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ABSTRACT 

We extend a Kalman filter model for count data to reflect observations irregularly spaced in 

time. The model is applied to estimate risk of rare events; bycatch of endangered leatherback 

turtles in a swordfish fishery off Oregon and California. Incidental takes of turtles are 

modeled as a Poisson process. The results suggest that take risk is better estimated by 

regarding the entire history of observations, contrary to only considering data from the 

previous season as in the current management regime. The conservatory measures currently 

enforced in the fishery may be overly stringent. 

JEL Classification: Q22, Q28, Q57, Q58. 

Keywords: Kalman filter, Poisson process, government conservation policy, endangered 

species, biodiversity conservation. 



INTRODUCTION 

The drift gillnet fishery on swordfish (Xiphias gladius) along the southwestern U.S. coast is 

currently managed through a seasonal closure of a substantial part of the fishing grounds. The 

closure area was established in order to protect leatherback turtles (Dermochelys coriacea) 

from incidental capture. The statistical analysis that informs the management decisions in the 

fishery implicitly assume data on incidental turtle takes from the most recent observations 

provide the best information regarding current incidental capture risk. Efforts to predict 

unobserved turtle takes do not build upon a probability model; instead linear extrapolation is 

used to predict unobserved takes from observed takes. In other words, full correlation between 

the observed and unobserved take rate is implicitly assumed. We estimate the risk of 

incidental takes of sea turtles and find, contrary to the principles inherent in the current 

management regime, that the risk is best understood by considering looking at the entire 

recorded history of effort and bycatch. We argue that incidental takes of sea turtles have an 

element of randomness in them, and that management decisions may be improved when based 

on assessments of distributions of possible outcomes instead of point estimates based on 

limited data, as in the current regime. 

 In 2001 a time-and-area closure was established for a large portion of the drift gillnet 

fishery in California and Oregon. Before the closure, roughly one third of the effort units 

(sets) occurred inside the now-closed area and most (roughly 80%) of that effort occurred 

during the closed period. In subsequent years there was substantial loss in average annual 

revenues in the fishery. On the other hand, dwindling stocks of Pacific leatherback turtles 

have raised concerns about the continued existence of the species. Both of these issues need to 

be addressed through the management of the fishery. 

 The U.S. Federal Endangered Species Act requires that each federal agency “shall ensure 

that any action authorized, funded, or carried out by such agency is not likely to jeopardize 

the continued existence of any endangered or threatened species or result in the destruction or 

adverse modification of critical habitat of such species” (Section 7 (a) (2)). In order to comply 

with the Endangered Species Act, the responsible federal agencies have to analyze the 

available data on leatherback turtle incidental takes (or ‘interactions’ in the official language) 

and the level and distribution of effort in the fishery. This analysis informs the decisions on 

how to manage the incidental take risk posed by the fishing activity. Data from an observer 

program mandated by the 1988 amendments to the Marine Mammal Protection Act are used 

in this analysis. Almost 20 percent of the effort has been observed through the observer 
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program. A key question regarding the observer data is the degree of independence between 

turtle takes in the observed part of the effort versus turtle takes in the unobserved effort. 

Implicit in the present approach to understand incidental takes is a belief that the process 

governing fluctuations in takes is a case of pure uncertainty, implying that no probability 

model can be used to explain leatherback takes. Further, only the current season’s 

observations are used to predict takes in the unobserved part of the effort, and the takes in the 

unobserved part of the effort are predicted assuming perfect linear correlation with the 

number of leatherback takes in the observed effort; naïve extrapolation predicts unobserved 

takes. 

  We wish to suggest improvements to the statistical analysis of the available data. We 

model the rare event of an incidental turtle take as a Poisson process and estimate the risk of 

takes by using and extending a Kalman filter for count data models. Risk may differ across 

time and space. In our analysis observations from previous seasons may be used to predict 

unobserved turtle takes, predictions which are best described with probability distributions 

rather than point estimates. Our results suggest that predictions used to justify the 2001 

closure may overstate the leatherback incidental take risk, which potentially leads to 

excessively stringent conservation measures. 

 The knowledge and understanding of the leatherback in general and its stock dynamic 

and migration pattern is limited; no analysis can fully gauge the impact of management 

actions on the leatherback population. There may be reason to believe that restrictions on U.S. 

catches of swordfish displace catches to non-U.S. fisheries where bycatch rates of 

leatherbacks are higher; Rausser et al. (2008) provides an example of this transfer effect from 

the Hawaiian longline fishery. The effort to protect leatherback turtles in the U.S. may lead to 

a larger short term global level risk of extinction. (By contrast, long term effects may include 

protection in other jurisdictions partly induced by protection in U.S. waters.) 

