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Abstract 
	
We propose a novel approach to estimate adaptation to climate change based on a 
decomposition of meteorological variables into long-run trends and deviations from those 
trends (weather shocks). Our estimating equation simultaneously exploits weather variation to 
identify the impact of weather shocks, and climatic variation to identify the effect of longer-run 
observed changes. We then compare the simultaneously estimated short- and long-run effects 
to provide a measure of adaptation. We apply our methodology to study the impact of climate 
change on air quality, and estimate the so-called climate penalty on ozone. This penalty 
means that climate change might offset some of the improvements in air quality expected from 
reductions in ozone precursors. We have three main findings. First, a changing climate 
appears to be affecting ground-level ozone concentrations in two ways. A shock in 
temperature of one degree Celsius increases ozone levels by 1.7 ppb on average, which is 11 
percent higher than what would have been found in the standard fixed-effect approach. A 
change of similar magnitude in the 30-year moving average increases ozone concentration by 
1.2 ppb, which is 14 percent higher than what would have been found in the standard cross-
section approach. Second, we find evidence of adaptive behavior. For a change of 1oC in 
temperature, our measure of adaptation in terms of ozone concentration is 0.45 ppb. If 
adaptive responses were not taken into account, the climate penalty on ozone would be 
overestimated by approximately 17 percent. Third, adaptation in counties with levels of ozone 
above the EPA’s standards appears to be over 66 percent larger than adaptation in counties in 
“attainment”. This difference is what we call regulation-induced adaptation. The remainder is 
our measure of residual adaptation. 
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1. Introduction 

According to the Fifth Assessment Report from the Intergovernmental Panel on Climate 

Change (IPCC, 2013), the warming of the climate system is unequivocal, and global 

temperatures are likely to rise from 1.5 to 4 degrees Celsius over the 21st century, depending 

on the emissions scenario. Measuring climate impacts and potential adaptation to climate 

change is crucial to decide whether and how to design policies and technologies to smooth out 

the transition to a warmer world. Because by definition economic agents are unable to offset 

the impacts of weather shocks, but can make adjustments to cope with changes in long-run 

climatic trends (e.g., Barreca et al., 2015, 2016), the estimation of climate impacts must 

disentangle these two dimensions of changes in meteorological variables. Due to data 

limitations, influential cross-section and fixed-effect approaches have estimated either of those 

effects separately, not controlling for the other in the estimating equation. Standard 

econometrics therefore suggests the presence of omitted variable bias in both approaches. 

Since adaptation measures are often derived from those short- and long-run estimates, they 

are likely to be biased as well. 

In this paper, we propose a novel approach to estimate climate impacts and adaptation, and 

provide an application using high-frequency data in the context of the impact of climate change 

on ground-level ozone concentration (Jacob and Winner, 2009). As explained below, ozone is 

not emitted but rather formed in the presence of sunlight and warm temperatures. Our 

approach to estimate climate impacts and adaptation bridges two strands of the climate-

economy literature. In the same estimating equation, we exploit meteorological variation to 

identify the impact of weather shocks on surface ozone levels (e.g. Deschenes and 

Greenstone, 2007; Schlenker and Roberts, 2009), and climatological variation to identify the 

causal effect of longer-run observed climatic changes (e.g. Mendelsohn, Nordhaus, and Shaw, 

1994; Schlenker, Hanemann, and Fisher, 2005). We then compare the simultaneously 

estimated short- and long-run effects to provide a measure of adaptive responses by economic 

agents (Dell, Jones, and Olken, 2009, 2012, 2014; Burke and Emerick, 2016). 

A key element of our approach is the decomposition of meteorological variables into two 

components: long-run trends and shocks, the latter defined as deviations from those trends. 

Taking advantage of high-frequency data, we decompose daily maximum temperature into a 

monthly moving average incorporating information from the past three decades, and a 
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deviation from that lagged 30-year average often referred to as climate normal1. This 

decomposition is meant to have economic content. Agents can only respond to climatic 

variables they observe. The 30-year moving average is purposely lagged to capture all the 

information available to individuals and firms up to the year prior to the measurement of ozone 

levels, our main outcome in our application. In contrast, agents cannot respond to weather 

shocks by definition. Our measure of adaptation is the difference between simultaneously 

estimated responses to weather shocks and responses to changes in lagged 30-year moving 

averages2. If policymaking can influence adaptive behavior, then variables representing 

governmental policies or regulations can be interacted with those two components of our 

decomposition to uncover measures of regulation-induced adaptation and residual adaptation.  

For an example of regulation-induced adaptation, consider a county where emissions of ozone 

precursors are under control in the baseline. If a rise in temperature leads to higher ozone 

formation and the violation of EPA’s ozone standards, that county may be forced to install 

scrubbers to reduce ozone concentration. Since that technology would have to be used 

because of higher temperatures rather than higher emissions, we interpret the decline in ozone 

levels as adaptation to climate change induced by clean air regulations. For an example of 

residual adaptation, consider a county where ozone levels are below the EPA’s standards in 

the baseline, and most of the residents have installed rooftop solar panels. Because those 

panels would generate electricity more intensively when ozone formation would be the highest, 

that county would reduce emissions of ozone precursors from coal-fired power plants at that 

critical time. The resulting decline in ozone concentration would be achieved regardless of 

ozone regulations. It would be a consequence of exploiting a technology that coincidently 

would be more effective at higher temperatures. That would be an unintended adaptation to 

climate change. Hence, we call it residual adaptation. 

We apply our methodology to study the impact of climate change on air quality. We tackle an 

issue that is of interest per se: the so-called climate penalty on ozone. Ground-level or "bad" 

ozone is not emitted directly into the air, but rather created by chemical reactions between 

oxides of nitrogen (NOx) and volatile organic compounds (VOC) in the presence of sunlight 

																																																								
1 Climate normals are three-decade averages of climatological variables including temperature and precipitation. 
2 Although we present our methodology focusing on adaptation, we are agnostic about the true effects. They can 
be adaptation or intensification effects (Dell, Jones, and Olken, 2014). If economic outcomes are more affected by 
climatic changes than by weather shocks, agents may be not only abstaining from adjusting to climate change, 
but also slacking on any previous efforts. Perhaps they see those adjustments as too costly for what comes next. 
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and warm temperatures. Hence, meteorological conditions do matter in determining surface 

ozone levels, and climate change may increase ozone concentration in the near future. While 

the projected impact is not uniform, modeling studies have shown that climate change has the 

potential to increase average summertime ozone concentrations in the contiguous U.S. by as 

much as 1-5 ppb by 2030, if greenhouse gas emissions are not mitigated (EPA 2009; Jacob 

and Winner, 2009)3. This climate penalty on ozone means that climate change might offset 

some of the improvements in air quality expected from reductions in emissions of ozone 
precursors, and therefore some of the improvements in public health4. Thus, stronger emission 

controls may be needed to meet a given air quality standard. In fact, when strengthening the 

standards for ground-level ozone from 75 to 70 ppb recently, the U.S. Environmental 

Protection Agency (EPA) has recognized the role climate change may play in driving air 

pollution in coming decades5. 

In our application, we focus on the effect of daily maximum temperature on daily maximum 

ozone concentration since 1980. We choose this outcome because EPA’s ambient ozone 

standards have been built around it. Likewise, increases in temperature are expected to be the 

principal factor in driving any ozone increases (Jacob and Winner, 2009). Indeed, data on 

ozone and temperature from our sample, plotted in Figure 1, highlights the close relationship 

between these two variables. 

We identify the impacts of climate change on ozone concentration by taking advantage of (i) 

daily measurements of ambient ozone levels from hundreds of air quality monitors across the 

U.S. during 1980-2013; and (ii) the rich spatial and temporal variation with which Clean Air Act 

regulations were rolled out. Through a Freedom of Information Act request, we obtained daily 

air pollution concentrations for each monitor based on the universe of the state and national 

pollution monitoring network. The Clean Air Act Amendments (CAAA) marked an 

unprecedented attempt by the federal government to mandate lower levels of air pollution. If 

pollution concentrations in a county exceed the federally determined ceiling, then EPA 

																																																								
3 These modeling studies are based on coupled global climate and regional air quality models, and are designed 
to assess the sensitivity of U.S. air quality to climate change. A wide range of future climate scenarios and future 
years has been modeled.	
4 Graff Zivin and Neidell (2012) provide robust evidence that ozone levels well below federal air quality standards 
have a significant impact on labor productivity, for example. 

5	“In addition to being affected by changing emissions, future O3 concentrations will also be affected by climate 
change. (…) If unchecked, climate change has the potential to offset some of the improvements in O3 air quality 
(…) that are expected from reductions in emissions of O3 precursors.” (EPA, 2015, p.65300)	
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designates that county as “nonattainment”. Heavy emitters in nonattainment counties face far 

more stringent regulations than their counterparts in attainment counties. We therefore seek to 

identify changes in ozone concentrations due to observed changes in temperature at the times 

and locations in which the CAAA designations were in effect vis-à-vis places that were not 

facing the constraints associated with being out of attainment. We use a standard fixed-effects 

approach, but replace the direct measurements of temperature with the two components of our 

decomposition – weather shocks and climatic changes. In our preferred specification, we 

interact such components with CAAA “nonattainment” designations.  

We have three main findings. First, a changing climate appears to be affecting ground-level 

ozone concentrations in two ways. A shock in temperature of one degree Celsius increases 

ozone levels by 1.7 ppb on average, which is 11 percent higher than what would have been 

found in the standard fixed-effect approach. A change of similar magnitude in the 30-year 

moving average increases ozone concentration by 1.2 ppb, which is 14 percent higher than 

what would have been found in the standard cross-section approach. Second, we find 

evidence of adaptive behavior. For a change of one degree Celsius in temperature, our 

measure of adaptation in terms of ozone concentration is 0.45 ppb. When we compare our 

estimate of adaptation to the direct effect of the CAAA “nonattainment” designations, it is 

equivalent to over one third of that effect. Also, if adaptive responses were not taken into 

account in the measurement of adaptation, then the climate penalty on ozone would be 

overestimated by approximately 17 percent. 

Third, adaptation in counties with levels of ozone above the EPA’s standards is estimated to 

be over 66 percent larger than adaptation in counties in “attainment”, and is equivalent to 

about 45 percent of the direct effect of the CAAA “nonattainment” designations. Counties out of 

attainment must reduce ozone concentration by making costly adjustments in their production 

processes (Greenstone, List, and Syverson, 2012). Thus, part of our measure of adaptation for 

these counties is regulation-induced adaptation. Nevertheless, counties complying with EPA’s 

ozone standards might still adapt by exploiting technological advances such as photovoltaic 

panels, as explained before, or by unconscious behavioral responses. Therefore, part of our 

measure of adaptation is residual adaptation. For nonattainment counties, regulation-induced 

adaptation represents 40 percent of the total adaptation. For completeness, we have also 

found (i) a higher degree of adaptation in the 1980s relative to the following decades, (ii) a 
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similar magnitude for the estimates of adaptation in the 1990s and 2000s, and (iii) a 

remarkable heterogeneity across the nine NOAA climate regions in the U.S.  

This paper proceeds as follows: Section 2 explains the conceptual framework that we use to 

decompose meteorological variables into long-term trends and contemporaneous weather 

shocks, and describes our measures of adaptation. Section 3 provides a detailed background 

on ozone formation, its relationship with weather, and the history of ozone regulations. Section 

4 describes our data, Section 5 presents our empirical methodology, and Section 6 reports our 

main findings. Section 7 illustrates the robustness of our estimates, and Section 8 exhibits the 

spatial and temporal heterogeneity of our results. Lastly, Section 9 concludes. 

 

2. Conceptual Framework 
 
The Fifth Assessment Report from the Intergovernmental Panel on Climate Change alerts that 

by late 21st century it is virtually certain that (i) average temperature will rise, and (ii) heat 

waves will become more frequent (IPCC, 2013). Implicit in this assertion is the dual manner 

climate change is supposed to affect society. It should alter not only averages, but also the 

dispersion of climatological variables. 

We propose a unifying approach to identifying the impact of both components of climate 

change, and ultimately measuring adaptation. In empirical work aiming at identifying the effects 

of climate change, researchers have used either long- or short-term variation in meteorological 

conditions. These different research designs, however, usually trade off key assumptions. As 

pointed out by Hsiang (2016), only in certain conditions weather variation exactly identifies the 

effects of climate. Our methodology bridges those two strands of the climate-economy 

literature. In the end, because estimates associated with different time-horizon variables have 

distinct informational content, the comparison between them allows us to uncover a measure 

of adaptation to climate change.  

Decomposition of Meteorological Variables: Long-Run Trends vs. Weather Shocks 

In order to estimate the impact of climate change on ozone concentration, and ultimately 

uncover our measure of adaptation, we exploit both climatological and meteorological 

variation. The same estimating equation uses climatological variation to identify the causal 
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effect of longer-run observed climatic changes (e.g. Mendelsohn, Nordhaus, and Shaw, 1994; 

Schlenker, Hanemann, and Fisher, 2005), and meteorological variation to identify the impact of 

weather shocks (e.g. Deschenes and Greenstone, 2007; Schlenker and Roberts, 2009). 

Afterwards, the comparison between simultaneously estimated trend and shock effects should 

provide a measure of adaptive responses by economic agents (Dell, Jones, and Olken, 2009, 

2012, 2014; Burke and Emerick, 2016).  

To take advantage of variation in both components, we decompose meteorological variables 

into long-run trends and weather shocks. A similar idea has been used in the literature of 

intergenerational mobility following Solon’s seminal work. Observed income is noisy: it includes 

a permanent and a transitory component. To establish a relationship between permanent 

income of sons and fathers, Solon (1992) suggests averaging fathers’ income for a number of 

years to reduce the errors-in-variables bias. Importantly, the averaging is not needed for sons’ 

income, the dependent variable. We proceed in a similar way: we decompose only 

meteorological variables, not ozone levels, our outcome variable. Illustrating the decomposition 

with temperature (Temp), we can express it as 

                                          Temp = TempC + TempW,                                            (1)                                    

where TempC represents climate patterns, and TempW (= Temp – TempC) deviations from 

those long-run patterns. The decomposition highlights the two sources of variation that have 

been used in the climate-economy literature6.  

A Measure of Adaptation to Climate Change 

TempC and TempW in the decomposition above are associated with different sets of 

information. On one hand, TempC includes climate patterns that economic agents can only 

gather by experiencing weather realizations over a long period of time. It can be thought of as 

climate normals. On the other hand, TempW represents weather shocks, which by definition 

are revealed to economic agents only at the time of the weather realization. Now, one can only 

																																																								
6	In	related	work,	Kala	(2016)	studies	adaptation	under	different	learning	models.	Hence,	variance	of	climatological	
variables	is	an	important	element	of	her	framework.	In	our	approach,	dispersion	shows	up	only	implicitly	in	the	sense	
that	long-run	trends	take	into	account	the	frequency	and	intensity	of	daily	temperature	extremes.	
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adjust to something they know. Therefore, adaptation can be measured as the difference 

between responses to changes in TempC relative to effects of weather shocks TempW.7 

Important contributions to the literature have already pointed out that the comparison between 

the “short-” and “long-run” effects provides evidence of adaptive responses by economic 

agents (Dell, Jones, and Olken, 2009, 2012, 2014; Burke and Emerick, 2016). Unlike previous 

work, however, we are able to estimate and test the equality of those effects within the same 

econometric model using insights from Solon’s (1992) seminal work on intergenerational 

mobility. 

 

3. Ambient Ozone, Weather and Environmental Regulations 

Ambient ozone, an important component of smog, is a highly reactive and unstable gas 

capable of damaging living cells, such as those present in the linings of the human lungs. It 

has a very characteristic pungent odor. Humans vary in their ability to smell ozone, but some 

can smell it at levels as low as 5 ppb. Ozone is a powerful oxidant – its actions can be 

compared to household bleach, which can kill living cells such as germs or human skin cells 

upon contact. Exposure has been associated with several adverse health effects, such as 

aggravation of asthma and decreased lung function.  

Most of the ozone in the air results from complex chemical reactions between pollutants 

directly emitted from vehicles, factories and other industrial sources, fossil fuel combustion, 

consumer products, evaporation of paints, and many other sources. These reactions involve 

volatile organic compounds (VOCs) and oxides of nitrogen (NOx) in the presence of sunlight. 

As a photochemical pollutant, ozone is formed only during daylight hours under appropriate 

conditions, but is destroyed throughout the day and night. It is formed in greater quantities on 

hot, sunny, calm days. Therefore, ozone concentrations vary depending upon both the time of 

day and the location. 

The ozone that the EPA regulates as an air pollutant is mainly produced close to ground 

(tropospheric ozone). A layer of ozone high up in the atmosphere, called stratospheric ozone, 
																																																								
7	In	related	work,	Shrader	(2016)	introduces	a	method	for	identifying	adaptation	based	on	changes	in	expectations	
about	a	stochastic	environmental	process,	and	applies	his	method	to	estimate	total	adaptation	by	North	Pacific	
albacore	harvesters	to	ENSO-driven	climate	variation.	
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reduces the amount of ultraviolet light entering the earth’s atmosphere. Without the protection 

of the stratospheric ozone layer, plant and animal life would be seriously harmed. Here, 

‘ozone’ refers to tropospheric ozone. 

This section presents the processes by which ozone is formed and depleted, the role of 

weather, and spatial and temporal variations in ozone concentrations. In addition, it discusses 

the National Ambient Air Quality Standards (NAAQS) for ground-level ozone. 

 

	
3.1 Formation and Depletion of Tropospheric Ozone 

 

Ozone is formed in the troposphere when an atom of oxygen (O) associates with a molecule of 

oxygen (O2) in the presence of a third body. Key reactions happen in the NOx cycle and the 

VOC oxidation cycle (see more details in the appendix). 

