Professional or Managerial Occupation	101 (.004)	.116 $(.003)$	062 (.007)	.147 (.026)
Female \times Technical or Supervisory Occupation	173 (.003)	.053 $(.003)$	028 (.004)	.092 (.021)
Female \times Other White Collar Occupation	.088 (.003)	.151 (.002)	.122 (.004)	.193 (.015)
Female \times Skill Intensive Blue Collar Occupation	208 (.002)	160 $(.004)$	083 (.006)	.044 $(.009)$
Female \times Potential Labor Force Experience	056 (.0008)	038 (.001)	029 (.001)	034 (.004)
Female \times Quadratic Experience Term	.002 (.0001)	.002 (.0001)	.0007 $(.0001)$.0007 $(.0004)$
Female \times Cubic Experience Term	00006 (4.35e-06)	00004 (4.66e-06)	7.72e-06 (6.72e-06)	-1.15e-06 (.00002)
Female \times Quartic Experience Term	7.06e-07 (6.32e-08)	4.10e-07 (6.43e-08)	-3.75e-07 (1.01e-07)	3.39e-08 (2.52e-07)
Observations R^2 (within)	2,330,883.508	2,530,777 .367	876,164 .320	$107,\!641$.322

Table 8: WAGE STRUCTURE IN BRAZIL 1990, BY SECTOR

Sources: RAIS São Paulo state 1990 (prime age workers in their highest-paying job), controlling for establishmentworker fixed effects (manufacturing Table 4). Standard errors in parentheses (insignificant point estimates at the five percent level in *italics*).

	Manufact.	Services (2)	Commerce (3)	Agriculture (4)
Primary School Education (or less)	$^{-1.000}_{(.002)}$	826 (.002)	$^{-1.027}_{(.004)}$	840 (.008)
Some High School Education	881 (.002)	769 $(.002)$	932 (.004)	731 (.009)
Some College Education	316 $(.003)$	(.003)	(.005)	374 $(.014)$
Professional or Managerial Occupation	.912 $(.002)$	$.740 \\ (.002)$	$.656 \\ (.003)$	$.736 \\ (.007)$
Technical or Supervisory Occupation	$.632 \\ (.002)$	$.556 \\ (.002)$	$.093 \\ (.002)$	$.675 \\ (.009)$
Other White Collar Occupation	$.249 \\ (.002)$	$.220 \\ (.001)$	$.007 \\ (.002)$.331 (.007)
Skill Intensive Blue Collar Occupation	$.225 \\ (.001)$.301 (.002)	$(.002)^{.125}$.085 $(.004)$
Potential Labor Force Experience	$.082 \\ (.0007)$	$.078 \\ (.0007)$.078 $(.0006)$	$.043 \\ (.001)$
Quadratic Experience Term	003 $(.00007)$	003 $(.00007)$	004 $(.00007)$	001 (.0001)
Cubic Experience Term	.00008 (2.86e-06)	.00007 (2.97e-06)	.0001 (3.20e-06)	.00002 (5.47e-06)
Quartic Experience Term	-7.64e-07 (3.89e-08)	-5.59e-07 (4.05e-08)	$^{-1.03e-06}_{(4.65e-08)}$	-2.00e-07 (7.50e-08)
Female	.070 (.006)	264 (.004)	270 (.007)	$^{191}_{(.021)}$
Female \times Primary School Education (or less)	.051 $(.004)$.146 $(.002)$.263 (.005)	.208 (.018)
Female \times Some High School Education	058 $(.004)$	$.068 \\ (.002)$	$.212 \\ (.005)$	$.143 \\ (.018)$
Female \times Some College Education	005 (.005)	$.032 \\ (.003)$	$(.007)^{.114}$	$.121 \\ (.027)$
Female \times Professional or Managerial Occupation	$^{058}_{(.005)}$.073 $(.003)$	$(.005)^{020}$	069 (.019)
Female \times Technical or Supervisory Occupation	250 $(.004)$	$.140 \\ (.002)$	$.060 \\ (.003)$	$^{193}_{(.021)}$
Female \times Other White Collar Occupation	$.071 \\ (.003)$.187 $(.002)$	$.163 \\ (.003)$.034 $(.013)$
Female \times Skill Intensive Blue Collar Occupation	167 $(.003)$	$^{074}_{(.005)}$	$^{046}_{(.005)}$	075 $(.010)$
Female \times Potential Labor Force Experience	036 $(.001)$	$^{032}_{(.001)}$	027 (.001)	020 (.003)
Female \times Quadratic Experience Term	$.002 \\ (.0001)$	$.002 \\ (.0001)$	$.001 \\ (.0001)$	$.0001 \\ (.0003)$
Female \times Cubic Experience Term	00005 (5.63e-06)	00007 (4.48e-06)	-1.00e-05 (5.51e-06)	.00002 (1.00e-05)
Female \times Quartic Experience Term	5.40e-07 (7.78e-08)	6.98e-07 (6.11e-08)	1.27e-08 (8.02e-08)	-2.42e-07 (1.71e-07)
Observations R^2 (within)	1,831,566 .468	$3,\!185,\!721$. 376	1,087,388 .332	261,579 .259


Table 9: WAGE STRUCTURE IN BRAZIL 1997, BY SECTOR

Source: RAIS São Paulo state 1997 (prime age workers in their highest-paying job), controlling for establishmentworker fixed effects (manufacturing Table 4). Standard errors in parentheses (insignificant point estimates at the five percent level in *italics*).

Source: *RAIS* São Paulo state 1990 and 1997 (prime age male workers in their highest-paying job). Wage levels relative to zero experience wage levels from wage component estimates (Tables 8 and 9).

Figure 2: Potential experience, Male workers Brazil 1990 and 1997

Source: *RAIS* São Paulo state 1990 and 1997 (prime age female workers in their highest-paying job. Wage levels relative to zero experience wage levels from wage component estimates (Tables 8 and 9).

Figure 3: Potential experience, Female workers Brazil 1990 and 1997

			Correlation with				
	Mean	St.Dev.	$\ln w_i$	$x_i \widehat{eta}$	$\widehat{\psi}_j$	$\widehat{\varepsilon_i}$	
	(1)	(2)	(3)	(4)	(5)	(6)	
Manufacturing 1990							
Log Annual Wage $(\ln w_i)$	8.019	.785	1.000				
Worker Characteristics $(x_i\hat{\beta})$.056	.541	.727	1.000			
Establishment-Fixed $(\widehat{\psi}_i)$	7.963	.183	.346	.163	1.000		
Residual $(\widehat{\varepsilon}_i)$.000	.508	.647	.000	000	1.000	
Services 1990							
Log Annual Wage $(\ln w_i)$	7.956	.830	1.000				
Worker Characteristics $(x_i\hat{\beta})$.177	.480	.600	1.000			
Establishment-Fixed $(\widehat{\psi}_i)$	7.779	.335	.436	.054	1.000		
Residual $(\widehat{\varepsilon}_i)$	000	.573	.691	.000	.000	1.000	
Commerce 1990							
Log Annual Wage $(\ln w_i)$	7.464	.742	1.000				
Worker Characteristics $(x_i\hat{\beta})$	476	.403	.573	1.000			
Establishment-Fixed $(\widehat{\psi}_i)$	7.939	.214	.345	.105	1.000		
Residual $(\widehat{\varepsilon}_i)$.000	.571	.768	000	000	1.000	
Agriculture 1990							
Log Annual Wage $(\ln w_i)$	7.355	.584	1.000				
Worker Characteristics $(x_i\hat{\beta})$	795	.300	.507	1.000			
Establishment-Fixed $(\hat{\psi}_i)$	8.150	.295	.499	012	1.000		
Residual $(\widehat{\varepsilon}_i)$.000	.407	.698	000	.000	1.000	

Table 10: WAGE VARIABILITY IN BRAZIL BY SECTOR, 1990

Source: RAIS São Paulo state 1990 (prime age workers in their highest-paying job). Estimates from establishment-fixed effects wage regressions in Table 8. Statistics based on estimation sample.

			Correlation with				
	Mean	St.Dev.	$\ln w_i$	$x_i \widehat{eta}$	$\widehat{\psi}_j$	$\widehat{\varepsilon_i}$	
	(1)	(2)	(3)	(4)	(5)	(6)	
Manufacturing 1997							
Log Annual Wage $(\ln w_i)$	8.872	.778	1.000				
Worker Characteristics $(x_i\hat{\beta})$.084	.498	.695	1.000			
Establishment-Fixed $(\widehat{\psi}_j)$	8.788	.241	.423	.176	1.000		
Residual $(\widehat{\varepsilon}_i)$.000	.507	.651	.000	.000	1.000	
Services 1997							
Log Annual Wage $(\ln w_i)$	8.797	.805	1.000				
Worker Characteristics $(x_i\hat{\beta})$.255	.483	.612	1.000			
Establishment-Fixed $(\widehat{\psi}_i)$	8.542	.292	.382	.033	1.000		
Residual $(\widehat{\varepsilon}_i)$	000	.566	.703	.000	.000	1.000	
Commerce 1997							
Log Annual Wage $(\ln w_i)$	8.407	.628	1.000				
Worker Characteristics $(x_i\hat{\beta})$	356	.345	.580	1.000			
Establishment-Fixed $(\widehat{\psi}_i)$	8.763	.181	.347	.107	1.000		
Residual $(\widehat{\varepsilon}_i)$	000	.479	.763	000	.000	1.000	
Agriculture 1997							
Log Annual Wage $(\ln w_i)$	8.056	.606	1.000				
Worker Characteristics $(x_i\hat{\beta})$	345	.253	.480	1.000			
Establishment-Fixed $(\widehat{\psi}_i)$	8.402	.351	.624	.108	1.000		
Residual $(\widehat{\varepsilon_i})$.000	.401	.662	.000	.000	1.000	

Table 11: WAGE VARIABILITY IN BRAZIL BY SECTOR, 1997

Source: RAIS São Paulo state 1997 (prime age workers in their highest-paying job). Estimates from establishment-fixed effects wage regressions in Table 9. Statistics based on estimation sample. The log U.S. CPI change between 1990 and 1997 is .187.

	Manufa	Manufacturing		Services		Commerce		Agriculture	
	1990	1997	1990	1997	1990	1997	1990	1997	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
			E	ducatio	\mathbf{n}^{a}				
Male worker:									
College Degree	2.516	2.412	2.334	2.159	3.049	2.539	2.890	2.078	
Some College	1.793	1.758	1.724	1.815	2.097	1.813	1.721	1.430	
Primary School	.859	.888	.905	.945	.892	.909	.830	.897	
Female worker:									
College Degree	2.556	2.556	2.051	2.017	2.201	2.054	2.237	1.801	
Some College	1.855	1.854	1.641	1.751	1.803	1.643	1.470	1.398	
Primary School	.970	.990	.986	1.022	.957	.957	.953	.958	
			0	ccupatio	\mathbf{n}^{b}				
Male worker:			0	cupan)11				
Profess'l or Managerial	2.355	2.488	1.864	2.097	1.923	1.927	1.596	2.088	
Technical or Superv.	1.821	1.882	1.643	1.743	1.247	1.098	1.409	1.964	
Other White Collar	1.299	1.283	1.267	1.247	1.094	1.007	1.139	1.393	
Skill-int. Blue Collar	1.270	1.252	1.370	1.351	1.187	1.134	.938	1.089	
Female worker:									
Profess'l or Managerial	2.128	2.348	2.094	2.254	1.807	1.889	1.848	1.949	
Technical or Superv.	1.532	1.466	1.733	2.004	1.212	1.165	1.545	1.619	
Other White Collar	1.419	1.377	1.474	1.503	1.235	1.185	1.382	1.441	
Skill-int. Blue Collar	1.031	1.059	1.167	1.254	1.092	1.082	.979	1.010	
				Gender	c				
Female worker	.893	.915	.879	.882	.925	.944	.941	.958	
	.095	.910	.019	.002	.920	.944	.941	.900	

Table 12: Relative Wages in Brazil by Sector, 1990 and 1997

 $^a\mathrm{Relative}$ to worker with some or complete high school education, controlling for occupation.

 ${}^b\mathrm{Relative}$ to non-skill-intensive blue collar occupations, controlling for education.

 $^c{\rm Female}$ relative to male workers, controlling for education and occupation.

Source: Source: RAIS São Paulo state 1990 and 1997 (prime age workers in their highest-paying job). Wage levels relative to comparison-group wage levels from component estimates (Tables 8 and 9).

