
ARTICLE  IN  PRESS

International Journal of Forecasting ( ) –
www.elsevier.com/locate/ijforecast

Forecasting (aggregate) demand for US commercial air travel

Richard T. Carsona, Tolga Cenesizoglub,c,∗, Roger Parkerd

a Department of Economics, University of California, San Diego, United States
b Department of Finance, HEC Montreal, Canada
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Abstract

We analyze whether it is better to forecast air travel demand using aggregate data at (say) a national level, or to aggregate
the forecasts derived for individual airports using airport-specific data. We compare the US Federal Aviation Administration’s
(FAA) practice of predicting the total number of passengers using macroeconomic variables with an equivalently specified AIM
(aggregating individual markets) approach. The AIM approach outperforms the aggregate forecasting approach in terms of its
out-of-sample air travel demand predictions for different forecast horizons. Variants of AIM, where we restrict the coefficient
estimates of some explanatory variables to be the same across individual airports, generally dominate both the aggregate and
AIM approaches. The superior out-of-sample performances of these so-called quasi-AIM approaches depend on the trade-off
between heterogeneity and estimation uncertainty. We argue that the quasi-AIM approaches exploit the heterogeneity across
individual airports efficiently, without suffering from as much estimation uncertainty as the AIM approach.
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1. Introduction

Forecasts of air travel demand are important inputs
for a wide variety of economic decisions, including,
but not limited to, research and development, airplane
design and production planning. For a relatively ma-
ture product like air travel, where the interest lies in
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the aggregate demand, the typical empirical practice is
to obtain a national level forecast using aggregate level
data when individual market data are not easily acces-
sible (Lehmann & Winer, 2001). However, recent em-
pirical evidence (Bronnenberg, Dhar, & Dube, 2007)
has shown that individual markets are much more het-
erogenous than was thought previously, even for well-
known national products which are sold in spatially
distinct markets, as is the case for air travel.

An aggregate approach is preferable to a disag-
gregate approach when the computational/analytical
burden of producing forecasts for separate markets is

0169-2070/$ - see front matter c© 2010 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.ijforecast.2010.02.010

Please cite this article in press as: Carson, R. T., et al. Forecasting (aggregate) demand for US commercial air travel. International Journal of
Forecasting (2010), doi:10.1016/j.ijforecast.2010.02.010

http://www.elsevier.com/locate/ijforecast
mailto:cenesizo@yahoo.com
mailto:tolga.cenesizoglu@hec.ca
http://dx.doi.org/10.1016/j.ijforecast.2010.02.010


ARTICLE  IN  PRESS
2 R.T. Carson et al. / International Journal of Forecasting ( ) –

substantial. Furthermore, there are also concerns that
in a disaggregate approach, the number of parame-
ters estimated by modeling each market individually
quickly becomes large relative to the length of the
available time series. On the other hand, the economet-
ric arguments in favor of a disaggregate approach are
also fairly strong when disaggregate data are available.
Allen and Fildes (2001) review the literature on the
advantages of using disaggregate data, one of which
is the additional information available due to hetero-
geneity across individual markets. However, they also
argue that the relative performances of aggregate and
disaggregate approaches might depend on the specifics
of the forecasting exercise.

This paper focuses on exploring the effect of
disaggregate information on the accuracy of aggregate
air travel demand forecasts. This paper considers
the case of US commercial air travel demand, with
the objective of predicting the total number of
commercial passengers. The data available to us from
the US Department of Transportation are the monthly
numbers of passengers departing from major US
airports between 1990 and 2004. We use individual
airport level data for 179 major airports, together with
aggregate level data.

We initially consider two extreme approaches.
The first follows the FAA’s practice of predicting
the total number of passengers using a combination
of exogenous macroeconomic variables such as
population, income, and energy prices in a time series
model. The second approach, which we term an AIM
(aggregating individual markets) forecast, models the
travel demand at the individual market level using
exogenous variables specific to that region, then sums
the forecasts to produce a forecast of the total number
of passengers. Specifically, consider forecasting a
variable that is a contemporaneous aggregation of the
individual subcomponents at time t :

yt =

N∑
i=1

yi t for t = 1, 2, . . . , (1)

where yi t (i = 1, 2, . . . , N ) are the subcomponents
of the aggregate variable yt . Forecasts of the aggre-
gate variable can be obtained using two different ap-
proaches: (1) estimating a reduced-form model for
the aggregate variable using aggregate level data, then
forming forecasts of the aggregate variable from the

estimated model; or (2) estimating a reduced-form
model for the subcomponents using individual level
data, forming forecasts of the subcomponents from the
estimated individual models, then aggregating the sub-
component forecasts to obtain the forecast of the ag-
gregate variable. Not only does the second approach
use more information, but also the forecasts at the
disaggregate level are readily available, whereas one
needs to allocate the aggregate forecast to the indi-
vidual markets to obtain forecasts at the disaggregate
level in the first approach. In this paper, we analyze
the out-of-sample forecast performances of these two
extreme approaches in forecasting the aggregate vari-
able, along with the performances of other approaches
that are between these two extremes.

There has been a revival of interest in the con-
temporaneous aggregation of disaggregate forecasts to
form forecasts of an aggregate variable in both the
theoretical and empirical econometrics literature. The
empirical literature has focused mainly on forecast-
ing aggregate macroeconomic indices such as Euro-
area variables or aggregate US variables by using the
information available in the disaggregated subcompo-
nents.1 In this paper, we not only demonstrate the use-
fulness of disaggregate information in forecasting an
aggregate variable of interest using a new and com-
prehensive data set, but also discuss different ways of
exploiting the heterogeneity across disaggregate level
data.

The main contributions of our paper to the exist-
ing literature can be summarized as follows. First,
applying the two approaches to monthly US air pas-
senger data over the period 1990 to 2002 and then
forecasting out-of-sample for the next two years yields
a striking contrast: the AIM forecast is far more accu-
rate than the aggregate level forecast. We argue that
the performance of the AIM approach depends on the
tradeoff between the heterogeneity across markets and
the estimation uncertainty due to the number of co-
efficients estimated. The AIM approach outperforms
the aggregate approach, since the forecasting power
gained by exploiting heterogenous information across
markets dominates the forecasting power lost due to

1 See Benalal, del Hoyo, Landau, Roma, and Skudelny (2004),
Espasa, Senra, and Albacete (2002), Fair and Shiller (1990),
Marcellino, Stock, and Watson (2003) and Zellner and Tobias
(2000).
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the estimation of many coefficients. We next consider
several variants of AIM (we term the collection of
these approaches quasi-AIM), where most of the co-
efficients are forced to be the same across markets.
We find that the quasi-AIM approaches outperform the
AIM approach due to the efficient use of heterogeneity
across markets with respect to the estimation uncer-
tainty. Quasi-AIMs estimate a much smaller number
of parameters relative to AIM, while still using key in-
formation about the heterogeneity across markets.

We then consider the forecasting performances of
different approaches for three different forecast hori-
zons, short- (1-step-ahead), medium- (6-step-ahead)
and long-term (12-step-ahead). This exercise allows
us to identify not only the best forecasting approach
for different forecast horizons, but also possible rea-
sons for the relative performances in the first exercise.
The best performing quasi-AIM approaches in the first
exercise are also among the best approaches when
we analyze different forecast horizons separately.
Independent of the forecast horizon, forecasting
approaches which use disaggregate information
outperform the aggregate approach. Furthermore, al-
most all quasi-AIM approaches outperform the AIM
approach for every forecast horizon, suggesting that
quasi-AIM approaches might be better suited to ex-
ploiting the heterogeneity across airports without suf-
fering from as many of the problems associated with
estimation uncertainty as the AIM approach.