 

In the NOx cycle, the ultraviolet portion of solar radiation triggers the photolysis of nitrogen 

dioxide (NO2). As a result, NO2 is broken into an atom of oxygen and nitrogen monoxide (NO). 

The oxygen atom reacts with O2 to form ozone again, but NO reacts with ozone to destroy it. 

Therefore, the NOx cycle maintains a photostationary equilibrium. Consequently, for ozone to 

accumulate, an additional pathway is needed to convert NO to NO2; one that will not destroy 

ozone. The photochemical oxidation of VOCs, such as hydrocarbons and aldehydes, provides 

that pathway. 

 

In the VOC oxidation cycle, hydroxyl radical initially attacks a parent hydrocarbon. The 

hydroxyl radical is ever-present in the ambient air, and is formed by photolysis of ozone in the 

presence of water vapor, nitrous acid, hydrogen peroxide, or other sources. After the attack, 

hydrogen or other organic fragments emerge, and react with oxygen to generate the peroxy 

radical. Here is the most important part of this cycle: through a fast radical transfer reaction 

with NO, peroxy radical converts NO to NO2. Thus, the NO that would be used to destroy 

ozone is transformed in NO2. Consequently, ozone formation might increase, ozone depletion 

might decrease, and ozone accumulation may occur. These reactions should explain the 

typical pattern of ozone concentrations found in the urban atmosphere. 

 

Although VOCs are necessary to generate high concentrations of ozone, NOx emissions can 
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be the determining factor in the peak ozone concentrations observed in many places. The 

relative balance of VOCs and NOx at a particular location determines whether the NOx 

behaves as a net ozone generator or a net ozone inhibitor. When the VOC/NOx ratio in the 

ambient air is low (NOx is plentiful relative to VOC), NOx tends to inhibit ozone accumulation. 

These locations are called "VOC-limited". When the VOC/NOx ratio is high (VOC is plentiful 

relative to NOx), NOx tends to generate ozone. Those are "NOx-limited" locations. Importantly, 

the VOC/NOx ratio can differ substantially by location and time-of-day within a geographic 

area.  

 

3.2 Role of Weather in Ozone Air Quality 

 

The local rate of ozone formation depends on atmospheric conditions such as the availability 

of solar ultraviolet radiation capable of initiating photolysis reactions, air temperatures and the 

concentrations of chemical precursors. 

 

Our basic understanding of meteorological processes associated with summertime ozone 
episodes has not changed over recent years. Major episodes of high ozone concentrations in 

the eastern U.S. and in Europe are associated with slow moving, high pressure systems. High 

pressure systems are associated with the sinking of air, resulting in warm, generally cloudless 

skies, with light winds. The sinking of air results in the development of stable conditions near 

the surface that inhibit or reduce the vertical mixing of ozone precursors. The combination of 

inhibited vertical mixing and light winds minimizes the dispersal of pollutants emitted in urban 

areas, allowing their concentrations to build up. Photochemical activity involving these 

precursors is enhanced because of higher temperatures and the availability of sunlight. 

 

Modeling studies indeed point to temperature as the most important weather variable affecting 

ozone concentrations. Dawson, Adams, and Pandisa (2007), for instance, examine how 

concentrations of ozone respond to changes in climate over the eastern U.S. The sensitivities 

of average ozone concentrations to temperature, wind speed, absolute humidity, mixing height, 

cloud liquid water content and optical depth, cloudy area, precipitation rate, and precipitating 

area extent were investigated individually. The meteorological factor that had the largest 

impact on ozone metrics was temperature. Absolute humidity had a smaller but appreciable 

effect. Responses to changes in wind speed, mixing height, cloud liquid water content, and 
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optical depth were rather small. 

 

An association between ambient ozone concentrations and temperature has also been 

demonstrated from measurements in outdoor smog chambers and from measurements in 

ambient air. Some possible explanations for such a correlation include (EPA, 2006): 

 

(1)  increased photolysis rates under meteorological conditions associated with higher 

temperatures; 

(2)  increased H2O concentrations with higher temperatures as this will lead to greater OH 

(hydroxyl; hydroxy) production; 

(3)  increase of anthropogenic hydrocarbon (e.g., evaporative losses) emissions or NOx 

emissions with temperature or both; 

(4)  increase of natural hydrocarbon emissions (e.g., isoprene) with temperature; 

(5)  relationships between high temperatures and stagnant circulation patterns; 

(6)  advection of warm air enriched with O3.  

 

It should be noted, however, that a high correlation of ozone with temperature does not 

necessarily imply a causal relation. Extreme episodes of high temperatures (a heat wave) are 

often multiday events, high ozone episodes are also multiday events, concentrations build, 

temperatures rise, but both are being influenced by larger-scale regional or synoptic 

meteorological conditions. We will be investigating this relationship using longitudinal variation 

from U.S. counties since the 1980s. 

 
 3.3 Spatial and Temporal Variations of Ozone Concentrations 
 
Ambient ozone concentrations can vary from non-detectable near combustion sources, where 

nitric oxide (NO) is emitted into the air, to several hundreds ppb of air in areas downwind of 

VOC and NOx emissions. In continental areas far removed from direct anthropogenic effects, 

ozone concentrations are generally 20-40 ppb. In rural areas downwind of urban centers, 

ozone concentrations are higher, typically 50-80 ppb, but occasionally 100-200 ppb. In urban 

and suburban areas, ozone concentrations can be high (well over 100 ppb), but peak for at 

most a few hours before deposition and reaction with NO emissions cause ozone 

concentrations to decline (Chameides et al. 1992, Smith et al. 1997, Seinfeld and Pandis 1998, 
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Finlayson-Pitts and Pitts 2000). Due to the lack of ozone-destroying NO, ozone in rural areas 

tends to persist at night, rather than declining to the low concentrations (<30 ppb) typical in 

urban areas and areas downwind of major urban areas that have plenty of fresh NO 

emissions. 

 

With respect to temporal variation, ozone concentrations tend to vary in phase with human 

activity patterns, magnifying the resulting adverse health and welfare effects. Ambient ozone 

concentrations increase during the day when formation rates exceed destruction rates, and 

decline at night when formation processes are inactive. This diurnal variation in ozone 

depends on location, with the peaks being very high for relatively brief periods of time (an hour 

or two duration) in urban areas, and being low with relatively little diurnal variation in remote 

regions. In urban areas, peak ozone concentrations typically occur in the early afternoon, 

shortly after solar noon when the sun’s rays are most intense, but persist into the later 

afternoon. Thus, the peak urban ozone period of the day can correspond with the time of day 

when people, especially children, tend to be active outdoors. 

 

Ozone concentrations also vary seasonally. Ozone concentrations tend to be highest during 

the summer and early fall months. In areas where the coastal marine layer (cool, moist air) is 

prevalent during summer, the peak ozone season tends to be in the early fall. The EPA has 

established “ozone seasons” for the required monitoring of ambient ozone concentrations for 

different locations within the United States and U.S. territories (CFR, 2000). Table 1 shows the 

ozone seasons during which continuous, hourly averaged ozone concentrations must be 

monitored. Note that ozone monitoring is optional outside of the “ozone season” and is 

monitored in many locations throughout the year. 

 
 3.4 National Ambient Air Quality Standards (NAAQS) for Ambient Ozone 
 
The Clean Air Act requires EPA to set national ambient air quality standards (NAAQS) for 

ozone and other pollutants considered harmful to public health and the environment (the other 

pollutants are particulate matter, nitrogen oxides, carbon monoxide, sulfur dioxide and lead). 

The law also requires EPA to periodically review the standards to ensure that they provide 

adequate health and environmental protection, and to update those standards as necessary. 
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As shown in Table 2, the first standard was put in place in 1971, following the Clean Air Act 

Amendments of 1970. It was not focusing on ozone, however, but rather all photochemical 

oxidants. The first NAAQS for ozone was established in 1979, when 120ppb was defined as 

the maximum 1-hour concentration that could not be violated more than once a year for a 

county to be designed as in attainment.  

 

In 1997, the standards were revised to be 80ppb, but with a different form for the threshold: 

annual fourth-highest daily maximum concentration averaged over 3 years. EPA justified the 

new form as equivalent to the empirical 1-hour maximum to not be exceeded more than once a 

year. “The 1-expected-exceedance form essentially requires the fourth-highest air quality value 

in 3 years, based on adjustments for missing data, to be less than or equal to the level of the 

standard for the standard to be met at an air quality monitoring site.” (U.S. EPA, 1997, 

p.38868) Another reason was “the inherent lack of year-to-year stability in the measure of air 

quality on which the 1-expected-exceedance form is based. ... [A] more robust, concentration-

based form would minimize such instability and provide some insulation from the impacts of 

extreme meteorological events that are conducive to O3 formation. Such instability can have 

the effect of reducing public health protection by disrupting ongoing implementation plans and 

associated control programs." (U.S. EPA, 1997, p.38868) The new NAAQS was challenged in 

courts, and not implemented until 2004. 

 

The NAAQS for ozone were revised again in 2008 and 2015, and the current 8-hour threshold 

is 70ppb. In the last revision, EPA raised concerns about how climate change might affect air 

quality. “In addition to being affected by changing emissions, future O3 concentrations may 

also be affected by climate change. Modeling studies in the EPA’s Interim Assessment (U.S. 

EPA, 2009a) … as well as a recent assessment of potential climate change impacts (Fann et 

al., 2015) project that climate change may lead to future increases in summer O3 

concentrations across the contiguous U.S. While the projected impact is not uniform, climate 

change has the potential to increase average summertime O3 concentrations by as much as 

1-5 ppb by 2030, if greenhouse gas emissions are not mitigated. Increases in temperature are 

expected to be the principal factor in driving any O3 increases, although increases in 

stagnation frequency may also contribute (Jacob and Winner, 2009). If unchecked, climate 

change has the potential to offset some of the improvements in O3 air quality, and therefore 

some of the improvements in public health, that are expected from reductions in emissions of 
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O3 precursors.” (U.S. EPA, 2015, p. 65300) This suggests that the present study may 

contribute to such an important policy debate. 

 

Regarding the patterns of ozone concentration over time, Figures 2 and 3 depict how much 

maximum and fourth-highest ozone levels have declined with the establishment of the NAAQS. 

As we can see in Figure 2, maximum concentrations decreased sharply in the late 1980s for 

the counties designated to be out of attainment. The same is not true for NAAQS 1997 and 

2008. As Figure 3 shows, counties in non-attainment seem to be adjusting slowly to the new 

standards. 

 

It is important to mention that the observed delay in complying with the NAAQS is expected. 

As reported in Table 3, for example, EPA allows heavy emitters up to 20 years to adjust their 

production processes. “Each area designated nonattainment for ozone … shall be classified at 

the time of such designation … as a Marginal Area, a Moderate Area, a Serious Area, a 

Severe Area, or an Extreme Area based on the design value for the area. … For each area …, 

the primary standard attainment date for ozone shall be as expeditiously as practicable but not 

later than the date provided.” (U.S. Code, 2011, p.6325)  

 

	
	
	

4. Data 
	
To examine the impact of climate change on surface ozone concentrations, and ultimately 

estimate our measure of adaptation, we utilize information from three major sources, as 

described below. 

 

Ozone Data. For ground-level ozone concentrations, we use daily readings from the 

nationwide network of the EPA’s air quality monitoring stations. The data was made available 

by a Freedom of Information Act (FOIA) request. In our preferred specification we use an 

unbalanced panel of ozone monitors. We make only two restrictions to construct our final 

sample. First, we include only monitors with valid daily information. According to EPA, daily 

measurements are valid for regulation purposes only if (i) 8-hour averages are available for at 

least 75 percent of the possible hours of the day, or (ii) daily maximum 8-hour average 
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concentration is higher than the standard. Second, as a minimum data completeness 

requirement, for each ozone monitor we include only years for which least 75 percent of the 

days in the ozone monitoring season (April-September) are valid; years having concentrations 

above the standard are included even if they have incomplete data.  

 

Figure 4 shows the geographical location of our final sample of ozone monitors and highlights 

the spatial heterogeneity of our sample. Figure 5 depicts the evolution of our sample monitors 

over the three decades in our data, and illustrates the expansion of the network over time. 

Table 4 provides some summary statistics regarding the increase in the number of monitors, 

and the decrease in ozone concentration decade by decade. We have valid ozone 

measurements for a total of 5,037,851 monitor-days. The number of monitors increased from 

672 in the 1980s to 1026 in the 2000s, indicating a growth of 17.6 percent of the ozone 

monitoring network per decade. The number of monitored counties in our sample also grew 

from 390 in the 1980s to 601 in the 2000s. Table A1, in the Appendix, describes the sample of 

ozone monitors used in our analysis, for every year between 1980 and 2013. 

 

Data on Non-Attainment Designations. We use publicly available data on the Clean Air Act 

Non-Attainment Designations to generate our indicator of non-attainment status for each 

county in our sample. This data is available at the EPA website from the Green Book of Non-

Attainment Areas for Criteria Pollutants. In our preferred specification we use the non-

attainment status lagged by three years because EPA gives heavy-emitters at least three 

years to comply with ozone NAAQS (EPA, 2004, p.23954). This is a binary variable that takes 

the value of one for counties not complying with the NAAQS for ground level ozone.  

 

Weather Data. For meteorological data, we use daily measurements of maximum and 

minimum temperature as well as total precipitation from the National Climatic Data Center’s 

Cooperative Station Data (NOAA, 2008). This dataset provides detailed weather 

measurements at over 20,000 weather stations across the country. We have acquired 

information for the period 1950-2013. These weather stations are typically not located adjacent 

to the ozone monitors. Hence, we develop an algorithm to obtain a weather observation at 

each ozone monitor in our sample. Using information on the geographical location of pollution 

monitors and weather stations, we calculate the distance between each pair of pollution 

monitor and weather station using the Haversine formula. Then, for every pollution monitor we 
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exclude weather stations that lie beyond a 30 km radius of that monitor. Moreover, for every 

pollution monitor we use weather information from only the closest two weather stations within 

the 30 km radius. Once we apply this algorithm, we exclude ozone monitors that do not have 

any weather stations within 30km8. Figure A1, in the Appendix, illustrates the geographical 

location of the weather stations that we have used from 1950-2013, and Figure A2 illustrates 

the proximity of our final sample of ozone monitors to these matched weather stations. 

Our methodology takes advantage of two components of high frequency meteorological data: 

climatological variation and weather shocks. For climatological variation, we construct long-

term trends of daily maximum temperature and precipitation. Precisely, we first construct 

monthly means of daily weather measurements, and then construct 30-year moving averages 

of monthly means to generate our climate variables. We then construct weather shocks as 

deviations of meteorological variables from their 30-year moving averages. More details will be 

discussed in the following section.  

 

Table 5 reports the summary statistics for our main meteorological variables, for each decade. 

Table A2, in the Appendix, presents this information at a more disaggregated level, for each 

year in our sample from 1980-2013. Figure 6 illustrates the variation we have in both 

components of the meteorological variables, namely, the weather shocks and the long-term 

climate trends. Figure 7 depicts this variation for each of the nine different NOAA climate 

regions.  

 

Consolidating information from the above three sources, we reach our final unbalanced sample 

of ozone monitors over the period 1980-2013. In our application, we focus on the effect of daily 

maximum temperature on daily maximum ozone concentration since 1980. We choose this 

outcome because EPA’s ambient ozone standards have been built around it. Likewise, 

increases in temperature are expected to be the principal factor in driving any ozone increases 

(Jacob and Winner, 2009). Indeed, data on ozone and temperature from our sample, plotted in 

Figures 1 and 8, highlights the close relationship between these two variables. Interestingly, 

we see that not only does contemporaneous temperature have an effect on ground level 

ozone, but the long-term temperature trend also seems to be affecting it very closely. Figures 9 

and 10 illustrate the spatial heterogeneity of this close relationship between ground level ozone 

																																																								
8	For robustness purposes, we have also used 80 km, 100 km and 150 km radii around ozone monitors.	
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and these two different components of the meteorological variables for the nine NOAA climate 

regions. 

 

 

5. Empirical Strategy 
 

In this section, we present our methodology to examine the impact of climate change on 

ambient ozone concentration. First, we provide an empirical counterpart for the decomposition 

of meteorological variables described previously. Second, we introduce and discuss features 

of our econometric model to estimate the effects of the two components of weather on ozone 

levels. Lastly, we use our novel way to measure adaptation to climate change to estimate 

behavioral responses in our application to air pollution. 

Decomposition of Meteorological Variables: An Empirical Counterpart 

Focusing on temperature (Temp), our primary variable of interest9, we express it around ozone 

monitor i in day d of month m and year y as 

                                        !"#$!"#$ = !"#$!",!!!! + !"#$!"#$! .                                          (2)                              

TempC represents climate normals, and is defined as a 30-year monthly moving average (MA) 

of past temperatures. To make this variable part of the information set held by economic 

agents at the time that ground-level ozone is measured, we lag it by one year. For example, 

the 30-year MA associated with May 1982 is the average of May temperatures for all years in 

the period 1952-1981. Therefore, economic agents have had one year to respond to 

unexpected changes in climate normals at the time ozone is measured. We average 

temperature over 30 years because it is how climatologists usually define climate normals, and 

because we wanted individuals and firms to be able to observe climate patterns for a long 

period of time, enough to potentially make adjustments10. We use monthly MAs because it is 

likely that individuals recall climate patterns by month, not by day of the year. Indeed, 

																																																								
9 As emphasized before, among all meteorological variables, temperature is expected to be the principal factor 
driving increases in ozone concentration as the climate changes (Jacob and Winner, 2009). 
10 In the robustness checks, we provide estimates based on alternative 10- or 20-year moving averages. 
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meteorologists on TV often talk about how a month has been the coldest or warmest in the 

past 10, 30, or 50 years, but not how a particular day of the year has deviated from the trend11.  