4 Comparisons to Results from OLS Estimates

4 COMPARISONS TO RESULTS FROM OLS ESTIMATES Annualized Average Monthly Wage

	Manufact.	Services (2)	Commerce (3)	Agriculture
	(1)			(4)
Primary School Education (or less)	$^{-1.130}_{(.002)}$	$^{-1.033}_{(.002)}$	$^{-1.330}_{(.005)}$	-1.296 (.016)
Some High School Education	955 $(.002)$	929 $(.002)$	$^{-1.204}_{(.005)}$	-1.089 (.017)
Some College Education	340 (.003)	271 (.003)	377 $(.007)$	553 $(.027)$
Professional or Managerial Occupation	.869 (.002)	.642 $(.002)$.675 $(.004)$.403 (.009)
Technical or Supervisory Occupation	.632 $(.002)$.525 $(.002)$.242 $(.002)$.348 $(.012)$
Other White Collar Occupation	.274 $(.002)$.363 (.002)	.117 $(.003)$.115 $(.009)$
Skill Intensive Blue Collar Occupation	.251 (.001)	.319 (.002)	.149 (.003)	052 (.004)
Potential Labor Force Experience	.098 $(.0005)$.085 $(.0007)$.069 $(.0007)$.077 $(.002)$
Quadratic Experience Term	003 $(.00006)$	002 $(.00008)$	0009 $(.00009)$	003 $(.0002)$
Cubic Experience Term	.00004 (2.43e-06)	.00002 (3.31e-06)	00004 (4.11e-06)	.00008 $(1.00e-05)$
Quartic Experience Term	-2.11e-07 (3.42e-08)	1.58e-07 (4.61e-08)	9.61e-07 (6.17e-08)	-8.66e-07 (1.42e-07)
Female	.081 $(.005)$	254 $(.005)$	469 (.009)	387 $(.036)$
Female \times Primary School Education (or less)	.087 $(.004)$.177 $(.003)$.463 $(.008)$.331 (.034)
Female \times Some High School Education	047 $(.004)$.051 $(.003)$	$.396 \\ (.008)$.167 $(.034)$
Female \times Some College Education	.005 (.006)	.037 $(.004)$.184 $(.011)$.059 $(.047)$
Female \times Professional or Managerial Occupation	$^{128}_{(.004)}$	(.003)	(.001)	$.068 \\ (.030)$
Female \times Technical or Supervisory Occupation	198 $(.003)$	$.073 \\ (.003)$	$^{012}_{(.004)}$	$^{144}_{(.023)}$
Female \times Other White Collar Occupation	$.068 \\ (.003)$.229 $(.002)$	$.142 \\ (.004)$	$.008 \\ (.016)$
Female \times Skill Intensive Blue Collar Occupation	233 $(.002)$	177 $(.004)$	(.0074)	.065 $(.011)$
Female \times Potential Labor Force Experience	057 $(.0009)$	036 $(.001)$	027 $(.001)$	(.004)
Female \times Quadratic Experience Term	.002 (.0001)	.001 $(.0001)$	$.0004 \\ (.0001)$.001 $(.0005)$
Female \times Cubic Experience Term	00006 (4.60e-06)	00003 $(5.28e-06)$.00002 (7.11e-06)	00002 $(.00002)$
Female \times Quartic Experience Term	6.92e-07 (6.69e-08)	3.09e-07 (7.30e-08)	-5.80e-07 (1.07e-07)	2.69e-07 (2.93e-07)
Const.	7.951 (.003)	7.748 (.003)	7.978 (.006)	8.139 (.018)
Observations R^2	2,330,883 .529	2,530,777 .374	876,164 .329	107,641 .264

Table 13: WAGE STRUCTURE IN BRAZIL 1990, BY SECTOR

Source: RAIS São Paulo state 1990 (prime age workers in their highest-paying job). Not controlling for establishment-worker fixed effects. Standard errors in parentheses (insignificant point estimates at the five percent level in *italics*).

4 COMPARISONS TO RESULTS FROM OLS ESTIMATES Annualized Average Monthly Wage

	Manufact.	Services	Commerce	Agriculture
	(1)	(2)	(3)	(4)
Primary School Education (or less)	-1.091 (.002)	885 (.002)	-1.096 (.004)	930 (.010)
Some High School Education	963 (.002)	778 (.002)	-1.006 (.004)	772 (.011)
Some College Education	265 (.003)	046 (.003)	318 (.005)	369 (.018)
Professional or Managerial Occupation	.940 (.003)	.642 $(.002)$.686 (.003)	.900 (.008)
Technical or Supervisory Occupation	.687 (.002)	.473 (.002)	.114 (.002)	.925 (.011)
Other White Collar Occupation	.283 (.002)	.107 $(.001)$.029 (.002)	.506 (.008)
Skill Intensive Blue Collar Occupation	.273 (.002)	.157 (.002)	.105 $(.002)$.127 (.005)
Potential Labor Force Experience	.083 $(.0007)$.083 (.0007)	.081 (.0006)	.063 $(.002)$
Quadratic Experience Term	003 (.00008)	003 (.00008)	004 (.00008)	002 (.0002)
Cubic Experience Term	.00006 (3.14e-06)	.00005 (3.28e-06)	.00009 (3.40e-06)	.00003 (6.94e-06)
Quartic Experience Term	-5.74e-07 (4.28e-08)	-1.72e-07 (4.47e-08)	-9.07e-07 (4.94e-08)	-1.78e-07 (9.51e-08)
Female	.071 (.006)	383 (.004)	302 (.007)	112 (.027)
Female \times Primary School Education (or less)	.050 (.004)	.143 $(.003)$.302 (.006)	.252 (.022)
Female \times Some High School Education	069 (.004)	.017 $(.003)$.243 (.006)	.157 (.023)
Female \times Some College Education	079 (.006)	.018 $(.004)$.104 (.008)	.174 $(.034)$
Female \times Professional or Managerial Occupation	064 (.005)	$.105 \\ (.003)$	031 (.006)	060 (.024)
Female \times Technical or Supervisory Occupation	290 (.004)	.177 $(.002)$.052 (.004)	293 (.026)
Female \times Other White Collar Occupation	.051 (.004)	.334 (.002)	.164 (.003)	151 (.016)
Female \times Skill Intensive Blue Collar Occupation	216 (.003)	.079 $(.005)$	045 (.005)	172 (.012)
Female \times Potential Labor Force Experience	035 (.001)	032 (.001)	027 (.001)	027 (.004)
Female \times Quadratic Experience Term	.001 (.0001)	.002 $(.0001)$.0009 $(.0001)$.001 $(.0004)$
Female \times Cubic Experience Term	00003 (6.20e-06)	00006 (4.94e-06)	-9.04e-06 (5.86e-06)	-1.00e-05 (.00002)
Female \times Quartic Experience Term	4.29e-07 (8.56e-08)	5.75e-07 (6.74e-08)	-6.63e-08 (8.52e-08)	1.21e-07 (2.19e-07)
Const.	8.786 (.003)	8.613 (.003)	8.782 (.004)	8.321 (.012)
Observations R^2	1,831,566 .484	3,185,721 .382	1,087,388.338	261,579.235

Table 14: WAGE STRUCTURE IN BRAZIL 1997, BY SECTOR

Source: RAIS São Paulo state 1997 (prime age workers in their highest-paying job). Not controlling for establishment-worker fixed effects. Standard errors in parentheses (insignificant point estimates at the five percent level in *italics*).

Table 15: Correlation of Wage Components in Brazil by Sector, 1990

			Co	rrelation wit	h
	Mean	St.Dev.	$\ln w_i$	$x_i\widehat{eta}$	$\widehat{\varepsilon_i}$
	(1)	(2)	(3)	(4)	(5)
Manufacturing 1990					
Log Annual Wage $(\ln w_i)$	8.019	.785	1.000		
Worker Characteristics $(x_i\hat{\beta})$.067	.571	.727	1.000	
Residual $(\widehat{\varepsilon}_i)$	000	.539	.686	.000	1.000
Services 1990					
Log Annual Wage $(\ln w_i)$	7.956	.830	1.000		
Worker Characteristics $(x_i\hat{\beta})$.208	.507	.612	1.000	
Residual $(\widehat{\varepsilon}_i)$	000	.656	.791	.000	1.000
Commerce 1990					
Log Annual Wage $(\ln w_i)$	7.464	.742	1.000		
Worker Characteristics $(x_i\hat{\beta})$	514	.426	.573	1.000	
Residual $(\hat{\varepsilon}_i)$	000	.609	.819	000	1.000
Agriculture 1990					
Log Annual Wage $(\ln w_i)$	7.355	.584	1.000		
Worker Characteristics $(x_i\hat{\beta})$	784	.300	.514	1.000	
Residual $(\widehat{\varepsilon}_i)$	000	.501	.858	.000	1.000

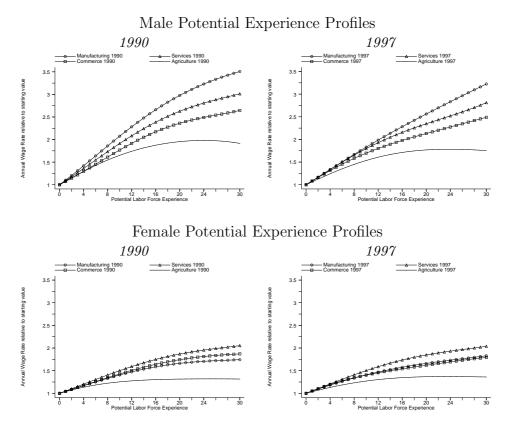
Source: RAIS São Paulo state 1990 (prime age workers in their highest-paying job). Estimates from OLS wage regressions in Table 13. Statistics based on estimation sample.

Table 16: CORRELATION OF WAGE COMPONENTS IN BRAZIL BY SECTOR, 1997

			Co	rrelation wit	h
	Mean	St.Dev.	$\ln w_i$	$x_i\widehat{eta}$	$\widehat{\varepsilon_i}$
	(1)	(2)	(3)	(4)	(5)
Manufacturing 1997					
Log Annual Wage $(\ln w_i)$	8.872	.778	1.000		
Worker Characteristics $(x_i\hat{\beta})$.086	.541	.696	1.000	
Residual $(\hat{\varepsilon}_i)$	000	.559	.718	.000	1.000
Services 1997					
Log Annual Wage $(\ln w_i)$	8.797	.805	1.000		
Worker Characteristics $(x_i\hat{\beta})$.184	.498	.618	1.000	
Residual $(\hat{\varepsilon}_i)$.000	.633	.786	000	1.000
Commerce 1997					
Log Annual Wage $(\ln w_i)$	8.407	.628	1.000		
Worker Characteristics $(x_i\hat{\beta})$	375	.365	.581	1.000	
Residual $(\hat{\varepsilon}_i)$.000	.511	.814	000	1.000
Agriculture 1997					
Log Annual Wage $(\ln w_i)$	8.056	.606	1.000		
Worker Characteristics $(x_i\hat{\beta})$	265	.294	.485	1.000	
Residual $(\hat{\varepsilon}_i)$	000	.530	.875	000	1.000

Source: RAIS São Paulo state 1997 (prime age workers in their highest-paying job). Estimates from OLS wage regressions in Table 14. Statistics based on estimation sample. The log U.S. CPI change between 1990 and 1997 is .187.

	Manufa	acturing	Serv	Services		Commerce		ulture
	1990	1997	1990	1997	1990	1997	1990	1997
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
			E	ducatio	n^a			
Male worker:				aaoaoioi	-			
College Degree	2.598	2.620	2.532	2.178	3.334	2.736	2.973	2.164
Some College	1.849	2.010	1.932	2.080	2.288	1.990	1.711	1.496
Primary School	.839	.880	.901	.899	.882	.914	.814	.853
Female worker:								
College Degree	2.724	2.807	2.406	2.142	2.244	2.145	2.516	1.850
Some College	1.947	1.989	1.904	2.082	1.851	1.732	1.535	1.522
Primary School	.960	.991	1.022	1.020	.944	.970	.958	.939
			0	annatia	- b			
Male worker:			U	ccupatio	οΠ [*]			
Profess'l or Managerial	2.383	2.561	1.900	1.900	1.964	1.986	1.496	2.459
Technical or Superv.	1.882	1.987	1.691	1.605	1.274	1.120	1.417	2.521
Other White Collar	1.316	1.327	1.438	1.113	1.124	1.030	1.121	1.658
Skill-int. Blue Collar	1.285	1.314	1.376	1.170	1.161	1.111	.949	1.136
Female worker:								
Profess'l or Managerial	2.097	2.403	1.835	2.110	1.885	1.926	1.601	2.317
Technical or Superv.	1.544	1.487	1.820	1.914	1.258	1.180	1.226	1.882
Other White Collar	1.409	1.396	1.807	1.554	1.296	1.213	1.130	1.425
Skill-int. Blue Collar	1.018	1.059	1.152	1.266	1.077	1.061	1.013	.957
				Gender	2			
Female worker	.883	.900	.848	.845	.924	.942	.934	.961


Table 17: Relative Wages in Brazil by Sector, 1990 and 1997

 a Relative to worker with some or complete high school education, controlling for occupation.