Our results provide further empirical evidence
on the advantages of using disaggregate approaches
in forecasting aggregate variables of interest.2 For
example, Giacomini and Granger (2004) show that the

2 The issue of contemporaneous aggregation dates back to Theil
(1954), who argued that the disaggregated approach improves on
the model specification of the aggregate variable. Other theoretical
papers on the contemporaneous aggregation of disaggregate
forecasts include those of Aigner and Goldfeld (1974), Granger
(1980, 1987), van Garderen, Lee, and Pesaran (2000), Grunfeld
and Griliches (1960), Hendry and Hubrich (2006), Kohn (1982),
Lutkepohl (1984, 1987), and Pesaran, Pierse, and Kumar (1989).
The theoretical literature provides somewhat inconclusive and
often contradictory results. Under certain restrictions on the data
generating processes (DGP) of the individual subcomponents, there
might be gains in the forecasting ability of the AIM approach
in terms of the mean square forecast error. This result is due to
the larger information set used in the AIM approach. However,
in general, the relative forecast efficiency of the approach will
depend on the true DGPs. Under certain conditions, the forecasting
efficiency of the AIM approach can actually be inferior to that of the
aggregate forecast approach, due to the large number of parameters

forecasting performance can be improved by imposing
a priori constraints on the VAR process for the
disaggregate variables. They also show that ignoring
the impact of spatial correlation, even when it is weak,
can lead to highly inaccurate forecasts. Furthermore,
Hendry and Hubrich (2006) show that exploiting a
common factor structure model in the disaggregate
variables might provide better out-of-sample forecasts
for the aggregate variable.

The rest of the paper is organized as follows.
Section 2 discusses the literature on air travel demand
modeling and describes the various different data
sources used in our analysis. Section 3 presents the
empirical specification and discusses the details of
different estimation methods that result in different
out-of-sample forecasts of the aggregate air travel
demand. Section 4 discusses the forecasting of
both the aggregate variable and the explanatory
variables. Section 5 presents our forecasting results,
and Section 6 concludes.

2. Description of the data

There are several ways of classifying the literature
on models of passenger demand for air transportation.
In general, the models can be categorized in one of
two main subgroups, depending on the choices of the
dependent and explanatory variables.

The dependent variable can be either macroscopic
or microscopic. In macroscopic models, the dependent
variable is some aggregate indicator of air travel in
a certain country or region. The typical dependent
variables are the numbers of flights and passengers,
and the passenger revenue miles. Microscopic models
estimate the air travel demand between two airports,
cities or regions. Typical indicators are the passenger
traffic in a specific origin-destination (OD) pair route
and the number of passengers in each class when there
are various tariffs on a route.

The explanatory variables can be divided into two
main groups. Geo-economic factors are variables such

estimated. As the cross-sectional dimension increases, so does
the estimation uncertainty in the AIM approach, as the so-called
“curse of dimensionality” makes it difficult to estimate the model
accurately and raises the issue of the effect of estimation uncertainty
on the model’s forecasting performance. For recent surveys on
the contemporaneous aggregation of disaggregate forecasts, see
Granger (1990) and Lutkepohl (2006).
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as the economic activity and geographical or loca-
tional characteristics of the specific region, and fall
outside the control of airlines. Service-related factors
are variables such as the quality and fare price compo-
nents of air travel.

Our focus in this paper is on macroscopic models
of air travel demand with geo-economic factors as
explanatory variables. Macroscopic models attempt to
model air travel demand in a particular region without
considering the interactions between pairs of regions.
These models can also be considered as aggregate
models of air travel, and appear in the literature
on the time series analysis of air travel demand
more frequently than cross-sectional analysis. In most
aggregate or macroscopic models, some measure of air
travel demand, such as the total number of passengers
or flights, or revenue per mile, is modeled as a linear
function of various explanatory variables, including,
but not limited to, some measure of price, some
measure of an alternative mode of traveling, control
variables such as the GDP of the region, some measure
of tourism, some measure of foreign trade, etc. Among
others, papers analyzing macroscopic models of air
travel demand include Abed, Ba-Fail, and Jasimuddin
(2001), Cline, Ruhl, Gosling, and Gillen (1998),
Profillidis (2000), Saab and Zouein (2001) and Wang
and Pitfield (1999). These models generally treat air
travel demand as a homogenous commodity, and do
not consider differences between air travel demand
functions in different regions. In contrast to the
previous literature, we model the ratio of the number
of passengers originating from a given airport to the
population served by that airport as a linear function of
national and region-specific explanatory factors such
as cost and economic activity.

The data used for this analysis were obtained from
several different sources. The dependent variable, the
ratio of the number of passengers originating from an
airport to the population of the Metropolitan Statistical
Area (MSA) served by that airport, has been calculated
using data sets from the Bureau of Transportation
Statistics and the US Census Bureau. In this section,
we describe the sources of each variable in detail. We
also discuss several data related issues.

In this paper, we use data for the 179 busiest
airports in the US, which account for 97% of the
total US air travel demand as of December 2004. This
ratio is relatively constant over our sample period. To

account for the residual air travel demand outside the
areas served by these airports, we estimate the ratio of
residual air travel demand to total air travel demand
at the end of our in-sample period. We then assume
that this ratio stays constant during the out-of-sample
period. The detailed sources of each data set employed
are discussed below.3

2.1. The dependent variable

The time series of the number of passengers
originating from an airport is publicly available from
the Bureau of Transportation Statistics at a monthly
frequency. The database used in this analysis is the
Air Carrier Statistics (Form 41 Traffic).4 This database
is frequently used by the aviation industry, the press,
and the legislature to produce reports and analyses on
air traffic patterns and carrier market shares, as well
as passenger, freight and mail cargo flow within the
aviation mode. A passenger is defined to be any person
on board a flight who is not a member of the flight
or cabin crew. The time series data are available from
1990 to 2004. The monthly time series for 179 airports
and the total US air travel demand used in our analysis
were filtered from this database.

We obtain the monthly population estimates for
each MSA by aggregating population estimates of
counties in a given MSA. We employ the MSA def-
initions given in the List of Metropolitan and Microp-
olitan Statistical Areas and Definitions, as of 2005.5

The annual county population estimates can be
obtained from the US Census Bureau’s Population
Estimates Program archive. Each year, the Population
Estimates Program produces total annual population
estimates for each county. The annual county
population estimates between the 1990 census in April
1990 and the 2000 census in April 2000 are based
solely on the 1990 census, and do not reflect the 2000
census counts. Likewise, the annual county population

3 The list of airports considered in this paper, along with details of
the metropolitan statistical area served by each airport, is available
from the authors upon request.

4 T-100 Domestic Market (All Carriers) database of the Air
Carrier Statistics (Form 41 Traffic) — All Carriers data library at
the aviation web site of the Bureau of Transportation Statistics at
http://www.transtats.bts.gov/.

5 http://www.census.gov/population/www/estimates/metrodef.
html.
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estimates between the 2000 census and the end of our
sample, December 2004, are all based on the 2000
census. To obtain monthly population estimates for
each county between the 2000 census and the end of
our sample, we linearly interpolate between the annual
county population estimates from the Population
Estimates Program archive. On the other hand, to
obtain monthly population estimates between April
1990 and April 2000, we linearly interpolate between
the 1990 and 2000 census counts, rather than linearly
interpolating between the annual county population
estimates. Although the annual county population
estimates are also available to us, we choose to
interpolate linearly between the two censuses due to
discrepancies between the 1999 population estimates
(which are based on the 1990 census) and the 2000
census population counts. For many counties in our
data set, the annual population growth between 1999
and 2000, based on the 1999 population estimates
and the 2000 census counts, was much higher than
the average annual population growth between the
1990 and 2000 censuses, causing large jumps in our
population estimates. To obtain monthly population
estimates before April 1990, we linearly extrapolate
based on the monthly population growth implied by
the 1990 and 2000 censuses. Monthly population
estimates for the United States are also available
from the US Census Bureau’s Population Estimates
Program.

We use the number of passengers boarding com-
mercial flights from a given airport in a given month
as a proxy for air travel demand in the region served
by that airport. We use the number of passengers rather
than other possible measures of air travel demand that
have been used in the literature. For example, Ito and
Lee (2005) used revenue passenger miles (RPM) as
a measure of aggregate air travel demand to analyze
the effect of the September 11 terrorist attacks on US
airline demand. Although we believe that RPM might
provide a good proxy for aggregate air travel demand,
it is not available for individual airports. Hence, we
cannot employ RPM as a measure of air travel demand
with our disaggregate approaches. Fig. 1 presents the
monthly aggregate air travel demand in the US be-
tween January 1990 and December 2004.