 We wish to extend the analysis and take a look at the economics implications of our 

results. How big a share of the effort in the fishery needs to be observed in order to have a 

certain level of confidence in the predicted total level of turtle takes, and would the costs of 

such levels of data collection allow for an economically viable fishery? Are we able to infer 

necessary conditions on the efficiency of the fishery given a certain level of observation 

costs? And ultimately, can we unite the economic and conservational requirements at any 

level of activity in the fishery? More work is required to address these questions. 
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DATA AND THE OBSERVER PROGRAM 

The U.S. National Marine Fisheries Service established an observer program as mandated by 

the 1988 amendments to the Marine Mammal Protection Act.  Since 1990, drift gillnet fishing 

effort has been observed in the U.S. exclusive economic zone from the waters off San Diego, 

California to the waters off Oregon.  Observers record catch and bycatch by taxon for fish, 

marine mammals, and sea turtles, collect specimens, and record data on environmental 

conditions and over 10 different net characteristics (National Marine Fisheries Service 1997). 

Geographical coordinates are also recorded. 

 Vessels are selected on an opportunistic basis, with the hope that the observed sample 

will be representative of all the effort that occurred in a given year.  Vessels are required to 

carry an observer about 20 percent of the time on a rotating basis; thus a vessel which just 

took an observer would not be required to carry another observer until it would approach their 

20 percent requirement. Observer coverage averaged approximately 16 percent from 1991-99. 

 The sample of observed effort is not a true simple random sample of overall effort for the 

drift gillnet fishery in a given season, as the selection of vessels to be observed is by 

nonrandom choice, and the observed sets of effort are spatially and temporally clustered 

according to which vessels’ trips are selected.  Nonetheless, it is conceivable that given the 

rare and unpredictable nature of leatherback turtle bycatch, the pattern of takes which occurs 

over time in the observed portion of drift gillnet effort is highly similar to what would be seen 

in a true random sample. It is useful to conduct the thought experiment regarding the 

relationship between leatherback takes in the observed and unobserved portions of effort if the 

observed share of effort were chosen as a simple random sample of overall effort.  In this 

case, after conditioning on factors which affect (the mean) leatherback take risk for the fishery 

as a whole, the number of takes in the observed and unobserved portions of effort would be 

independent by design of the sampling method.   

 Departure from full independence could arise if unobserved fishermen faced a 

systematically different risk of leatherback takes, or if the variance of within-trip leatherback 

take risk was smaller than the variance of leatherback take risk between trips.  The second 

potential departure from independence could, in principle, be tested empirically by comparing 

between-trip variation in leatherback takes to within-trip variation. The first potential 

departure from independence is more problematic to assess, as unobserved effort is, by its 

very nature, not available for empirical investigation.  On the grounds that drift gillnet 

fishermen have little to gain and much to lose from catching leatherback turtles, we see no 

 4



prior reason to assume an elevated take risk in the unobserved portion of effort.1 We adopt a 

working hypothesis for the balance of this paper that the observer sample may be reasonably 

treated as observationally equivalent to a simple random sample of all effort for the season, 

recognizing that whether this is the case is an open question. 

 The data consist of 7733 observed sets over 1331 different fishing trips. The number of 

sets per trip range from 1 to 19. The observations were made during the seasons 1990 – 2006; 

seasons mainly stretch from August through January, although fishing began as early as May 

in some years. The observations contain the number of leatherback interactions, date and 

geographical coordinates for each set. Over the 7733 sets, 23 interactions were observed. That 

is, the mean of the interactions is .0030 while the standard deviation is .0545. The temporary 

closure (Aug. 15 – Nov. 15) of parts of the fishing ground was enforced after the 2000 season, 

which ended on Jan. 31, 2001. Table 1 summarizes how the sets were distributed relative to 

the closure. The ‘Pre Closure’ column accounts for the seasons 1990 – 2000; 11 out of 17 

seasons (64.7%). 77.9% of the sets were fished before the closure; the activity in the fishery 

has roughly gone down 50% after the closure. The average number of sets per season was 454 

over all seasons, 547 before, and 284 after the closure. The share of sets fished inside the 

closed area went down substantially after the closure, while the share of sets fished in the 

closure period only went down slightly. Evidently, most of the ‘in-area’ sets (2145) were 

fished ‘in-season’ (1820). Note, however, that almost no sets were fished in the area but out of 

season after the closure. There are two possible explanations. Either the fishery is only 

profitable in the closure area between Aug. 15 and Nov. 15, or the fishermen prefer to fish 

close to their home port and those located in ports well within the area left the fishery after the 

closure. (84.8% [the ratio of sets fished in area during the season versus all sets fished in area 

pre closure.] of their ‘preferred’ season was closed.) Table A1 in the Appendix breaks the data 

into seasons; Table A2 shows how the turtle takes were distributed across seasons. 

