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TWO-PERSON GUESSING GAMES 
Each player has a lower and upper limit, both strictly positive, but players are 
not required to guess between their limits. Guesses outside the limits are 
automatically adjusted up to the lower or down to the upper limit as necessary. 
 
Each player also has a target, and his payoff increases with the closeness of 
his adjusted guess to his target times the other’s adjusted guess. 
 
Example: i's limits and target are [300, 500]; j's are [300, 900] and 1.3. The 
equilibrium is essentially unique, with i's adjusted guess at 500 and j's at 650. 
(Guesses in R(k) are eliminated in round k of iterated dominance.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Equilibrium is determined in this general way by players' targets and upper 
(lower) limits when the product of targets is greater (less) than one. 
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EXPERIMENTAL DESIGN 
 
The focus is entirely on initial responses to games, a good place to starting 
studying strategic thinking: Subjects were randomly, anonymously paired to 
play a common series of 16 games without feedback, to suppress learning 
and repeated-game effects. Results should help us think about learning. 
 
The targets and limits varied independently across players and games, with 
targets both less than one, both greater than one, or mixed. 
 
The games are generally asymmetric and dominance-solvable in 3 to 52 
rounds, with essentially unique equilibria determined as in the example above. 
 
(The targets and limits in the previous guessing experiments of Nagel (1995, 
AER) and Ho, Camerer, and Weigelt (1998, AER) were always the same for 
both players, and varied either only across treatments or not at all.) 
 

Table 3. Strategic Structures of the Games 
Game Order Targets Equilibrium Rounds of Pattern of Dominance at 

i  j Played   Dominance Dominance Both Ends 
1. α2β1 6 Low Low 4 A No 
2. β1α2 15 Low Low 3 A No 
3. β1γ2 14 Low Low 3 A Yes 
4. γ2β1 10 Low Low 2 A No 
5. γ4δ3 9 High High 2 S No 
6. δ3γ4 2 High High 3 S Yes 
7. δ3δ3 12 High High 5 S No 
8. δ3δ3 3 High High 5 S No 
9. β1α4 16 Mixed Low 9 S/A No 

10. α4β1 11 Mixed Low 10 S/A No 
11. δ2β3 4 Mixed Low 17 S/A No 
12. β3δ2 13 Mixed Low 18 S/A No 
13. γ2β4 8 Mixed High 22 A No 
14. β4γ2 1 Mixed High 23 A Yes 
15. α2α4 7 Mixed High 52 S/A No 
16. α4α2 5 Mixed High 51 S/A No 
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MONITORING SEARCH FOR HIDDEN BUT FREELY ACCESSIBLE 
INFORMATION ABOUT PAYOFFS 
The structure was publicly announced except for the targets and limits, to 
which subjects were given free access, game by game, via MouseLab: 
 

 
 
Low search costs make the games' structures effectively public knowledge, 
inducing a series of 16 independent complete-information games. But varying 
targets and limits makes search a powerful tool for studying cognition. 
 
Camerer, Johnson, Rymon, and Sen (1993; "CJ") and Johnson, Camerer, 
Rymon, and Sen (2002 JET) pioneered the use of MouseLab in games by 
studying backward induction in alternating-offers bargaining games in which 
subjects could look up the sizes of the “pies” to de divided in each period. 
 
Costa-Gomes, Crawford, and Broseta (2001 Econometrica; "CGCB") used 
MouseLab to study two-person matrix games with unique equilibria in which 
subjects could look up the payoffs of each decision combination. 
 
The current design combines the advantages of CJ's simple parametric 
structure and CGCB's high-dimensional search patterns, while making search 
implications of alternative decision rules almost independent of the game. 
 
This often makes it possible to read a subject's decision rule directly from his 
search patterns, without even considering guesses, and makes search a 
powerful tool for studying cognition more generally (e.g. by identifying errors).
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TYPES 
 
The space of possible decision rules is enormous, and the search implications 
of a rule depend not only on what guesses you make but why you make them. 
 