Instead of modeling the number of passengers, we
model the logit transformation of the ratio of monthly
passenger and population estimates. The dependent

variable can be considered as the daily propensity to
travel or the per capita air travel demand in a given
region.

Let paxi t denote the total number of passengers
originating from airport i in month t , and popi t be the
month t population estimate of the MSA in which the
airport is located, then the dependent variable is given
by

yi t = ln
(

(1/30)(paxi t/popi t )

1− (1/30)(paxi t/popi t )

)
(2)

for i = 1, 2, . . . , 179 and t = 1, 2, . . . , 180 for the
months between January 1990 and December 2004.
This transformation helps to stabilize the variance,
incorporates the implicit limitation on the number of
trips that can be taken and facilitates the use of a model
with the standard logistic-based origin-destination
models. It is a fairly innocuous transformation, in the
sense that predictions using per capita trips are similar
and the main objective is forecasting a per capita rather
than a total trip measure, since the latter may be driven
by population growth.

2.2. Geo-economic factors

The geo-economic factors used as explanatory
variables in this analysis can be grouped into three
major categories depending on the geographical level
of availability: the MSA, state and national levels.

2.2.1. MSA-level geo-economic factors
The unemployment rate for each MSA is obtained

from the Bureau of Labor Statistics.6 The Local
Area Unemployment Statistics (LAUS) program at
the BLS produces monthly and annual employment,
unemployment, and labor force data for census
regions, divisions, states, counties, metropolitan areas,
and many cities, by place of residence. The monthly
unemployment rate is obtained from LAUS. The
percentage population growth is calculated at the
MSA-level from the census population data described
in Section 2.1.

2.2.2. State-level geo-economic factors
We employ the state-level coincident indicator

index and the unemployment rate as a proxy for

6 http://www.bls.gov/lau/.
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Fig. 1. Aggregate US air travel demand.
Note: The figure presents monthly numbers of passengers boarding
commercial domestic flights in the US between January 1990 and
December 2004.

the level of economic activity in a certain region.
A coincident indicator summarizes several indicators
such as nonagricultural employment, personal income
and industrial production in a single index, thus
indicating the current state of the economy in a certain
region. We employ a Stock-Watson type7 state-level
coincident indicator index, which is available from the
Federal Reserve Bank of Philadelphia at a monthly
frequency.8

2.2.3. National-level geo-economic factors
We obtain the daily spot price of kerosene type

jet fuel from the Energy Information Administration
(EIA).9 We obtain the jet fuel prices in cents per gallon
as the average of the daily spot prices of Rotterdam
(ARA) kerosene type jet fuel. We use Rotterdam
spot prices rather than New York Harbor, US Gulf
Coast or Los Angeles spot prices for data availability
reasons. The Rotterdam spot prices have a correlation
of 0.98 with the Los Angeles spot prices when both
are available.

We obtain monthly prices (in dollars per barrel) of
crude oil futures contracts from the Global Financial

7 In the late 1980s, James Stock and Mark Watson developed a
coincident index for the US economy as an alternative to the one
which was published at that time by the Department of Commerce.
The advantage of a Stock-Watson type index is that it combines
several monthly indicators in a single measure of the economy.

8 http://www.phil.frb.org/econ/stateindexes/index.html.
9 http://www.eia.doe.gov/neic/historic/hpetroleum2.htm.

Data. We use the change in the average of the opening
and closing prices in a given month as an explanatory
variable in our empirical specification. We employ
the futures contract to proxy for expected changes in
future oil prices. These future prices may influence
airline pricing of future flights, for which initial prices
are typically set several months in advance.

3. Empirical specification and estimation

One can obtain monthly forecasts of the aggregate
air travel demand, i.e., the total number of passengers
boarding a commercial flight in the US in a given
month, using either an aggregate approach or a
disaggregate approach (when the disaggregate data are
available). In this section, we describe the different
empirical approaches employed for forecasting the
aggregate air travel demand.

3.1. The empirical model

We assume that the air travel demand in a given
region is a linear function of the regional geo-
economic factors discussed above. More specifically,
the empirical model is specified and estimated as
a linear projection of the dependent variable yi t
onto the lagged dependent variable and contemporary
explanatory variables. Specifically, the model can be
expressed as

yi t = αi + β
′

i Xi t + φ(L)yi t + εi t , (3)

where yi t is the dependent variable (i.e., the propensity
to travel in month t from airport i , as described in the
data section), αi is the constant term, Xi t is a vector
of explanatory variables, and φ(L) is a polynomial
lag operator (i.e., φ(L)yi t =

∑l
j=1 φi j yi,t− j ). We

estimate the same linear specification for the aggregate
air travel demand data as for the disaggregate data.
With the exception of the AIM approach, where
we estimate the linear specification for each airport
separately, the estimation of the linear specification
for the disaggregate data is different to that for
the aggregate data. It is these different estimation
methods for the disaggregate data, which we discuss
in further detail below, that allow us to exploit possible
additional information in the disaggregate data.

We first estimate the contemporaneous model and
iterate forward to obtain the h-step-ahead forecast.
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Our forecasting approach differs from the usual
textbook approach, due to the different estimation
approaches used to estimate the linear specification
with disaggregate data. We employ the iterative
forecasting approach rather than the “h-step-ahead
projection” approach implemented by Marcellino
et al. (2003) because of the availability of forecasts
for our explanatory variables. The advantage of the
“h-step-ahead projection” with explanatory variables
is that it eliminates the need to forecast the explanatory
variables. In the iterative approach, one needs to
forecast the explanatory variables in order to obtain
forecasts of the dependent variable. In our analysis,
one can obtain forecasts of the explanatory variables
from other sources, such as government agencies.
Furthermore, data availability becomes an issue for
the “h-step-ahead projection” approach if one needs
to forecast further into the future.

The implementation of Eq. (3) initially requires
decisions to be made about which functions of the
explanatory variables to employ and the order of
the lag operator. Our modeling decisions are based
on the goodness-of-fit of the model over the in-
sample data. Specifically, the vector of explanatory
variables, Xt , includes a linear trend variable (t), the
unemployment rate (unemp), the coincident indicator
index (ci) and its square, the spot price of jet fuel
(jetfuel), the monthly change in the average price of
crude oil futures (∆ oilfutures), and monthly dummy
variables (sdk , where k = 1, 2, . . . , 11 for monthly
seasonal dummies) to account for the seasonal pattern
of air travel demand. To account for the effect of
September 11 on air travel demand in the US, we
follow Ord and Young (2004) and model the effect as a
temporary change, which assumes that the factor has a
relatively short-term impact on the series. Specifically,
we assume that the September 11 attacks affected only
the last two-thirds of September and the whole month
of October. In other words, we set the September 11
effect to 2/3 for the month of September and 1 for
the month of October,10 and assume that the effect
decreases exponentially thereafter. More specifically,
we model the effect of September 11 on air travel

10 We also experimented with a value of 1 for the month of
September rather than 2/3, but our results did not change in any
significant fashion.

demand as follows:

sept11t =


0, if t < τ,

2/3, if t = τ,
d t−τ−1, if t > τ,

(4)

where τ is the event period, i.e., September 2001, and
d is the adjustment factor, chosen to be 0.6.11 We
choose the number of lags in our specification to be 1,
in order to account for first order autocorrelation in air
travel demand. The empirical model estimated can be
expressed as follows12:

yi t = αi + βi1t + βi2unempi t + βi3cii t + βi4ci2i t

+βi5jetfuelt + βi6∆oilfuturest + βi7sept11t

+

11∑
k=1

θiksdk + φi1 yi,t−1 + εi t . (5)

The intuition behind this empirical specification is
simple. The trend term controls for an increase over
time in the per capita propensity to travel. Both the
unemployment rate and the coincident indicator are
used to account for the effect of economic activity
on per capita air travel demand. The spot price of jet
fuel can be considered as a cost factor to passengers
and airlines. However, it can also be considered as an
indicator of the overall economic activity, since it is
highly correlated with crude oil prices. The oil futures
price is used to account for possible changes in future
oil prices. Most airlines plan their flight schedules and
airfares three months or more in advance, and thus an
increase in futures prices on crude oil should imply
an upward pressure on average airfares as airlines try
to pass on their increased costs in the form of fare
increases.