 

 

 

 

 
                                                 
1 There are potential scenarios where Leatherback take risk could be systematically higher in the unobserved 
portion of the effort. For example, if swordfish catch per unit of effort and Leatherback bycatch per unit of effort 
exhibited a high degree of spatial-temporal correlation, it is possible that fishermen carrying an observer would 
accept a lower swordfish catch per unit of effort to reduce the risk of observed Leatherback bycatch. Due to the 
extremely rare incident of Leatherback bycacth, we are skeptical that fishermen can assess Leatherback take risk 
with a sufficient degree of precision for this scenario to be viable. 
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Table 1: Data summary 

  Tot. Obs. Pre Closure Post Closure 
Tot. observations 7733 6024 (77.9%) 1709 (22.1%) 

In Area 2192 (28.3%) 2145 (35.6%) 47 (2.75%) 
In Season 4378 (56.6%) 2482 (57.8%) 896 (52.4%) 

In Area & In Season 1826 (23.6%) 1820 (30.2%) 6 (0.351%) 
 

 

THE KALMAN FILTER AND ITS USES 

The standard model for the Kalman Filter is called the state-space model and consists of the 

observation equation, the state equation, and assumptions on the variance of error terms in 

both equations. The observation equation models the relationship between the observed 

variable and the unobserved state of the world. The relationship could be any general 

function, but is often modeled as linear. The state equation models the relationship between 

the current state of the world and previous states. When we observe  and let ty tμ  be the state, 

we get the following equations. 

   ttt Fy εμ +=  

   ttt f ημμ +=+1  

The first equation is the observation equation; is a known matrix, F tε  is the normal, zero 

mean error term with variance . The second equation is the state equation; is a known 

matrix, and 

tH f

tη is the normal, zero mean error term with variance . See, for example, 

Meinhold and Singpurwalla (1983; p. 123) or Harvey (1989; pp. 100-101) for further details 

on the state space model. When the model includes explanatory variables, these can be 

introduced by letting   be a so-called link function (Harvey 1989; p. 418). Compared to the 

standard linear regression model, 

tQ

f

tμ  is the counterpart to the regression coefficients. As the 

coefficients are the output from a linear regression, the state vector is the output from the 

Kalman filter (Anderson and Moore 1979; p. 41). It is obvious from the state equation that the 

filter lets the coefficients vary while they are fixed in the linear regression model. The filter 

consists of two sets of equations; prediction equations and updating equations. The prediction 

equations predict the state variables at the next observation and can usually be extended to 

predict any number of steps into the future. The predictions are updated to reflect data as they 

become available through the updating equations. 
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 The recursive structure of the state-space model is important; one can imagine that 

estimations are carried out recursively. The derivation of the estimators may be based on 

either classical frequentist (Eubank 2006, Harvey 1989) or Bayesian principles (Meinhold and 

Singpurwalla 1983); which is a question of faith. In the classical formulation, the filter lets 

likelihood functions be calculated recursively without using large matrices (Jones 1993; p. 

78). When estimators are established the question remains of ‘initial conditions.’ The initial 

conditions are imposed on the variables prior to the first observation. A natural question is 

what impact the conditions have on the estimates. Many texts are vague on this point (Eubank 

2006), but at least it is possible to impose an ‘improper,’ ‘uninformative’ distribution on the 

variables prior to the first observation. Such distributions carry no information (every possible 

value has the same, positive probability), and are not proper distributions (they do not sum to 

one). The Kalman filter with an improper prior is often called a diffuse Kalman filter (Eubank 

2006; p. 108). Initial conditions may also reflect knowledge or information about the state 

variables independent of the time series data used in the estimation. The state equation 

naturally gives rise to a one-step prediction problem, but the problem is still termed a filtering 

problem (Anderson and Moore 1979; p. 37). The Kalman filter yields a predictive distribution 

conditional on available data. 