We organize the analysis around an a priori list of plausible "types," which 
provide a kind of basis for the space of possible rules, making it meaningful to 
ask if subjects' guesses and search are related in a coherent way: 
 

L1 – best responds to uniform (between limits) random L0 "anchoring type" 

L2 – best responds to L1 

L3 – best responds to L2 

D1 – does one round of deletion of decisions dominated by pure decisions 
and then best responds to a uniform prior over other's remaining decisions 

D2 – does two rounds of iterated deletion and then best responds to a 
uniform prior over other's remaining decisions 

Equilibrium – plays its equilibrium decision 

Sophisticated – best responds to the probabilities of other's decisions, 
estimated here from our subjects' observed frequencies (depends on data) 

Our Lk definitions differ from Stahl and Wilson's (1995 GEB; "SW") and 
Camerer, Ho, and Chong's (2004 QJE; "CHC"). SW's Lk best responds to 
lower-level Lk types' decision noise, as in QRE. (All three allow types to make 
errors; the issue is whether mean decision responds to noise.) SW's and 
CHC's Lks both best respond to an estimated mixture of lower-level Lk types. 
 
Our design separates our Lk definitions from SW's, and our results strongly 
favor our "noiseless" definitions. 
 
Our design does not separate our definitions from mixture definitions, but ours 
are simpler and we believe more plausible models of cognition.      
 
Our design (unlike previous designs) strongly separates Dk-1 from Lk, which 
are both k-level rationalizable. (We show that Lk predominates. This suggests 
it's wrong to take Nagel's results—in her design Dk-1 and Lk make identical 
guesses—as evidence that subjects explicitly performed iterated dominance.) 

 4



TYPES' ADJUSTED GUESSES IN THE 16 GAMES 
(games in the randomized order in which subjects played them) 

Game ai bi pi aj bj pj L1 L2 L3 D1 D2 E S 
1 100 900 1.5 300 500 0.7 600 525 630 600 611.25 750 630 
2 300 900 1.3 300 500 1.5 520 650 650 617.5 650 650 650 
3 300 900 1.3 300 900 1.3 780 900 900 838.5 900 900 900 
4 300 900 0.7 100 900 1.3 350 546 318.5 451.5 423.15 300 420 
5 100 500 1.5 100 500 0.7 450 315 472.5 337.5 341.25 500 375 
6 100 500 0.7 100 900 0.5 350 105 122.5 122.5 122.5 100 122 
7 100 500 0.7 100 500 1.5 210 315 220.5 227.5 227.5 350 262 
8 300 500 0.7 100 900 1.5 350 420 367.5 420 420 500 420 
9 300 500 1.5 300 900 1.3 500 500 500 500 500 500 500 

10 300 500 0.7 100 900 0.5 350 300 300 300 300 300 300 
11 100 500 1.5 100 900 0.5 500 225 375 262.5 262.5 150 300 
12 300 900 1.3 300 900 1.3 780 900 900 838.5 900 900 900 
13 100 900 1.3 300 900 0.7 780 455 709.8 604.5 604.5 390 695 
14 100 900 0.5 300 500 0.7 200 175 150 200 150 150 162 
15 100 900 0.5 100 500 0.7 150 175 100 150 100 100 132 
16 100 900 0.5 100 500 1.5 150 250 112.5 162.5 131.25 100 187 
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Figure 5. Separation of Types' Predicted Guesses Across Games 
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TREATMENTS 
 
Baseline (B): Subjects randomly, anonymously paired to play the 16 games  
 
Open Boxes (OB): identical to Baseline except targets and limits visible 
 
(We find insignificant differences between B and OB guesses, suggesting that 
the need to look up parameters has no important effect on decisions.)  
 
Robot/Trained Subjects (R/TS): identical to Baseline except (in six separate 
treatments) each subject is trained and rewarded as a specific decision rule or 
type: L1, L2, L3, D1, D2, or Equilibrium (defined below) 
 
(R/TS treatments validate our proposed model of how cognition drives search, 
allow us to assess the cognitive difficulty of identifying leading types’ guesses, 
and allow us to study how cognition varies with training in decision rules.) 
 