3.2. Estimating the empirical model

In order to forecast the aggregate US air travel
demand, we estimate the empirical model for
aggregate and disaggregate data. We first split our
sample into two subsamples: an in-sample period

11 We also experimented with other values for the adjustment
factor, but our results did not change qualitatively.
12 Variables with a subscript of i indicate that they are region

specific. Note however that the coincident indicator (ci) available
at the state level is the same for all airports in the same state, even
though the variable has a subscript of i .
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for estimating the coefficients of our empirical
model and an out-of-sample period for evaluating the
different forecasts of aggregate air travel demand.
The in-sample period is between 1990 and 2002,
resulting in 156 monthly observations for each
airport and for the aggregate air travel demand.
In the benchmark study, the out-of-sample period
is between 2003 and 2004, resulting in a total of
24 monthly observations for evaluating our out-of-
sample forecasts. For consistency, we decided to
always use the same in-sample period, and instead
change the out-of-sample period for different forecast
horizons and approaches.

In this section, we discuss the different methods
used to estimate the coefficients from both the
aggregate data and the individual airport data. The
forecasting approaches differ only with respect to the
estimation method used. Once the coefficients have
been estimated, the forecasting step is identical across
different approaches.

3.2.1. The aggregate approach
The empirical model in Eq. (5) for the aggregate

US air travel demand is estimated using aggregate ex-
planatory variables via ordinary least squares. Table 1
summarizes the estimation results for the aggregate
US air travel demand for the in-sample period.

Several interesting facts emerge from the aggre-
gate estimation results. First of all, our empirical spec-
ification captures 94% of the variation in per capita
air travel demand, suggesting a good in-sample fit.
Although it is insignificant, there is a negative lin-
ear trend in the aggregate per capita air travel de-
mand when we control for the autoregressive terms
in the specification. As expected, the level of eco-
nomic activity, as measured by the national coinci-
dent indicator, has a positive first degree effect on the
per capita air travel demand. Not surprisingly, the per
capita air travel demand was negatively affected by the
September 11 shock. Although the estimates are not
significant at any conventional level, the cost-related
factors (jet fuel spot prices and oil futures prices) have
positive effects on the air travel demand. This result
might be due to the positive correlation between cost-
related factors and the level of economic activity. As
expected, the air travel demand is higher during the
summer months, as is indicated by positive coeffi-
cient estimates on the dummy variables for the sum-
mer months.

3.2.2. The AIM approach
In the AIM approach, we assume that each indi-

vidual airport has unique dynamics and that the em-
pirical model is estimated separately for each airport.
In other words, this approach assumes that individual
airports do not have common factors and that the ef-
fects of each explanatory variable, whether national or
airport-specific, are different across airports.

In all disaggregate approaches, including the AIM
approach, if an explanatory variable such as the unem-
ployment rate is available at the MSA level, we use
MSA-level data. This is generally airport specific, ex-
cept for MSAs with more than one airport, such as the
New York-Northern New Jersey-Long Island MSA. If
MSA-level data are not available for an explanatory
variable, we use data for the state in which the air-
port is located, such as the coincident indicator. Fi-
nally, if the variable is not available at either MSA or
state level, we use national-level data for that variable,
for example jet fuel and oil futures prices. These vari-
ables are identical for every airport and the exact same
data are used in the aggregate approach. An index of
i on a variable in Eq. (5) implies that the variable is
available at either the MSA or state level. Otherwise,
the variable is only available at the national level.

The advantage of the AIM approach relative to
other approaches is that it allows for heterogeneity
across different airports while still using individual
market level data to forecast the aggregate air travel
demand. However, one should note that this might
not be the most efficient way of employing the
heterogeneity, due to the relatively large number
of coefficients estimated. We need to estimate the
empirical model for each individual airport. Hence,
for monthly data we need to estimate 20 coefficients
for each airport using only 155 observations, after
adjusting for lags. The ratio of the number of
coefficients estimated to the number of observations in
the AIM approach is identical to that of the aggregate
approach.

Table 2 presents summary statistics for the coeffi-
cient estimates from estimating the empirical speci-
fication for individual air travel demands separately.
The coefficient estimates from the AIM approach al-
low us to identify possible sources of heterogeneity
in air travel demands across different airports. Based
on the standard deviation of the estimated coefficients
for individual airports, the reaction to September 11,
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Fig. 2. Histograms of selected coefficient estimates from the AIM approach.
Note: The figure presents histograms of selected coefficient estimates from Eq. (5). The empirical model in Eq. (5) is estimated separately for
individual airports using disaggregate level data.

the autocorrelation, the effects of the summer months,
and the constant term might all be possible sources of
heterogeneity across different airports. This can also
be seen easily from the histograms of estimated co-
efficients. Fig. 2 presents the histograms of selected
coefficient estimates for individual airports. Although
the AIM approach may not be the most efficient way
to exploit this heterogeneity due to estimation uncer-
tainty, it should provide some intuition as to the possi-
ble sources of the heterogeneity and efficient ways of
exploiting it.

3.2.3. The quasi-AIM approach
In this section, we discuss several estimation

approaches which we collectively term “quasi-AIM”.

Unlike the AIM approach, which attempts to fully
exploit the heterogeneity across individual airports,
the quasi-AIM approaches exploit the heterogeneity
partially, by restricting the effects of certain variables
to be identical across individual airports, in order
to avoid the problems associated with estimation
uncertainty. The quasi-AIM approaches differ with
respect to the degree and source of the heterogeneity
used in the estimation of the empirical model.

In all quasi-AIM approaches, the empirical model
is estimated via pooled least squares over the in-
sample period using the panel of individual airport
data. The empirical model is estimated by restricting
all coefficient estimates to be the same across different
airports, except for those that are allowed to be
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Table 1
Coefficient estimates from the aggregate approach.

Variable Coefficient t-statistic Prob.

α −10.4881 −5.53 0.0000
t −0.0043 −1.45 0.1488
unempt 0.0170 0.58 0.5639
cit 0.0735 3.08 0.0025
ci2t −0.0002 −3.80 0.0002
jetfuelt 0.0004 1.58 0.1175
∆ oilfuturest 0.0007 0.45 0.6553
sept11t −0.3036 −4.47 0.0000
January dummy −0.1199 −3.85 0.0002
February dummy −0.1310 −4.76 0.0000
March dummy 0.0631 2.79 0.0061
April dummy 0.0246 1.80 0.0739
May dummy 0.0442 3.75 0.0003
June dummy 0.0868 5.11 0.0000
July dummy 0.1275 8.01 0.0000
August dummy 0.1378 9.30 0.0000
September dummy −0.0672 −2.94 0.0039
October dummy 0.0441 2.91 0.0042
November dummy −0.0174 −1.19 0.2347
AR(1) 0.2585 1.24 0.2163

R2 0.9385 F-statistic 108.4000
Adjusted R2 0.9298 Residual SE 0.0324

Note: The table presents the coefficient estimates of Eq. (5) from the
aggregate approach using aggregate per capita air travel demand and
aggregate explanatory variables for the in-sample period between
January 1990 and December 2002. “Coefficient” and “t-statistic”
correspond to the estimate and the t-statistic, respectively. “Prob.” is
the p-value associated with a two-sided test based on the t-statistic,
and “Residual SE” is the standard deviation of the residuals.

airport specific. This approach allows us to exploit
the information available across different airports to
a certain extent, without suffering from as much
estimation uncertainty as the AIM approach. The
number of coefficients estimated is either 198 or 376,
depending on the number of unrestricted coefficients
in the corresponding quasi-AIM model.