 ${}^{b}\mathrm{Relative}$ to other blue collar occupations, controlling for education.

 $^c{\rm Female}$ relative to male workers, controlling for education and occupation.

Source: RAIS São Paulo state 1990 and 1997 (prime age workers in their highest-paying job). Wage levels relative to comparison-group wage levels from component estimates with no establishment-fixed effects (Tables 13 and 14).

Source: RAIS São Paulo state 1990 and 1997 (prime age workers in their highest-paying job). Wage levels relative to zero experience wage levels from wage component estimates, as reported in Tables 13 and 14.

Figure 4: Potential experience profiles in Brazil

4 COMPARISONS TO RESULTS FROM OLS ESTIMATES Annualized Average Monthly Wage

Table 18: WAGE STRUCTURES IN BRAZILIAN MANUFACTURING 1990 AND 1997, WITH AND WITHOUT ESTABLISHMENT FIXED EFFECTS

	RAIS 1990			IS 1997
	$\frac{FE}{(1)}$	OLS (2)		OLS (4)
Primary School Education (or less)	-1.075 (.002)	-1.130 (.002)	-1.000 (.002)	-1.091 (.002)
Some High School Education	923 (.002)	955 $(.002)$	881 (.002)	963 $(.002)$
Some College Education	339 (.003)	340 (.003)	316 (.003)	265 (.003)
Professional or Managerial Occupation	.856 (.002)	.869 (.002)	.912 (.002)	.940 (.003)
Technical or Supervisory Occupation	.600 $(.002)$.632 $(.002)$.632 $(.002)$.687 $(.002)$
Other White Collar Occupation	.262 (.002)	.274 $(.002)$.249 $(.002)$.283 (.002)
Skill Intensive Blue Collar Occupation	.239 $(.001)$.251 $(.001)$	$.225 \\ (.001)$.273 $(.002)$
Potential Labor Force Experience	$.095 \\ (.0005)$.098 $(.0005)$.082 $(.0007)$.083 $(.0007)$
Quadratic Experience Term	003 $(.00005)$	003 $(.00006)$	003 $(.00007)$	003 $(.00008)$
Cubic Experience Term	.00005 (2.29e-06)	.00004 (2.43e-06)	.00008 $(2.86e-06)$.00006 (3.14e-06)
Quartic Experience Term	-3.01e-07 (3.24e-08)	-2.11e-07 (3.42e-08)	-7.64e-07 (3.89e-08)	-5.74e-07 (4.28e-08)
Female	.060 $(.005)$.081 $(.005)$.070 $(.006)$.071 $(.006)$
Female \times Primary School Education (or less)	.106 $(.004)$.087 $(.004)$.051 $(.004)$.050 $(.004)$
Female \times Some High School Education	016 $(.004)$	047 $(.004)$	058 $(.004)$	069 $(.004)$
Female \times Some College Education	.018 $(.005)$	$.005 \\ (.006)$	005 $(.005)$	079 $(.006)$
Female \times Professional or Managerial Occupation	101 $(.004)$	$^{128}_{(.004)}$	058 $(.005)$	064 $(.005)$
Female \times Technical or Supervisory Occupation	$^{173}_{(.003)}$	$^{198}_{(.003)}$	250 $(.004)$	290 $(.004)$
Female \times Other White Collar Occupation	$.088 \\ (.003)$	$.068 \\ (.003)$	$.071 \\ (.003)$	$.051 \\ (.004)$
Female \times Skill Intensive Blue Collar Occupation	208 $(.002)$	$^{233}_{(.002)}$	$^{167}_{(.003)}$	216 $(.003)$
Female \times Potential Labor Force Experience	056 $(.0008)$	057 $(.0009)$	$^{036}_{(.001)}$	035 $(.001)$
Female \times Quadratic Experience Term	.002 $(.0001)$	$.002 \\ (.0001)$	$.002 \\ (.0001)$.001 $(.0001)$
Female \times Cubic Experience Term	00006 (4.35e-06)	00006 (4.60e-06)	00005 $(5.63e-06)$	00003 (6.20e-06)
Female \times Quartic Experience Term	7.06e-07 (6.32e-08)	6.92e-07 (6.69e-08)	5.40e-07 (7.78e-08)	4.29e-07 (8.56e-08)
Const.	$7.963 \\ (.003)$	7.951 (.003)	$8.788 \\ (.003)$	$8.786 \\ (.003)$
Obs. R^2 (overall)	2,330,883 .529	2,330,883 .529	1,831,566.483	1,831,566 .484

Source: RAIS São Paulo state manufacturing 1990 and 1997 (prime age workers in their highest-paying job). Wage levels relative to zero experience wage levels from wage component estimates. OLS regressions do not control for establishment-worker fixed effects. Standard errors in parentheses (insignificant point estimates at the five percent level in *italics*).

	RAI	S 1990	RAI	S 1997
	\mathbf{FE}	OLS	\mathbf{FE}	OLS
	(1)	(2)	(3)	(4)
		Educ	cation^a	
Male worker:				
College Degree	2.516	2.598	2.412	2.620
Some College	1.793	1.849	1.758	2.010
Primary School	.859	.839	.888	.880
Female worker:				
College Degree	2.556	2.724	2.556	2.807
Some College	1.855	1.947	1.854	1.989
Primary School	.970	.960	.990	.991
		Occu	\mathbf{pation}^b	
Male worker:				
Profess'l or Managerial	2.355	2.383	2.488	2.561
Technical or Superv.	1.821	1.882	1.882	1.987
Other White Collar	1.299	1.316	1.283	1.327
Skill-int. Blue Collar	1.270	1.285	1.252	1.314
Female worker:				
Profess'l or Managerial	2.128	2.097	2.348	2.403
Technical or Superv.	1.532	1.544	1.466	1.487
Other White Collar	1.419	1.409	1.377	1.396
Skill-int. Blue Collar	1.031	1.018	1.059	1.059
		Gei	\mathbf{nder}^{c}	
Female worker	.893	.883	.915	.900

Table 19: Relative Wages in Brazilian Manufacturing 1990 and 1997, with and without Establishment Fixed Effects

 $^a\mathrm{Relative}$ to worker with some or complete high school education, controlling for occupation.

 ${}^b\mathrm{Relative}$ to other blue collar occupations, controlling for education.

 $^c{\rm Female}$ relative to male workers, controlling for education and occupation.

Source: RAIS São Paulo state manufacturing 1990 and 1997 (prime age workers in their highestpaying job). Wage levels relative to zero experience wage levels from wage component estimates. Wage levels relative to comparison-group wage levels from component estimates with and without establishment-fixed effects (Table 18).

5 Components of Wage Inequality in 1990 and 1997

	Manufact	uring 1990	Manufactu	ring 1997
	FE	OLS	FE	OLS
	(1)	(2)	(3)	(4)
Annual Wage ^{a}	1.1488	1.1488	1.1684	1.1684
Log Annual Wage $(\ln w_i)$.0096	.0096	.0077	.0077
Worker Char. $(x_i\hat{\beta})$.0048	.0051	.0034	.0037
Experience	.0015	.0016	.0008	.0009
Occupation	.0013	.0013	.0011	.0011
Education	.0013	.0013	.0011	.0012
Gender	.0007	.0008	.0004	.0005
EstablishmFixed $(\widehat{\psi}_i)^b$.0008		.0010	
Residual $(\widehat{\varepsilon_i})$.0040	.0045	.0033	.0040

Table 20: Composition of Manufacturing Wage Inequality

^aAnnualized mean monthly wage (USD of Dec 31).

^bRegression const. for OLS.

Source: RAIS São Paulo state manufacturing 1990 and 1997 (prime age workers in their highestpaying job). Inequality index: squared coefficient of deviation (2GE(2)), based on estimation samples (component estimates from wage regressions in Tables 8, 13, 9, and 14).

	1990		19	97
	FE^a	OLS^b	FE^a	OLS^b
	(1)	(2)	(3)	(4)
Worker Characteristics $(x_i\hat{\beta})$.501	.529	.445	.484
Experience	.158	.170	.110	.121
Occupation	.137	.139	.139	.141
Education	.134	.140	.145	.161
Gender	.072	.080	.051	.061
Establishment-Fixed Effect $(\widehat{\psi}_j)^c$.081		.131	
Residual $(\widehat{\varepsilon_i})$.418	.471	.424	.516

Table 21: Components of Manufacturing Log Wage Inequality

^aComponent estimates from log wage regressions in Table 4, columns 1 and 2.

^bComponent estimates from log wage estimates of model (??), but omitting the fixed effect. ^cRegression constant for OLS.

Source: RAIS São Paulo state manufacturing 1990 and 1997 (prime age workers in their highestpaying job). Inequality index: squared coefficient of deviation (2GE(2)), based on estimation samples (component estimates from wage regressions in Tables 8, 13, 9, and 14).

	Ma	Manuf.		Services		Commerce		Agric.	
	FE	OLS	\mathbf{FE}	OLS	FE	OLS	FE	OLS	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Annual Wage ^{a}	1.1488	1.1488	1.3179	1.3179	1.6509	1.6509	.9387	.9387	
Log Annual Wage $(\ln w_i)$.0096	.0096	.0109	.0109	.0099	.0099	.0063	.0063	
Worker Char. $(x_i\hat{\beta})$.0048	.0051	.0038	.0041	.0031	.0033	.0016	.0017	
Experience	.0015	.0016	.0006	.0007	.0014	.0015	.0004	.0005	
Occupation	.0013	.0013	.0011	.0011	.0006	.0006	.0004	.0004	
Education	.0013	.0013	.0019	.0021	.0010	.0011	.0005	.0006	
Gender	.0007	.0008	.0001	.0001	.00003	.00002	.0003	.0003	
EstablishmFixed $(\hat{\psi}_j)^b$.0008		.0019		.0010		.0016		
Residual $(\widehat{\varepsilon_i})$.0040	.0045	.0052	.0068	.0058	.0067	.0031	.0046	

Table 22: Composition of Wage Inequality 1990, by Sector

 $^a\mathrm{Annualized}$ mean monthly wage (USD of Dec 31).

 $^b\mathrm{Regression}$ const. for OLS.

Source: RAIS São Paulo state 1990 (prime age workers in their highest-paying job). Inequality index: squared coefficient of deviation (2GE(2)), based on estimation samples (component estimates from wage regressions in Tables 8 and 13).

Table 23: Composition of Wage Inequality 1997, by Sector	Table 23:	Composition	OF V	WAGE	INEQUALITY	1997,	BY SECTOR
--	-----------	-------------	------	------	------------	-------	-----------

	Manuf.		Serv	Services Commerce			e Agric.		
	FE	OLS	FE	OLS	\mathbf{FE}	OLS	FE	OLS	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Annual Wage ^{a}	1.1684	1.1684	1.2720	1.2720	1.3003	1.3003	1.1171	1.1171	
Log Annual Wage $(\ln w_i)$.0077	.0077	.0084	.0084	.0056	.0056	.0057	.0057	
Worker Char. $(x_i\hat{\beta})$.0034	.0037	.0031	.0032	.0018	.0019	.0011	.0013	
Experience	.0008	.0009	.0004	.0004	.0007	.0007	.0002	.0002	
Occupation	.0011	.0011	.0012	.0011	.0005	.0005	.0005	.0007	
Education	.0011	.0012	.0015	.0016	.0006	.0007	.0003	.0003	
Gender	.0004	.0005	.00006	.0001	00003	00004	.0001	.0001	
EstablishmFixed $(\widehat{\psi}_j)^b$.0010		.0012		.0006		.0020		
Residual $(\widehat{\varepsilon_i})$.0033	.0040	.0041	.0052	.0032	.0037	.0025	.0043	

 a Annualized mean monthly wage (USD of Dec 31).

 b Regression const. for OLS.

Source: RAIS São Paulo state 1997 (prime age workers in their highest-paying job). Inequality index: squared coefficient of deviation (2GE(2)), based on estimation samples (component estimates from wage regressions in Tables 9 and 14).