THE KALMAN FILTER MODEL OF LEATHERBACK INCIDENTAL TAKE RISK 

The observer data cannot separately identify the stock density (of turtles) from catchability; 

hence we resort to a reduced form model. There is a base level risk tμ  of turtle take at set . 

The risk varies, however, with the explanatory variables ; the risk of an incidental turtle 

take at set t  is modeled as the product of the base level risk and the link function 

t

tx

)exp( δtx  

which can adjust to account for covariates which are believed to affect take risk. 

  tttt xx μδμ )exp()( =   

[ ′= nδδδ ,,K ]  are parameters related to the covariates [ ]nttt xxx ,,1 K= . The base level risk 

tμ is nonnegative. The exponential link function is always positive and the turtle take risk 

)( tt xμ  is thus nonnegative. The base level risk is the unobservable state variable in the 

model. 
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 Again, )( tt xμ  is the risk of an incidental turtle take on set t . (Incidental takes of two or 

more turtles on one set may happen, but has not yet been observed; our model does however 

allow more than one turtle take per set.) We have the observation equation 

   ttttt xzy εμ += )(  

where  is the amount of effort (number of sets) in observation t . In the observer data, effort 

is observed on the set level and . Extension to data with multiple sets per observation is 

straightforward. We impose the conditional Poisson distribution on the turtle observations 

given the covariates; 

tz

1=tz

   ))((~)|( ttttt xzPoissonxy μ  

A conjugate prior for the Poisson distribution is the Gamma distribution (Harvey 1989; p. 

351), that is, that the observations are Poisson distributed consists with a Gamma distributed 

base level risk. The predictive distribution for the base level risk on set t  given observations 

on explanatory variables ( ) and incidental takes ( ) through set 1−tX 1−tY 1−t  is then denoted 

  ),(~),|( 1|1|11 −−−− Γ ttttttt baYXμ  

The Gamma distribution parameters  and  are estimated from the data in a maximum 

likelihood estimation. 

1| −tta 1| −ttb

 Imposing the Poisson distribution on the observations may seem a strong assumption; 

the mean and variance of the Poisson distribution are identical. The mean and variance of 

turtle takes in the observer data are identical, however, and we find the Poisson distribution 

appropriate. 

MAXIMUM LIKELIHOOD ESTIMATION 

A maximum likelihood estimation procedure for the state space model with count data is 

developed by Harvey & Fernandes (1989, see also Harvey 1989; pp. 350-353, 418-420). The 

model treats the data as observed at regular time intervals. The drift gillnet fishery is, 

however, a seasonal fishery and time intervals between observations vary greatly; we extend 

the model to reflect the unequal spacing of the observations. Lambert (1996) extends the 

Harvey & Fernandes (1989) model for count data observed at unequally spaced times in a 

Bayesian framework. As far as we can tell, his approach is formally identical to ours. We 

maintain Harvey & Fernandes (1989) classical formulation, however, as it may be more 

familiar to some researchers. A key feature of the Kalman filter is that recent observations 

potentially should carry more weight in the estimators and predictors than earlier 
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observations; when time passes earlier observations may loose their information value. The 

process may be called data discounting and involves the estimation of a data discount rate ω . 

Contrariwise, Lambert (1996; p. 37) comprehends ω  as a ‘serial association’ coefficient. 

When forecasting the parameter values with data through observation t , the mean of the 

predicting distribution should be equal to the mean of the distribution estimated when 

observation  became available (adjusted for potential changes in the covariates). At the same 

time, the variance of the predicting distribution should increase with time if confidence is lost. 

While Lambert’s (1996) formulation eloquently displays the mean-preserving-but-variance-

increasing property in the predictive equations (p. 33), his updating equations (p. 34) are less 

immediate. Again, we prefer Harvey & Fernandes’ (1989) classical formulation, where the 

updating equations (p. 408; p. 412) take on a more recognizable form and are readily 

interpreted. 

t

 Let denote the date on which set t  was fished and let ts ( ]1,0∈ω  denote a rate of time 

discount. The parameters in the predictive Gamma distribution are defined recursively as 

follows: 

 11|
1

−
−

−
−= t

ss
tt aa ttω  

 )exp(11|
1 δω tt

ss
tt xbb tt −= −

−
−

−  
(1) 