TempW represents weather shocks, and is defined as the deviation of the daily temperature 

from the lagged 30-year monthly MA. By definition, these shocks are revealed to economic 

agents only at the time that ozone is being measured. Thus, in this case agents may have had 

only a few hours to adjust, limiting their ability to respond to such unexpected temperatures12. 

Econometric Model 

Given the decomposition of meteorological variables into two sources of variation, our primary 

econometric specification to estimate the impact of temperature on ambient ozone is the 

following:  

!"#$%!"#$% = ! + !!!!"#$!"#$! +  !!!!"#$!",!!!! + !!!!"#$!"#$! +  !!!!"#$!",!!!!              
+  !!""#"$!,!!! +  !!"!! +  !! +  !!"# +  !!"#$ ,                                                    (3) 

where i represents an ozone monitor located in county c in NOAA climate region r, and d 

stands for day, m for month, s for season (Spring or Summer), and y for year. As mentioned in 

the data section, our analysis focuses on the most common ozone season in the U.S. – April to 

September – in the period 1980-2013. The dependent variable Ozone captures daily maximum 

ambient ozone concentration. Temp’s and Prcp’s13 account for the two components of the 

decomposition proposed above for both meteorological variables14. CAANAS (Clean Air Act 

Non-Attainment Status) is a binary variable equals to one for counties not complying with the 

NAAQS for ground-level ozone – counties designated as “nonattainment” following regulations 

derived from the Clean Air Act (CAA) Amendments. This variable is lagged by three years 
																																																								
11 As another robustness check, we use daily instead of monthly moving averages. Economic agents, however, 
may still associate a day with its corresponding month when making adjustment decisions. 
12 Because precise weather forecasts are made available only a few hours before its realization, economic agents 
may have limited time to adjust prior to the ozone measurement. This might be true even during Ozone Action 
Days. An Ozone Action Day is declared when weather conditions are likely to combine with pollution emissions to 
form high levels of ozone near the ground that may cause harmful health effects. Individuals and firms are urged 
to take action to reduce emissions of ozone-causing pollutants, but only hours in advance. 

13	We also add precipitation in our econometric analysis. Although less important than temperature, Jacob and 
Winner (2009) point out that higher water vapor in the future climate may decrease ground-level ozone 
concentration.	
14 In the robustness checks, we also include weather shocks lagged by a few days to evaluate the extent to which 
coefficients associated 30-year MAs capture those lagged effects. Because ozone formed in one day may affect 
ground-level ozone concentration in the next few days, weather shocks might have a delayed effect. 
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because EPA gives heavy-emitters at least three years to comply with ozone NAAQS (EPA, 

2004, p.23954). Z represents time-invariant covariates (latitude and longitude of ozone 

monitors), which are interacted with season-by-year fixed effects in our econometric 

specification, η represents monitor fixed effects, Φ region-by-season-by-year fixed effects, and 

ε an idiosyncratic term.  

As should be clear by now, we exploit plausibly random, monthly variation in climate normals, 

and daily variation in weather within a season to estimate the impact of climate change on 

ambient ozone concentration. Identification of the effect of weather shocks relies on monitor-

level daily variation in the deviation of meteorological variables from lagged climate normals 

after controlling non-parametrically for regional shocks to ozone concentration at the season-

by-year level. For instance, let us consider the variation of May 1st, 1982 relative to the Spring 

(April-June) of 1982 in the Northeast region. The question we ask is the following: what 

happens to ozone concentration in a May 1982 day when the deviation of temperature from 

the May 1981 climate normal is one degree Celsius above the average daily temperature 

shock in the Northeast in the Spring (April-June) of 1982? Conditional on business-as-usual 

ozone precursor emissions, a higher temperature should lead to more ozone formation and, 

consequently, higher ozone concentration. 

Identification of the effect of climatic changes on ground-level ozone levels relies on plausibly 

random, monitor-level monthly variation in lagged 30-year MAs of meteorological variables 

after controlling non-parametrically for regional shocks to ozone concentration at the season-

by-year level. As an example, let us consider variation of lagged 30-year MA temperature in 

May 1982 relative to the Spring (April-June) of 1982 in the Northeast region. Again, the 

question we ask is the following: what happens to ozone concentration in a May 1982 day 

when the normal temperature around the monitor in May 1981 is one degree Celsius warmer 

than the average of all 30-year monthly MAs of temperature in the Northeast in the Spring 

(April-June) of 1981? If economic agents pursued full adaptive behavior, the unexpected 

increase in normal temperature would lead to reductions in ozone precursor emissions to avoid 

an increase in ozone concentration of identical magnitude of the weather shock effect in the 

same month of the following year. In other words, agents would respond to “permanent” 

changes in temperature by adjusting their behavior or production processes to offset that 

increase in normal temperature. Unlike weather shocks, which influence ozone formation by 
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triggering chemical reactions conditional on a level of ozone precursor emissions, changes in 

the 30-year MA affect the level of emissions. 

Our preferred econometric specification allows the effects of each component of our 

meteorological variables to differ according to the “nonattainment” status of the county where 

each monitor is located. The estimating equation becomes 

!"#$%!"#$% = ! + !!!!"#$!"#$! +  !!!!"#$!",!!!!                             
+  !!! !""#"$!,!!! ∗ !"#$!"#$!  +  !!! !""#"$!,!!! ∗ !"#$!",!!!!     
+  !!!!"#$!"#$! +  !!!!"#$!",!!!!      +  !!! !""#"$!,!!! ∗ !"#$!"#$!

+  !!! !""#"$!,!!! ∗ !"#$!",!!!!  +  !!""#"$!,!!! +  !!"!! +  !! +  !!"#
+  !!"#$ .                                                                                                                                      (4) 

Because of the use of 30-year MAs and deviations from it to characterize climate – and 

ultimately uncover a measure of adaptation – it may be reasonable to focus on continuous 

temperature instead of more flexible temperature bins. We could, however, compute moving 

averages for the bins as averages of monthly bin dummies over the past 30 years, and 

deviations of values of each dummy variable associated with a bin in the contemporaneous 

period relative to the 30-year MA bin. Nevertheless, this procedure may decrease data 

variability by smoothing the temperature variables, and lead to a loss in statistical power when 

estimating the effect of each temperature bin. Indeed, deviations of a contemporaneous 

temperature measurement of 31°C relative to a 30-year MA of 23°C, for example, should be 

not as smooth as deviations of a contemporaneous 30°-35°C bin from a 30-year MA 

associated with the number of months in that bin. Despite these issues, we provide estimates 

of such nonlinear effects in the results section. 

Measuring Adaptation 

Once we credibly estimate the impact of the two components of temperature – shocks and 

changes in long-run trends – on ambient ozone concentration, we uncover our measure of 

adaptation. The average adaptation across all counties in our sample is the difference between 

the coefficients !!!  and !!!  in equation (3). If economic agents engaged in full adaptive 

behavior, !!! would be zero, and the magnitude of the average adaptation would be equal to 

the size of the weather shock effect on surface ozone concentration. As explained before, 
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agents would react to “permanent” increases in temperature by reducing ozone precursor 

emissions to offset potential increases in ozone concentration.   

We can split our measure of average adaptation into two parts: regulation-induced versus 

residual adaptation, as shown in Table 6. Regulation-induced adaptation reflects adjustments 

made by heavy emitters in “nonattainment” counties to comply with ozone NAAQS. EPA 

mandates those facilities to cut emissions by using the best pollution abatement technologies 

available. Because ozone formation depends on both emissions and meteorological 

conditions, by reducing emissions to abide by the CAA regulations, agents may be actually 

adapting to climatic changes15. Residual adaptation reflects adaptive responses by economic 

agents in counties under no pressure from stringent CAA regulations. They react 

unintentionally to climatic changes by changing electricity production and consumption 

patterns or driving behavior, for example. 

To provide examples of residual behavioral responses to climatic changes, we lean on two 

papers. First, Deschenes and Greenstone (2011) estimate a U-shape relationship between 

residential energy consumption and bins of temperature relative to the 50°-60°F range. 

Temperature-days in the highest two categories (80-90°F and >90°F) and the lowest four 

categories (30°-40°F and the three categories below) are associated with statistically 

significant increases in residential energy consumption. In terms of magnitude, temperature-

days below 10°F and above 90°F are associated with 0.3 percent-0.4 percent increases in 

annual residential energy consumption. This overall increase in consumption should be related 

to heating or air conditioning. Thus, it might lead to more ozone precursor emissions by fossil 

fuel power plants, making reductions in ozone concentration more difficult.  

Second, Leard and Roth (2016) find that mean temperatures above 80°F (relative to 50°-60°F) 

imply 5 percent fewer trips per household by light duty vehicles, which seems to be partially 

compensated by higher travel demand by ultralight duty vehicles. The overall decrease in 

travel demand and the change in vehicle composition induced by temperatures higher than 

expected can be seen as adaptive responses, and should imply less emissions of ozone 

																																																								
15 EPA already recognizes the role of climate change on future ground-level ozone concentration. In the 2015 
revision of the ozone NAAQS, the final rule mentions: “In addition to being affected by changing emissions, future 
O3 concentrations will also be affected by climate change. (…) If unchecked, climate change has the potential to 
offset some of the improvements in O3 air quality (…) that are expected from reductions in emissions of O3 
precursors.” (EPA, 2015, p.65300) 
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precursors by vehicles. Therefore, places with a monthly 30-year MA temperature higher than 

average in the previous year may observe an effect on ozone that is less than the impact of 

weather shocks because households might have already adjusted their travel behavior. They 

may have already acquired bikes and motorcycles, and planned outdoor activities not involving 

too much driving in that particular month16. 

Regarding regulation-induced adaptation, it refers to behavioral responses to climatic changes 

driven by regulations arising from the CAA Amendments. Polluters in counties designated as 

“nonattainment” face far more stringent regulations than their counterparts in “attainment” 

counties. “Nonattainment” counties may not be complying with ozone NAAQS because of 

climatological changes conditional on particular levels of emissions rather than emissions 

surges arising from changes in production processes. Therefore, when heavy emitters are 

mandated to adopt costly pollution abatement technologies, they are implicitly coping with a 

warmer climate – an implicit adaptive behavior.  

Notice that, because those counties are also reducing emissions, some researchers might 

prefer using the term mitigation. Our argument is that those polluters would have not 

undertaken those costly investments if the climate had not changed, so we would rather call 

this a response to climate change or, in other words, regulation-induced adaptation. This is not 

a new use of the term adaptation. In the context of responses to natural disasters, Kousky 

(2012) explains that “The negative impacts of disasters can be blunted by the adoption of risk 

reduction activities. (…) [T]he hazards literature (…) refers to these actions as mitigation, 

whereas in the climate literature, mitigation refers to reductions in greenhouse gas emissions. 

The already established mitigation measures for natural disasters can be seen as adaptation 

tools for adjusting to changes in the frequency, magnitude, timing, or duration of extreme 

events with climate change.” (p.37, our highlights).  

In our preferred econometric specification, behavioral responses are allowed to occur only in 

the year after the change in temperature trend is observed. Those adjustments, however, 

might be related to innovations in temperature happening both in the previous year and 30 

years before. Indeed, the “moving” feature of the 30-year MA is, by definition, associated with 
																																																								
16	Graff Zivin, Hsiang, and Neidell (2015) provide another example of unconscious adaptive response to climate 
change. They find that short-run changes in temperature beyond 26oC lead to statistically significant decreases 
math performance. In contrast, their long-run analysis reveals no effect of climate on human capital, consistent 
with the notion that adaptation, particularly unconscious compensatory behavior, plays a significant role in limiting 
the long-run impacts from short-run weather shocks.	
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the removal of the earliest observation included in the average – 30 years before –, and the 

inclusion of the most recent observation – one year before. Nevertheless, in the robustness 

checks we consider cases where economic agents can take a decade or two to adjust. 

Because EPA may give heavy emitters up to two decades to comply with ozone NAAQS17, 

adaptive responses many years after agents observe changes in temperature trends may be 

plausible. As Kousky (2012) points out in her review on the costs of natural disasters, “(…) 

end-of-the-pipe adjustments, like shutters or increasing the market penetration of air 

conditioning, will underestimate how fully communities are adapted to their present disaster 

risk: infrastructure, building architecture, street geometries, and even institutions such as 

emergency response are all adapted to a current climate, and changing these to fit with a new 

risk profile, if sufficiently different, could be a very long-term process (…).” (p.39). 

Heterogeneity of Temperature Effects and Measures of Adaptation 

Equations (3) and (4) are the econometric specifications used to estimate our main results. We 

can adjust them, however, to shed light on the impact of climate change on ambient ozone 

concentration for different decades, and for different NOAA climate regions.  

In an additional specification, we basically interact the two components of meteorological 

variables and the CAANAS with each decade included in our sample – 1980s, 1990s, and 

2000s. In another specification, we interact those same variables with each climate region as 

defined by NOAA – Ohio Valley, Upper Midwest, Northeast, Northwest, South, Southeast, 

Southwest, West, and Rockies, as shown in the data section. Once we have the estimates 

associated with weather shocks and lagged 30-year MAs in these two cases, we are able to 

provide measures of adaptation for each decade and each climate region in our sample. 

 

6. Results 

In this section we report our findings regarding (i) the impact of temperature on ambient ozone 

concentration, and (ii) the extent to which economic agents adapt to climate change in the 

																																																								
17 “Nonattainment” counties are “classified as marginal, moderate, serious, severe or extreme (…) at the time of 
designation” (EPA, 2004, p.23954). The maximum period for attainment is: “Marginal – 3 years, Moderate – 6 
years, Serious – 9 years , Severe –15 or 17 years, Extreme – 20 years” (EPA, 2004, p.23954). 
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context of ozone pollution18. Then, we provide evidence of the robustness of our main results 

to alternative specifications and sampling strategies. Lastly, we explore heterogeneity of our 

estimates by decade (1980s, 1990s, and 2000s) and by NOAA climate region. 

 

Impact of Temperature on Ambient Ozone Concentration 

Table 7 presents the effects on ambient ozone of two components of observed temperature: 

climate, represented by the lagged 30-year monthly MA19, and weather shock, represented by 

the deviation from that long-run trend. Although they are uncovered by estimating equation (3), 

columns 1 and 2 benchmark them against effects that would have been found if one had 

exploited either only the cross-sectional (e.g. Mendelsohn, Nordhaus, and Shaw, 1994; 

Schlenker, Hanemann, and Fisher, 2005) or only the longitudinal (e.g. Deschenes and 

Greenstone, 2007; Schlenker and Roberts, 2009) structure of the data.  

Column 1 reports results from a cross sectional estimation of daily maximum ozone 

concentration on daily maximum temperature and total precipitation around each monitor, 

averaged over the entire period of analysis 1980-2013. These variables capture information for 

all the years in our sample and are good proxies for the average pollution and climate at each 

monitor. The estimate suggests that a 1°C increase in average maximum temperature is 

associated with a 1.10ppb increase in ozone concentration, approximately. Column 2 reports 

the effect of temperature on ozone identified by exploiting day-to-day variation in maximum 

temperature. The coefficient indicates that a 1°C increase in maximum temperature leads to a 

1.53ppb increase in maximum ground-level ozone concentration. When we decompose daily 

maximum temperature into those two components in column 3, the overall effect on ozone 

concentration goes to 2.9ppb. A 1°C shock increases ozone concentration by 1.7ppb, and a 

1°C change in trends in the same month of the previous year increases ozone concentration 

by 1.2ppb. Therefore, by including the two components of temperature – the lagged 30-year 

																																																								
18	We report the estimates for precipitation in the tables as well, but do not discuss them in the paper. As 
mentioned before, previous evidence has shown that temperature is the primary factor influencing ozone 
concentration (Jacob and Winner, 2009).	
19	As mentioned before, even though we use monthly moving averages in our main estimates, as a robustness 
check we also estimate our preferred specifications using daily moving averages. The results are almost the 
same and are reported in Table A3 in the Appendix. 
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MA and deviations from it – the impact of changes in observed maximum temperature doubles 

or triples when compared to the panel or cross-sectional approaches, respectively.  

To emphasize, both unexpected spikes in temperature and rises in long-term temperature 

trend have a positive and significant effect on ozone concentrations. The total effect of a higher 

temperature is almost 2.9 ppb, which is in line with previous studies in the literature. Jacob and 

Winner (2009), in their review of the effects of climate change on air quality, find that climate 

change alone can lead to a rise in summertime surface ozone concentrations by 1-10 ppb. The 

EPA, in their Interim Assessment (2009) also claim that “the amount of increase in 

summertime average ... O3 concentrations across all the modeling studies tends to fall in the 

range 2-8 ppb”. 

Column 4 shows that the estimates do not change when we include the Clean Air Act Non-

Attainment Status (CAANAS) in the regression, but column 5 indicates important heterogeneity 

in the effect of each component of temperature across counties in or out of attainment 

regarding the ozone NAAQS. We find that in non-attainment counties, daily maximum ozone 

concentrations are around 1.22 ppb lesser as compared to counties in attainment. A 1-degree 

Celsius rise in the climate trend (as measured by the lagged 30-year MA of temperature) also 

has differential impacts in attainment and non-attainment counties. In attainment counties it 

leads to around 0.98 ppb rise in ozone concentrations, whereas in non-attainment counties we 

find an additional increase of around 0.47 ppb, which implies a cumulative increase of 1.45 

ppb of summertime surface ozone levels. Similarly, we find heterogeneity in the effect of the 

weather shock; a 1-degree Celsius increase in the weather realization increases ozone levels 

by 1.3 ppb in attainment counties, whereas it leads to an additional 0.69 ppb increase in non-

attainment counties.   