Based on the results from the AIM estimation, we
consider the following quasi-AIM approaches:

1. Pooled: Disaggregated model with common coeffi-
cients across all airports;

2. Quasi-AIM (FE): Disaggregated model with com-
mon coefficients across all airports except for the
constant term (fixed effect);

3. Quasi-AIM (sept11): Disaggregated model with
common coefficients across all airports except for
the coefficient on the September 11 variable;

4. Quasi-AIM (AR(1)): Disaggregated model with
common coefficients across all airports except for
the coefficient on the lagged dependent variable;

5. Quasi-AIM (FE & sept11): Disaggregated model
with common coefficients across all airports except
for the constant term (fixed effect) and the
coefficient on the September 11 variable;

6. Quasi-AIM (FE & AR(1)): Disaggregated model
with common coefficients across all airports except
for the constant term (fixed effect) and the
coefficient on the lagged dependent variable; and

7. Quasi-AIM (sept11 & AR(1)): Disaggregated
model with common coefficients across all airports
except for the coefficients on the September 11 and
lagged dependent variables.

Different quasi-AIM approaches exploit the hetero-
geneity across airports in different dimensions. For ex-
ample, the quasi-AIM sept11 approach exploits the
possible heterogeneity between airports with respect
to their reaction to the September 11 attacks. One
might argue that airports with mostly domestic and
particularly short-haul commuter traffic would have
been affected the most by September 11, whereas
airports with mostly international traffic would have
been relatively less affected. The quasi-AIM AR(1)
approach exploits the heterogenous information avail-
able in the autoregressive dynamics of different air-
ports. Consider two airports, say Las Vegas and San
Francisco, where Las Vegas is a growing market and
San Francisco is a mature one with respect to per
capita demand. Although these two individual airports
might be affected similarly by explanatory variables
such as the economic conditions and jet fuel prices, it
is still reasonable to assume that they will have dif-
ferent autoregressive dynamics. We also analyze three
additional quasi-AIM approaches where we allow two
of these three factors to be airport-specific while still
restricting the coefficient estimates of all other vari-
ables to be identical. In other words, we attempt to ex-
ploit the heterogeneity in two dimensions at the same
time, rather than in a single dimension.

Finally, we also analyze the most restrictive form
of the quasi-AIM approach, which we term the
pooled approach. It uses all available data at the
individual level but imposes the restriction that all
coefficient estimates are identical across airports.
In the pooled approach, as the name suggests, we
estimate the empirical model via pooled least squares
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Table 2
Summary statistics for coefficient estimates from the AIM approach.

Variable Mean Median Min Max Std. dev.

α −6.4534 −7.0302 −31.9936 24.5534 7.0399
t −0.0004 −0.0008 −0.0603 0.0246 0.0075
unempt −0.0054 −0.0059 −0.0706 0.0628 0.0149
cit 0.0078 0.0192 −0.5727 0.5502 0.1268
ci2t 0.0000 −0.0001 −0.0028 0.0028 0.0006
jetfuelt −0.0001 0.0000 −0.0050 0.0035 0.0011
∆ oilfuturest 0.0014 0.0013 −0.0171 0.0202 0.0039
sept11t −0.3148 −0.2915 −1.6726 0.3242 0.1614
January dummy −0.1159 −0.1328 −0.3011 0.6218 0.1175
February dummy −0.1226 −0.1432 −0.4014 0.6156 0.1344
March dummy 0.0567 0.0477 −0.2230 0.7773 0.1366
April dummy −0.0049 0.0000 −0.8477 0.6720 0.1456
May dummy 0.0311 0.0441 −1.0598 0.6816 0.1384
June dummy 0.0943 0.0992 −0.7540 0.6623 0.1315
July dummy 0.1396 0.1291 −1.0846 0.8805 0.1849
August dummy 0.1420 0.1165 −1.0996 1.0168 0.2051
September dummy −0.0421 −0.0513 −0.8347 0.7330 0.1546
October dummy 0.0641 0.0606 −0.3356 0.5647 0.1187
November dummy −0.0182 −0.0099 −1.0764 0.2659 0.1074
AR(1) 0.6465 0.6960 0.1915 1.0128 0.1990
Residual SE 0.0706 0.0604 0.0356 0.4039 0.0413

Note: The table presents summary statistics on the coefficient estimates of Eq. (5) from the AIM approach using the per capita air travel demand
and explanatory variables for the individual airports between January 1990 and December 2002. “Std. dev.” is the standard deviation across
airports of the coefficient estimate of the variable in the corresponding row. “Residual SE” is the standard deviation of residuals.

using individual level dependent and explanatory
variables. In other words, the empirical model in
Eq. (5) is estimated separately for individual airport
data by restricting the coefficients to be identical
across airports. The advantage of this approach with
respect to the aggregate approach is the availability
of a larger data set. The number of coefficients
to be estimated is 20, whereas the number of
observations in the in-sample data set, after adjusting
for autoregressive terms, is 27,745.13 Although the
pooled approach employs all available data, it does
not take into account the information embedded in
the heterogeneity across airports. In other words,
this approach does not efficiently use all available
information. Table 3 summarizes the estimation results
for the pooled estimation of the empirical model.

The coefficient estimates obtained by the pooled
approach are somewhat different to those obtained by
the aggregate approach. In the pooled estimation, the

13 The number of time series observations available for each
airport after adjusting for lags (156 − 1 = 155), times the number
of airports in our sample (179).

effect of economic activity on per capita air travel
demand is captured by the unemployment rate, which
has a significant negative impact. On the other hand,
the other measure of economic activity, namely the
state-level coincident indicator, has an insignificant
effect on air travel demand, in contrast to its significant
effect on the aggregate air travel demand. This might
be due to the fact that the unemployment rate is
available at the MSA level, and therefore might be a
better measure of economic activity for an individual
airport than the coincident indicator, which is only
available at the state level. On the other hand, variables
such as the change in oil futures prices and the lagged
per capita air travel demand become significant. The
R2 of the pooled estimation is 0.98, suggesting an
almost perfect in-sample fit. Most of the coefficient
estimates that are insignificant using aggregate data
become significant in the pooled estimation. These
differences show the effect on coefficient estimates of
using disaggregate data.

Between the two extremes of the pooled and
AIM approaches, one might argue that the quasi-
AIM approaches provide a better way of exploiting
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Table 3
Coefficient estimates from the pooled approach.

Variable Coefficient t-statistic Prob.

α −6.3075 −6.34 0.0000
t 0.0036 1.45 0.1467
unempt −0.0034 −1.98 0.0479
cit −0.0060 −0.47 0.6419
ci2t 0.0000 0.84 0.3985
jetfuelt −0.0002 −1.25 0.2123
∆ oilfuturest 0.0017 2.66 0.0077
sept11t −0.3050 −15.77 0.0000
January dummy −0.1134 −39.60 0.0000
February dummy −0.1201 −35.74 0.0000
March dummy 0.0588 15.02 0.0000
April dummy −0.0028 −0.57 0.5663
May dummy 0.0333 6.67 0.0000
June dummy 0.0965 18.47 0.0000
July dummy 0.1416 27.88 0.0000
August dummy 0.1440 29.41 0.0000
September dummy −0.0407 −8.64 0.0000
October dummy 0.0654 17.80 0.0000
November dummy −0.0175 −6.15 0.0000
AR(1) 0.9907 661.99 0.0000

R2 0.9832 F-statistic 85275
Adjusted R2 0.9832 Residual SE 0.1411

Note: The table presents the coefficient estimates of Eq. (5) from
the pooled approach using the per capita air travel demand and
explanatory variables for the individual airports between January
1990 and December 2002. See also the notes to Table 1.

the heterogeneity without being subject to possible
estimation uncertainty. The quasi-AIM approach
allows for a certain degree of heterogeneity which
is not possible with the pooled approach, and it
is not subject to as much estimation uncertainty as
the AIM approach, since the number of coefficients
to be estimated is significantly smaller. In other
words, the quasi-AIM exploits several dimensions of
possible heterogeneity across airports without being
subject to extreme estimation uncertainty. One can
use the estimation results from the pooled and AIM
approaches to discover the possible sources of most of
the heterogeneity across individual markets.

3.3. Benchmark models

We also obtain out-of-sample forecasts of the
aggregate air travel demand from benchmark models
without any explanatory variables except for the trend
and the September 11 variable. In doing this, we
analyze whether the explanatory variables provide
any out-of-sample predictive power in our setting.