When set  is observed, the parameters are updated and form the basis for the predictive 

distribution for the next set. The parameters are updated as follows: 

t

 ∑
=

−
−

− ==+= −

t

j
j

ss
tt

ss
t yEWMAyyaa jttt

1
1 )(1 ωω  

 
∑
=

−
−

− ==+= −

t

j

T
t

ss
tt

ss
t xEWMAxxbb jttt

1
1 ))(exp()exp()exp(1 δδωδω  

(2) 

where is the transpose of Tx x . The expressions for the updated parameters demonstrates that 

the parameters are exponentially-weighted moving averages of the entire history of 

observations on leatherback incidental takes ( ) and risk adjusting exposures ( ). Equations 

(1) and (2) are equivalent to the standard Kalman filter equations; see Harvey (1989; p. 163, 

p. 351) for details. Note that in the updating equations (2) it is the previous estimates  and 

 that are updated, and not the predicted values  and . 

ta tb

1−ta

1−tb 1| −tta 1| −ttb

 Harvey & Fernandes (1989) implicitly treats data as observed at regular time intervals, 

and the datum observed t  periods ago is discounted with the factor  in the exponentially-

weighted moving averages; Interpretation of the discount factor then depends on the interval 

tω
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between observations. In equations (1) and (2), time enters explicitly and the discount factor 

is interpreted relative to how time is measured; we measure time in years and the discount 

factor is comprehended as a yearly discount rate. The exponentially-weighted moving average 

formula which describes the parameters of the posterior distribution of Leatherback take risk 

lends itself to a useful interpretation of the discount parameter. For 1=ω , the mean of the 

posterior predictive distribution of the leatherback take risk is given by 

  ∑∑
==

==
t

j
j

t

j
jtttt xybaYE

11

)exp()|( δμ  

which shows that the expected take risk conditional on observations through set  depends on 

an equally weighted averages of the entire history of observations; each observation carries 

equal weight. Contrary, for , the mean of the posterior distribution of leatherback take 

risk is 

t

+→ 0ω

  )exp(limlim)|(lim
000

δμ
ωωω

tttttt xybaYE ==
+++ →→→

 

which is closer to the present approach of estimating the present year’s leatherback take rate 

in the unobserved sets. The present approach sets the current year’s unobserved take rate 

equal to the current year’s observed take rate, ignoring earlier observations. 

 The Kalman filter lends itself to maximum likelihood estimation as the likelihood 

function is usually available in computable form; Harvey & Fernandes (1989; p. 409) 

develops the log-likelihood function for the filtering problem using the exponentially-

weighted moving averages of the observations; 

   (∑
+=

−−−− +Γ−+Γ=
T

t
ttttttttt baayaL

1
1|1|1|1| ln)(ln)(ln),(ln

τ

δω

))1ln()( 1|1| −− ++− ttttt bya  

where τ  is the first set in the data with  and T is the last observed set. Note that the 

likelihood function is only defined for observations after the first non-zero observation. The 

parameters that go into the function carry all available information, however. The maximum 

of the likelihood function was found using the Nelder-Mead simplex algorithm as 

implemented in Matlab’s fminsearch function. 

0>ty

 Harvey & Fernandes (1989; p. 409) suggest the following initial conditions: 00 =a , 

, which implies 00 =b 1)0Pr( 0 ==μ ; the initial distribution has zero variance. On the 

contrary, Lambert (1996; p. 34) suggest diffuse initial conditions with infinite variance. Both 
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Harvey (1989; pp. 137-140) and Eubank (2006; pp. 107-136) discuss initialization issues with 

the Kalman filter. 

ALTERNATIVE MODEL SPECIFICATIONS 

The observer data provide a rich set of information. It is, however, necessary to limit the 

number of explanatory variables in the estimation; the explanatory power of the relatively 

small number of leatherback takes is limited. The spatiotemporal closure of the main part of 

the fishing ground suggests that leatherback take risk varies through the year and over space. 

This may be reflected in the estimation through binary explanatory variables that relate to the 

seasonal closure and the closure area; indicates whether set t  was fished inside the closure 

area and indicates whether the set was fished during the closed season (August 15 – 

November 15).  indicates whether the set was fished inside the area during the closed 

season, i.e., interaction between the area and season variable: 

1tx

2tx

3tx

213 ttt xxx ⋅= . Obviously,  

should be zero after the closure was implemented in 2001. The parameter vector 

 is associated to the explanatory variables and the subscripts of the parameters 

indicate which variable it relates to. 