Measuring Adaptation to Climate Change 

The comparison between the short- and long-run effects of temperature may provide a 

measure of adaptive responses by economic agents (Dell, Jones, and Olken, 2009, 2012, 

2014; Burke and Emerick, 2016). When we compare the impact of long-run temperature on 

ozone concentration in column 1 of Table 7 with the effect of a temperature shock in column 2, 

the measure of adaptation is approximately 0.44ppb. Interestingly, our measure of adaptation 

– also a comparison between the impact of the long-run temperature (lagged 30-year MA) and 

the effect of the temperature shock (deviation from the MA) – is very similar: 0.45ppb.  
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Our results indicate that temperature shocks have a larger impact on ozone levels compared 

to long-term temperature trends. This points to the fact that economic agents may potentially 

adapt to climate trends. We summarize our measures of adaptation in Table 8. By comparing 

the coefficients of the temperature shock and the temperature trend in Column (4) of Table 7, 

we find that on average across all counties, the level of adaptation is 0.45 ppb. If we ignore 

such adaptive responses by economic agents, then we would be overestimating the climate 

penalty on ozone by over 17 percent20. We find that the level of adaptation is roughly 37 

percent of the direct effect of the Clean Air Act regulation, which means that our measure of 

adaptation is economically sizeable. 

Using our estimates from Column (5) of Table 7, we can now disentangle the overall 

adaptation into  regulation-induced adaptation and residual adaptation. The coefficients of the 

interaction terms now give us the incremental impacts of weather shocks and climate change 

in non-attainment counties. From this specification, we find that the regulation-induced 

adaptation (in non-attainment counties) is 0.22 ppb, whereas the residual level of adaptation21 

(both, in attainment and non-attainment counties) is 0.33 ppb, as shown in Table 8. Thus, in 

non-attainment counties we find a total adaptation of 0.55 ppb. More than 40 percent of this 

cumulative level of adaptation in non-attainment counties should be driven by the Clean Air Act 

regulations.  

Non-attainment counties adapt over 66 percent more than attainment counties in absolute 

terms. To give a sense of the magnitude of our adaptation estimates by attainment status, we 

can compare them to the impact of the CAA regulations. As we found in Column (3) of Table 7, 

the CAA regulations reduce ozone levels by around 1.22 ppb. Hence, in attainment counties it 

represents 26.7 percent of the effect of being out of attainment and in non-attainment counties 

almost 45 percent. Therefore, our estimates of adaptation seem sizeable. By ignoring such 

adaptive measures, we would be overestimating the climate penalty in attainment counties by 

14.5 percent, and by over 16 percent in non-attainment counties.  

 

																																																								
20	In the absence of adaptation, the climate penalty would be twice the effect of weather shocks (i.e. 3.4 ppb) 
rather than the 2.9 ppb that we actually observe. 
21	Again, regulation-induced adaptation is defined as (δT

W- δT
C). It reflects adjustments made by heavy emitters in 

non-attainment counties to comply with the ozone NAAQS. Residual adaptation is defined as (γT
W- γT

C). It is a 
measure of adaptive responses by economic agents in counties under no pressure of stringent CAA regulations..	
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7. Robustness Checks 
7.1 Nonlinearities 

Because ozone formation may be intensified with higher temperatures, we also look at the 

non-linear effects of daily maximum temperature on surface ozone concentrations. Instead of 

using daily maximum temperature continuously, we have categorized the contemporaneous 

daily maximum temperature and also its monthly average into temperature bins of 5�C. We 

have put temperatures below 20�C (just over the 10th percentile of our temperature 

distribution) into our lowest bin and those above 35�C (90th percentile of our temperature 

distribution) into our highest bin. We have then taken the lagged 30 year moving averages of 

these temperature bin dummies, to get a measure of the long term climate trend; the measure 

of our weather shock has been constructed by taking the difference between the 

contemporaneous temperature bins and the 30 year monthly moving average of temperature 

bins. In Table 9, we have reported our estimates from this non-linear specification.  

By interacting our temperature bins, with the regulatory variable, as before, we can analyze the 

nature and degree of regulation induced and residual adaptation at different points of the 

temperature distribution. From column (2), as expected, we find that higher temperatures 

increasingly lead to hike in ozone concentrations. As each bin is of 5�C, we can see that for 

temperatures between 20�C and 25�C, a 1 degree C increase would raise ozone levels by 

1.22 ppb on average; whereas for temperatures between 25-30�C, 30-35�C and above 

35�C, the effects are 3.1 ppb, 4.76 ppb and 6.54 ppb respectively. From our estimates in 

columns (3) and (4), we have the following results about the degree of adaptation at different 

levels of temperature, which are summarized in Table 10. 

Average Adaptation (across all counties). From column (4) of Table 9, like we had for our main 

results, we find that the average level of adaptation across all counties ranges from 0.51 ppb 

for temperatures between 20-25�C, to 0.16 ppb for temperatures between 25-30�C; 0.45 ppb 

for temperatures between 30-35�C, and lastly almost 0.82 ppb for temperatures in our highest 

bin. So we see that a lot of the adaptation is driven by the 20-25C bin. As the USA as a whole 

is predominantly NOx limited, we would expect that changes in electricity usage might 

drastically reduce ozone concentrations (since electricity use is a major source of NOx, also, 

since ozone formation has a Leontief like production function in terms of NOx and VOCs, 

reduction in electricity use in a NOx limited region would imply large changes in ozone 
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formation.) In the below 20�C bin or at temperature above 25�C people are generally more 

dependent on either the heater or the air conditioner and hence might not be able to adjust 

their electricity use. 

However, temperatures between 20-25�C represent very pleasant weather which might 

potentially induce people to cut down on electricity demand and hence cut down on NOx which 

might be driving the high degrees of adaptation in this bin. This again points to the fact that 

most of this adaptation is driven by the lower temperature bins, where adapting to a warming 

climate is relatively easier. In a recent paper (Deschenes and Greenstone, 2011), the authors 

analyze the non-linear effects of daily average temperature on residential energy consumption 

and quite interestingly, they document a U-shaped function such that the hottest and coldest 

days are the highest energy consumption ones. Energy consumption at intermediate levels of 

temperature of around 60-80 degrees Fahrenheit (comparable to our intermediate temperature 

bin of 20-25�C), is the lowest. This also justifies our estimates of adaptation at different levels 

of temperature. At intermediate levels of daily temperature, economic agents can adjust and 

bring down their energy consumption, hence leading to large decreases in ozone 

concentrations. Interestingly, we also see a relatively high level of adaptation above 35�C. 

This can be plausibly explained by the following reasons. As discussed in Leard and Roth 

(2016), higher temperatures signify more pleasant weather and can lead to changes in 

transportation patterns in a way that people might prefer walking or biking rather than driving. 

Such behavioral changes might be driving the higher levels of residual adaptation that we see 

across all counties. Also, in regions having temperatures above 35�C, we would expect higher 

incidence of sunlight which might be leading to more extensive use of solar panels to generate 

electricity or heating. Thus, higher temperatures might be creating an environment that is more 

suited to shift away from conventional and dirtier sources power generation, thus leading to 

higher levels of adaptation. Lastly, regions having higher temperatures have a larger climate 

penalty on ozone and hence are more strongly regulated. This might be driving the larger 

levels of regulation induced adaptation that we see in the higher temperature bins.    

Regulation-induced adaptation + Residual Adaptation (in non-attainment counties). Similar to 

our main results, we find a higher degree of adaptation in non-attainment counties at every 

level of temperature. However, out of the total adaptation in non-attainment counties, the 

proportion of regulation-induced adaptation varies from around 25 percent for temperatures 

between 20-25�C to around 62.5 percent for temperatures between 30-35�C.  
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Residual Adaptation (in attainment and non-attainment counties). From column (5) of Table 9, 

we find that the residual adaptation, ranges from 0.13 ppb for temperatures between 25-30�C, 

to around 0.67 ppb, for temperatures above 35�C.  

 

7.2 Lagged Responses 
 

Another potential concern with our preferred specification might be the fact that we have used 

the lagged 30 year moving average to capture the long term climate trend; hence to avoid such 

concerns, we test the sensitivity of our estimates using the lagged 20 years and lagged 10 

years monthly moving averages of temperature and precipitation. The results which have in 

reported in Table A4 in the Appendix, prove to be quite robust and the magnitudes are very 

similar to our main results in Table 7. This is potentially being caused because the 30 year 

monthly moving average that we use in our preferred specification, already has all the 

information that is present in the 20 year, or the 10 year moving average. In all the three kinds 

of moving average used, agents are getting just one year to adapt. Hence, a more interesting 

robustness check could be to look at the effects, when agents get 10 years and 20 years to 

adapt, instead of just one. In Table 11, we provide estimates from our preferred specification; 

however, by using 20 year moving averages of temperature and precipitation (lagged by 10 

years); and 10 year moving averages (lagged by 20 years). By doing so, we are providing 

agents more time to adapt to climate change. Even though we expect that the effects of the 

weather shocks would be similar, we anticipate the effects of the climate trend to be slightly 

smaller than before, as agents should now be able to adapt more than before. This is what we 

find from our estimates reported in Table 11. 

 

 

 

7.3 Non-Random Citing of Ozone Monitors 

In a recent working paper (Muller & Ruud, 2016), the authors argue that the location of 

pollution monitors are not necessarily random. They claim that the U.S. Environmental 

Protection Agency (EPA) maintains a dense network of pollution monitors in the country for 

two major reasons. Firstly, it wishes to check and enforce the National Ambient Air Quality 



	 30	

Standards (NAAQs) for the criteria pollutants; and secondly, it wants to provide useful data for 

the analysis of important questions linking pollution with its varied impacts. The authors claim 

that these are conflicting interests, because to check attainment status, the monitors are 

generally placed in areas where pollution levels are the highest, whereas in terms of providing 

good quality representative data, monitors must be placed in regions having different levels of 

pollution.  

The authors further assert that if the most important objective of the EPA was to provide an 

unbiased estimate of the level of criteria pollutants across the nation, then the monitors must 

be placed more densely, where surface variation is the largest. However, since the monitors 

also serve the EPA's purpose of enforcing the NAAQs, they are not randomly placed. Most of 

the monitors tend to be in areas where pollution levels have been high and compliance with 

the regulation is a question. Following the argument of the paper and relying on their results, 

we might believe that monitor location is essentially endogenous and hence using an 

unbalanced panel of monitors over time might be giving us incorrect estimates as we are only 

observing ozone concentrations at monitors which have high pollution levels.  

To nullify such threats to identification, we can check the sensitivity of our main estimates 

reported in Table 7, by using a balanced panel of ozone monitors. Starting from our original 

sample, we only use observations from monitors that have been in the data for every year from 

1980-2013 and we are left with 92 pollution monitors. By doing so we eliminate the various 

possible confounding factors that might drive the positioning of monitors and their subsequent 

selection into the sample. The results from this estimation have been reported in Table 12. We 

find that a 1-degree Celsius increase in the daily maximum temperature leads to a rise in 

ozone concentrations by 1.88 ppb. Average adaptation is 0.44 ppb across all counties. We can 

further disentangle this to find that regulation induced adaptation in non-attainment counties is 

0.24 ppb whereas residual adaptation in attainment as well as non-attainment counties is 0.25 

ppb. The effects using a balanced panel are actually even larger than those in our main results 

reported in Table 7. This ensures that our central estimates are robust to any sort of errors 

potentially caused by the endogenous placement of ozone monitors, because had such claims 

been true, the effects should have been smaller when we use a balanced sample. As 

explained before, if monitors are expected to be placed endogenously in areas having high 

pollution levels, then when we use an unbalanced panel in our preferred sample, we should be 
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overestimating the effect of temperature on ozone concentrations, which does not seem to be 

true.  

 

7.4 Dependence on Wind Speed and Sunlight 
 
Although temperature is the primary meteorological factor affecting tropospheric ozone 

concentrations, other factors such as wind speed and sunlight have also been noted as 

potential contributors. Firstly, high wind speeds can dilute ozone concentrations locally and 

also potentially lead to the transportation of ozone to neighboring regions. Strong ventilation 

with high wind speeds prevents the build-up of high local pollutant concentrations. Ozone 

precursors, namely, NOx and VOCs can also be transported significant distances from their 

point of origin and hence can lead to elevated ozone levels in other areas. Secondly, ultraviolet 

solar radiation initiates the photolysis of NO2 to nitric oxide and a free oxygen atom which can 

then react with molecular oxygen to form ozone. In order to test if our main estimates are 

actually capturing the effects of wind speed and sunlight, we control for these variables in our 

preferred specification. Table 13 reports these estimates. Columns (1) and (2) present our 

main results from estimating Equations (3) and (4) respectively.  Next we present results from 

estimating Equation (4), however, having additionally controlled for average daily wind speed 

(meters/sec) in Column (3), total daily sunlight (mins) in Column (4) and both in Column (5). As 

expected, we find that higher wind speeds lead to lower ozone concentrations and more 

sunlight leads to higher concentrations. From Column (5), we find that a 1 meter/sec increase 

in average daily wind speed would decrease ozone concentrations by 2.2 ppb, whereas a 1 

min increase in daily sunlight leads to 0.02 ppb increase in ozone concentrations. More 

importantly, by comparing Column (2) with Column (5), we find that our main results do not 

change dramatically, either in direction or magnitude, after the inclusion of these other 

meteorological variables. We still find that a shock in daily maximum temperature of 1�C leads 

to a 1.24 ppb increase in daily maximum ozone whereas a 1�C increase in the climate trend 

leads to a 0.72 ppb increase in ozone. Our estimates of the interaction terms suggest a 

regulation-induced adaptation of 0.17 ppb in non-attainment counties. Also, we still find a 

residual adaptation of 0.52 ppb, across all counties. This ensures that our primary estimates of 

the impact of temperature on ozone concentrations, and hence, our measures of adaptation, 

are not being driven by the dependence on other potentially important meteorological factors. 
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8. Heterogeneity 

 
8.1 Results by Decade 

In the following tables, we present our results from estimating equation (4) by decades. We 

split our sample into three decades, 1980-90, 1991-2001 and 2002-2013 respectively, so that 

we have roughly the same number of years in each decade. In Table 14, we present the main 

results, where we see the heterogeneity of our results across time. All the effects discussed in 

the Main Results are present in each decade; however, we find that the effect of 

contemporaneous daily maximum temperature is decreasing over time. Also, looking at 

columns (3) and (4), we find evidence of adaptation by economic agents, in every decade. The 

average adaptation across all counties in our sample ranges from 0.58 ppb in the 1980s to 

0.39 ppb in the 1990s and 0.41 ppb in the 2000s. Also, from column (4) we find that the 

regulation-induced adaptation in non-attainment counties decreases consistently from around 

0.22ppb in the 1980s to about 0.09 ppb in the 2000s. Residual adaptation in attainment and 

non-attainment counties varied from 0.42 ppb in the 1980s to 0.27 ppb in the 1990s and 0.38 

ppb in the 2000s. Hence, the 1980s, which marked the initial phases of the regulation and 

when the average pollution levels were also higher, exhibit on one hand, the largest impacts of 

the climate on ground level ozone and on the other hand, also show the largest degree of 

adaptation over time. The temporal heterogeneity of our adaptation estimates, has been 

illustrated in Table 15. 

     8.2 Results by Climate Region 

Next we aim to establish the spatial heterogeneity of our results. We have estimated our main 

specification by the nine different climate regions as defined by the National Oceanic and 

Atmospheric Association (NOAA), through detailed climate analysis. Each of these regions 

have very similar climatic conditions and hence, very comparable baselines of temperature, 

precipitation and other important meteorological variables, thus providing a reliable criterion for 

breaking up our main estimates to analyze heterogeneity across space. In Tables 16 and 17 

we provide our main estimates from the regional regressions and also the heterogeneity of our 

adaptation estimates. In Table 16, the main estimates for each region have been reported. To 

avoid confusion, we have just presented the results from the 3rd and 4th specification, for each 

region. We find that even though the overall direction of effects of weather shocks as well as 
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long term climate trends are consistent, their magnitudes are extremely varied across space. 

To make things clearer, Table 17 reports the adaptation estimates for each climate region; 

here, as before, using column (3) we have first calculated estimates on average level and 

percentage of adaptation across all counties in each region. Then, using column (4), we 

disentangle this into regulation-induced and residual adaptation. In this table we also provide 

the mean daily maximum temperature (climatic baseline) and the average proportion of 

counties in non-attainment in each region, using which we can try to interpret the results in an 

improved manner.   

As we can observe from Table 17, almost all the regions exhibit adaptation to climate change, 

as we have discussed before. However, their magnitudes are quite different, and since we also 

have the baseline climate for each region, we can link these estimates to our estimates for 

non-linear temperature effects, reported in Table 9. As we can see here, most of the 

adaptation is driven by the Upper Midwest, Northeast and Northwest, where average daily 

maximum temperatures fall in the range 20-25�C. This is consistent with our finding in Table 

10, where we claimed that a major portion of adaptation happens at such lower temperatures. 

Regions having average temperatures in the range 25-30�C, namely the Ohio Valley, 

Southeast, Southwest and West, exhibit lower degrees of adaptation, which is also consistent 

with our results on non-linear effects of temperature.  If we analyze the estimates of residual 

and regulation-induced adaptation, we find that the West and the Northwest have 0.526 ppb 

and 0.724 ppb regulation induced adaptation, which is huge compared to most other regions. 