Furthermore, it is fairly common in the forecasting
literature for parsimonious forecasting approaches to
outperform more complicated approaches in terms
of their out-of-sample forecasting performances.
The benchmark models are based on an empirical
specification which is identical to the original
empirical specification in Eq. (5), except for the
explanatory variables:

yi t = αi + βi1t + βi2sept11t +

11∑
k=1

θiksdk

+φi1 yi,t−1 + εi t . (6)

Benchmark models also differ from each other as to
which of the estimation approaches discussed above
is used. For the sake of brevity, we do not present
estimation results for the benchmark models.

4. Forecasting the aggregate air travel demand

In order to form out-of-sample forecasts of the
aggregate air travel demand in the US, we need
forecasts of the independent variables. In this section,
we discuss the way in which out-of-sample forecasts
of the independent variables are obtained and forecasts
of the aggregate air travel demand are obtained from
the different approaches discussed above.

4.1. Forecasting independent variables

For most of the explanatory variables considered
in this paper, we can employ forecasts from other
sources such as government agencies. In this section,
we discuss the sources of the out-of-sample forecasts
of the explanatory variables and the assumptions
underlying them.

We assume that the unemployment rate for indi-
vidual MSAs is constant, and is equal to the unem-
ployment rate in the last period of the corresponding
in-sample data. The MSA level unemployment rate
is quite persistent, which makes our assumption of a
constant MSA level unemployment reasonable. Fol-
lowing the Congressional Budget Office’s forecast of
a 3% annual growth rate for the US real output be-
tween 2003 and 2004, we assume that the state-level
coincident indicator indices grow at a monthly rate of
0.2466%. This forecast of a 3% annual growth rate is
also consistent with the forecasts of other government
agencies such as the Census Bureau, the FAA and the
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Administration, as well as with the Blue Chip fore-
casts. Our monthly forecasts of jet fuel prices and oil
futures prices are based on the Energy Information
Agency’s (EIA) Annual Energy Outlook (2003).14 In
the reference case, the EIA forecast that the world oil
price would increase at an annual rate of 1.43%, and
a corresponding monthly rate of 0.1184%. We assume
that jet fuel prices and oil futures prices are perfectly
correlated with the world oil price and grow at the
same rate. This assumption is reasonable, since these
variables are highly correlated with the world oil price
in our sample. Our population forecasts for MSAs are
based on the Census Bureau’s MSA-level forecasts.
The Census Bureau employs the 2000 census to ob-
tain population projections.

Ex-post, these forecasts generally underpredicted
the corresponding explanatory variables. Neverthe-
less, these forecasts provide a sensible benchmark.
One can easily extend this analysis by analyzing dif-
ferent scenarios such as the low vs. high world price
of oil and the low vs. high growth of the economy.
Furthermore, in a model with a relatively large num-
ber of time series observations and a small number of
autoregressive terms, one can consider employing the
“h-step-ahead projection” of Marcellino et al. (2003).
We should note that the choice of forecasting approach
for the explanatory variables does not seem to have
a significant effect on our conclusions about the rela-
tive performances of different approaches in forecast-
ing the aggregate air travel demand.

4.2. Forecasting the aggregate air travel demand

Forecasting the aggregate air travel demand
requires forecasts of the per capita air travel demand
at either the aggregate or disaggregate level, as well as
population forecasts. We model the per capita air travel
demand as the dependent variable in our empirical
specifications instead of the air travel demand itself.
Hence, we first form out-of-sample forecasts of the
per capita air travel demand via either the aggregate
or disaggregate approach, then convert the forecasts

14 The Annual Energy Outlook presents midterm forecasts of
energy supply, demand, and prices through until 2025, prepared
by the EIA. The projections are based on results from the EIA’s
National Energy Modeling System (NEMS). The forecast employs
only the data available at the end of our in-sample period, since the
Annual Energy Outlook 2003 was published in January 2003 (see
http://tonto.eia.doe.gov/FTPROOT/forecasting/0383(2003).pdf).

of the per capita air travel demand into forecasts
of numbers of passengers by using out-of-sample
population forecasts and the inverse of the logit
transformation in Eq. (2).

Forecasting the aggregate air travel demand via the
aggregate approach is relatively straightforward. We
just convert the forecasts of the aggregate per capita
air travel demand into forecasts of the number of
passengers, as discussed above. On the other hand,
forecasting the aggregate air travel demand via one
of the disaggregate approaches requires forecasts of
the air travel demands at individual airports. The
aggregate air travel demand is, by definition, the sum
of the individual air travel demands at all US airports.
However, we only forecast the air travel demands at
the 179 busiest airports, rather than at all US airports.
Hence, forecasts of the aggregate air travel demand are
obtained as the sum of the air travel demands of the
179 busiest airports, adjusted by a factor that accounts
for the air travel demand at the other airports. As was
discussed in Section 2, this adjustment factor is the
reciprocal of the ratio of the air travel demands at the
179 busiest airports to the total US air travel demand in
the last month of the in-sample period, and is assumed
to be constant in the out-of-sample periods.

As an initial exercise, we analyze the forecasting
performances of the different approaches based on
their Mean Absolute Forecast Errors (MAFE) and
Root Mean Square Errors (RMSFE) for the out-of-
sample period between January 2003 and December
2004. To do so, we first estimate the empirical
specification using the in-sample data between
January 1990 and December 2002. Assuming that
there are no structural breaks in the out-of-sample
period, we then form one-step-ahead forecasts of the
per capita air travel demand and proceed in an iterative
fashion to obtain h-step-ahead forecasts which depend
on the h − 1-step-ahead forecasts and parameter
estimates based on the in-sample period between
January 1990 and December 2002. The first exercise
can be thought of as a static forecasting exercise,
where the parameter estimates are based on a fixed
window, are not updated and do not depend on the
forecast horizon. Specifically, the forecasting model
can be expressed as follows:

ŷi,t+h = α̂i + β̂i1(t + h)+ β̂i2ûnempi,t+h

+ β̂i3ĉii,t+h + β̂i4ĉi
2
i,t+h + β̂i5 ĵetfuelt+h
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+ β̂i6 ̂∆oilfuturest+h + β̂i7ŝept11t+h

+

11∑
k=1

θ̂iksdk + φ̂i1 ŷi,t+h−1, (7)

where the parameter estimates are based on the
fixed in-sample period between January 1990 and
December 2002. h-step-ahead out-of-sample forecasts
of the explanatory variables can be obtained as
discussed in Section 4.1, and are denoted as for the
unemployment rate for airport i , which is given by
ûnempi,t+h .

Although the first forecasting exercise might
provide an indication as to which model is better,
one should be careful in interpreting the MAFEs
and RMSFEs from the benchmark case, as they are
calculated by averaging out the forecast errors for
different forecast horizons. Furthermore, in a recent
paper, Jordà and Marcellino (2010) questioned the
validity of using these loss functions for a path
forecast, as in our first exercise. Finally, the first
exercise does not reveal much information about
the relative forecasting performances of different
approaches for a certain forecast horizon. In our
second forecasting exercise, we analyze the out-
of-sample forecasting performances of different
approaches for three different forecast horizons,
namely short-, medium- and long-term forecast
horizons, which correspond to 1-, 6- and 12-step-
ahead forecasts, respectively. The second approach
allows us to analyze the forecasting performance for
certain forecast horizons, and by doing so, one might
gain additional insights as to which model should be
used for a given forecast horizon.

In the second forecasting exercise, we form
forecasts of the per capita air travel demand in a
recursive fashion, using expanding windows of in-
sample data. Whether we are producing 1-, 6- or
12-step-ahead forecasts, for consistency reasons, we
use data between January 1990 and December 2002 as
the initial window in a series of expanding windows
of in-sample observations. The forecasting approach
is similar for short-, mid- and long-term forecasts,
and can be described briefly for 6-step-ahead forecasts
as follows. In order to form forecasts of the air
travel demand in June 2003, we first estimate the
coefficients using the in-sample data between January
1990 and December 2002. We then forecast the air
travel demand as in the first forecasting exercise.

For July 2003, we estimate the coefficients using
data between January 1990 and January 2003. In
other words, we expand the in-sample data by adding
observations from January 2003, and re-estimate the
coefficients every time we expand the in-sample data.
We continue in this fashion until December 2004, the
last month of our out-of-sample period. The second
forecasting exercise can be considered as a dynamic
forecasting approach where the parameter estimates
are updated as new observations arrive.