SUBJECTS' GUESSES IN BASELINE AND OB TREATMENTS 

 
43 of 88 Baseline and OB subjects made 7 to 16 of some type’s exact 
guesses: 20 L1, 12 L2, 3 L3, and 8 Equilibrium. (No Dk or Sophisticated.)  
 
For these 43 we can rule out alternative interpretations of behavior: The non-
equilibrium behaviors of the 35 whose "fingerprints" are Lk are due to non-
equilibrium beliefs, not irrationality, risk aversion, altruism, spite, or confusion. 
 

Table 1. Summary of Baseline and OB Subjects' Estimated Type Distributions 
Type Apparent from 

Guesses 
Econometric 
from Guesses

Econometric  
from Guesses,  

Excluding Random

Econometric 
from Guesses, with 
Specification Test 

Econometric from 
Guesses and Search, with 

Specification Test 
L1 20 43 37 27 29 
L2 12 20 20 17 14 
L3 3 3 3 1 1 
D1 0 5 3 1 0 
D2 0 0 0 0 0 
Eq. 8 14 13 11 10 

Soph. 0 3 2 1 1 
Unclassified 45 0 10 30 34 

: The far right-hand column includes 11 OB subjects classified by their econometric-from-guesses type estimates. 
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Figure 1. "Fingerprints" of 20 Apparent L1 Subjects 

(Only deviations from L1's guesses are shown; games with mixed targets on right.) 
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Figure 2. "Fingerprints" of 12 Apparent L2 Subjects 

(Only deviations from L2's guesses are shown; mixed targets on right.) 
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Figure 3. "Fingerprints" of 3 Apparent L3 Subjects 

(Only deviations from L3's guesses are shown; mixed targets on right.) 
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Figure 4. "Fingerprints" of 8 Apparent Equilibrium Subjects 

(Only deviations from Equilibrium's guesses are shown; mixed targets on right.) 

 9



GUESSMETRICS 
 

Econometric analysis of guesses allows us to classify more subjects. 
 
Our approach builds on Harless and Camerer (1994 Econometrica), El-Gamal 
and Grether (1995 JASA), Stahl and Wilson (1994 JEBO, 1995 GEB), CGCB. 
 
Estimate subject by subject, using maximum-likelihood error-rate model with a 
"spike-logit" error structure: in each game g a subject i makes his type’s guess 
exactly (within 0.5) with probability 1- ε and otherwise makes logit errors. 
 
(Estimating a mixture model as in CGCB and most other studies is often 
theoretically superior; but given that we try to err by including rather than 
excluding types, parameter estimates are normally on the boundary of the 
parameter space, which eliminates the theoretical advantage. In an 
exploratory study of cognition, estimating subject by subject seems safer and, 
comparing CGCB with earliest version, probably yields similar estimates.)    
 
Subject i's guesses-only log-likelihood reduces to: 
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λ , 

 

where  is a standard logit term for non-exact guesses and λ is 
the logit precision. (Deviation costs are measured using each type's beliefs.) 

)),(( λi
g

i
g

k
g xRd

 
The maximum likelihood estimate of ε is /G, the sample frequency of 
subject i's non-exact guesses for type k. The maximum likelihood estimate of λ 
is the standard logit precision, restricted to non-exact guesses. 

ikn

 
The maximum likelihood type estimate maximizes (7) over k, given estimated 
ε and λ, trading off the count of exact guesses against logit cost of deviations. 
 
This yields types estimates as in Table 1: 43 L1, 20 L2, 3 L3, 5 D1, 14 
Equilibrium, and 3 Sophisticated (some questioned by specification tests). 
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ε = 1 is rejected for all but  for 7 subjects, so the spike is necessary. 
 
λ = 0 is rejected for 34, so payoff-sensitive logit errors significantly improve the 
fit over a spike-uniform model like CGCB's for only 39% of the subjects, which 
suggests to us that most errors are cognitive, or the result of misspecification. 
 