3tx

[ ′= 321 ,, δδδδ ]

0

 We estimate three specifications: 

  1. Unrestricted model; 

  2. Restricted model only including the area variable ( ;1tx 32 == δδ ); 

  3. Restricted model without explanatory variables ( 0=δ ). 

Harvey & Fernandes (1989; p. 413) suggests checking specifications by computing the 

variance of the Pearson residual. The Pearson residual is obtained by applying a standard unit 

transformation to the data , where the standardization uses the mean and standard deviation 

of the predictive distribution given time 

ty

1−t  information: 

  
)|(
)|(

1

1

−

−−
=

tt

ttt
t yVar

yEy
v

μ
μ  

A correctly specified model has a theoretical Pearson residual variance equal to 1; a sample 

Pearson residual variance close to 1 indicates a good fit. 
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MODELING THE ECONOMIC IMPACT OF REGULATION 

If the model accurately describes turtle take risk with respect to time and area fished, fishers 

have no ability to influence turtle take risk besides timing (in or out of season) or location (in 

or out of the closure area). Further, if swordfish net revenue per set is  while the closure 

area is open and  under the closure and observer costs are C  per set, the following 

questions can be addressed: What conditions on ,  and  are necessary for it to be 

economically viable to open the conservation area with a mandatory level  of observer 

coverage? Are there ranges of values of , , and  for which reopening the area to fishing 

is viable from both economic and conservation standpoints?  

0R

1R

0R 1R C

q

0R C q

ESTIMATION RESULTS 

Estimation results are given in Table 2. The unrestricted model necessarily has the highest 

likelihood. To restrict the model to include no explanatory variables ( 0=δ ) produces a 

likelihood ratio statistic that rejects the hypothesis that the explanatory variables can be 

excluded from the estimation (p-value is less than 1%). On the contrary, the likelihood ratio 

test for the model with only the area variable ( 0,0 32 == δδ ) cannot reject the hypothesis that 

the season and interaction variables can be excluded (p-value ≈30%). 

 While the likelihood ratio test results are inconclusive, assessing the Pearson residual 

variance suggests that the unrestricted model has the best fit. This implies that the restricted 

models exhibit under-dispersion relative to the variance predicted by the fitted time series 

model. (  suggests under-dispersion when the number of observations is ‘high.’) 

Failing to take account of the variation in leatherback take risk due to the location of effort 

may lead to an overestimation of the effect of the recent take rate on the current level of the 

take risk. 

95.0)( <vVar

 Both the unrestricted model and the model restricted to only include the area variable 

yield an estimated value of the time discount rate of 1. The take risk is thus best perceived 

taking the entire history of observations into account in estimation and forecasting. Since the 

covariates  are dummy variables, the estimated effect from the different covariates are 

given by 

tix

)exp( iδ . They enter multiplicatively in the link function; e.g., the rate of incidental 

turtle takes was approximately 14 times higher in the closure area between Aug. 15 and Nov. 
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15 than outside the area between Nov. 15 and Aug. 15 ( 3δ  only captures the added effect 

from both  and  being 1 simultaneously). 1tx 2tx

 

Table 2: Comparison of alternative model specifications. 
Unrestricted 0=δ  0,0 3 == δ2δ  

Time Discount (ω ) 1.0000 0.4580 1.0000 

Closed Area ( 1δ ) 1.3856  2.4456 

Closed Season ( 2δ ) 0.1752   

Interaction ( 3δ ) 1.1011   
ln L -138.1979 -149.1102 -139.3577 

)(vVar 0.9671 0.8736 0.9431 
LR Statistic  21.8245 2.3196 

Degrees of Freedom  3 2 
p-value  0.0001 0.3136 

)exp( 1δ 3.9971  11.5377 
)exp( 2δ 1.1915   

)exp( 321 δδδ ++ 14.3236   
 

Figure 3 shows the estimated take rate of turtles per 1000 sets for the model without 

explanatory variables ( 0=δ ). The take rate quickly settles down around 5, but varies quite a 

bit, between 1 and 8, until the closure area was established in 2001. There seems to be a clear 

break in the estimated take rate after the closing, and the rate converges towards zero after 

2001. The estimated data discount factor is 4580.0=ω  for this model, and the ‘filtration’ of 

earlier data is evident in Figure 3; particularly after the closure in 2001. A worst-case scenario 

with a take rate of 8 per 1000 sets and a high number of sets in a season, e.g., 3,750 sets (757 

sets were observed in 1993, representing approximately 20% of all sets) suggests that up to 30 

turtles could be killed. This agrees rather well with the conclusions in the Biological Opinion 

(National Marine Fisheries Service 2000) which supported the seasonal closure. The 

estimated take rate in Figure 3 is, however, probably overstated due to omitted variable bias. 