5. Forecasting results

In this section, we discuss the out-of-sample fore-
casting performances of the different approaches from
the different forecasting exercises. The out-of-sample
forecasting performance of each approach depends on
the tradeoff between estimation uncertainty and the
degree of heterogeneity allowed. The aggregate and
the pooled approaches do not allow for any hetero-
geneity across airports in the estimation step. The es-
timation uncertainty of these approaches is relatively
low, since the number of coefficients estimated is low
relative to the quasi-AIM and AIM approaches. On the
other hand, the AIM approach employs all available
heterogeneity by estimating the empirical model with-
out restrictions. Hence, the estimation uncertainty is
arguably high relative to other approaches. The quasi-
AIM approaches can be considered as being a mid-
dle ground between the pooled and AIM approaches.
The quasi-AIM approaches partially exploit the het-
erogeneity across airports, without having to estimate
a relatively large number of coefficients. In one sense,
the quasi-AIM approaches can be considered as ex-
ploiting the heterogeneity across airports more effi-
ciently without suffering from too much estimation
uncertainty.

We first present the results from the first (static)
forecasting exercise discussed above, where we
do not distinguish between the different forecast
horizons. We use the mean absolute forecast
error (MAFE) and the root mean square forecast
error (RMSFE) as measures of the out-of-sample
forecasting performance. The mean absolute forecast
error is defined as the average of the absolute nominal
forecast errors and the root mean square forecast error
is defined as the square root of the average of the
square nominal forecast errors, where the nominal
forecast error is the difference between the actual
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number of passengers in a given month and the
forecast number of passengers in that month. As was
discussed in more detail above, one should be careful
in interpreting measures of forecasting performances
based on the MAFE and RMSFE for different forecast
horizons. Table 4 summarizes the relative forecasting
performances of the different approaches with respect
to the aggregate approach.

The quasi-AIM approach with fixed effects and
different reactions to the September 11 terrorist attacks
performs best in terms of out-of-sample forecasting
ability, as measured by the mean absolute forecast
error. The quasi-AIM approaches which exploit the
heterogeneity in these two dimensions separately, i.e.,
the quasi-AIM approach with fixed effects only and
the quasi-AIM approach with different September
11 coefficients, have similarly good out-of-sample
performances. These results are consistent with our in-
sample findings based on the AIM approach, where
we identify the reaction to September 11 and the
level of per capita air travel demand (fixed effects)
among the possible sources of heterogeneity across
different airports. On the other hand, any quasi-AIM
approaches that attempt to exploit the heterogeneity
in the autocorrelation structure of the per capita travel
across different airports perform relatively poorly
and provide worse static out-of-sample forecasts
than the pooled and AIM approaches. Furthermore,
the pooled approach provides slightly better out-of-
sample forecasts than the AIM approach in terms of
MAFE. This result suggests that the pooled approach
might be a better way of employing the information
embedded in disaggregate level data than the AIM
approach, which may suffer from high estimation
uncertainty.

More importantly, all approaches that employ in-
formation which is available at the disaggregate
level perform better than the aggregate approach.
In addition, all approaches perform better than their
corresponding benchmark approach without any ex-
planatory variables, except for the aggregate approach
and any quasi-AIM approach with different AR(1) co-
efficients. These results suggest that using explanatory
variables in the aggregate approach has a negative ef-
fect on the out-of-sample forecasting performance of
that approach. In other words, one might obtain bet-
ter out-of-sample forecasts of the aggregate variable
by using a simple empirical approach based on autore-

Table 4
Out-of-sample performance of static forecasts.

(a) Relative MAFEs and RMSFEs with respect to the
aggregate approach.

MAFE RMSFE Rank

Aggregate 1.0000 1.0000 9
Pooled 0.4351 0.4178 4
Quasi-AIM (FE) 0.4247 0.4147 2
Quasi-AIM (sept11) 0.4319 0.4145 3
Quasi-AIM (AR(1)) 0.5878 0.5747 7
Quasi-AIM (FE & sept11) 0.4240 0.4137 1
Quasi-AIM (FE & AR(1)) 0.5970 0.6051 8
Quasi-AIM (sept11 & AR(1)) 0.5492 0.5286 6
AIM 0.4960 0.5122 5

(b) Relative MAFEs and RMSFEs with respect to the
corresponding benchmark model.

MAFE RMSFE

Aggregate 1.3509 1.4449
Pooled 0.9157 0.9152
Quasi-AIM (FE) 0.8228 0.7961
Quasi-AIM (sept11) 0.9140 0.9125
Quasi-AIM (AR(1)) 1.1319 1.1679
Quasi-AIM (FE & sept11) 0.8114 0.7874
Quasi-AIM (FE & AR(1)) 1.3461 1.4137
Quasi-AIM (sept11 & AR(1)) 1.0740 1.0899
AIM 0.5523 0.6392

Note: The table presents the out-of-sample performances of static
forecasts for the aggregate air travel demand. The static forecasts are
formed in a recursive fashion based on the in-sample data between
January 1990 and December 2002, and the coefficient estimates are
not updated. Panel (a) presents the relative performances of the static
forecasts listed in rows, with respect to the aggregate approach.
The MAFE and RMSFE columns report the relative mean abso-
lute forecast errors and the root mean square forecast errors, respec-
tively. The relative measures are obtained by dividing the MAFE or
RMSFE of the forecasting approach by those of the aggregate ap-
proach. A forecasting approach outperforms the aggregate approach
if and only if its relative MAFE or RMSFE is less than one. “Rank”
is the rank based on the MAFE of each forecasting approach relative
to other approaches, where 1 corresponds to the best performing ap-
proach, i.e., the smallest relative MAFE. Panel (b) presents the rel-
ative MAFE and RMSFE of each forecasting approach with respect
to the corresponding benchmark model without explanatory vari-
ables which need to be forecast. The relative measures are obtained
by dividing the MAFE or RMSFE of the forecasting approach by
those of the corresponding benchmark model. A number less than 1
suggests that the explanatory variables provide some out-of-sample
forecasting power.

gressive dynamics, rather than an empirical approach
where the explanatory variables need to be forecast.
Furthermore, based on the out-of-sample forecast-
ing performance, using explanatory variables in our

Please cite this article in press as: Carson, R. T., et al. Forecasting (aggregate) demand for US commercial air travel. International Journal of
Forecasting (2010), doi:10.1016/j.ijforecast.2010.02.010



ARTICLE  IN  PRESS
16 R.T. Carson et al. / International Journal of Forecasting ( ) –

Table 5
Out-of-sample performances of dynamic short-, medium- and long-term forecasts.

Short-term (1-step-ahead) Medium-term (6-step-ahead) Long-term (12-step-ahead)
MAFE RMSFE Rank MAFE RMSFE Rank MAFE RMSFE Rank

Aggregate 1.0000 1.0000 9 1.0000 1.0000 9 1.0000 1.0000 9
Pooled 0.5311 0.5602 7 0.3979 0.4480 7 0.2575 0.3170 2
Quasi-AIM (FE) 0.4387 0.4531 2 0.3732 0.4219 3 0.2745 0.3182 6
Quasi-AIM (sept11) 0.5335 0.5631 8 0.3978 0.4477 6 0.2572 0.3167 1
Quasi-AIM (AR(1)) 0.4602 0.4751 4 0.3971 0.4446 5 0.2678 0.3172 4
Quasi-AIM (FE & sept11) 0.4392 0.4535 3 0.3730 0.4217 2 0.2740 0.3178 5
Quasi-AIM (FE & AR(1)) 0.4287 0.4440 1 0.3678 0.4205 1 0.2817 0.3242 7
Quasi-AIM (sept11 & AR(1)) 0.4710 0.4942 5 0.3967 0.4432 4 0.2624 0.3145 3
AIM 0.4989 0.5094 6 0.5079 0.5497 8 0.4798 0.5215 8

Note: The table presents the out-of-sample performances of dynamic forecasts for the aggregate air travel demand. The dynamic forecasts
are formed in a recursive fashion based on expanding windows of in-sample observations. The short forecast horizon corresponds to 1-step-
ahead forecasts; the medium forecast horizon corresponds to 6-step-ahead forecasts; and the long forecast horizon corresponds to 12-step-
ahead forecasts. The MAFE and RMSFE columns report the relative mean absolute forecast errors and the root mean square forecast errors,
respectively. The relative measures are obtained by dividing the MAFE or RMSFE of the forecasting approach by that of the aggregate approach.
A forecasting approach outperforms the aggregate approach if and only if its relative MAFE or RMSFE is less than one. “Rank” is the rank
based on the MAFE of each forecasting approach relative to other approaches, where 1 corresponds to the best performing approach, i.e., the
smallest relative MAFE.

empirical specification improves the out-of-sample
forecasting power at the disaggregate level for most
approaches. The explanatory variables provide signifi-
cant additional out-of-sample forecasting power over
the corresponding benchmark in forecasting the ag-
gregate air travel demand, although we did need to
forecast these explanatory variables, which might have
had a negative effect on the forecasting power ex
ante. These results might also justify these explanatory
variables and their forecasts provided by government
agencies in forecasting aggregate air travel demand.