On the other hand, in the Northeast, we actually find evidence of intensification, rather than 

adaptation. To understand this further, we can compare the Northeast and the Northwest, both 

having a climatic baseline between 20-25�C, hence implying feasible conditions for 

adaptation. However, we find that even though there is a high level of residual adaptation in 

both regions, the regulation induced adaptation is a huge 0.724 ppb in the Northwest, whereas 

it is -0.151 ppb in the Northeast. This can potentially be explained by the fact that regulation in 

this states, has already reached the limit of effectiveness. This can be observed from the fact 

that in the Northeast, more than three-fourths of the counties are already being regulated as 

compared to the Northwest, where this proportion is only about 0.2. Northeast officials have 

stressed that they have done everything in their capacity to bring down emissions. However, a 

huge proportion of the ozone air pollution in these states are driven by cross border pollutants 

from upwind Southern and Midwestern states. Officials have mentioned on multiple occasions 
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that installing pollution abatement technology would be far less costly for Midwestern states, 

than it would be for the Northeast. It has been estimated that the marginal cost of regulation in 

the Northeast is a whopping $10000 whereas in the Midwest, it is only about $200. Hence, we 

find that regulation has no further effect in these states. Looking at the other climatic extreme, 

we can compare the Southwest and the West, both having average temperatures close to 

30�C. Even though the West has a reasonably high proportion of counties in non-attainment, 

we find evidence that there is still some scope of regulation induced adaptation. However, in 

both regions, we find evidence of residual intensification, which is probably driven by the fact 

that temperatures are too high and hence unfeasible for economic agents to adjust their 

behavior patterns. 

9. Concluding Remarks 

In this paper, we propose a novel methodology to study the effect of temperature on ambient 

ozone concentrations and measure adaptation to climate change. By decomposing high 

frequency daily data on meteorological variables over the past 64 years, made available by the 

National Oceanic and Atmospheric Administration (NOAA), we are able to examine the impact 

on air quality of both long-term climatic trends and short-term deviations from such trends (i.e. 

weather shocks) in a single estimating equation. Using daily data on ambient ozone 

concentrations from EPA’s Air Quality Systems (AQS) database, we find that unexpected 

spikes in temperature as well as increases in the long-term temperature trend have positive 

and significant impacts on surface ozone levels. A shock in daily maximum temperature of one 

degree Celsius increases ozone levels by 1.7 ppb, whereas a similar increase in the 30-year 

monthly moving average of temperature leads to a further 1.2 ppb increase in ozone, implying 

a total impact of 2.9 ppb. Hence, by ignoring the climate normal, we would underestimate the 

total effect – or the so-called climate penalty on ozone – by over 40 percent. 

 

By comparing the long-term “climate effect” with the short-term “weather effect”, we arrive at 

our measure of adaptation to climate change. We find an average adaptation of 0.45 ppb 

across all counties in our sample. This measure captures the fact that the long-term effect of 

temperature, although positive, is smaller than the effect of a sudden shock, thus signifying 

potential changes in behavior of economic agents in response to a changing climate. In the 

absence of any adaptation, we would expect the impact of higher temperature to be twice as 
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much as the effect of the temperature shock, i.e. a 3.4 ppb increase in ozone levels. Thus, by 

ignoring adaptation, we would overestimate the climate penalty on ozone by over 17 percent.  

 

Using data on Clean Air Act Attainment designations from the EPA’s Green Book of 

Nonattainment Areas for Criteria Pollutants, we are also able to disentangle our measure of 

adaptation into regulation-induced adaptation, occurring in counties facing stringent regulations 

for being out of attainment of ozone NAAQS, and residual adaptation occurring in all counties. 

We find that, in both attainment and non-attainment counties, the residual level of adaptation is 

0.33 ppb. However, there is an additional 0.22 ppb regulation-induced adaptation in non-

attainment counties. Hence, in comparison to attainment counties, non-attainment counties are 

adapting over 66 percent more in terms of ozone concentrations. Comparing our estimates to 

the benefits coming out of CAA regulations, we find that in attainment counties, adaptation 

represents 26.7 percent of the effect of being out of attainment, whereas in non-attainment 

counties, its almost 45 percent. 

 

Categorizing temperature into multiple bins, we have also explored the non-linear effects of 

temperature on ambient ozone levels. Subsequently, we also get adaptation estimates for 

each of these temperature bins. In line with existing literature, we find that higher temperatures 

have larger impacts on ozone levels, with the largest effect of 6.54 ppb being driven by 

temperatures above 35 degrees Celsius. Finally, we also analyze the spatial as well as 

temporal heterogeneity of our estimates. We find that the 1980s, which marked the initial 

implementation phases of the Clean Air Act regulations and also correspond to the highest 

pollution levels in our sample, had the largest impact of temperature on surface ozone 

concentrations as well as the largest degree of adaptation to climate change. Having estimated 

our preferred specification by the nine climate regions, as defined by the NOAA, we find that 

most of the adaptation is driven by the Upper Midwest, Northeast and Northwest, where 

average temperatures lie between 20-25 degrees Celsius, which is in line with our non-linear 

estimates.  

 

By estimating the causal effect of temperature on ambient ozone, we have taken the first step 

towards calculating the costs of climate change in terms of higher air pollution. We have 

illustrated that in the presence of climate change, pollution levels are exacerbated, hence 

implying larger external costs of emissions. Thus, such estimates are crucial to guide more 
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informed policy making and reaching the socially desirable level of emissions. This also 

provides scope for further research along similar lines, to estimate the climate penalty on other 

criteria air pollutants that have severe health effects. Another potential direction for further 

research might be to look into various adaptation mechanisms and behavioral adjustments 

made by economic agents, such as re-allocation of production across hours of the day or 

migration to less polluted regions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 37	

References 

Barreca, Alan, Karen Clay, Olivier Deschênes, Michael Greenstone, and Joseph S. Shapiro. 
(2015). Convergence in Adaptation to Climate Change: Evidence from High Temperatures and 
Mortality, 1900-2004, American Economic Review: Papers & Proceedings 105(5): 247-51. 
Barreca, Alan, Karen Clay, Olivier Deschênes, Michael Greenstone, and Joseph S. Shapiro. 
(2016). Adapting to Climate Change: The Remarkable Decline in the U.S. Temperature-
Mortality Relationship Over the 20th Century, Journal of Political Economy 124(1): 105-159. 
Burke, Marshall, and Kyle Emerick. (2016). Adaptation to Climate Change: Evidence from US 
Agriculture, American Economic Journal: Economic Policy 8(3): 106-40. 
Chameides W.L., Fehsenfeld F., Rodgers M.O., Cardelino C., Martinez J., Parrish D., 
Lonneman W., Lawson D.R., Rasmussen R.A., Zimmerman P., Greenberg J., Middleton P., 
and Wang T. (1992). Ozone Precursor Relationships in the Ambient Atmosphere, Journal of 
Geophysical Research 97: 6037-55. 
 
Dawson, John P., Peter J. Adams, and Spyros N. Pandisa. (2007). Sensitivity of ozone to 
summertime climate in the eastern USA: A modeling case study, Atmospheric Environment 
41(7): 1494-1511. 
 
Deschênes, Olivier, and Michael Greenstone. (2011). Climate Change, Mortality, and 
Adaptation: Evidence from Annual Fluctuations in Weather in the US, American Economic 
Journal: Applied Economics 3(4): 152-85. 

Deschênes, Olivier, and Michael Greenstone. (2007). The Economic Impacts of Climate 
Change: Evidence from Agricultural Output and Random Fluctuations in Weather, American 
Economic Review 97(1): 354-85. 
Dell, Melissa, Benjamin F. Jones, and Benjamin A. Olken. (2009). Temperature and Income: 
Reconciling New Cross-Sectional and Panel Estimates, American Economic Review: Papers & 
Proceedings 99(2): 198-204. 
Dell, Melissa, Benjamin F. Jones, and Benjamin A. Olken. (2012). Temperature Shocks and 
Economic Growth: Evidence from the Last Half Century, American Economic Journal: 
Macroeconomics 4(3): 66-95. 
Dell, Melissa, Benjamin F. Jones, and Benjamin A. Olken. (2014). What Do We Learn from the 
Weather? The New Climate-Economy Literature, Journal of Economic Literature 52(3): 740-
798. 
Finlayson-Pitts B.J., Pitts J.N. (2000). Chemistry of the Upper and Lower Atmosphere – 
Theory, Experiments, and Applications. Academic Press: San Diego, CA. 
Graff Zivin, Joshua S., Solomon M. Hsiang, Matthew J. Neidell. (2015). Temperature and 
Human Capital in the Short- and Long-Run, NBER Working Paper #21157. 
Graff Zivin, Joshua S., and Matthew J. Neidell. (2012). The Impact of Pollution on Worker 
Productivity, American Economic Review 102(7): 3652-73. 
Greenstone, Michael, John A. List, and Chad Syverson. (2012). The Effects of Environmental 
Regulation on the Competitiveness of U.S. Manufacturing, NBER Working Paper 18392. 
Hsiang, Solomon M. (2016). Climate Econometrics, NBER Working Paper #22181. 



	 38	

IPCC. (2013). Summary for Policymakers. In: Climate Change 2013: The Physical Science 
Basis. Contribution of Working Group I to the Fifth Assessment Report of the 
Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, 
S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge 
University Press, Cambridge, United Kingdom and New York, NY, USA.  
Jacob, Daniel J., and Darrel A. Winner. (2009). Effect of Climate Change on Air Quality, 
Atmospheric Environment 43(1): 51-63. 
Kala, Namrata. (2016). Learning and Adaptation: Evidence from Indian Agriculture, Mimeo. 
Kousky, Carolyn. (2012). Informing Climate Adaptation: A Review of the Economic Costs of 
Natural Disasters, Their Determinants, and Risk Reduction Options. Resources for the Future 
Discussion Paper 12-28. 

Leard, Benjamin, and Kevin Roth. (2016). Weather, Traffic Accidents, and Exposure to Climate 
Change, Mimeo. 

Mendelsohn, Robert, William D. Nordhaus, and Daigee Shaw. (1994). The Impact of Global 
Warming on Agriculture: A Ricardian Analysis, American Economic Review 84(4): 753-71. 

National Research Council. (1991). Rethinking the Ozone Problem in Urban and Regional Air 
Pollution. National Academy Press: Washington, DC. 

Schlenker, Wolfram, W. Michael Hanemann, and Anthony C. Fisher. (2005). Will U.S. 
Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic 
Approach, American Economic Review 95(1): 395-406. 
Schlenker, Wolfram, and Michael J. Roberts. (2009). Nonlinear Temperature Effects Indicate 
Severe Damages to U.S. Crop Yields under Climate Change, Proceedings of the National 
Academy of Sciences 106(37): 15594-98. 
Seinfeld J.H., Pandis S.N. (1998). Atmospheric Chemistry and Physics – From Air Pollution to 
Climate Change. John Wiley and Sons: New York, NY. 
Shrader, Jeffrey. (2016). Expectations and adaptation to environmental risks, Mimeo. 
 
Smith T.B., Lehrman D.E., Knuth W.R., Johnson D. (1997). Monitoring in Ozone Transport 
Corridors. Final Report Prepared for ARB/RD (contract # 94-316). 
 
Solon, Gary. (1992). Intergenerational Income Mobility in the United States, American 
Economic Review 82(3): 393-408. 

U.S. Code. (2011). Title 42 – Chapter 85 – Subchapter I – Part D – Subpart 2, available at 
gpo.gov/fdsys/granule/USCODE-2011-title42/USCODE-2011-title42-chap85-subchapI-partD-
subpart2-sec7511. 
 
U.S. Environmental Protection Agency (EPA). (2006). Air Quality Criteria for Ozone and 
Related Photochemical Oxidants – Volume II, available at 
epa.gov/ttn/naaqs/aqmguide/collection/cp2/20060228_ord_epa-600_r-05-
004bf_ozone_criteria_document_vol-2.pdf. 
 



	 39	

U.S. Environmental Protection Agency. (2004). Final Rule To Implement the 8-Hour Ozone 
National Ambient Air Quality Standard – Phase 1. In: Federal Register 69(84): 23951-24000. 
April 30, 2004. 

U.S. Environmental Protection Agency. (2015). National Ambient Air Quality Standards for 
Ozone: Final Rule. In: Federal Register 80(206): 65291-65468. October 26, 2015. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 40	

10. Tables and Figures 
 

Table 1: Ozone Monitoring Seasons by State 

	
																						Source:	U.S.	EPA	(2006,	p.	AX3-3).	1The	ozone	season	is	defined	differently	in	different	parts	of	Texas.	
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Table 2: History of Ozone NAAQS 

	
Final	Rule/	
Decision	

Primary/	
Secondary	 Indicator	 Averaging	

Time	 Level	 Form	

1971	
Primary	
and	

Secondary	

Total	
photochemical	

oxidants	
1-hour	 80	

ppb	

Not	to	be	exceeded	
more	than	one	hour	per	

year	

1979	
Primary	
and	

Secondary	
Ozone	 1-hour	 120	

ppb	

Attainment	is	defined	
when	the	expected	
number	of	days	per	
calendar	year,	with	
maximum	hourly	

average	concentration	
greater	than	120	ppb,	is	
equal	to	or	less	than	1	

1997	
Primary	
and	

Secondary	
Ozone	 8-hour	 80	

ppb	

Annual	fourth-highest	
daily	maximum	8-hr	

concentration,	averaged	
over	3	years	

2008	
Primary	
and	

Secondary	
Ozone	 8-hour	 75	

ppb	

Annual	fourth-highest	
daily	maximum	8-hr	

concentration,	averaged	
over	3	years	

2015	
Primary	
and	

Secondary	
Ozone	 8-hour	 70	

ppb	

Annual	fourth-highest	
daily	maximum	8-hr	

concentration,	averaged	
over	3	years	

Source:	epa.gov/ozone-pollution/table-historical-ozone-national-ambient-air-quality-standards-naaqs.	
	

 

 

Table 3:  Period to Comply with NAAQS 1979	

	

Area	Class	 Design	Value	 Adjustment	
Period	

Marginal	 121	to	138ppb	 3	years	
Moderate	 138	to	160ppb	 6	years	
Serious	 160	to	180ppb	 9	years	
Severe	 180	to	280ppb	 15	years	
Extreme	 280	and	above	 20	years	

																																															Source:	U.S.	Code	(2011).	
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Table 4: Summary Statistics for Monitoring Network by Decades 

Decade	 Observations	 Counties	 Monitors	 Daily	Maximum	Ozone	
		 		 		 		 Mean	 Std.	Dev	

1980s	 107823	 390	 672	 60.8	 29.0	
1990s	 153858	 509	 888	 57.6	 21.1	
2000s	 179947	 601	 1026	 54.3	 16.7	

                 Note: Decades are 1980-1990, 1991-2001 and 2002-2013 respectively. Data used in  
                    construction of this table uses monitor-days for which 8-hour averages were recorded 
                    for at least 18 hours of the day and monitor-years for which valid monitor-days were 
                    recorded for at least 75% of days between April 1st and September 30th. This table       
                   uses data for the months of April-September as that constitutes the ozone season.   
 

                              
 

 

 

 

Table 5: Summary Statistics for Meteorological Variables 

Decade	
Max	

Temperature	
30	Yr	MA	of	Max	
Temperature	 Temp	Deviations	

		 Mean	 Std.	Dev	 Mean	 Std.	Dev	 Mean	 Std.	Dev	
1980s	 26.8	 6.7	 26.6	 5.3	 0.2	 4.3	
1990s	 26.9	 6.8	 26.8	 5.5	 0.1	 4.1	
2000s	 27.4	 7.0	 27.2	 5.7	 0.2	 4.1	

Note: Decades are 1980-1990, 1991-2001 and 2002-2013 respectively. 30-year moving averages 
have been constructed at each pollution monitor, by using historical weather data from 1950-2013. 
Temperature Deviations are defined as (Daily Max Temp – 30-Year monthly MA of Max Temp). 
Each pollution monitor has been matched to the closest two weather stations within a 30 km 
boundary. 

 
 
 
 
 
 
 
 
 
 



	 43	

 
 
 
 

Table 6: Measures of Adaptation 

Dependent 

Variable:       

Ambient Ozone 

Average 

Adaptation 

[equation (3)] 

 Regulation-Induced 

Adaptation 

[equation (4)] 

Residual 

Adaptation  

[equation (4)] 

Marginal Effect of    

Weather Shocks 
!!! !!! !!! 

Marginal Effect of    

Climatic Changes 
!!!  !!! !!! 

Measures of 

Adaptation 

 

!!! −  !!!  

 

!!! −  !!!  

 

!!! −  !!!  