	Manufacturing		Serv	Services Cor			Agric	ulture
	FE	OLS	FE	OLS	FE	OLS	FE	OLS
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Worker Char. $(x_i\widehat{\beta})$.501	.529	.347	.374	.311	.329	.261	.264
Experience	.158	.170	.059	.066	.138	.148	.067	.072
Occupation	.137	.139	.104	.105	.064	.064	.065	.057
Education	.134	.140	.174	.193	.105	.115	.085	.089
Gender	.072	.080	.010	.011	.003	.002	.043	.046
EstablishmFixed $(\hat{\psi}_j)^a$.081		.176		.099		.252	
Residual $(\widehat{\varepsilon}_i)$.418	.471	.477	.626	.590	.671	.487	.736

Table 24: COMPONENTS OF LOG WAGE INEQUALITY BY SECTOR, 1990

 a Regression const. for OLS.

Source: RAIS São Paulo state 1990 (prime age workers in their highest-paying job). Inequality index: squared coefficient of deviation (2GE(2)), based on estimation samples (component estimates from wage regressions in Tables 8 and 13).

	Manufacturing		Services		Com	merce	Agric	Agriculture	
	FE^a	OLS^b	FE^{a}	OLS^b	FE^{a}	OLS^b	FE^a	OLS^b	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Worker Char. $(x_i\hat{\beta})$.445	.484	.367	.382	.318	.338	.200	.235	
Experience	.110	.121	.043	.049	.122	.131	.035	.041	
Occupation	.139	.141	.139	.129	.086	.087	.092	.117	
Education	.145	.161	.177	.190	.115	.127	.052	.059	
Gender	.051	.061	.008	.015	005	007	.021	.019	
EstablishmFixed $(\widehat{\psi}_j)^c$.131		.139		.100		.362		
Residual $(\widehat{\varepsilon}_i)$.424	.516	.494	.618	.581	.662	.438	.765	

Table 25:	Components	OF LO	og Wage	INEQUALITY	BY SECTOR	1997

 $^a\mathrm{Component}$ estimates from log wage regressions in Table 9.

^{*b*}Component estimates from log wage estimates of model (??), but omitting the fixed effect. ^{*c*}Regression const. for OLS.

Source: RAIS São Paulo state 1997 (prime age workers in their highest-paying job). Inequality index: squared coefficient of deviation (2GE(2)), based on estimation samples (component estimates from wage regressions in Tables 9 and 14).

Table 26: COMPONENTS OF MANUFACTURING WAGE INEQUALITY BY MEASURE,1990

	Establishment FE					OLS				
	2GE(2)	GE(1)	GE(0)	Gini	2G	E(2)	GE(1)	GE(0)	Gini	
	(1)	(2)	(3)	(4)		(5)	(6)	(7)	(8)	
Annual Wage ^{a}	1.1488	.3723	.3425	.4527	1.1	1488	.3723	.3425	.4527	
Log Annual Wage $(\ln w_i)$.0096	.0047	.0047	.0551	.(0096	.0047	.0047	.0551	
Worker Char. $(x_i\widehat{\beta})$.0048	.0047	0045	.0270	.(0051	.0049	0047	.0286	
Experience	.0015	.0011	0002	.0094	.(0016	.0011	0002	.0101	
Occupation	.0013	.0011	0007	.0070	.(0013	.0011	0007	.0071	
Education	.0013	.0018	0027	.0062	.(0013	.0018	0029	.0065	
Gender	.0007	.0008	0009	.0045	.(0008	.0008	0010	.0049	
EstablishmFixed $(\widehat{\psi}_i)^b$.0008	0039	.0133	.0047	.(0000	0047	.0141	.0000	
Residual $(\widehat{\varepsilon}_i)$.0040	.0040	0041	.0234	.(0045	.0045	0046	.0265	

^{*a*}Annualized mean monthly wage (USD of Dec 31).

 b Regression const. for OLS.

Source: *RAIS* São Paulo state manufacturing 1990 (prime age workers in their highest-paying job). Inequality indices based on estimation samples (component estimates from wage regressions in Tables 8 and 13). "Natural" decompositions of inequality indices (Shorrocks 1982).

Table 27:	Components	\mathbf{OF}	MANUFACTURING	WAGE	INEQUALITY	BY	Measure,
1997							

	E	stablishn	nent FE			OLS				
	$2 \operatorname{GE}(2)$	GE(1)	GE(0)	Gini	GE(2)	GE(1)	$\operatorname{GE}(0)$	Gini	
	(1)	(2)	(3)	(4)	3)	5)	(6)	(7)	(8)	
Annual Wage ^{a}	1.1684	.3818	.3464	.4586	1.16	84	.3818	.3464	.4586	
Log Annual Wage $(\ln w_i)$.0077	.0038	.0038	.0489	.00	77	.0038	.0038	.0489	
Worker Char. $(x_i\widehat{\beta})$.0034	.0033	0031	.0209	.00	37	.0036	0033	.0229	
Experience	.0008	.0005	.00007	.0059	.00	09	.0006	.00005	.0065	
Occupation	.0011	.0009	0006	.0061	.00	11	.0009	0006	.0062	
Education	.0011	.0014	0020	.0060	.00	12	.0016	0022	.0068	
Gender	.0004	.0004	0005	.0028	.00	05	.0005	0006	.0034	
EstablishmFixed $(\widehat{\psi}_j)^b$.0010	0027	.0101	.0066	.00	00	0037	.0110	.0000	
Residual $(\widehat{\varepsilon}_i)$.0033	.0032	0033	.0215	.00	40	.0039	0039	.0261	

^aAnnualized mean monthly wage (USD of Dec 31).

^bRegression const. for OLS.

Source: *RAIS* São Paulo state manufacturing 1997 (prime age workers in their highest-paying job). Inequality indices based on estimation samples (component estimates from wage regressions in Tables 9 and 14). "Natural" decompositions of inequality indices (Shorrocks 1982).

6 Comparisons to Household Data

	Manufact.	Services	Commerce	Agricult.	Total					
	(1)	(2)	(3)	(4)	(5)					
		Share of i	nformal jobs	(PNAD)						
1990	.220	.543	.444	.605	.415					
1997	.352	.518	.492	.429	.457					
1990:	Job allocation across sectors									
Formal jobs RAIS	.398	.433	.151	.018	1.000					
Formal jobs <i>PNAD</i>	.490	.338	.128	.044	1.000					
Informal jobs $PNAD$.195	.566	.144	.095	1.000					
1997:										
Formal jobs <i>RAIS</i>	.288	.500	.171	.041	1.000					
Formal jobs <i>PNAD</i>	.376	.428	.142	.053	1.000					
Informal jobs <i>PNAD</i>	.243	.546	.164	.047	1.000					

Table 28: JOB ALLOCATION BY FORMALITY AND ACROSS SECTORS

Sources: PNAD (prime age household members in September) and RAIS (prime age workers in their highest-paying job) São Paulo state, 1990 and 1997.

	Manufa	Manufacturing		\cos	Comm	nerce	Agricu	Agriculture	
	formal	inf.	formal	inf.	formal	inf.	formal	inf.	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
			Shar	e of Ma	ale Worke	rs			
1990:									
RAIS	.728		.558		.648		.802		
PNAD	.760	.849	.559	.439	.615	.631	.825	.803	
1997:									
RAIS	.744		.520		.625		.844		
PNAD	.777	.844	.525	.458	.600	.612	.880	.828	
		Share o	of Workers	s with S	Some Coll	ege Edi	ucation		
1990:						0			
RAIS	.093		.217		.070		.027		
PNAD	.099	.024	.153	.162	.069	.074	.020	.005	
1997:									
RAIS	.103		.225		.069		.022		
PNAD	.123	.040	.154	.131	.099	.081	.007	.006	

Table 29: Worker Demographics in Formal and Informal Jobs

Sources: PNAD (prime age household members in September) and RAIS (prime age workers in their highest-paying job) São Paulo state, 1990 and 1997.

	Ν	Manufactu	ring		Services			
	D 4 10	PNAD			PNAD			
	RAIS	formal	informal	RAIS	formal	informal		
	(1)	(2)	(3)	(4)	(5)	(6)		
1990	8.016	7.962	7.574	7.953	7.834	7.832		
1997	8.685	8.541	8.113	8.610	8.362	8.237		
1990:			Ger	nder				
Male	8.174	8.072	7.626	8.040	7.927	8.164		
Female	7.593	7.612	7.285	7.842	7.716	7.572		
1997:								
Male	8.800	8.608	8.151	8.694	8.481	8.542		
Female	8.349	8.310	7.906	8.519	8.230	7.979		
1000			Educ	ation				
1990:	0.01.1	0.400		~~~~		0.070		
Some college or more	9.014	9.138	8.983	8.589	8.959	9.052		
High school or less	7.913	7.832	7.540	7.776	7.631	7.597		
1997:								
Some college or more	9.704	9.595	8.986	9.275	9.344	9.492		
High school or less	8.567	8.394	8.076	8.417	8.183	8.048		

Table 30: MEAN LOG WAGES BY DATA SOURCE AND SECTOR

Sources: PNAD (prime age household members in September) and RAIS (prime age workers in their highest-paying job) São Paulo state, 1990 and 1997. Wages in current USD (December exchange rates; PNAD September wages transformed into real December values using the Brazilian CPI *INPC*; log U.S. CPI change between 1990 and 1997 of .187 subtracted from 1997 log wages).

	Mean Log Wage			En	Employment Shares			
		PNAD			PNAD			
	RAIS	formal	informal	RAIS	formal	informal		
	(1)	(2)	(3)	(4)	(5)	(6)		
1990	8.016	7.962	7.574		.780	.220		
1997	8.685	8.541	8.113		.648	.352		
1990:			Ger	nder				
Male	8.174	8.072	7.626	.728	.760	.849		
Female	7.593	7.612	7.285	.272	.241	.151		
1997:								
Male	8.800	8.608	8.151	.744	.777	.844		
Female	8.349	8.310	7.906	.256	.223	.156		
1990:			Educ	ation				
Some college or more	9.014	9.138	8.983	.093	.099	.024		
High school or less	7.913	7.832	7.540	.907	.901	.976		
1997:								
Some college or more	9.704	9.595	8.986	.103	.123	.040		
High school or less	8.567	8.394	8.076	.897	.877	.960		

Table 31: MEAN LOG WAGES AND WAGE VARIABILITY IN MANUFACTURING

Sources: PNAD (prime age household members in September) and RAIS (prime age workers in their highest-paying job) São Paulo state, 1990 and 1997. Wages in current U.S. dollars (December exchange rates; PNAD September wages transformed into real December values using the Brazilian CPI INPC; log U.S. CPI change between 1990 and 1997 of .187 subtracted from 1997 log wages).

	$\frac{RAIS}{(1)}$	PNAD Formal (2)	PNAD Informal (3)
Primary School Education (or less)	-1.361 (.002)	-1.812 (.073)	-1.557 (.484)
Some High School Education	-1.174 (.002)	-1.185 (.074)	997 (.496)
Some College Education	468 (.003)	455 (.080)	.198 (.526)
Blue Collar Occupation	328	180	359
	(.001)	(.028)	(.114)
Potential Labor Force Experience	.100	.168	.117
	(.0005)	(.029)	(.083)
Quadratic Experience Term	003	011	- <i>.003</i>
	(.00006)	(.003)	(.009)
Cubic Experience Term	.00003	.0004	.00007
	(2.50e-06)	(.0001)	(.0004)
Quartic Experience Term	-1.02e-07	-5.10e-06	-1.18e-06
	(3.52e-08)	(1.33e-06)	(5.06e-06)
Female	096	.351 (.221)	1.740 (.944)
Female \times Primary School Education (or less)	.200	.036	-1.399
	(.004)	(.175)	(.838)
Female \times Some High School Education	.059	172	-1.311
	(.004)	(.177)	(.852)
Female \times Some College Education	.044 (.006)	074(.186)	-2.034 (.933)
Female \times Blue Collar Occupation	079 (.002)	184 $(.055)$.007 (.208)
Female \times Potential Labor Force Experience	058	117	041
	(.0009)	(.050)	(.161)
Female \times Quadratic Experience Term	.002 (.0001)	.008 (.005)	.00008 (.017)
Female \times Cubic Experience Term	00005	0002	- <i>3.75e-06</i>
	(4.74e-06)	(.0002)	(.0007)
Female \times Quartic Experience Term	5.33e-07	2.92e-06	2.50e-07
	(6.89e-08)	(2.56e-06)	(8.51e-06)
Obs.	2,330,883	2,764	300

Table 32: WAGE STRUCTURE IN BRAZILIAN MANUFACTURING 1990

Sources: PNAD (prime age household members in September) and *RAIS* (prime age workers in their highest-paying job) São Paulo state 1990. *Not* controlling for establishment-worker fixed effects. Standard errors in parentheses (insignificant point estimates at the five percent level in *italics*).