The establishment of the closure area may disturb our estimation; Figure 3 displays an 

apparent break in the take rate after the area was established. One way to deal with the 

problem is to control for the closure, as we do in the model with explanatory variables. 

Another possibility is to only regard data prior to the closure in the model without explanatory 

variables. When we estimate the 0=δ  model with only the observations from seasons 1990 

through 2000, we have 9998.0=ω  ( 3921.147ln −=L ; 9613.0)( =vVar ). The variance of the 

Pearson residuals suggests that the model fits the partial data set much better than the entire 

time series, where . Data is discounted less with only the partial data; the 8736.0)( =vVar
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partial-data estimate of the take rate reflects more of the regarded data compared to the 

estimate with the entire time series. Figure 4 shows the estimated take rate per 1000 sets with 

only the partial data set in the 0=δ  model. The take rate settles around 4 takes per 1000 sets 

with relatively small variations compared to the variation in Figure 3. A worst-case scenario 

with 5 takes per 1000 sets in a 3,750-sets-season adds up to approximately 19 killed turtles, 

which is considerably less than what the Biological Opinion (National Marine Fisheries 

Service 2000) suggests. The graph in Figure 4 does not take all available information into 

account, however, and it does not reflect the belief that take risk varies through time and 

space. Let us turn to the best estimate; the full, unrestricted model applied to the full data set. 
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Figure 3: Estimated take rate per 1000 sets for the model without explanatory variables. 
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Figure 4: Estimated take rate per 1000 sets for the model without explanatory variables with 

partial data set (Seasons 1990-2000). 

 

 Figure 5 shows the estimated baseline turtle take rate per 1000 sets from the full, 

unrestricted model. The baseline rate corresponds to ttt x μμ == )0( ; the take rate outside the 

turtle conservation area and outside the closure period. The take rate inside the area is 

9971.3)exp( 1 =δ  times higher than the baseline take rate; between Aug. 15 and Nov. 15 the 

take rate is 1915.1)exp( 2 =δ  times higher; inside the area in the closure season the take rate is 

3236.14)exp( 321 =++ δδδ  times higher. ( 3δ  only measures the increase in the take rate 

from sets  both taking place in the area and in the period; these sets are already subjected to 

the increased take rate measured by 1δ  and 2δ ; the total increase in the take rate with these 

sets relative to the baseline risk is measured by 321 δδδ ++ .) I.e., the current level of the 

baseline take rate is estimated to be 0.68; inside the area it is 2.7; between Aug. 15 and Nov. 

15 it is 0.81; inside the area in the closure period it is 9.7. Combining these numbers with the 

‘average season’ before the closure in 2001 suggests that approximately 10 turtles were killed 

in the average season. (See Table A1 for the pre closure average season figures.) If we take 

the effort-figures from the 1993 season as the worst-case scenario (again, see Table A1) with 
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the estimated baseline take rate for the 1993 season, 67.01993 =μ  per 1000 sets, we get 

approximately 19 killed turtles. That is identical to the estimated 19 killed turtles in the worst-

case scenario from the model without explanatory variables applied to the pre closure data set 

(1990-2000). (Note, however, that the take rate fell a bit during the 1993 season; the take rate 

is estimated at 88.01992 =μ  per 1000 sets prior to the 1993 season. Using 0.88 as the baseline 

take rate for the 1993 season results in approximately 24 turtle takes.) 

 Note the increased stability of the estimate in Figure 5 compared to the estimate in 

Figure 3. The stability is partly due to the estimated data discount factor 0000.1=ω , which 

suggests that the entire history of effort should be equally weighted in the estimate of the take 

rate. However, some of the variation is now relegated to explain differences in the take rate 

across time and space. 
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Figure 5: Estimated take rate per 1000 sets for the model with explanatory variables. 

 

PREDICTION 

Harvey & Fernandes (1989; p. 412) demonstrates that the predictive distribution of tμ , given 

the data through observation , is a negative binomial distribution with parameters  1−ty 1| −tta
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and . Figure 6 displays the predictive distribution for the observed number of takes in the 

1995 season, where the parameters are our best estimates; that is, estimated from the full, 

unrestricted model. 1995 is an interesting season because it is the season with the highest 

number of turtle takes in the observer data (5 turtles was observed; see Table A2 in the 

appendix). As the graph shows, the probability of observing 5 turtle takes in the 1995 season 

was between 5 and 10%. The 5 observed turtles in 1995 was an unlikely event, but not 

necessarily rare. 