Notes: Estimates of Equation (3) gives us measures of average adaptation across all counties in our 
sample. The difference between the response to unexpected weather shocks,  !!!, and observed climate 
trends, !!!, gives us a measure of adaptation by economic agents. In the absence of any adaptation, we 
would have !!! =  !!!. Relative to this scenario, we find average adaptation to be (!!! −  !!!). Estimates from 
Equation (4) gives us levels of adaptation in attainment and non-attainment counties, using the interaction 
effects. Counties out of attainment have regulation-induced adaptation given by !!! −  !!! . All counties 
exhibit residual adaptation, given by (!!! −  !!!). For more details, please refer to Table 8. 
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Table 7: Main Estimates 
VARIABLES	 (1) (2)	 (3)	 (4)	 (5)	
		

	     A.	Temperature	Variables	
	     		
	     Maximum	Temperature		 1.0911***	 1.5274***	

	   		 (0.0949)	 (0.0231)	
	   Dev	from	30	Yr	MA	of	Max	Temp	(Weather	Shock)	

	  
1.6939***	 1.6942***	 1.3025***	

		
	  

(0.0254)	 (0.0254)	 (0.0191)	
30	Yr	MA	of	Max	Temp	(Climate	Trend)	

	  
1.2424***	 1.2423***	 0.9767***	

		
	  

(0.0239)	 (0.0239)	 (0.0219)	
Lag	3	CAANAS	x	Dev	from	30	Yr	MA	of	Max	Temp	

	    
0.6967***	

		
	    

(0.0345)	
Lag	3	CAANAS	x	30	Yr	MA	of	Max	Temp	

	    
0.4743***	

		
	    

(0.0273)	
B.	Clean	Air	Act	Non-Attainment	Status	

	     		
	     Lag	3	CAANAS	
	   

-1.2197***	 -14.0926***	
		

	   
(0.1771)	 (0.8447)	

C.	Precipitation	Variables	
	     		
	     Total	Precipitation	 -2.5974***	 -0.2434***	

	   		 (0.3326)	 (0.0036)	
	   Dev	from	30	Yr	MA	of	Prcp	(Weather	Shock)	

	  
-0.2263***	 -0.2263***	 -0.2201***	

		
	  

(0.0040)	 (0.0040)	 (0.0049)	
30	Yr	MA	of	Prcp	(Climate	Trend)	

	  
-1.8023***	 -1.8042***	 -1.6627***	

		
	  

(0.1218)	 (0.1219)	 (0.1194)	
Lag	3	CAANAS	x	Dev	from	30	Yr	MA	of	Prcp	

	    
-0.0144**	

		
	    

(0.0066)	
Lag	3	CAANAS	x	30	Yr	MA	of	Prcp	

	    
0.0630	

		
	    

(0.1269)	
Observations	 2,535	 4,974,322	 4,974,155	 4,974,155	 4,974,155	
R-squared	 0.2521	 0.4183	 0.4223	 0.4225	 0.4286	

 
Notes: Column (1) reports cross sectional estimates using average temperature and ozone concentrations at 2535 ozone 
monitors in sample. Having averaged the variables over all the years from 1980-2013, these estimates capture the effect of 
a change in the long term climate trend. Column (2) reports the effect of daily temperature on ozone, exploiting day-to-day 
variation in maximum temperature and hence capturing the effect of a change in short term weather. In Column (3), we 
decompose daily temperature into climate trends and weather shocks in the same estimating equation, exploiting high 
frequency data. In Column (4), we control for the lagged Clean Air Act Non-Attainment Status and in Column (5) we include 
interactions of weather shocks and climate trends with the CAANAS to estimate heterogeneous effects across attainment 
and non-attainment counties. Column (1) has fixed effects for climate region, monitor latitude and monitor longitude. 
Columns (2)-(5) have trimester-by-year-by-region FE; trimester-by-year-by-monitor latitude FE & trimester-by-year-by-
monitor longitude FE. Standard errors are clustered at monitor level. ***, **, and * represent significance at 1%, 5% and 
10% respectively. 
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Table 8: Adaptation Main Estimates 
 

		

Average	
Adaptation	

(ppb)	

Overestimation	
of	Climate	
Penalty	(%)	

Relative	to	
CAA	

Benefits	
(%)	

Regulation	
Induced	

Adaptation	
(ppb)	

Residual	
Adaptation	

(ppb)	

%	
Regulation	
Induced	

Non-Attainment	Counties	 0.55	 16.2	 44.95	 0.22	 0.33	 40	
Attainment	Counties	 0.33	 14.5	 --	 --	 0.33	 --	
All	Counties	 0.45	 17.2	 37.05	 0.12	 0.33	 26.6	

Notes: For Non-Attainment counties: Level of adaptation (ppb) = Residual (�W
T – �C

T) + Regulation-induced (�
W

T – �C
T) from column (5). Attainment Counties: Level of adaptation (ppb) = (�W

T – �C
T) from column (5) based 

on equation (4). Overestimation of Climate Penalty for Non-attainment counties= (2*(�W
T+ �W

T )*100)/( �W
T+ �

W
T + �C

T+ �C
T); for Attainment Counties: (2*γW

T*100)/( γW
T + γC

T). Estimates for attainment and non-attainment 
counties are derived from column (5) of Table 7 and estimates for all counties are derived from Column (4) in 
Table 7; Average Level of adaptation (ppb) for All Counties = �W

T – �C
T from column (4), based in equation (3). 

Note that in all above calculations, the effect of the CAA regulation is given by � as estimated by equation (3). 
Proportion of counties in non-attainment in the entire sample is 0.54. Adaptation estimates for all counties are 
averages for estimates for attainment and non-attainment counties, weighted by the proportion of counties in non-
attainment. 
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Table 9: Non-Linear Effects of Temperature 
VARIABLES	 		 (1) (2)	 (3)	 (4)	 (5)	

	
		

 	 	 	 	Maximum	Temperature	 20<	Max	Temp<	25	 1.8883 6.1273***	
	 	 	

	
		 (1.4378) (0.1361)	

	 	 	
	

25	<	Max	Temp	<30	 10.4610*** 15.3174***	
	 	 	

	
		 (1.5004) (0.2367)	

	 	 	
	

30	<	Max	Temp	<35	 13.6329*** 23.8054***	
	 	 	

	
		 (1.7991) (0.3720)	

	 	 	
	

Max	Temp	>35	 10.2964*** 32.7301***	
	 	 	

	
		 (1.9574) (0.5376)	

	 	 	Dev	from	30	Yr	MA	of	Max	Temp	 20<	Max	Temp<	25	
 	

6.4159***	 6.4201***	 5.6972***	

	
		

 	
(0.1276)	 (0.1274)	 (0.1294)	

	
25	<	Max	Temp	<30	

 	
15.4782***	 15.4827***	 12.7890***	

	
		

 	
(0.2315)	 (0.2313)	 (0.2226)	

	
30	<	Max	Temp	<35	

 	
24.2426***	 24.2475***	 18.9043***	

	
		

 	
(0.3687)	 (0.3686)	 (0.3166)	

	
Max	Temp	>35	

 	
33.4807***	 33.4858***	 25.7193***	

	
		

 	
(0.5399)	 (0.5398)	 (0.4259)	

30	Yr	MA	of	Max	Temp	 20<	Max	Temp<	25	
 	

3.8945***	 3.8932***	 3.5288***	

	
		

 	
(0.2600)	 (0.2600)	 (0.3031)	

	
25	<	Max	Temp	<30	

 	
14.6576***	 14.6562***	 12.1577***	

	
		

 	
(0.3062)	 (0.3063)	 (0.3177)	

	
30	<	Max	Temp	<35	

 	
21.9923***	 21.9899***	 17.8664***	

	
		

 	
(0.5099)	 (0.5097)	 (0.4555)	

	
Max	Temp	>35	

 	
29.3915***	 29.3890***	 22.3465***	

	
		

 	
(0.8014)	 (0.8011)	 (0.7880)	

Lag	3	of	CAANAS	 		
 	 	

-1.1952***	 -6.0965***	
		 		

 	 	
(0.1739)	 (0.4821)	

Lag	3	CAANAS	x	Deviation	from	30	Yr	MA	of	Max	
Temp	

20<	Max	Temp<	25	
 	 	 	

1.3965***	

	
		

 	 	 	
(0.1882)	

	
25	<	Max	Temp	<30	

 	 	 	
4.7471***	

	
		

 	 	 	
(0.3251)	

	
30	<	Max	Temp	<35	

 	 	 	
9.5649***	

	
		

 	 	 	
(0.4952)	

	
Max	Temp	>35	

 	 	 	
13.6576***	

	
		

 	 	 	
(0.7146)	

Lag	3	CAANAS	x	30	Yr	MA	of	Max	Temp	 20<	Max	Temp<	25	
 	 	 	

0.7283*	

	
		

 	 	 	
(0.3918)	

	
25	<	Max	Temp	<30	

 	 	 	
4.3180***	

	
		

 	 	 	
(0.3928)	

	
30	<	Max	Temp	<35	

 	 	 	
7.7813***	

	
		

 	 	 	
(0.5388)	

	
Max	Temp	>35	

 	 	 	
11.9282***	

	
		

 	 	 	
(0.9746)	

Total	Precipitation	&	Interactions	 		 Yes Yes	 Yes	 Yes	 Yes	
Observations	 		 2,535 4,986,863	 4,986,685	 4,986,685	 4,986,685	
R-squared	 		 0.2723 0.4137	 0.4157	 0.4158	 0.4221	

Notes: In Columns (1)-(5) we report non-linear effects of daily maximum temperature on surface ozone levels. We categorize 
daily maximum temperature into 5 bins from <25�C to >35�C with 5�C intervals in between. Column (1) reports cross 
sectional estimates using average temperature and ozone concentrations at 2535 ozone monitors in sample. Having averaged 
the variables over all the years from 1980-2013, these estimates capture the effect of a change in the long term climate trend. 
Column (2) reports the effect of daily temperature on ozone, exploiting day-to-day variation in maximum temperature and 
hence capturing the effect of a change in short term weather. In Column (3), we decompose daily temperature into climate 
trends and weather shocks in the same estimating equation, exploiting high frequency data. In Column (4), we control for the 
lagged Clean Air Act Non-Attainment Status and in Column (5) we include interactions of weather shocks and climate trends 
with the CAANAS to estimate heterogeneous effects across attainment and non-attainment counties. Column (1) has fixed 
effects for climate region, monitor latitude and monitor longitude. Columns (2)-(5) have trimester-by-year-by-region FE; 
trimester-by-year-by-monitor latitude FE & trimester-by-year-by-monitor longitude FE. Standard errors are clustered at monitor 
level. ***, **, and * represent significance at 1%, 5% and 10% respectively. 
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Table 10: Adaptation Estimates for Nonlinearities 
 

		

Average	
Adaptation	

(ppb)	

Regulation	
Induced	

Adaptation	
(ppb)	

Residual	
Adaptation	

(ppb)	
%	Regulation	

Induced	
A.	20-25	Celsius	

	    Non-Attainment	Counties	 0.57	 0.14	 0.43	 24.6	
Attainment	Counties	 0.43	 --	 0.43	 --	
All	Counties	 0.51	 0.08	 0.43	 15.7	

	     B.	25-30	Celsius	
	    Non-Attainment	Counties	 0.21	 0.08	 0.13	 38.10	

Attainment	Counties	 0.13	 --	 0.13	 --	
All	Counties	 0.16	 0.03	 0.13	 18.75	

	     C.	30-35	Celsius	
	    Non-Attainment	Counties	 0.56	 0.35	 0.21	 62.5	

Attainment	Counties	 0.21	 --	 0.21	 --	
All	Counties	 0.45	 0.24	 0.21	 53.3	

	     D.	Above	35	Celsius	
	    Non-Attainment	Counties	 1.02	 0.35	 0.67	 34.3	

Attainment	Counties	 0.67	 --	 0.67	 --	
All	Counties	 0.82	 0.15	 0.67	 18.3	

 
Notes: Adaptation estimates have been calculated using estimates from Table 9, and dividing that by 5 to get 
adaptation in response to a 1�C change in temperature. Adaptation measures are calculated, as explained in 
Table 8. 
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Table 11: Lagged Responses 
  (1) (2) (3) (4) (1) (2) (3) (4) 

VARIABLES 20Yr MA: lagged by 10 years 10Yr MA: lagged by 20 years 

                  

Max Temp  1.5274*** 
  

  1.5274*** 
     (0.0231) 

  
  (0.0231) 

   Total Precipitation -0.2434*** 
  

  -0.2434*** 
     (0.0036) 

  
  (0.0036) 

   
Dev from MA of Max Temp 
(Weather Shock) 

 
1.6938*** 1.6941*** 1.3028*** 

 
1.6959*** 1.6962*** 1.3065*** 

  
 

(0.0255) (0.0255) (0.0193) 
 

(0.0256) (0.0256) (0.0194) 

MA of Max Temp (Climate Trend) 
 

1.2378*** 1.2376*** 0.9693*** 
 

1.2291*** 1.2290*** 0.9559*** 

  
 

(0.0239) (0.0239) (0.0216) 
 

(0.0237) (0.0237) (0.0211) 

Lag 3 CAANAS 
  

-1.2125*** -14.2923*** 
  

-1.2261*** -14.5335*** 

  
  

(0.1777) (0.8512) 
  

(0.1790) (0.8361) 

Lag 3 CAANAS x Dev from MA of 
Max Temp 

   
0.6948*** 

   
0.6914*** 

  
   

(0.0345) 
   

(0.0346) 

Lag 3 CAANAS x MA of Max 
Temp 

   
0.4815*** 

   
0.4919*** 

  
   

(0.0276) 
   

(0.0277) 

Dev from MA of Prcp (Weather 
Shock) 

 
-0.2273*** -0.2273*** -0.2216*** 

 
-0.2284*** -0.2284*** -0.2231*** 

  
 

(0.0040) (0.0040) (0.0049) 
 

(0.0040) (0.0040) (0.0048) 

MA of Prcp (Climate Trend) 
 

-1.4908*** -1.4898*** -1.3726*** 
 

-1.1104*** -1.1132*** -1.0281*** 

  
 

(0.1153) (0.1152) (0.1145) 
 

(0.0913) (0.0913) (0.0938) 

Lag 3 CAANAS x Dev from MA of 
Prcp 

   
-0.0136** 

   
-0.0125* 

  
   

(0.0066) 
   

(0.0065) 

Lag 3 CAANAS x  MA of Prcp 
   

0.0678 
   

0.0500 

  
   

(0.1261) 
   

(0.1117) 

Observations 4,974,322 4,967,557 4,967,557 4,967,557 4,974,322 4,964,220 4,964,220 4,964,220 

R-squared 0.4183 0.4221 0.4222 0.4284 0.4183 0.4219 0.4221 0.4283 
Notes: Columns (1)-(4) and Columns (5)-(8) are analogous to Columns (2)-(5) in Table 7. Here, we report similar estimates, 
however, by using 10 and 20 year lagged moving averages of temperature and precipitation. Columns (1)-(8) have trimester-by-
year-by-region FE; trimester-by-year-by-monitor latitude FE & trimester-by-year-by-monitor longitude FE.  Standard errors are 
clustered at the monitor level. ***, ** and * represent significance at the 1%, 5% and 10% level respectively. 
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Table 12: Balanced Panel of Monitors 
VARIABLES	 (1)	 (2)	 (3)	 (4)	
		 		 		 		 		
Max	Temp		 1.8878***	

	   		 (0.0726)	
	   Total	Precipitation	 -0.2833***	
	   		 (0.0121)	
	   Dev	from	30	Yr	MA	of	Max	Temp	(Weather	Shock)	

	
2.0483***	 2.0480***	 1.6644***	

		
	

(0.0839)	 (0.0838)	 (0.0783)	
30	Yr	MA	of	Max	Temp	(Climate	Trend)	

	
1.6106***	 1.6113***	 1.4114***	

		
	

(0.0696)	 (0.0697)	 (0.0935)	
Lag	3	CAANAS	

	  
-1.8371**	 -10.2362***	

		
	  

(0.7918)	 (2.2352)	
Lag	3	CAANAS	x	Dev	from	30	Yr	MA	of	Max	Temp	

	   
0.5096***	

		
	   

(0.0909)	
Lag	3	CAANAS	x	30	Yr	MA	of	Max	Temp	

	   
0.2693***	

		
	   

(0.0876)	
Dev	from	30	Yr	MA	of	Prcp	(Weather	Shock)	

	
-0.2674***	 -0.2674***	 -0.2285***	

		
	

(0.0140)	 (0.0139)	 (0.0180)	
30	Yr	MA	of	Prcp	(Climate	Trend)	

	
-2.0297***	 -2.0296***	 -2.1647***	

		
	

(0.5377)	 (0.5382)	 (0.5498)	
Lag	3	CAANAS	x	Dev	from	30	Yr	MA	of	Prcp	

	   
-0.0606***	

		
	   

(0.0185)	
Lag	3	CAANAS	x	30	Yr	MA	of	Prcp	

	   
0.3789	

		
	   

(0.4251)	
Observations	 543,971	 543,971	 543,971	 543,971	
R-squared	 0.4085	 0.4123	 0.4126	 0.4149	
Notes: Columns (1)-(4) are analogous to Columns (2)-(5) in Table 7. Here, we report similar estimates, however, 
by using a balanced panel of 92 ozone monitors. Columns (1)-(4) have trimester-by-year-by-region FE; 
trimester-by-year-by-monitor latitude FE & trimester-by-year-by-monitor longitude FE. Standard errors are 
clustered at monitor level. ***, **, and * represent significance at 1%, 5% and 10% respectively.  
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Table 13: Wind Speed and Sunlight 
VARIABLES	 (1)	 (2)	 (3)	 (4)	 (5)	

		 		 		 		 		 		

Dev	from	30	Yr	MA	of	Max	Temp	(Weather	Shock)	 1.6942***	 1.3025***	 1.4105***	 1.3461***	 1.2365***	

		 (0.0254)	 (0.0191)	 (0.0263)	 (0.0593)	 (0.0621)	

30	Yr	MA	of	Max	Temp	(Climate	Trend)	 1.2423***	 0.9767***	 0.7663***	 0.9240***	 0.7247***	

		 (0.0239)	 (0.0219)	 (0.0313)	 (0.0577)	 (0.0621)	

Lag	3	CAANAS	 -1.2197***	 -14.0926***	 -13.7245***	 -16.1596***	 -16.7932***	

		 (0.1771)	 (0.8447)	 (1.1532)	 (2.0324)	 (2.1615)	

Lag	3	CAANAS	x	Dev	from	30	Yr	MA	of	Max	Temp	
	

0.6967***	 0.6454***	 0.7119***	 0.8247***	

		
	

(0.0345)	 (0.0393)	 (0.0708)	 (0.0770)	

Lag	3	CAANAS	x	30	Yr	MA	of	Max	Temp	
	

0.4743***	 0.4676***	 0.5491***	 0.6477***	

		
	

(0.0273)	 (0.0353)	 (0.0592)	 (0.0622)	

Dev	from	30	Yr	MA	of	Prcp	(Weather	Shock)	 -0.2263***	 -0.2201***	 -0.1679***	 -0.0849***	 -0.0615***	

		 (0.0040)	 (0.0049)	 (0.0063)	 (0.0140)	 (0.0125)	

30	Yr	MA	of	Prcp	(Climate	Trend)	 -1.8042***	 -1.6627***	 -1.8777***	 -0.9536**	 -1.0373***	

		 (0.1219)	 (0.1194)	 (0.1239)	 (0.4057)	 (0.3841)	

Lag	3	CAANAS	x	Dev	from	30	Yr	MA	of	Prcp	
	

-0.0144**	 -0.0261***	 -0.0484***	 -0.0399**	

		
	