		PNAD	PNAD
	RAIS	Formal	Informal
	(1)	(2)	(3)
Primary School Education (or less)	-1.333 (.002)	-1.742 (.076)	959 (.321)
Some High School Education	-1.192 (.002)	-1.199 (.076)	277 (.325)
Some College Education	404 (.003)	546 (.086)	$.108 \\ (.349)$
Blue Collar Occupation	305 (.001)	179 (.028)	266 (.085)
Potential Labor Force Experience	.085 (.0007)	$.158 \\ (.030)$.142 (.059)
Quadratic Experience Term	003 (.00008)	009 (.003)	- <i>.008</i> (.007)
Cubic Experience Term	.00005 (3.25e-06)	.0003 $(.0001)$.0003 (.0003)
Quartic Experience Term	-4.79e-07 (4.42e-08)	-3.35e-06 (1.33e-06)	-4.51e-06 (4.11e-06)
Female	101 (.005)	- <i>.041</i> (.226)	.449 $(.734)$
Female \times Primary School Education (or less)	.124 $(.004)$.208 (.155)	<i>876</i> (.712)
Female \times Some High School Education	.0003 (.004)	.092 (.152)	919 (.716)
Female \times Some College Education	056 (.006)	.221 (.166)	- <i>.345</i> (.754)
Female \times Blue Collar Occupation	051 (.002)	133 (.057)	<i>041</i> (.139)
Female \times Potential Labor Force Experience	036 (.001)	092 (.053)	.119 (.098)
Female \times Quadratic Experience Term	.001 (.0002)	.007 (.005)	<i>013</i> (.011)
Female \times Cubic Experience Term	00003 (6.41e-06)	<i>0002</i> (.0002)	.0005 (.0005)
Female \times Quartic Experience Term	3.51e-07 (8.85e-08)	2.68e-06 (2.59e-06)	-5.29e-06 (6.45e-06)
Obs.	$1,\!831,\!566$	$2,\!489$	442

Table 33: WAGE STRUCTURE IN BRAZILIAN MANUFACTURING 1997

Sources: PNAD (prime age household members in September) and *RAIS* (prime age workers in their highest-paying job) São Paulo state 1997. *Not* controlling for establishment-worker fixed effects. Standard errors in parentheses (insignificant point estimates at the five percent level in *italics*).

	R_{A}	RAIS		Formal	PNAD I	PNAD Informal	
	1990	1997	1990	1997	1990	1997	
	(1)	(2)	(3)	(4)	(5)	(6)	
			Edu	\mathbf{cation}^a			
Male worker:							
College Degree	3.236	3.294	3.271	3.318	2.710	1.319	
Some College	2.027	2.199	2.076	1.922	3.303	1.469	
Primary School	.830	.869	.534	.581	.571	.506	
Female worker:							
College Degree	3.050	3.293	3.887	3.025	10.057	3.306	
Some College	1.996	2.079	2.291	2.186	1.603	2.607	
Primary School	.956	.984	.658	.652	.523	.528	
			Οςςι	$\mathbf{ipation}^b$			
Male worker:							
Blue Collar	.720	.737	.835	.836	.699	.766	
Female worker:							
Blue Collar	.665	.700	.695	.732	.704	.735	
			Ge	\mathbf{ender}^{c}			
Female worker	.880	.896	.892	.899	.909	.918	

Table 34: Relative Wages in Manufacturing by Formality, 1990 and 1997

 $^a\mathrm{Relative}$ to worker with some or complete high school education, controlling for blue-collar occupation.

^bRelative to white collar occupations, controlling for education.

^cFemale relative to male workers, controlling for education and blue-collar occupation.

Sources: PNAD (prime age household members in September) and *RAIS* (prime age workers in their highest-paying job) São Paulo state, 1990 and 1997. Wage levels relative to comparison-group wage levels from component estimates (Tables 32 and 33).

	Manufacturing 1990		Manufact	uring 1997
	(1)	(2)	(3)	(4)
Illiterate	-1.330 (.385)	-1.226 (.369)	884 (.338)	865 (.332)
Primary School Dropout	-1.127 (.343)	-1.065 (.332)	690 (.302)	702 (.292)
Primary School Graduate	777 (.338)	711 (.328)	905 (.284)	891 (.276)
Middle School Dropout	621 (.334)	565 (.325)	947 (.272)	942 (.265)
Middle School Graduate	526 (.341)	- <i>.342</i> (.334)	- <i>.390</i> (.278)	- <i>.393</i> (.273)
High School Dropout	- <i>.290</i> (.337)	163 (.333)	<i>403</i> (.270)	405 (.265)
High School Graduate	.160	.233	161	147
College Dropout	(.595) <i>225</i> (.256)	(.586) 169	(.418) <i>428</i> (.201)	(.414) 425 (.290)
Blue Collar Occupation	(.356) . <i>096</i> (.094)	(.353)	(.291) . <i>014</i> (.080)	(.250)
Potential Labor Force Experience	(.094) .130 (.077)	$.134 \\ (.071)$.146 (.067)	.146 $(.066)$
Quadratic Experience Term	- <i>.002</i> (.008)	002	008	008
Cubic Experience Term	- <i>.0001</i> (.0003)	(.008) - <i>.00007</i> (.0003)	(.007) .0002 (.0003)	(.007) .0002 (.0003)
Quartic Experience Term	2.31e-06 (4.26e-06)	1.68e-06 (4.03e-06)	-2.19e-06 (3.85e-06)	-2.04e-06 (3.81e-06)
Female	.618 (.710)	.415 (.682)	- <i>.258</i> (.620)	- <i>.239</i> (.618)
Female \times Illiterate	.681	.142 (.689)	.042 (.748)	044 (.738)
Female \times Primary School Dropout	(.725) .919 (.660)	.536 (.634)	049 (.614)	078 (.602)
Female \times Primary School Graduate	.458 (.643)	.107 (.621)	.136 (.582)	.053 (.572)
Female \times Middle School Dropout	. <i>333</i> (.635)	.017 (.615)	- <i>.118</i> (.555)	150 (.546)
Female \times Middle School Graduate	.274 (.645)	084 (.625)	(.555) 253 (.564)	- <i>.277</i> (.558)
Female \times High School Dropout	.383 (.641)	.155 (.626)	(.504) 151 (.546)	168 (.542)
Female \times High School Graduate	<i>857</i> (.928)	901 (.874)	<i>530</i> (.765)	546 (.763)
Female \times College Dropout	.423	.388 (.677)	.250 (.586)	.245 (.585)
Female \times Blue Collar Occupation	495 (.166)	(1011)	<i>086</i> (.143)	(1000)
Female \times Potential Labor Force Experience	- <i>.196</i> (.136)	113 (.123)	.088 (.112)	.071 (.111)
Female \times Quadratic Experience Term	.015 (.014)	.007 (.013)	007 (.012)	005 (.012)
Female \times Cubic Experience Term	- <i>.0005</i> (.0006)	- <i>.0002</i> (.0005)	.0002 (.0005)	.0002 (.0005)
Female \times Quartic Experience Term	5.90e-06 (7.38e-06)	2.75e-06 (6.82e-06)	-2.99e-06 (6.63e-06)	-2.23e-06 (6.58e-06)
Constant	.794 (.377)	.783 (.367)	.676 (.313)	.689 (.311)
Observations	3,064	3,581	2,931	2,983
Censored obs. (informal workers)	300	331	442	449
Pseudo R^2	.088	.084	.083	.081

Table 35: PROBIT PREDICTIONS OF WORKER'S FORMALITY STATUS

Source: PNAD (prime age household members in Sept.) São Paulo state manuf. 1990 and 1997. Formality: labor ID card (*carteira*). Standard errors in parentheses (insignificant point estimates at the five percent level in *italics*).

Table 36: WAGE STRUCTURES IN BRAZILIAN MANUFACTURING 1990 AND 1997, WITH AND WITHOUT SELECTION CORRECTION

	RAIS 1990 (FE)		RAIS 1	.997 (FE)
	Selection	Plain	Selection	Plain
	(1)	(2)	(3)	(4)
Primary School Education (or less)	$^{-1.041}_{(.021)}$	$^{-1.075}_{(.002)}$	973 $(.011)$	$^{-1.000}_{(.002)}$
Some High School Education	914 $(.015)$	923 $(.002)$	$^{869}_{(.011)}$	881 $(.002)$
Some College Education	329 (.015)	339 $(.003)$	$^{301}_{(.011)}$	316 $(.003)$
Professional or Managerial Occupation	.863 $(.007)$.856 $(.002)$.914 $(.004)$.912 (.002)
Technical or Supervisory Occupation	$.608 \\ (.008)$.600 $(.002)$	$.635 \\ (.004)$.632 $(.002)$
Other White Collar Occupation	.270 $(.008)$.262 (.002)	.251 (.004)	.249 (.002)
Skill Intensive Blue Collar Occupation	.238 $(.001)$.239 (.001)	.224 $(.002)$	$.225 \\ (.001)$
Potential Labor Force Experience	.083 $(.011)$.095 $(.0005)$.074 $(.006)$.082 (.0007)
Quadratic Experience Term	002 (.001)	003 $(.00005)$	003 $(.0005)$	003 $(.00007)$
Cubic Experience Term	.00003 $(.00003)$.00005 (2.29e-06)	.00006 (.00002)	.00008 (2.86e-06)
Quartic Experience Term	-1.12e-07 (4.13e-07)	-3.01e-07 (3.24e-08)	-5.57e-07 (2.22e-07)	-7.64e-07 (3.89e-08)
Female	.060 (.056)	.060 (.005)	.112 (.037)	.070 (.006)
Female \times Primary School Education (or less)	.097 $(.036)$.106 $(.004)$.057 (.019)	.051 $(.004)$
Female \times Some High School Education	004 $(.040)$	016 $(.004)$	042 (.022)	058 $(.004)$
Female \times Some College Education	004 $(.038)$.018 $(.005)$	017 (.021)	005 (.005)
Female \times Professional or Managerial Occupation	138 $(.022)$	(.004)	063 $(.009)$	058 $(.005)$
Female \times Technical or Supervisory Occupation	211 (.023)	173 $(.003)$	256 $(.009)$	250 $(.004)$
Female \times Other White Collar Occupation	.049 $(.024)$	$.088 \\ (.003)$	$.065 \\ (.009)$.071 $(.003)$
Female \times Skill Intensive Blue Collar Occupation	209 $(.002)$	208 $(.002)$	$^{167}_{(.003)}$	167 $(.003)$
Female \times Potential Labor Force Experience	(.042)	056 $(.0008)$	$(.009)^{047}$	036 $(.001)$
Female \times Quadratic Experience Term	.0009 $(.002)$.002 (.0001)	.002 $(.0009)$.002 $(.0001)$
Female \times Cubic Experience Term	-4.62e-06 (.00006)	00006 (4.35e-06)	00007 (.00003)	00005 (5.63e-06)
Female \times Quartic Experience Term	-4.86e-08 (7.84e-07)	7.06e-07 (6.32e-08)	8.75e-07 (4.40e-07)	5.40e-07 (7.78e-08)
Predicted Inverse of Mills' Ratio	259 (.122)	. ,	137 (.037)	. ,
Observations	$2,\!331,\!183$	2,330,883	1,832,008	$1,\!831,\!566$

Sources: PNAD (prime age household members in September) and RAIS (prime age workers in their highestpaying job) São Paulo state manufacturing, 1990 and 1997. Regressions control for establishment-worker fixed effects (estimates in columns 2 and 4 are those from column 1 in Tables 8 and 9). Inverse Mills ratios from out-of-sample predictions of formality selection using PNAD (prime age household members in September) coefficient estimates (Table 35). Standard errors in parentheses (insignificant point estimates at the five percent level in *italics*), corrected for selection variation (Heckman 1979).

Table 37:	Relative	WAGES	IN	Brazil	1990	AND	1997,	WITH	AND	WITHOUT
PARAMET	RIC SELECT	TION COF	RRF	ECTION						

	RAIS	1990 (FE)	RAIS	1997 (FE)
	Selectivity	No correction	Selectivity	No correction
	(1)	(2)	(3)	(4)
		Educ	\mathbf{ation}^a	
Male worker:				
College Degree	2.494	2.516	2.386	2.412
Some College	1.795	1.793	1.766	1.758
Primary School	.881	.859	.901	.888
Female worker:				
College Degree	2.504	2.556	2.488	2.556
Some College	1.794	1.855	1.812	1.854
Primary School	.974	.970	.996	.990
		Occur	\mathbf{pation}^b	
Male worker:		Occup		
Profess'l or Managerial	2.370	2.355	2.493	2.488
Technical or Superv.	1.836	1.821	1.887	1.882
Other White Collar	1.310	1.299	1.285	1.283
Skill-int. Blue Collar	1.269	1.270	1.252	1.252
Female worker:				
Profess'l or Managerial	2.065	2.128	2.341	2.348
Technical or Superv.	1.486	1.532	1.460	1.466
Other White Collar	1.376	1.419	1.372	1.377
Skill-int. Blue Collar	1.029	1.031	1.059	1.059
		Gen	\mathbf{der}^{c}	
Female worker	.901	.893	.917	.915

^{*a*}Relative to worker with some or complete high school education, controlling for occupation. ^{*b*}Relative to other blue collar occupations, controlling for education.