{λ = 0 and ε = 1} is rejected at the 5% level for all but 10 subjects (6 L1, 2 D1, 
1 Equilibrium, and 1 Sophisticated), so the model does significantly better than 
a random model of guesses for 89% of the subjects.  
 
ECONOMETRIC PUZZLE: 
 
Our estimates could be sensitive to our a priori specification, which might err 
by omitting relevant types and/or overfitting by including irrelevant types. 
 
Is there any reasonable way to estimate the distribution of subjects' decision 
rules without imposing an a priori list of possible types? 
 
We want the types to be general decision rules (not just lists of predicted 
guesses in the 16 games) for at least two reasons: 
 
 (a) Types should be meaningful in other classes of games 
 

(b) A type's search implications depend not only on what guesses it 
implies in our games, but why; so using search to study cognition seems 
to require general decision rules even within our class of games 

 
But the space of possible decision rules is enormous, and it has very little 
mathematical structure; to avoid ruling out equilibrium, may have to allow all—
including discontinuous—piecewise linear functions of the targets and limits. 
 
Defining what it means for subjects' choices to be close is also problematic: 
usual notions are based on Euclidean distance, but that seems arbitrary here. 
 
Intuitively, qualitative and possibly structure-dependent patterns of deviation 
from a reference pattern—such as the tendency of our Equilibrium subjects 
with the clearest fingerprints to deviate much more often in games with mixed 
targets, and always in the direction of L3—seem more relevant here; our 
analysis of clusters below gives them more weight.     

 11



SPECIFICATION TEST 
 
Pending a solution to the problem of estimating without a priori specification of 
types, we start with the above inclusive list of plausible types and then refine 
our econometric analysis of guesses via a specification test. 
 
The test is based on pseudotypes, each constructed from one Baseline or OB 
subject’s guesses in the 16 games. It compares the likelihood of a subject's 
estimated type to those of the 87 other subjects' pseudotypes. 
 
Suppose e.g. that we had omitted L2. The pseudotypes of subjects now 
estimated to be L2 would then outperform the non-L2 types estimated for 
them, and those subjects would make approximately the same (L2) guesses. 
 
Define a cluster as a group of 2 or more subjects such that each subject’s 
pseudotype has higher likelihood than the estimated types for other subjects 
in the group; and subjects’ pseudotypes make “sufficiently similar guesses." 
 
Finding a cluster should lead us to diagnose an omitted type. We find 5, with 
3, 2, 2, 2, and 3 subjects: not much evidence of important omitted types. 
 
We test for overfitting by asking whether a subject’s estimated type performs 
at least as well against the pseudotypes as it would, on average, at random. 
 
These tests leave us with 27 L1, 17 L2, 1 L3, 1 D1, 11 Equilibrium, and 1 
Sophisticated subject, with 30 of 88 subjects unclassified (Table 1). 
 
The only identifiable systematic non-equilibrium behavior is L1, L2, or L3: 
rational but with simplified models of others, yielding a surprisingly simple 
structural model of non-equilibrium behavior in initial responses to games.  
 
SW, Nagel, CGCB, and CHC find similar type distributions, less definitively.  
 
(We don't think subjects form beliefs first and then best respond; we think they 
use rules of thumb that happen to have decision-theoretic interpretations.) 
 
ECONOMETRIC PUZZLE: Are there better ways to do specification tests? 
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OTHER PUZZLES LEFT OPEN BY OUR ANALYSIS OF GUESSES 
What are our 8 subjects with near-Equilibrium fingerprints actually doing? 

Their deviations from equilibrium almost always occur in games with 
mixed targets, and are always (when Equilibrium and L3 are separated) in 
the direction of L3 (sometimes beyond). Yet the ways that the cognoscenti 
use to identify equilibria all work equally well with or without mixed targets. 

What are the 3 subjects with near-L3 fingerprints actually doing? Their 
deviations from L3 are also almost always in games with mixed targets.  
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Figure 3. "Fingerprints" of 3 Apparent L3 Subjects 
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Figure 4. "Fingerprints" of 8 Apparent Equilibrium Subjects 
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Potential sources of answers: 
 
Is there any difference in these subjects' (near-Equilibrium or -L3) search 

patterns with and without mixed targets? 
 