(0.0066)	 (0.0089)	 (0.0187)	 (0.0188)	

Lag	3	CAANAS	x	30	Yr	MA	of	Prcp	
	

0.0630	 0.1175	 -0.0372	 -0.4943	

		
	

(0.1269)	 (0.1561)	 (0.3447)	 (0.3448)	

Average	Daily	Wind	Speed	
	  

-2.1792***	
	

-2.2289***	

		
	  

(0.0931)	
	

(0.2098)	

Total	Daily	Sunlight	
	   

0.0150***	 0.0144***	

		
	   

(0.0006)	 (0.0006)	

Observations	 4,974,155	 4,974,155	 2,019,634	 581,465	 455,533	

R-squared	 0.4225	 0.4286	 0.4183	 0.4049	 0.4366	
Notes: Columns (1) and (2) are analogous to Columns (4) and (5) in Table 7. In Column (3) we control for average 
daily wind speed (meters/sec); in Column (4) we control for total daily sunlight (mins) and in Column (5) we control for 
both. Columns (1)-(5) have trimester-by-year-by-region FE; trimester-by-year-by-monitor latitude FE & trimester-by-
year-by-monitor longitude FE. Standard errors are clustered at monitor level. ***, **, and * represent significance at 
1%, 5% and 10% respectively. 
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Table 14: Results by Decades 
 

  (1) (2) (3) (4) 
VARIABLES 

              
Max Temperature 80s 2.0763*** 

     (0.0465) 
   Max Temperature 90s 1.6198*** 
     (0.0236) 
   Max Temperature 2000s 1.1342*** 
     (0.0178)       

Dev from 30 Yr MA of Max Temp; 80s 
 

2.284*** 2.2841*** 1.7829*** 
  

 
(0.0521) (0.0520) (0.0448) 

Dev from 30 Yr MA of Max Temp; 90s 
 

1.760*** 1.7605*** 1.3650*** 
  

 
(0.0266) (0.0266) (0.0259) 

Dev from 30 Yr MA of Max Temp; 2000s 
 

1.290*** 1.2897*** 1.0918*** 
    (0.0182) (0.0182) (0.0184) 
30 Yr MA of Max Temp; 80s 

 
1.710*** 1.7046*** 1.3614*** 

  
 

(0.0540) (0.0536) (0.0474) 
30 Yr MA of Max Temp; 90s 

 
1.375*** 1.3720*** 1.0952*** 

  
 

(0.0263) (0.0263) (0.0285) 
30 Yr MA of Max Temp; 2000s 

 
0.873*** 0.8793*** 0.7136*** 

    (0.0255) (0.0257) (0.0240) 
Lag 3 of CAANAS; 80s 

  
0.1004 -11.7159*** 

  
  

(0.3952) (1.5323) 
Lag 3 of CAANAS; 90s 

  
-1.0401*** -13.6521*** 

  
  

(0.2105) (0.9892) 
Lag 3 of CAANAS; 2000s 

  
-1.5564*** -11.0023*** 

      (0.2374) (1.0497) 
Lag 3 CAANAS x Dev from MA Temp; 80s 

   
0.7232*** 

  
   

(0.0596) 
Lag 3 CAANAS x Dev from MA Temp; 90s 

   
0.6740*** 

  
   

(0.0417) 
Lag 3 CAANAS x Dev from MA Temp; 2000s 

   
0.4260*** 

        (0.0307) 
Lag 3 CAANAS x 30 Yr MA Temp; 80s 

   
0.5016*** 

  
   

(0.0535) 
Lag 3 CAANAS x 30 Yr MA Temp; 90s 

   
0.4807*** 

  
   

(0.0333) 
Lag 3 CAANAS x 30 Yr MA Temp; 2000s 

   
0.3372*** 

  
   

(0.0312) 
Precipitation Controls Yes Yes Yes Yes 
Observations 4,974,322 4,974,155 4,974,155 4,974,155 
R-squared 0.4268 0.431 0.4309 0.4354 
Notes: Columns (1)-(4) are analogous to Columns (2)-(5) in Table 7. We report our main estimates by the three 
decades in our sample: 1980-1990; 1991-2001 and 2002-2013. Columns (1)-(4) have trimester-by-year-by-region 
FE; trimester-by-year-by-monitor latitude FE & trimester-by-year-by-monitor longitude FE. Standard errors are 
clustered at monitor level. ***, **, and * represent significance at 1%, 5% and 10% respectively. 
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Table 15: Adaptation Estimates by Decades 
 

		

Average	
Adaptation	

(ppb)	

Regulation	
Induced	

Adaptation	
(ppb)	

Residual	
Adaptation	

(ppb)	
%	Regulation	

Induced	

Proportion	in	
Non-

Attainment	
A.	1980s	

	    
0.71	

Non-Attainment	Counties	 0.64	 0.22	 0.42	 34.38	
	Attainment	Counties	 0.42	 --	 0.42	 --	
	All	Counties	 0.58	 0.16	 0.42	 27.59	 		

	      B.	1990s	
	    

0.54	
Non-Attainment	Counties	 0.46	 0.19	 0.27	 41.30	

	Attainment	Counties	 0.27	 --	 0.27	 --	
	All	Counties	 0.39	 0.12	 0.27	 30.77	 		

	      C.	2000s	
	    

0.45	
Non-Attainment	Counties	 0.47	 0.09	 0.38	 19.15	

	Attainment	Counties	 0.38	 --	 0.38	 --	
	All	Counties	 0.41	 0.03	 0.38	 7.32	 		

 
Notes: Adaptation estimates have been calculated using estimates from Table 14. Adaptation measures are 
calculated, as explained in Table 8. 
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Table 16: Results by Climate Regions 
  Ohio Valley Upper Midwest Northeast 
VARIABLES 3 4 3 4 3 4 
  

 
  

 
  

 
  

Dev from 30 Yr MA of Max Temp (Weather 
Shock) 1.5875*** 1.4750*** 1.7020*** 1.5259*** 2.1127*** 1.6690*** 
  (0.0331) (0.0357) (0.0499) (0.0456) (0.0438) (0.0552) 
30 Yr MA of Max Temp (Climate Trend) 1.4832*** 1.3735*** 1.2826*** 1.1359*** 1.4621*** 0.9069*** 
  (0.0235) (0.0266) (0.0386) (0.0430) (0.0442) (0.0606) 
Lag 3 CAANAS -0.8725*** -6.8064*** -1.2307*** -16.2031*** -0.6237** -25.1981*** 
  (0.3020) (1.2124) (0.3962) (2.0401) (0.2466) (2.6634) 
Lag 3 CAANAS x Dev from 30 Yr MA of Max 
Temp 

 
0.2226*** 

 
0.4104*** 

 
0.5697*** 

  
 

(0.0440) 
 

(0.0755) 
 

(0.0646) 
Lag 3 CAANAS x 30 Yr MA of Max Temp 

 
0.2069*** 

 
0.3320*** 

 
0.7207*** 

  
 

(0.0344) 
 

(0.0497) 
 

(0.0665) 
  

 
  

 
  

 
  

  Northwest South Southeast 
VARIABLES 3 4 3 4 3 4 
  

 
  

 
  

 
  

Dev from 30 Yr MA of Max Temp (Weather 
Shock) 1.5975*** 1.4400*** 1.1127*** 1.0039*** 1.5608*** 1.3586*** 
  (0.0995) (0.0991) (0.0397) (0.0437) (0.0529) (0.0425) 
30 Yr MA of Max Temp (Climate Trend) 0.4911*** 0.5141*** 0.2555*** 0.1861** 1.3326*** 1.0773*** 
  (0.0926) (0.0946) (0.0631) (0.0759) (0.0656) (0.0521) 
Lag 3 CAANAS -1.0722 4.7527 -1.6304*** -4.1519 -1.5514*** -16.3115*** 
  (0.8256) (7.2386) (0.5678) (2.6146) (0.3563) (2.4084) 
Lag 3 CAANAS x Dev from 30 Yr MA of Max 
Temp 

 
0.6341*** 

 
0.2646*** 

 
0.6051*** 

  
 

(0.1033) 
 

(0.0611) 
 

(0.0879) 
Lag 3 CAANAS x 30 Yr MA of Max Temp 

 
-0.0903 

 
0.1639** 

 
0.6025*** 

  
 

(0.2555) 
 

(0.0787) 
 

(0.0891) 
  

 
  

 
  

 
  

  Southwest West Rockies 
VARIABLES 3 4 3 4 3 4 
  

 
  

 
  

 
  

Dev from 30 Yr MA of Max Temp (Weather 
Shock) 0.7684*** 0.6339*** 2.1279*** 1.3735*** 0.8612*** 0.8449*** 
  (0.0324) (0.0377) (0.0827) (0.0691) (0.0684) (0.0642) 
30 Yr MA of Max Temp (Climate Trend) 0.8591*** 0.7264*** 1.8709*** 1.5179*** 0.5919*** 0.5774*** 
  (0.0484) (0.0483) (0.1290) (0.1061) (0.0524) (0.0517) 
Lag 3 CAANAS 0.6729 -8.9720*** -2.1284*** -13.8761*** -7.7448*** 1.9302 
  (0.4118) (1.8766) (0.7019) (2.7249) (2.2525) (6.6686) 
Lag 3 CAANAS x Dev from 30 Yr MA of Max 
Temp 

 
0.3030*** 

 
0.9927*** 

 
0.4561*** 

  
 

(0.0511) 
 

(0.0878) 
 

(0.1594) 
Lag 3 CAANAS x 30 Yr MA of Max Temp 

 
0.3148*** 

 
0.4659*** 

 
0.3944** 

  
 

(0.0595) 
 

(0.0889) 
 

(0.1583) 
Precipitation Controls Yes Yes Yes Yes Yes Yes 
Observations 4,974,155 4,974,155 4,974,155 4,974,155 4,974,155 4,974,155 
R-squared 0.4337 0.4382 0.4337 0.4382 0.4337 0.4382 
Notes: Columns (1) and (2) for each climate region are analogous to Columns (4) and (5) in Table 7. We report our main 
estimates by the nine different NOAA climate regions in the United States. The climate regions are defined as follows: 
Ohio Valley: IL, IN, KY, MO, OH, TN and WV; Upper Midwest: IA, MI, MN and WI; Northeast: CT, DE, ME, MD, MA, NH, 
NJ, NY, PA, RI and VT; Northwest: ID, OR and WA; South: AR, KS, LA, MS, OK and TX; Southeast: AL, FL, GA, NC, 
SC and VA; Southwest: AZ, CO, NM and UT; West: CA and NV; Rockies: MT, NE, ND, SD and WY. Columns (1) and 
(2) for each region have trimester-by-year-by-region FE; trimester-by-year-by-monitor latitude FE & trimester-by-year-by-
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monitor longitude FE. Standard errors are clustered at monitor level. ***, **, and * represent significance at 1%, 5% and 
10% respectively. 
 
 
 

Table 17: Adaptation Estimates by Climate Regions 

		

Average	
Adaptation	

(ppb)	

Regulation	
Induced	

Adaptation	
(ppb)	

Residual	
Adaptation	

(ppb)	
Average	Max	

Temp	

Proportion	in	
Non-

Attainment	

	      A.	Ohio	Valley	
	   

25.99	 0.453	
Non-Attainment	Counties	 0.117	 0.015	 0.102	

	  Attainment	Counties	 0.102	 --	 0.102	
	  All	Counties	 0.104	 0.002	 0.102	 		 		

	      B.	Upper	Midwest	
	   

23.05	 0.396	
Non-Attainment	Counties	 0.468	 0.078	 0.390	

	  Attainment	Counties	 0.390	 --	 0.390	
	  All	Counties	 0.419	 0.029	 0.390	 		 		

	      C.	Northeast	
	   

23.79	 0.784	
Non-Attainment	Counties	 0.611	 -0.151	 0.762	

	  Attainment	Counties	 0.762	 --	 0.762	
	  All	Counties	 0.651	 -0.111	 0.762	 		 		

	      D.	Northwest	
	   

22.87	 0.208	
Non-Attainment	Counties	 1.650	 0.724	 0.926	

	  Attainment	Counties	 0.926	 --	 0.926	
	  All	Counties	 1.106	 0.180	 0.926	 		 		

	      E.	South	
	   

30.92	 0.485	
Non-Attainment	Counties	 0.919	 0.101	 0.818	

	  Attainment	Counties	 0.818	 --	 0.818	
	  All	Counties	 0.857	 0.039	 0.818	 		 		

	      F.	Southeast	
	   

29.06	 0.287	
Non-Attainment	Counties	 0.284	 0.003	 0.281	

	  Attainment	Counties	 0.281	 --	 0.281	
	  All	Counties	 0.228	 -0.053	 0.281	 		 		

	      G.	Southwest	
	   

30.61	 0.436	
Non-Attainment	Counties	 -0.104	 -0.011	 -0.093	

	  Attainment	Counties	 -0.093	 --	 -0.093	
	  All	Counties	 -0.091	 0.002	 -0.093	 		 		

	      H.	West	
	   

28.19	 0.796	
Non-Attainment	Counties	 0.382	 0.526	 -0.144	

	  Attainment	Counties	 -0.144	 --	 -0.144	
	  All	Counties	 0.257	 0.401	 -0.144	 		 		

	      I.	Rockies	
	   

23.55	 0.038	
Non-Attainment	Counties	 0.329	 0.061	 0.268	

	  Attainment	Counties	 0.268	 --	 0.268	 		 		
All	Counties	 0.269	 0.001	 0.268	 		 		

 
Notes: Adaptation estimates have been calculated using estimates from Table 16. Adaptation measures are 
calculated, as explained in Table 8. The climate regions are defined as follows: Ohio Valley: IL, IN, KY, MO, OH, TN 
and WV; Upper Midwest: IA, MI, MN and WI; Northeast: CT, DE, ME, MD, MA, NH, NJ, NY, PA, RI and VT; 
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Northwest: ID, OR and WA; South: AR, KS, LA, MS, OK and TX; Southeast: AL, FL, GA, NC, SC and VA; 
Southwest: AZ, CO, NM and UT; West: CA and NV; Rockies: MT, NE, ND, SD and WY. 
 
 

Figure 1: Relationship between Ozone and Contemporaneous Temperature 

 
         Note: Figure 1 illustrates the daily maximum temperature and ozone, averaged  
                   across all monitor-days, for each year. The variables have been detrended by  
                   eliminating the time trend. 

 
Figure 2:  Evolution of Maximum Ozone Concentration 

	

	
																																						Source:	Authors’	compilation	based	on	EPA	data.	
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Figure 3:  Evolution of Fourth-Highest Ozone Levels 
	

	
																																							Source:	Authors’	compilation	based	on	EPA	data.	
	
 
 

Figure 4: Ozone Monitors in Sample 

 



	 57	

Note: Each shaded region represents a single climatic region as designated by the NOAA. According to the EPA, 
daily measurements are valid for regulation purposes only if (i) 8-hour averages are available for at least 75% of 
possible hours of the day, or (ii) the daily maximum 8-hour concentration is higher than the standard. Firstly, we 
only include monitors having valid daily information. Secondly, for every year between 1980-2013, we include 
monitors having valid monitor-days for at least 75% of the ozone season. Figure 4 illustrates our final sample of 
ozone monitors. 

Figure 5: Ozone Monitors by Decade of First Appearance 

 
Note: Each shaded region represents a single climatic region as designated by the NOAA. Figure 5 illustrates the 
ozone monitors in our final sample, by decade of first appearance. 
 

Figure 6: Meteorological Variables- Trends and Shocks 

 
             Note: Figure 6 illustrates the variation in both the components of the meteorological 
               variables. The weather shock is a deviation of contemporaneous daily maximum  
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                         temperature from the 30-year moving average. The variables have been averaged across 
                         all monitor-days in a given year. 
 
 
 

 

Figure 7: Meteorological Variables- Trends and Shocks by Region 

 
             Note: Figure 7 illustrates the variation in both the components of the meteorological 
               variables, by the climate regions. The weather shock is a deviation of contemporaneous  

                       daily maximum temperature from the 30-year moving average. The variables have been 
                       averaged across all monitor-days in a given year. 

 
 

Figure 8: Relationship between Ozone and Moving Average of Temperature 
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       Note: Figure 8 illustrates the 30-year monthly moving average of daily maximum 
                   temperature and ozone, averaged across all monitor-days, for each year. The variables  
                   have been detrended by eliminating the time trend. 

 
 

Figure 9: Relationship between Ozone and Contemporaneous Temperature by Regions 

 
Note: Figure 9 illustrates the daily maximum temperature and ozone, averaged across all 
monitor-days, for each year and climate region. The variables have been detrended by 
eliminating the time trend. 

 
      Figure 10: Relationship between Ozone and Moving Average of Temperature by Regions 
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 Note: Figure 10 illustrates the 30-year monthly moving average of daily maximum temperature 
and ozone, averaged across all monitor-days, for each year and climate region. The variables 
have been detrended by eliminating the time trend. 
 
 
 

Appendix A 
 

Figure A1: Weather Stations from 1950-2013 

 
Note: Each shaded region represents a single climatic region as designated by the NOAA. Figure A1 illustrates 
the weather stations used from 1950-2013. For every ozone monitor in our final sample, we keep the closest two 
weather stations within a radius of 30 km.  
 

Figure A2: Matched Ozone Monitors and Weather Stations 
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Note: Each shaded region represents a single climatic region as designated by the NOAA. Figure A2 illustrates 
the ozone monitors in sample from 1980-2013 and the matched weather stations. For each ozone monitor the 
closest 2 stations within a 30 km radius have been used. 