^cFemale relative to male workers, controlling for education and occupation.

Source: RAIS (prime age workers in their highest-paying job) São Paulo state manufacturing, 1990 and 1997. Out-of-sample selectivity predictions of formality status from PNAD (prime age household members in September) coefficient estimates (columns 1 and 3 in Table 35). Wage levels relative to comparison-group wage levels from component estimates (Table 36).

Table 38: Average-squared Error Cross-validation of NonparametricSelection Estimation under Polynomial Expansions

	Linear model	Partial interactions	Full interactions
	(1)	(2)	(3)
1990:			
No occupation covariate	.079	.076	.075
Blue-collar indicator	.083	.080	.078
1997:			
No occupation covariate	.118	.114	.112
Blue-collar indicator	.118	.113	.112

Source: PNAD (prime age household members in September) and *RAIS* (prime age workers in their highest-paying job) São Paulo state manufacturing, 1990 and 1997. Crossvalidation by leave-one-out using average squared error criterion.

	<i>RAIS</i> 1990 (FE)		<i>RAIS</i> 1997 (FE)			
	No corr.	Param.	Semip.	No corr.	Param.	Semip.
	(1)	(2)	(3)	(4)	(5)	(6)
		\mathbf{Edu}	\mathbf{cation}^a			
Male worker:	0 710	<u> </u>	0 510	0.440	2 2 2 2	0.440
College Degree	2.516	2.494	2.516	2.412	2.386	2.412
Some College	1.793	1.795	1.793	1.758	1.766	1.758
Primary School (or less)	.859	.881	.859	.888	.901	.888
Female worker:						
College Degree	2.556	2.504	2.555	2.556	2.488	2.547
Some College	1.855	1.794	1.854	1.854	1.812	1.848
Primary School (or less)	.970	.974	.969	.990	.996	.984
		Осси	$\mathbf{ipation}^b$			
Male worker:			1			
Profess'l or Managerial	2.355	2.370	2.355	2.488	2.493	2.488
Technical or Superv.	1.821	1.836	1.821	1.882	1.887	1.882
Other White Collar	1.299	1.310	1.299	1.283	1.285	1.283
Skill-int. Blue Collar	1.270	1.269	1.270	1.252	1.252	1.252
Female worker:						
Profess'l or Managerial	2.128	2.065	2.129	2.348	2.341	2.349
Technical or Superv.	1.532	1.486	1.533	1.466	1.460	1.467
Other White Collar	1.419	1.376	1.419	1.377	1.372	1.378
Skill-int. Blue Collar	1.031	1.029	1.031	1.059	1.059	1.059
		Ge	\mathbf{ender}^{c}			
Female worker	.893	.901	.893	.915	.917	.915

Table 39: Relative Manufacturing Wages in Brazil under Selectivity

^aRelative to worker with some or complete high school education, controlling for occupation.

 ${}^{b}\mathrm{Relative}$ to other blue collar occupations, controlling for education.

 $^c{\rm Female}$ relative to male workers, controlling for education and occupation.

Source: RAIS (prime age workers in their highest-paying job) São Paulo state manufacturing, 1990 and 1997. Out-of-sample selectivity predictions of formality status from PNAD (prime age household members in September) coefficient estimates. Wage levels relative to comparison-group wage levels from component estimates.

Table 40: WAGE STRUCTURE UNDER FORMALITY SELECTION IN BRAZILIAN MAN-UFACTURING 1990 AND 1997, WITH AND WITHOUT ESTABLISHMENT FIXED EF-FECTS

FECTS	RAIS 1990		RAIS 1997		
	FE	OLS	FE	OLS	
	(1)	(2)	(3)	(4)	
Primary School Education (or less)	-1.041 (.021)	-1.096 (.020)	973 (.011)	-1.080 (.005)	
Some High School Education	914 (.015)	947 (.014)	869 (.011)	959 (.005)	
Some College Education	329 (.015)	331 (.015)	301 (.011)	259 (.006)	
Professional or Managerial Occupation	.863 $(.007)$.875 (.006)	.914 (.004)	.941 (.003)	
Technical or Supervisory Occupation	.608 $(.008)$.641 (.007)	.635 (.004)	.688 $(.003)$	
Other White Collar Occupation	.270 (.008)	.283 (.007)	.251 $(.004)$.283 (.003)	
Skill Intensive Blue Collar Occupation	.238 $(.001)$.250 $(.001)$.224 (.002)	.273 (.002)	
Potential Labor Force Experience	.083 $(.011)$.086 $(.011)$.074 (.006)	.079 (.003)	
Quadratic Experience Term	002 (.001)	002	003	003 (.0002)	
Cubic Experience Term	.00003 (.00003)	.00002 (.00003)	.00006 (.00002)	.00005 (8.46 e -06)	
Quartic Experience Term	-1.12e-07 (4.13e-07)	-2.05e-08 (4.08e-07)	-5.57e-07 (2.22e-07)	-4.83e-07 (1.05e-07)	
Female	.060 (.056)	.081 (.056)	.112 (.037)	.090 $(.017)$	
Female \times Primary School Education (or less)	.097 (.036)	.078 (.035)	.057 (.019)	.053 $(.009)$	
Female \times Some High School Education	004 (.040)	- <i>.035</i> (.039)	042 (.022)	062 (.010)	
Female \times Some College Education	- <i>.004</i> (.038)	- <i>.018</i> (.038)	017 (.021)	084 (.011)	
Female \times Professional or Managerial Occupation	138 (.022)	164 (.022)	063 (.009)	066 (.006)	
Female \times Technical or Supervisory Occupation	211 (.023)	236 (.023)	256 (.009)	293 $(.006)$	
Female \times Other White Collar Occupation	.049 (.024)	.030 (.023)	.065 $(.009)$.048 (.005)	
Female \times Skill Intensive Blue Collar Occupation	209 (.002)	234 (.002)	167 (.003)	216 (.003)	
Female \times Potential Labor Force Experience	042 (.017)	042 (.016)	047 (.009)	040 (.004)	
Female \times Quadratic Experience Term	.0009 (.002)	.0009 (.002)	.002 (.0009)	.002 (.0004)	
Female \times Cubic Experience Term	-4.62e-06 (.00006)	-2.51e-06 (.00006)	00007 (.00003)	00005 $(.00002)$	
Female \times Quartic Experience Term	-4.86e-08 (7.84e-07)	-5.78e-08 (7.74e-07)	8.75e-07 (4.40e-07)	5.76e-07 (2.08e-07)	
Predicted Inverse Mills Ratio	259 (.122)	257 (.120)	137 (.037)	060 (.017)	
Observations	2,331,183	2,331,183	1,832,008	1,832,008	

Source: RAIS (prime age workers in their highest-paying job) São Paulo state manufacturing, 1990 and 1997. OLS regressions do not control for establishment-worker fixed effects. Inverse Mills ratios from out-of-sample predictions of formality selection using *PNAD* (prime age household members in September) coefficient estimates (columns 1 and 3 in Table 35). Standard errors in parentheses (insignificant point estimates at the five percent level in *italics*), corrected for selection variation (Heckman 1979).

	<i>PNAD</i> 1990 (OLS)		<i>PNAD</i> 1997 (OLS)	
	Selection	Plain	Selection	Plain
	(1)	(2)	(3)	(4)
Primary School Education (or less)	-1.424 (.410)	-1.812 (.073)	-1.480 (.191)	-1.742 (.076)
Some High School Education	-1.075 (.390)	-1.185 (.074)	-1.078 (.176)	-1.199 (.076)
Some College Education	358 (.419)	455 (.080)	405 (.199)	546 (.086)
Blue Collar Occupation	- <i>.214</i> (.144)	180 (.028)	178 (.063)	179 (.028)
Potential Labor Force Experience	- <i>.018</i> (.160)	.168 (.029)	.093 (.066)	.158 (.030)
Quadratic Experience Term	0005 (.015)	011 (.003)	<i>005</i> (.006)	009 (.003)
Cubic Experience Term	<i>.0001</i> (.0005)	.0004 $(.0001)$. <i>0002</i> (.0002)	$.0003 \\ (.0001)$
Quartic Experience Term	-2.49e-06 (6.81e-06)	-5.10e-06 (1.33e-06)	-2.49e-06 (2.94e-06)	-3.35e-06 (1.33e-06)
Female	392 (1.162)	.351 (.221)	.237 (.492)	<i>041</i> (.226)
Female \times Primary School Education (or less)	- <i>.101</i> (.899)	.036 (.175)	.280 (.352)	<i>.208</i> (.155)
Female \times Some High School Education	<i>324</i> (.912)	- <i>.172</i> (.177)	.167 (.347)	.092 (.152)
Female \times Some College Education	267 (.959)	- <i>.074</i> (.186)	. <i>128</i> (.378)	.221 (.166)
Female \times Blue Collar Occupation	.213 (.319)	184 $(.055)$	<i>100</i> (.125)	133 (.057)
Female \times Potential Labor Force Experience	.101 (.265)	117 (.050)	- <i>.174</i> (.113)	092 (.053)
Female \times Quadratic Experience Term	<i>011</i> (.027)	$.008 \\ (.005)$. <i>014</i> (.011)	.007 (.005)
Female \times Cubic Experience Term	. <i>0004</i> (.001)	<i>0002</i> (.0002)	0005 (.0004)	- <i>.0002</i> (.0002)
Female \times Quartic Experience Term	-5.27e-06 (1.00e-05)	2.92e-06 (2.56e-06)	5.54e-06 (5.66e-06)	2.68e-06 (2.59e-06)
Constant	$\begin{array}{c} 9.952 \\ (.778) \end{array}$	$8.650 \\ (.116)$	$\begin{array}{c} 9.833 \\ (.317) \end{array}$	9.254 (.121)
Predicted Inverse Mills Ratio	-2.879 (1.143)		-1.276 (.394)	
Observations	2,764	2,764	2,489	2,489

Table 41: WAGE STRUCTURE UNDER FORMALITY SELECTION IN BRAZILIAN MAN-UFACTURING USING HOUSEHOLD DATA

Source: PNAD (prime age household members in September) São Paulo state manufacturing, 1990 and 1997. Not controlling for establishment-worker fixed effects. Inverse Mills ratios from predictions of formality selection (Table 35). Standard errors in parentheses (insignificant point estimates at the five percent level in *italics*), corrected for selection variation (Heckman 1979).

Table 42: WAGE STRUCTURE COMPARISON BETWEEN HOUSEHOLD DATA ANDEMPLOYER RECORDS UNDER FORMALITY SELECTION IN MANUFACTURING

	1990 (OLS)		1997	(OLS)
	RAIS	PNAD	RAIS	PNAD
	(1)	(2)	(3)	(4)
Primary School Education (or less)	-1.321 (.024)	-1.424 (.410)	-1.323 (.005)	-1.480 (.191)
Some High School Education	-1.164 (.017)	-1.075 (.390)	-1.188 (.004)	-1.078 $(.176)$
Some College Education	456 (.017)	358 (.419)	398 (.005)	405 (.199)
Blue Collar Occupation	338 (.008)	214 (.144)	306 (.002)	178 $(.063)$
Potential Labor Force Experience	.086 (.013)	018 (.160)	.082 (.002)	.093 (.066)
Quadratic Experience Term	002 (.001)	- <i>.0005</i> (.015)	002 (.0002)	- <i>.005</i> (.006)
Cubic Experience Term	1.00e-05 (.00004)	<i>.0001</i> (.0005)	.00005 (7.23e-06)	.0002 (.0002)
Quartic Experience Term	1.18e-07 (4.71e-07)	-2.49e-06 (6.81e-06)	-4.04e-07 (9.03e-08)	-2.49e-06 (2.94e-06)
Female	139 (.069)	392 (1.162)	088 (.014)	$.237$ $_{(.492)}$
Female \times Primary School Education (or less)	.189 (.041)	<i>101</i> (.899)	.126 (.008)	.280 (.352)
Female \times Some High School Education	.072 (.046)	<i>324</i> (.912)	. <i>006</i> (.009)	.167 (.347)
Female \times Some College Education	.017 $(.043)$	267 (.959)	060 (.009)	.128 (.378)
Female \times Blue Collar Occupation	<i>036</i> (.027)	.213 (.319)	049 (.004)	<i>100</i> (.125)
Female \times Potential Labor Force Experience	041 (.019)	.101 (.265)	040 (.004)	<i>174</i> (.113)
Female \times Quadratic Experience Term	.0004 (.002)	<i>011</i> (.027)	.001 $(.0004)$.014 $(.011)$
Female \times Cubic Experience Term	.00002 (.00007)	<i>.0004</i> (.001)	00004 $(1.00e-05)$	0005 (.0004)
Female \times Quartic Experience Term	-3.33e-07 (8.94e-07)	-5.27e-06 (1.00e-05)	4.70e-07 (1.79e-07)	5.54e-06 (5.66e-06)
Constant	$8.765 \\ (.067)$	9.952 (.778)	9.523	9.833 (.317)
Predicted Inverse Mills Ratio	297 (.139)	-2.879 (1.143)	049 (.015)	-1.276 (.394)
Observations	2,331,183	3,064	1,832,008	2,931
Censored obs. (informal workers)	300	300	442	442

Sources: PNAD (prime age household members in September) and RAIS (prime age workers in their highestpaying job) São Paulo state manufacturing, 1990 and 1997. Not controlling for establishment-worker fixed effects. Predicted inverse Mills ratios from PNAD coefficient estimates (out-of-sample predictions in the case of RAIS), based on estimates in columns 1 and 3 of Table 35. Standard errors in parentheses (insignificant point estimates at the five percent level in *italics*), corrected for selection variation (Heckman 1979).