1| −ttb

 
Figure 6: Predictive distribution for the number of observed 1995 leatherback takes. 

 

 Extrapolating the 5 observed turtle takes in the 1995 season, with 20% observer coverage 

and full covariance between the observed and unobserved effort, suggests that 25 turtles was 

taken in 1995. Figure 7 shows the predictive distribution for the total number of turtle takes, 

observed and unobserved, in the 1995 season which arises from our best estimate. The 

probability of totally 25 turtle takes is less than 2%; the probability of 25 turtle takes or more 

is less than 4%. Such events are rare, in other words. Moreover, our results suggest that the 

probability of maintaining such levels of turtle takes over several seasons is very small. The 

graph shows that it is much more likely that between 10 and 20 turtles were taken in 1995. 
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Figure 7: Predictive distribution for the total number of observed 1995 leatherback takes. 

CONCLUSIONS 

We used a Kalman filter approach to estimate the level of leatherback take risk over time 

based on observer data on fishing effort and leatherback takes from the drift gillnet fishery off 

California and Oregon.  We represented take risk as a time-varying state variable that 

describes the rate parameter for a Poisson process, where the Poisson arrivals are incidental 

takes of leatherbacks. Our results confirm the earlier finding by Carretta et al. (2004) that 

historically there was significantly higher leatherback take risk in the area that was closed to 

the drift gillnet fleet fishing after 2001 during the period from Aug 15 through Nov 15. 

 The best fitting model appears to be one which includes explanatory variables for the 

time and area where fishing effort occurred, and which weights all past observations on drift 

gillnet leatherback takes and fishing effort equally.  Our results suggest consideration of 

whether a longer time series of observations should be used for estimating the number of 

leatherback takes which occurred in the unobserved portion of each season’s effort.  Any such 

predictions should, if possible, reflect variation in leatherback take risk over the times and 

areas where effort occurred. 
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APPENDIX 

Table A1 breaks the set data into seasons. The number in parenthesis reflects the share 

relative to total observations in that season. The same is true for the mean and standard 

deviation rows; the numbers in the parenthesis in not the mean and standard deviation of the 

shares in the column above, but the share relative to the ‘Total Observations’ column. 

 

Table A1: More Data Summary 

Season Tot. Obs. In Area In Season Interaction 
1990 195 69 35.4 % 101 51.8 % 54 27.7 % 
1991 477 168 35.2 % 257 53.9 % 162 34.0 % 
1992 660 301 45.6 % 398 60.3 % 260 39.4 % 
1993 757 416 55.0 % 390 51.5 % 342 45.2 % 
1994 662 235 35.5 % 392 59.2 % 231 34.9 % 
1995 587 221 37.6 % 356 60.6 % 179 30.5 % 
1996 467 219 46.9 % 228 48.8 % 138 29.6 % 
1997 748 253 33.8 % 453 60.6 % 212 28.3 % 
1998 499 175 35.1 % 296 59.3 % 156 31.3 % 
1999 528 48 9.1 % 350 66.3 % 48 9.1 % 
2000 444 40 9.0 % 261 58.8 % 38 8.6 % 
2001 323 5 1.5 % 201 62.2 % 5 1.5 % 
2002 373 4 1.1 % 204 54.7 % 0 0.0 % 
2003 295 0 0.0 % 176 59.7 % 0 0.0 % 
2004 206 0 0.0 % 82 39.8 % 0 0.0 % 
2005 228 23 10.1 % 93 40.8 % 0 0.0 % 
2006 284 15 5.3 % 140 49.3 % 1 0.4 % 
Mean 455 129 28.3 % 258 56.6 % 107 23.6 % 

Std. Dev. 179 125 69.6 % 115 63.8 % 107 59.7 % 
Pre Closure (1990-2000): 

Mean 548 195 35.6 % 317 57.8 % 165 30.2 % 
Std. Dev. 154 108 70.3 % 96 62.1 % 90 58.8 % 
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Table A2 shows how the turtle takes were distributed over the seasons. All takes happened in 

the closure area during the closure period with 4 exceptions; one take (1992) happened 

outside the area and outside the period, two takes (1995 and 1999) happened outside the area 

but in the period, and one take (1996) happened inside the area but outside the period. 

 

Table A2: Turtle Takes per Season 

Season Takes 
1990 1 
1991 1 
1992 5 
1993 2 
1994 1 
1995 5 
1996 2 
1997 4 
1998 0 
1999 2 
2000 0 
2001 0 
2002 0 
2003 0 
2004 0 
2005 0 
2006 0 
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