In the second (dynamic) exercise, we analyze the
forecasting performances of different approaches for
three different forecast horizons, short- (1-step-ahead),
medium- (6-step-ahead) and long-term (12-step-
ahead). This exercise allows us to identify not only
the best forecasting approach for different forecast
horizons, but also possible reasons for the relative
performances in the first exercise. To this end, Table 5
presents the out-of-sample forecasting performances
in terms of relative MAFEs and RMSFEs with respect
to the aggregate approach, as well as presenting the
relative rank of each approach for a given forecast
horizon.

The quasi-AIM approach with different auto-
correlation coefficients across airports (Quasi-AIM
(AR(1))) is the best forecasting approach for short-
and medium-term forecasting. On the other hand, it is
among the worst performers for long-term forecasts,

a fact which might explain the relatively poor perfor-
mance of this approach in the first forecasting exercise,
where we did not distinguish between the different
forecast horizons. The good performance of this ap-
proach for short- and medium-term forecasting might
be due to the fact that the first autoregressive compo-
nent is able to capture short-term fluctuations, but fails
to do so for longer horizons.

The best performing quasi-AIM approaches in the
first exercise are also among the best approaches
when we analyze the different forecast horizons
separately. For example, the quasi-AIM approaches
with fixed effects and with or without the different
September 11 coefficients across airports are among
the best performers for short- and medium-term
forecast horizons, while they perform relatively poorly
for long horizons. The opposite is true for the quasi-
AIM approach with just the different September 11
coefficients, which is among the worst for short- and
medium-term forecasts and the best for long forecast
horizons. These results suggest that allowing different
constants across airports is relatively useful for short
horizons, while exploiting the heterogeneity based
on the September 11 reaction is useful for longer
horizons. These results also provide us with a better
understanding of the results of the first forecasting
exercise, which is in some senses a combination of
short-, medium- and long-term forecast horizons.
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(a) Static forecasts. (b) Short-term dynamic forecasts.
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(c) Medium-term dynamic forecasts. (d) Long-term dynamic forecasts.

Fig. 3. Aggregate US air travel demand and out-of-sample forecasts from selected approaches.
Note: The figure presents realized values for the aggregate US air travel demand, together with static forecasts (Panel (a)) and dynamic forecasts
for short (Panel (b)), medium (Panel (c)) and long (Panel (d)) forecast horizons from selected forecasting approaches. In each panel, the solid
line (—) represents the realized values for the aggregate US air travel demand; the dashed line (- - -) corresponds to out-of-sample forecasts from
the AIM approach; the dotted line (· · ·) corresponds to out-of-sample forecasts from the quasi-AIM approach with fixed effects and different
September 11 coefficients across airports; and the dash-dotted line (- · -) corresponds to out-of-sample forecasts from the aggregate approach.
The out-of-sample period for the static forecasts is between January 2003 and December 2004, and the parameter estimates are based on the
fixed window of observations between January 1990 and December 2002. The out-of-sample period for dynamic forecasts changes depending
on the forecast horizon, and the forecasts are based on parameters estimated for an expanding window of observations. The out-of-sample
periods for the short-, medium- and long-term forecast horizons are January 2003–December 2004, June 2003–December 2004 and January
2004–December 2004, respectively.

More importantly, independent of the forecast
horizon, the aggregate approach is always the worst-
performing approach, suggesting that there are always
gains in terms of forecasting ability from using
information which is available at the disaggregate
level. Furthermore, almost all quasi-AIM approaches
outperform the AIM approach for every forecast
horizon, suggesting that quasi-AIM approaches might

be better suited for exploiting the heterogeneity across
airports, without suffering from as many of the
problems associated with estimation uncertainty as the
AIM approach. On the other hand, the same cannot
be said about the pooled approach, as it is among
the best approaches for long horizons, which might
also explain its relatively good performance in the first
forecasting exercise.
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Fig. 3 presents realized values for the aggregate
US air travel demand, as well as static and dynamic
forecasts for the short-, medium- and long-term
horizons from selected approaches. It allows us to
verify the above findings about the out-of-sample
performances of different approaches visually. For
example, one can see from Fig. 3 that the quasi-AIM
approach with fixed effects and different September 11
coefficients across airports generally outperforms the
other approaches graphed in the figure.

Several other interesting facts emerge from
Fig. 3. In the static forecasting exercise, all
forecasting approaches tend to first overforecast then
underforecast the aggregate air travel demand, with the
exception of the aggregate approach. There are two
possible explanations for this pattern of forecasting
errors. First and more importantly, our forecasts of
the explanatory variables are somewhat conservative.
In other words, we underpredicted the explanatory
variables ex-post, with significant positive effects on
the per capita air travel demand, and in particular
the variables related to economic growth. This is
consistent with other available forecasts of economic
activity during the time period considered in this
paper. Another plausible reason might be related
to the effect of the September 11 terrorist attacks.
The aggregate air travel demand might have reacted
more strongly to the September 11 terrorist attacks
and recovered faster than our models predicted.
Furthermore, as one would expect for most static
forecasting exercises, the forecasting errors get larger
with the forecasting horizon. In the second forecasting
exercise, we attempt to address this problem by
analyzing three different forecast horizons separately.
Fig. 3 confirms our earlier claim that long-term
forecasts generally underpredict the aggregate air
travel demand, and the forecasting errors for short-
and medium-term forecasts are relatively smaller than
those for long-term forecasts.

To summarize, our out-of-sample results confirm
our previous assertion that there are gains from using
disaggregate level data when forecasting an aggre-
gate variable. Moreover, employing the heterogene-
ity across airports yields superior forecasts. In other
words, the disaggregate approaches (quasi-AIMs and
AIM) outperform the aggregate approach. The ques-
tion of which quasi-AIM approach performs the best

depends on the source of most of the heterogeneity
across markets, as well as on the forecast horizon.

6. Conclusion

In this paper, we analyze whether it is better to fore-
cast air travel demand using aggregate data or to sum
the airport-specific forecasts obtained from disaggre-
gate data. We find that disaggregate forecasting ap-
proaches outperform the aggregate approach in terms
of the mean absolute forecast errors and root mean
square forecast errors of out-of-sample forecasts of
the aggregate variable at different forecast horizons.
We argue that the performance of a disaggregate ap-
proach depends on the trade-off between the degree of
heterogeneity allowed and the estimation uncertainty.
The AIM (aggregating individual markets) approach,
which exploits all of the heterogeneity across indi-
vidual airports, also suffers from high estimation un-
certainty due to the number of coefficients estimated.
We find that the approaches where we restrict the het-
erogeneity across airports by forcing the coefficient
estimates to be the same across airports, which we
term quasi-AIM approaches, outperform the AIM ap-
proach. We argue that the disaggregate approaches can
be implemented in a straightforward manner, with the
potential for better forecasts than either the aggre-
gate or the AIM approach, since they exploit the het-
erogeneity in individual market dynamics efficiently,
without high estimation uncertainty. More structural
AIM variants can help to identify important individ-
ual market differences and provide inputs and links to
choice models.
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