 
 
 
 
 
 

Table A1: Summary Statistics for Monitoring Network by Year 
Year		 Observations	 Counties	 Monitors	 Number	of	Monitors	by	Climate	Regions	
		 		 		 		 Ohio	Valley	 Upper	Midwest	 Northeast	 Northwest	 South	 Southeast	 Southwest	 West	 Rockies	

1980	 91543	 368	 663	 132	 67	 149	 12	 51	 72	 36	 134	 10	
1981	 102211	 394	 684	 137	 65	 137	 15	 66	 77	 45	 133	 9	
1982	 102168	 383	 651	 129	 54	 131	 16	 62	 75	 44	 132	 8	
1983	 102513	 393	 651	 127	 52	 135	 12	 74	 80	 42	 123	 6	
1984	 104705	 382	 649	 118	 51	 129	 15	 76	 78	 41	 134	 7	
1985	 106550	 382	 653	 127	 53	 134	 17	 67	 75	 39	 133	 8	
1986	 104889	 367	 635	 114	 52	 127	 17	 70	 73	 33	 142	 7	
1987	 110838	 378	 663	 116	 56	 129	 14	 70	 81	 41	 147	 9	
1988	 114510	 405	 693	 123	 56	 130	 12	 71	 94	 46	 150	 11	
1989	 119972	 406	 712	 126	 58	 129	 12	 71	 91	 46	 168	 11	
1990	 126149	 427	 742	 129	 60	 134	 13	 73	 97	 52	 175	 9	
1991	 131638	 446	 778	 135	 74	 141	 13	 80	 100	 54	 171	 10	
1992	 136747	 458	 804	 144	 66	 144	 11	 85	 108	 53	 183	 10	
1993	 144870	 485	 844	 151	 69	 145	 15	 83	 124	 66	 180	 11	
1994	 147629	 490	 853	 153	 65	 146	 16	 84	 125	 62	 193	 9	
1995	 151553	 495	 872	 154	 67	 153	 17	 86	 127	 60	 199	 9	
1996	 150585	 500	 867	 152	 66	 158	 21	 86	 129	 66	 179	 10	
1997	 157337	 518	 901	 158	 66	 163	 23	 91	 135	 75	 180	 10	
1998	 160401	 535	 927	 160	 66	 165	 26	 98	 140	 77	 187	 8	
1999	 165718	 546	 948	 161	 68	 169	 25	 98	 149	 75	 192	 11	
2000	 168893	 551	 965	 166	 68	 159	 24	 111	 154	 79	 192	 12	
2001	 177068	 572	 1014	 168	 68	 175	 25	 121	 164	 82	 198	 13	
2002	 180316	 579	 1023	 160	 67	 174	 27	 127	 167	 87	 199	 15	
2003	 182313	 588	 1036	 160	 73	 173	 29	 133	 168	 89	 195	 16	
2004	 182229	 596	 1023	 159	 71	 173	 29	 131	 166	 92	 187	 15	
2005	 180238	 594	 1019	 154	 72	 174	 27	 131	 159	 99	 184	 19	
2006	 181903	 598	 1025	 154	 71	 177	 26	 129	 159	 101	 187	 21	
2007	 183971	 605	 1036	 155	 69	 180	 26	 129	 155	 113	 188	 21	
2008	 184197	 607	 1041	 154	 70	 176	 25	 132	 154	 114	 194	 22	
2009	 186610	 616	 1048	 154	 71	 179	 25	 132	 153	 117	 192	 25	
2010	 187713	 623	 1058	 154	 71	 178	 29	 132	 152	 120	 193	 29	
2011	 190351	 642	 1076	 161	 73	 186	 29	 129	 161	 120	 185	 32	
2012	 191206	 637	 1076	 155	 72	 190	 27	 128	 165	 115	 189	 35	
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2013	 128317	 523	 852	 129	 38	 176	 8	 120	 149	 89	 119	 24	
Note: Decades are 1980-1990, 1991-2001 and 2002-2013 respectively. Data used in construction of this table uses monitor-days 
for which 8-hour averages were recorded for at least 18 hours of the day and monitor-years for which valid monitor-days were 
recorded for at least 75% of days between April 1st and September 30th. This table uses data for the months of April-September as 
that constitutes the ozone season. The nine different climatic regions are as defined by the National Oceanic and Atmospheric 
Association (NOAA). 

                              
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table A2: Summary Statistics for Meteorological Variables by Year 

Year	
Max	

Temperature	
30	Yr	MA	of	Max	

Temp	
Temp	

Deviations	
1980	 27.2	 26.6	 0.6	
1981	 27.0	 26.6	 0.4	
1982	 26.1	 26.7	 -0.6	
1983	 26.8	 26.8	 0.0	
1984	 26.7	 26.8	 0.0	
1985	 27.0	 26.6	 0.3	
1986	 26.7	 26.5	 0.3	
1987	 27.3	 26.6	 0.7	
1988	 27.4	 26.6	 0.7	
1989	 26.4	 26.7	 -0.3	
1990	 26.8	 26.7	 0.1	
1991	 27.1	 26.6	 0.5	
1992	 26.2	 26.7	 -0.5	
1993	 26.7	 26.6	 0.0	
1994	 26.8	 26.6	 0.2	
1995	 26.8	 26.7	 0.0	
1996	 26.6	 26.7	 -0.2	
1997	 26.4	 26.8	 -0.4	
1998	 27.3	 27.0	 0.4	
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1999	 27.2	 27.0	 0.2	
2000	 27.1	 27.0	 0.0	
2001	 27.4	 27.1	 0.3	
2002	 27.8	 27.2	 0.6	
2003	 26.9	 27.2	 -0.4	
2004	 27.0	 27.2	 -0.2	
2005	 27.6	 27.3	 0.3	
2006	 27.6	 27.3	 0.4	
2007	 27.6	 27.3	 0.4	
2008	 27.3	 27.3	 0.1	
2009	 26.9	 27.2	 -0.3	
2010	 27.8	 27.2	 0.6	
2011	 27.4	 27.1	 0.3	
2012	 28.0	 27.1	 0.9	
2013	 26.7	 26.8	 -0.2	

Note: Decades are 1980-1990, 1991-2001 and 2002-2013 respectively. 30-year 
moving averages have been constructed at each pollution monitor, by using 
historical weather data from 1950-2013. Temperature Deviations are defined as 
(Daily Max Temp – 30-Year monthly MA of Max Temp).  Each pollution monitor 
has been matched to the closest two weather stations within a 30 km boundary. 

 
 
 
 

Table A3: Daily Moving Averages 

VARIABLES	 (1)	 (2)	 (3)	 (4)	
		

	    Max	Temp		 1.5274***	
	   		 (0.0231)	
	   Total	Precipitation	 -0.2434***	
	   		 (0.0036)	
	   Dev	from	30	Yr	MA	of	Max	Temp	(Weather	Shock)	

	
1.6991***	 1.6993***	 1.3029***	

		
	

(0.0260)	 (0.0259)	 (0.0195)	
30	Yr	MA	of	Max	Temp	(Climate	Trend)	

	
1.2794***	 1.2793***	 0.9959***	

		
	

(0.0233)	 (0.0233)	 (0.0207)	
Lag	3	CAANAS	

	  
-1.2095***	 -15.1604***	

		
	  

(0.1769)	 (0.7952)	
Lag	3	CAANAS	x	Dev	from	30	Yr	MA	of	Max	Temp	

	   
0.7053***	

		
	   

(0.0351)	
Lag	3	CAANAS	x	30	Yr	MA	of	Max	Temp	

	   
0.5099***	

		
	   

(0.0278)	
Dev	from	30	Yr	MA	of	Prcp	(Weather	Shock)	

	
-0.2306***	 -0.2306***	 -0.2251***	

		
	

(0.0039)	 (0.0039)	 (0.0048)	
30	Yr	MA	of	Prcp	(Climate	Trend)	

	
-0.4590***	 -0.4593***	 -0.4922***	

		
	

(0.0201)	 (0.0201)	 (0.0264)	
Lag	3	CAANAS	x	Dev	from	30	Yr	MA	of	Prcp	

	   
-0.0120*	
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(0.0065)	
Lag	3	CAANAS	x	30	Yr	MA	of	Prcp	

	   
0.1112***	

		
	   

(0.0386)	
Observations	 4,974,322	 4,974,117	 4,974,117	 4,974,117	
R-squared	 0.4183	 0.4209	 0.4211	 0.4275	

Notes: This tables reports our main estimates, however, using daily moving averages of temperature and 
precipitation instead of monthly moving averages. Columns (1)-(4) have trimester-by-year-by-region FE; trimester-
by-year-by-monitor latitude FE & trimester-by-year-by-monitor longitude FE. Standard errors are clustered at 
monitor level. ***, **, and * represent significance at 1%, 5% and 10% respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Table A4: 20 Year and 10 Year Moving Averages 
		 (1)	 (2)	 (3)	 (4)	 (1)	 (2)	 (3)	 (4)	

VARIABLES	 20 Year Moving Averages 10 Year Moving Averages 
		 		 		 		 		 		 		 		 		
Max	Temp		 1.5274***	

	  
		 1.5274***	

	   		 (0.0231)	
	  

		 (0.0231)	
	   Total	

Precipitation	 -0.2434***	
	  

		
-

0.2434***	
	   		 (0.0036)	

	  
		 (0.0036)	

	   Dev	from	MA	of	
Max	Temp	
(Weather	Shock)	

	
1.6902***	 1.6904***	 1.2994***	

	
1.6889***	 1.6890***	 1.3001***	

		
	

(0.0253)	 (0.0253)	 (0.0191)	
	

(0.0252)	 (0.0252)	 (0.0189)	

MA	of	Max	Temp	
(Climate	Trend)	

	
1.2511***	 1.2509***	 0.9834***	

	
1.2509***	 1.2509***	 0.9776***	

		
	

(0.0241)	 (0.0241)	 (0.0220)	
	

(0.0241)	 (0.0240)	 (0.0218)	

Lag	3	CAANAS	
	  

-1.2124***	 -14.2360***	
	  

-1.2328***	 -14.5932***	

		
	  

(0.1764)	 (0.8445)	
	  

(0.1766)	 (0.8274)	
Lag	3	CAANAS	x	
Dev	from	MA	of	
Max	Temp	

	   
0.6960***	

	   
0.6934***	

		
	   

(0.0344)	
	   

(0.0343)	

Lag	3	CAANAS	x	
MA	of	Max	Temp	

	   
0.4769***	

	   
0.4868***	

		
	   

(0.0274)	
	   

(0.0274)	
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Dev	from	MA	of	
Prcp	(Weather	
Shock)	

	
-0.2268***	 -0.2268***	 -0.2203***	

	
-0.2280***	 -0.2279***	 -0.2212***	

		
	

(0.0040)	 (0.0040)	 (0.0049)	
	

(0.0040)	 (0.0040)	 (0.0049)	

MA	of	Prcp	
(Climate	Trend)	

	
-1.7213***	 -1.7219***	 -1.6083***	

	
-1.4298***	 -1.4345***	 -1.3708***	

		
	

(0.1054)	 (0.1055)	 (0.1053)	
	

(0.0784)	 (0.0786)	 (0.0817)	
Lag	3	CAANAS	x	
Dev	from	MA	of	
Prcp	

	   
-0.0149**	

	   
-0.0149**	

		
	   

(0.0066)	
	   

(0.0066)	

Lag	3	CAANAS	x		
MA	of	Prcp	

	   
0.0932	

	   
0.1244	

		
	   

(0.1187)	
	   

(0.1002)	

Observations	 4,974,322	 4,974,155	 4,974,155	 4,974,155	 4,974,322	 4,974,155	 4,974,155	 4,974,155	

R-squared	 0.4183	 0.4222	 0.4224	 0.4286	 0.4183	 0.4220	 0.4222	 0.4284	
Notes: This tables reports our main estimates, however, using 20 year and 10 year moving averages of temperature and 
precipitation instead of our preferred 30 year moving averages. Columns (1)-(8) have trimester-by-year-by-region FE; 
trimester-by-year-by-monitor latitude FE & trimester-by-year-by-monitor longitude FE. Standard errors are clustered at 
monitor level. ***, **, and * represent significance at 1%, 5% and 10% respectively. 

 
 
 
 
 
  
 
Appendix B 
 
B. Formation and Depletion of Tropospheric Ozone 

 
The formation of ozone in the troposphere is a complex process involving the reactions of 

hundreds of precursors. The key elements, as summarized	in Finlayson-Pitts and Pitts (2000), 

and Seinfeld and Pandis (1998) are discussed below. 

 

B.1 Nitrogen Cycle and the Photostationary-State Relationship for Ozone 

The formation of ozone in the troposphere results from only one known reaction: addition of 

atomic oxygen (O) to molecular oxygen (O2) in the presence of a third "body" (M). M is any 

"body" with mass, primarily nitrogen or oxygen molecules, but also particles, trace gas 

molecules, and surfaces of large objects.  

	
O	+	O2	+	M	è	O3	+	M																				(B1)	
	
The oxygen atoms are produced primarily from photolysis of NO2 by the ultraviolet portion of 
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solar radiation (hn). 

	
NO2	+	hn	è	NO	+	O																							(B2)	
	
Reaction 3 converts ozone back to oxygen and NO back to NO2, completing the "nitrogen 

cycle." 

	
O3	+	NO	è	NO2	+	O2																				(B3)	
 

Reactions 1 and 3 are comparatively fast. Therefore, the slower photolysis reaction 2 is usually 

the rate-limiting reaction for the nitrogen cycle and the reason why ozone is not formed 

appreciably at night. It is also one of the reasons why ozone concentrations are high during the 

summer months, when temperatures are high and solar radiation is intense. The cycle time for 

the three reactions described above is only a few minutes. Ozone accumulates over several 

hours, depending on emission rates and meteorological conditions.  

 

The nitrogen cycle operates fast enough to maintain a photostationary state. The net effect of 

this cycle is neither to generate nor destroy ozone molecules. Therefore, for ozone to 

accumulate, an additional pathway is needed to convert NO to NO2; one that will not destroy 

ozone. The photochemical oxidation of VOCs, such as hydrocarbons and aldehydes, provides 

that pathway. 

 
B.2 The VOC Oxidation Cycle 
Hydrocarbons and other VOCs are oxidized in the atmosphere by a series of reactions to form 

carbon monoxide (CO), carbon dioxide (CO2) and water (H2O). Intermediate steps in this 

overall oxidation process typically involve cyclic stages driven by hydroxyl radical (OH) attack 

on the parent hydrocarbon, on partially oxidized intermediate compounds, and on other VOCs. 

The hydroxyl radical is ever-present in the ambient air; it is formed by photolysis from ozone in 

the presence of water vapor, and also from nitrous acid, hydrogen peroxide, and other 

sources. In the sequence shown below, R can be hydrogen or virtually any organic fragment. 

The oxidation process usually starts with reaction 4, from OH attack on a hydrocarbon or other 

VOC: 

	
RH	+	OH	è	H2O	+	R																					(B4)	
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This is followed by reaction with oxygen in the air to generate the peroxy radical (RO2). 

	
R	+	O2	+	M	è	RO2	+	M																	(B5)	
	
The key reaction in the VOC oxidation cycle is the conversion of NO to NO2. This takes place 

through the fast radical transfer reaction with NO. 

	
RO2	+	NO	è	NO2	+	RO																(B6)	
	
R can also be generated by photolysis, which usually involves only VOCs with molecules 

containing the carbonyl (C=O) bond. The simplest VOC molecule that contains the carbonyl 

bond is formaldehyde (HCHO). Because formaldehyde enters into several types of reactions of 

importance for understanding ozone formation and depletion, we will use it to help illustrate 

these reactions. The oxidation cycle for formaldehyde can be written in the following sequence 

of reactions. 

 

OH	+	HCHO	è	H2O	+	HCO									(B7) 

HCO	+	O2	è	HO2	+	CO																(B8) 

HO2	+	NO	è	NO2	+	OH															(B9) 

	
Hydroperoxyl radical (HO2) is generated by reaction 8, and the hydroxyl radical (consumed in 

reaction 7) returns in reaction 9 to complete the cycle. In addition, reaction 9 produces the 

NO2 required for ozone formation, as described above. Also, the carbon monoxide (CO) 

generated by reaction 8 can react like an organic molecule to yield another hydroperoxyl 

radical. 

 

OH	+	CO	è	H	+	CO2																						(B10)	

H	+	O2	+	M	è	HO2	+	M																(B11)	
	
 

Another component that formaldehyde provides for smog formation is a source of hydrogen	

radicals. 

	
HCHO	+	hn	è	H	+	HCO																(B12)	
	
 

The hydrogen atom (H) and formyl radical (HCO) produced by this photolysis reaction yield 
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two hydroperoxyl radicals via reaction with oxygen, as shown in reactions 8 and 11. 

 

The reactions above comprise the simplest VOC oxidation cycle. Actually, hundreds of VOC 

species participate in thousands of similar reactions. These reactions should explain the typical 

pattern of ozone concentrations found in the urban atmosphere. 

 
B.3 Ratio of Volatile Organic Compounds to Nitrogen Oxides in Ambient Air 
 

Although VOCs are necessary to generate high concentrations of ozone, NOx emissions can 

be the determining factor in the peak ozone concentrations observed in many locations 

(Chameides, 1992; National Research Council, 1991). 

 

The relative balance of VOCs and NOx at a particular location helps to determine whether the 

NOx behaves as a net ozone generator or a net ozone inhibitor. When the VOC/NOx ratio in 

the ambient air is low (NOx is plentiful relative to VOC), NOx tends to inhibit ozone formation. 

In such cases, the amount of VOCs tends to limit the amount of ozone formed, and the ozone 

formation is called "VOC-limited". When the VOC/NOx ratio is high (VOC is plentiful relative to 

NOx), NOx tends to generate ozone. In such cases, the amount of NOx tends to limit the 

amount of ozone formed, and ozone formation is called "NOx -limited". The VOC/NOx ratio 

can differ substantially by location and time-of-day within a geographic area. 

 
 