 Table 43: VARIABILITY OF MANUFACTURING WAGES IN 1990 UNDER SELECTIVITY

 CORRECTIONS

 Correlation with

Connections			Correlation with				
	Mean	St.Dev.	$\ln w_i$	$x_i \widehat{\beta}$	$\widehat{\psi}_j$	$\widehat{\epsilon_i} \mathcal{I}_i$	$\widehat{\varepsilon_i}$
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
No Selection Correction							
Log Annual Wage $(\ln w_i)$	8.019	.785	1.000				
Worker Characteristics $(x_i\hat{\beta})$.056	.541	.727	1.000			
Establishment-Fixed $(\hat{\psi}_i)$	7.963	.183	.346	.163	1.000		
Residual $(\widehat{\varepsilon}_i)$	000	.508	.647	.000	.000		1.000
Selection Correction under J	oint No	rmality					
Log Annual Wage $(\ln w_i)$	8.019	.785	1.000				
Worker Characteristics $(x_i\hat{\beta})$	032	.541	.727	1.000			
Establishment-Fixed $(\hat{\psi}_j)$	8.096	.183	.346	.164	1.000		
Inverse of Mills' Ratio $(\hat{\epsilon}_i \mathcal{I}_i)$	045	.034	.480	.651	.136	1.000	
Residual $(\widehat{\varepsilon}_i)$.000	.508	.647	.000	000	.000	1.000
Semiparametric Selection Co	orrection	under Or	der Rest	rictions			
Log Annual Wage $(\ln w_i)$	8.019	.785	1.000				
Worker Characteristics $(x_i\hat{\beta})$.056	.541	.727	1.000			
Establishment-Fixed $(\hat{\psi}_i)$	7.963	.183	.346	.163	1.000		
Propensity Score $(\widehat{\epsilon_i} \mathcal{I}_i)$.000	.001	.028	.036	.012	1.000	
Residual $(\widehat{\varepsilon}_i)$.000	.508	.647	.000	.000	000	1.000

Sources: RAIS São Paulo state manufacturing 1990 (prime age workers in their highest-paying job). Estimates from establishment-fixed effects wage regressions relative to other blue-collar occupations, controlling for education. Statistics based on estimation sample.

 Table 44: VARIABILITY OF MANUFACTURING WAGES IN 1997 UNDER SELECTIVITY

 CORRECTIONS

 Correlation with

Connections			Correlation with				
	Mean	St.Dev.	$\ln w_i$	$x_i \widehat{\beta}$	$\widehat{\psi}_j$	$\widehat{\epsilon_i} \mathcal{I}_i$	$\widehat{\varepsilon_i}$
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
No Selection Correction							
Log Annual Wage $(\ln w_i)$	8.872	.778	1.000				
Worker Characteristics $(x_i\hat{\beta})$.084	.498	.695	1.000			
Establishment-Fixed $(\hat{\psi}_j)$	8.788	.241	.423	.176	1.000		
Residual $(\widehat{\varepsilon}_i)$	000	.507	.651	000	.000		1.000
Selection Correction under J	oint No	rmality					
Log Annual Wage $(\ln w_i)$	8.872	.778	1.000				
Worker Characteristics $(x_i\hat{\beta})$.023	.498	.695	1.000			
Establishment-Fixed $(\widehat{\psi}_j)$	8.849	.241	.423	.176	1.000		
Inverse of Mills' Ratio $(\widehat{\epsilon}_i \mathcal{I}_i)$	032	.019	.409	.584	.112	1.000	
Residual $(\widehat{\varepsilon}_i)$.000	.507	.651	000	000	000	1.000
Semiparametric Selection Co	orrection	n under Or	der Rest	rictions			
Log Annual Wage $(\ln w_i)$	8.872	.778	1.000				
Worker Characteristics $(x_i\hat{\beta})$.084	.498	.695	1.000			
Establishment-Fixed $(\hat{\psi}_j)$	8.789	.241	.423	.176	1.000		
Propensity Score $(\widehat{\epsilon_i} \mathcal{I}_i)$	001	.005	.037	.049	.017	1.000	
Residual $(\widehat{\varepsilon}_i)$.000	.507	.651	000	000	.000	1.000

Sources: RAIS São Paulo state manufacturing 1997 (prime age workers in their highest-paying job). Estimates from establishment-fixed effects wage regressions relative to other blue-collar occupations, controlling for education. Statistics based on estimation sample.

8 Wage Components and Firm Characteristics

Table 45:	MANUFACTURING	Firm	CHARACTERISTICS	AND	WAGES	IN	Brazil,
FRANCE A	ND THE U.S.						

	Brazil 1990	Brazil 1997	France 1992	U.S. 1990
	(1)	(2)	(3)	(4)
$\mathbf{Log} \ \mathbf{Employment}^{a}$				
Mean Worker Characteristics $(\overline{x}_k \hat{\beta})$	$ \begin{array}{c} 1.111 \\ (.141) \end{array} $.783 $(.144)$	1.103 (.402)	486 (.130)
Mean Establishment-Fixed $(\overline{\widehat{\psi}}_k)$	1.496 (.187)	1.716 (.172)	4.588 (.495)	.223 (.073)
Log Capital Stock				
Mean Worker Characteristics $(\overline{x}_k\widehat{\beta})$	2.336 (.207)	.841 (.185)	2.290 (.510)	<i>183</i> (.154)
Mean Establishment-Fixed $(\overline{\widehat{\psi}}_k)$	$\underset{(.274)}{2.403}$	1.703 (.219)	6.751 (.628)	.838 (.086)
Log Capital-Labor Ratio				
Mean Worker Characteristics $(\overline{x}_k \widehat{\beta})$	1.244 (.121)	.337 (.149)	1.187 (.200)	.303 (.060)
Mean Establishment-Fixed $(\overline{\widehat{\psi}}_k)$.920 (.160)	. <i>104</i> (.177)	$\begin{array}{c} 2.163 \\ (.247) \end{array}$.615 (.034)
Non-Production Worker Ratio ^{a}				
Mean Worker Characteristics $(\overline{x}_k\widehat{\beta})$.052 $(.016)$.055 $(.019)$.124 $(.014)$
Mean Establishment-Fixed $(\overline{\widehat{\psi}}_k)$	$.091 \\ (.021)$.020 (.022)		036 (.008)
High-Skill Occupation $Ratio^b$				
Mean Worker Characteristics $(\overline{x}_k\widehat{\beta})$.441 (.021)	.507 (.025)	.572 (.031)	
Mean Establishment-Fixed $(\overline{\widehat{\psi}}_k)$.279 (.028)	.121 (.030)	. <i>041</i> (.036)	
Log Value Added per Employee				
Mean Worker Characteristics $(\overline{x}_k \widehat{\beta})$	6.556 (1.260)	<i>183</i> (1.578)	.818 (.084)	.252 (.036)
Mean Establishment-Fixed $(\widehat{\psi}_k)$	4.485 (1.668)	5.449 (1.889)	1.157 (.103)	.453 (.020)
Log Sales per Employee				
Mean Worker Characteristics $(\overline{x}_k \widehat{\beta})$.488 $(.069)$.547 (.095)	.930 (.152)	$.343 \\ (.044)$
Mean Establishment-Fixed $(\widehat{\psi}_k)$.264 $(.092)$.354 (.113)	1.428 (.186)	.505 (.025)
Return on Capital				
Mean Worker Characteristics $(\overline{x}_k\widehat{\beta})$	-1.329 (1.107)	.170 $(.105)$	084 (.020)	<i>003</i> (.048)
Mean Establishment-Fixed $(\overline{\widehat{\psi}}_k)$	-1.124 (1.462)	.003 (.125)	.098 (.025)	205 (.027)

^{*a*}From *PIA* data.

 b From *RAIS* data.

Sources: São Paulo state manufacturing firms in *PIA* and *RAIS* on December 31, 1990 and 1997. Abowd et al. (2001) for France 1992 and the U.S. 1990. Partial correlations from individual regressions on mean worker characteristics $(\bar{x}_k\hat{\beta})$ and mean establishment effects $(\hat{\psi}_k)$, controlling for sector-fixed effects. Standard errors in parentheses (insignificant point estimates at the five percent level in *italics*).

Appendix

Data Source	Frequency	Percent	Cumulated
1990:			
RAIS and PIA firms			
RAIS-SP establishments but no PIA firm	$281,\!685$	97.69	97.69
PIA firms but no RAIS-SP establishment	3,056	1.06	98.75
RAIS-SP establishments in PIA firms	$3,\!616$	1.25	100.00
Total	288,357	100.00	
Randomly tabulated three-firm cells			
RAIS & PIA firms but no cell match	724	37.05	37.05
Cells but no RAIS & PIA match	61	3.12	40.17
Cells matched with RAIS & PIA	1,169	59.83	100.00
Total	1,954	100.00	
1997:			
RAIS and PIA firms			
RAIS-SP establishments but no PIA firm	376,719	99.04	99.04
PIA firms but no RAIS-SP establishment	1,511	0.40	99.43
RAIS-SP establishments in PIA firms	$2,\!158$	0.57	100.00
Total	380,388	100.00	
Randomly tabulated three-firm cells			
RAIS & PIA firms but no cell match	305	28.21	28.21

Table 46: MATCHES BETWEEN RAIS AND PIA RANDOM FIRM TABULATIONS

Sources: São Paulo state manufacturing firms in PIA and RAIS on December 31, 1990 and 1997.

Total

97

679

1,081

8.97

62.81

100.00

37.19

100.00

Cells but no $RAIS\ \&\ PIA$ match

Cells matched with $RAIS\ \&\ PIA$

Nível 50	English description
2	Mining of minerals (except combustibles)
3	Extraction of petroleum and gas, mining of coal
4	Manufacture of nonmetallic mineral products
5	Manufacture of iron and steel products
6	Manufacture of nonferrous metal products
7	Manufacture of metal products n.e.c.
8	Manufacture of machinery, equipment and commercial installations
9	Maintenance, repair and installation of machinery
10	Manufacture of electrical equipment and components
11	Manufacture of electronic equipment and communication apparatus
12	Manufacture of automobiles, trucks and buses
13	Manufacture of vehicle parts and transportation equipment n.e.c.
14	Manufacture of products and furniture
15	Manufacture of paper and pulp, publishing and printing
16	Manufacture of rubber products
17	Manufacture of non-petrochemical chemicals
18	Manufacture of petrochemical products and petroleum refining
19	Manufacture of miscellaneous chemical products
20	Manufacture of pharmaceutical products, perfumes and detergents
21	Manufacture of plastics products
22	Manufacture of textiles
23	Manufacture of apparel and apparel accessories
24	Manufacture of footwear and leather and fur products
25	Processing of coffee
26	Processing of plant products (including tobacco)
27	Processing of meat, including slaughter
28	Processing of dairy products
29	Processing of sugar
30	Processing of food fats and oils and refining of seed oil
31	Manufacture of other food products and beverages
32	Manufacture of miscellaneous other products n.e.c.

Table 47: MANUFACTURING SECTORS

Table 48: EMPLOYMENT

	Manufact.	Services	Commerce	Agriculture
	(1)	(2)	(3)	(4)
~ .		Yea	r 1990	
Gender:				
Male	1,707,896	$1,\!421,\!804$	$574,\!460$	86,824
Female	$636,\!822$	$1,\!128,\!079$	$312,\!049$	21,436
Education:				
Some college or more	$218,\!356$	$554{,}531$	62,476	2,939
High school or less	2,126,362	1,995,352	824,033	105,321
Occupation:	, ,	, ,	,	
White collar	685,105	1,682,221	601,577	14,219
Blue collar	$1,\!659,\!613$	867,662	284,932	94,041
~ .		Yea	r 1997	
Gender:				
Male	$1,\!363,\!969$	$1,\!656,\!404$	680,349	220,898
Female	$468,\!144$	1,529,915	$407,\!698$	40,799
Education:				
Some college or more	188,980	717,510	75,185	5,872
High school or less	1,643,133	2,468,809	1,012,862	255,825
Occupation:				
White collar	536,703	$2,\!292,\!665$	$745,\!152$	24,030
Blue collar	$1,\!295,\!410$	893,654	$342,\!895$	237,667

Source: RAIS São Paulo state 1990 (prime age workers in their highest-paying job).

	Manufact. 1990		Manufa	act. 1997
	Mean	St.Dev.	Mean	St.Dev.
	(1)	(2)	(3)	(4)
Log Annual Wage ^{<i>a</i>}	8.016	.786	8.872	.778
Primary School Education (or less) ^{b}	.533	.499	.487	.500
Some High School Education	.373	.484	.409	.492
Some College Education	.034	.182	.037	.190
College Graduate	.053	.225	.066	.248
Professional or Managerial Occupation	.079	.270	.072	.259
Technical or Supervisory Occupation	.096	.294	.081	.273
Other White Collar Occupation	.117	.321	.140	.347
Skill Intensive Blue Collar Occupation	.551	.497	.589	.492
Low-skill Intensive Blue Collar Occupation	.157	.364	.117	.322
Potential Labor Force Experience	16.079	9.458	17.252	9.144
Quadratic Experience Term	3.480	3.374	3.813	3.406
Cubic Experience Term	8.653	11.352	9.575	11.696
Quartic Experience Term	23.492	38.335	26.140	40.007
Tenure at establishment	.923	1.106	1.012	1.176
Female	.272	.445	.256	.436
Female \times Log Annual Wage	2.062	3.393	2.181	3.738
Female \times Primary School Education (or less)	.140	.347	.123	.328
Female \times Some High School Education	.106	.308	.102	.303
Female \times Some College Education	.010	.101	.011	.105
Female \times College Graduate	.013	.114	.019	.137
Female \times Professional or Managerial Occupation	.014	.118	.015	.122
Female \times Technical or Supervisory Occupation	.027	.163	.022	.147
Female \times Other White Collar Occupation	.042	.201	.058	.234
Female \times Skill Intensive Blue Collar Occupation	.140	.347	.128	.334
Female \times Low-skill Intensive Blue Collar Occupation	.048	.215	.033	.178
Female \times Potential Labor Force Experience	3.828	7.904	4.134	8.388
Female \times Quadratic Experience Term	.771	2.060	.874	2.216
Female \times Cubic Experience Term	1.833	6.110	2.127	6.614
Female \times Quartic Experience Term	4.837	19.379	5.677	21.063
Female \times Tenure at establishment	.187	.542	.214	.613
Observations	2,36	54,007	1,83	7,461

Table 49: Summary Statistics, RAIS Manufacturing 1990 and 1997

 $^{a}\mathrm{Log}$ annualized mean monthly wage (in current U.S. dollars on December 31). $^{b}\mathrm{Including}$ illiterates.

	Manufact. 1990		Servic	es 1990
	Mean	St.Dev.	Mean	St.Dev.
	(1)	(2)	(3)	(4)
Log Annual Wage ^{<i>a</i>}	8.016	.786	7.953	.830
Primary School Education (or less) ^{b}	.533	.499	.545	.498
Some High School Education	.373	.484	.237	.425
Some College Education	.034	.182	.063	.242
College Graduate	.053	.225	.147	.354
Professional or Managerial Occupation	.079	.270	.224	.417
Technical or Supervisory Occupation	.096	.294	.155	.362
Other White Collar Occupation	.117	.321	.279	.448
Skill Intensive Blue Collar Occupation	.551	.497	.140	.346
Low-skill Intensive Blue Collar Occupation	.157	.364	.203	.402
Potential Labor Force Experience	16.079	9.458	17.137	9.283
Quadratic Experience Term $(/100)$	3.480	3.374	3.798	3.462
Cubic Experience Term $(/1, 000)$	8.653	11.352	9.594	11.987
Quartic Experience Term $(/10,000)$	23.492	38.335	26.414	41.364
Tenure at establishment	.923	1.106	1.047	1.240
Female	.272	.445	.442	.497
Female \times Log Annual Wage	2.062	3.393	3.469	3.930
Female \times Primary School Education (or less) ^b	.140	.347	.232	.422
Female \times Some High School Education	.106	.308	.086	.280
Female \times Some College Education	.010	.101	.033	.179
Female \times College Graduate	.013	.114	.088	.283
Female \times Professional or Managerial Occupation	.014	.118	.130	.336
Female \times Technical or Supervisory Occupation	.027	.163	.088	.283
Female \times Other White Collar Occupation	.042	.201	.126	.332
Female \times Skill Intensive Blue Collar Occupation	.140	.347	.012	.107
Female \times Low-skill Intensive Blue Collar Occupation	.048	.215	.087	.282
Female \times Potential Labor Force Experience	3.828	7.904	7.642	10.563
Female \times Quadratic Experience Term (/100)	.771	2.060	1.700	3.003
Female \times Cubic Experience Term (/1,000)	1.833	6.110	4.307	9.428
Female \times Quartic Experience Term (/10,000)	4.837	19.379	11.909	31.123
Female \times Tenure at establishment	.187	.542	.496	.987
Observations	2,36	54,007	2,58	5,223

Table 50: Summary Statistics, RAIS 1990

^{*a*}Log annualized mean monthly wage (in current U.S. dollars on December 31). ^{*b*}Including illiterates.

	Commerce 1990		Agriculture 199	
	Mean	St.Dev.	Mean	St.Dev.
	(1)	(2)	(3)	(4)
Log Annual Wage ^{<i>a</i>}	7.461	.742	7.352	.584
Primary School Education (or less) ^{b}	.479	.500	.802	.399
Some High School Education	.450	.497	.171	.377
Some College Education	.028	.165	.008	.089
College Graduate	.031	.173	.013	.115
Professional or Managerial Occupation	.061	.240	.043	.203
Technical or Supervisory Occupation	.328	.469	.026	.158
Other White Collar Occupation	.288	.453	.062	.240
Skill Intensive Blue Collar Occupation	.166	.372	.689	.463
Low-skill Intensive Blue Collar Occupation	.156	.363	.180	.385
Potential Labor Force Experience	13.206	9.348	16.163	9.833
Quadratic Experience Term $(/100)$	2.618	3.047	3.579	3.639
Cubic Experience Term $(/1, 000)$	6.153	9.872	9.227	12.568
Quartic Experience Term $(/10,000)$	16.139	32.721	26.051	43.426
Tenure at establishment	.512	.699	.600	.808
Female	.352	.478	.199	.399
Female \times Log Annual Wage	2.569	3.506	1.401	2.826
Female \times Primary School Education (or less) ^b	.165	.371	.161	.368
Female \times Some High School Education	.160	.366	.030	.170
Female \times Some College Education	.012	.107	.003	.055
Female \times College Graduate	.012	.108	.003	.057
Female \times Professional or Managerial Occupation	.017	.131	.004	.060
Female \times Technical or Supervisory Occupation	.139	.346	.008	.091
Female \times Other White Collar Occupation	.136	.342	.022	.147
Female \times Skill Intensive Blue Collar Occupation	.015	.123	.132	.339
Female \times Low-skill Intensive Blue Collar Occupation	.045	.207	.033	.178
Female \times Potential Labor Force Experience	4.281	7.873	3.118	7.704
Female \times Quadratic Experience Term (/100)	.803	2.006	.691	2.158
Female \times Cubic Experience Term (/1,000)	1.819	5.940	1.795	6.811
Female \times Quartic Experience Term (/10,000)	4.670	18.965	5.134	22.808
Female \times Tenure at establishment	.165	.435	.096	.342
Observations	894	1,885	109	9,786

Table 50: SUMMARY STATISTICS, RAIS 1990, cont'd

 $^{a}\mathrm{Log}$ annualized mean monthly wage (in current U.S. dollars on December 31). $^{b}\mathrm{Including}$ illiterates.

	Form	al 1990	Inform	nal 1990
	Mean	St.Dev.	Mean	St.Dev.
	(1)	(2)	(3)	(4)
Log Annual Wage ^{<i>a</i>}	8.009	.805	7.241	.943
Primary School Education (or less) ^{b}	.715	.452	.856	.352
Some High School Education	.188	.391	.101	.301
Some College Education	.074	.262	.036	.187
College Graduate	.023	.150	.008	.088
Blue Collar Occupation	.585	.493	.689	.464
Potential Labor Force Experience	17.684	9.823	14.393	10.639
Quadratic Experience Term $(/100)$	4.092	3.916	3.200	4.027
Cubic Experience Term $(/1, 000)$	10.959	14.202	8.728	14.414
Quartic Experience Term $(/10,000)$	32.077	51.187	26.405	52.119
Female	.255	.436	.356	.479
Female \times Log Annual Wage	1.941	3.333	2.522	3.429
Female \times Primary School Education (or less) ^b	.179	.383	.304	.461
Female \times Some High School Education	.052	.222	.039	.193
Female \times Some College Education	.021	.143	.010	.101
Female \times College Graduate	.004	.063	.003	.051
Female \times Blue Collar Occupation	.134	.340	.274	.447
Female \times Potential Labor Force Experience	4.139	8.457	5.894	10.080
Female \times Quadratic Experience Term (/100)	.886	2.384	1.360	3.104
Female \times Cubic Experience Term (/1,000)	2.270	7.620	3.768	10.457
Female \times Quartic Experience Term (/10,000)	6.465	25.924	11.459	36.837
Observations	3,	551	3	88

Table 51: Summary Statistics, PNAD Household Data 1990

 $^{a}\mathrm{Log}$ annualized September wage (in current U.S. dollars on December 31). $^{b}\mathrm{Including}$ illiterates.

	Formal 1997		Informal 1997	
	Mean	St.Dev.	Mean	St.Dev.
	(1)	(2)	(3)	(4)
Log Annual Wage^{a}	8.751	.784	8.161	.843
Primary School Education (or less) ^{b}	.605	.489	.679	.467
Some High School Education	.284	.451	.254	.436
Some College Education	.077	.267	.055	.228
College Graduate	.034	.180	.012	.110
Blue Collar Occupation	.584	.493	.636	.482
Potential Labor Force Experience	18.554	10.105	13.677	9.999
Quadratic Experience Term $(/100)$	4.463	4.069	2.868	3.610
Cubic Experience Term $(/1, 000)$	12.270	14.800	7.382	12.448
Quartic Experience Term $(/10,000)$	36.473	53.245	21.228	43.441
Female	.241	.428	.323	.468
Female \times Log Annual Wage	2.029	3.622	2.578	3.761
Female \times Primary School Education (or less) ^b	.123	.328	.199	.400
Female \times Some High School Education	.086	.281	.106	.308
Female \times Some College Education	.025	.156	.016	.127
Female \times College Graduate	.007	.082	.002	.045
Female \times Blue Collar Occupation	.116	.320	.180	.384
Female \times Potential Labor Force Experience	4.161	8.730	4.443	8.887
Female \times Quadratic Experience Term (/100)	.935	2.497	.985	2.688
Female \times Cubic Experience Term (/1,000)	2.462	7.952	2.697	8.982
Female \times Quartic Experience Term (/10,000)	7.108	26.647	8.180	31.344
Observations	2,798		492	

Table 52: Summary Statistics, PNAD Household Data 1997

 $^{a}\mathrm{Log}$ annualized September wage (in current U.S. dollars on December 31). $^{b}\mathrm{Including}$ illiterates.

References

- Abowd, John. M., Francis Kramarz, David N. Margolis, and Kenneth R. Troske, "The Relative Importance of Employer and Employee Effects on Compensation: A Comparison of France and the United States," *Journal of the Japanese and International Economies*, December 2001, 15 (4), 419–36.
- Heckman, James J., "Sample Selection Bias as a Specification Error," *Econometrica*, January 1979, 47 (1), 153–61.
- Shorrocks, A. F., "Inequality Decomposition by Factor Components," *Econometrica*, January 1982, 50 (1), 193–211.