How do these differences compare with the analogous differences for L1 
subjects (whose compliance does not differ in games with and without 
mixed targets, and for whom the distinction is theoretically irrelevant)?  

 
(Can check compliance with types' search implications and re-estimate 

econometric model of search below, subject by subject, separately for 
games with and without mixed targets.) 

 
Can we tell which of the standard methods—best-response dynamics, 

equilibrium checking, or iterated dominance—Baseline near-Equilibrium 
subjects are using; or if not, what else they are using? 
 

(The absence of Dk subjects is strong evidence against iterated dominance. 
We bet on best-response dynamics, perhaps truncated after one or two 
rounds. To check we need to refine the characterization of Equilibrium 
search implications below and use it to re-do the searchmetrics below.) 

 
Is there any difference between Baseline and R/TS subjects' (Equilibrium or 

L3) patterns of deviations from Equilibrium or L3 guesses across games 
(see next two pages for R/TS Equilibrium and L3 subjects' deviations)? 

 
Which of the standard methods do successful R/TS Equilibrium subjects use? 
 
(Our training tries to be neutral, but something must come first, and we taught 

the methods in the order: equilibrium checking, best-response dynamics, 
and iterated dominance. To the extent that R/TS Equilibrium subjects use 
these methods, it explains why they have equal guess compliance with 
and without mixed targets. Examining the differences between their and 
Baseline near-Equilibrium subjects' searches may help identify what the 
Baseline subjects are doing and why it doesn't "work" with mixed targets.)   

 
Does it help to know which UT2 questions R/TS Equilibrium or L3 subjects 

missed? 
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Fingerprints of 18 York Equilibrium R/TS Subjects
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Subjects with 16 exact guesses: 1205, 1404, 1405, 1406, 2002

 
Fingerprints of 10 UCSD Equilibrium R/TS Subjects

(only deviations from Eq.'s guesses are shown)
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Fingerprints of 18 York L3 R/TS Subjects
(only deviations from L3's guesses are shown)
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Fingerprints of 9 UCSD L2 R/TS Subjects
(only deviations from L2's guesses are shown)
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MORE PUZZLES 
Why do L1, L2, and L3 so strongly outnumber other non-equilibrium rules in 

the Baseline?  
 
Potential sources of answers: 
 
UT2 failure rates and R/TS subjects' compliance confirm that Lk types are 

easy for all k, Dk and Eq. types are hard or unnatural (monotonicity). 
 L1 L2 L3 D1 D2 Eq. 

UCSD subjects 7 9 - 11 - 10 
% Compliance 77.7 81.3 - 55.1 - 58.1 
% Failed UT2 0.0 0.0 - 8.3 - 28.6 

       
York subjects 18 18 18 19 19 19 
% Compliance 80.9 95.8 84.4 66.1 55.3 76.6 
% Failed UT2 0.0 0.0 0.0 0.0 5.0 13.6 

       
UCSD + York subjects 25 27 18 30 19 29 

% Compliance 80.0 91.0 84.4 62.1 55.3 70.3 
% Failed UT2 0.0 0.0 0.0 3.2 5.0 19.4 

 
7 of 19 R/TS D1 subjects passed a UT2 in which L2 answers were wrong and 

then "morphed" into L2s. (No significant morphing of any other kind.) 
Fingerprints of 7 R/TS Subjects who morphed  from D1 to L2

(only deviations from D1's guesses are shown)
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SEARCHMETRICS 
 
How does search refine our guesses-only estimates of subjects' types? 
 
The search behavior of Baseline subjects with clear fingerprints and of the 
analogous R/TS subjects show common patterns that can be understood 
using a simple theory of how cognition drives search.  
 
Our initial econometric analysis focuses on the order of look-ups and ignores 
duration, following CJ and CGCB.  
 
We view search for hidden payoff information as just another kind of 
decision—not the kind conventionally studied, but potentially also useful in 
helping to identify the decision rules that best describe subjects' behavior. 

Standard assumptions imply that a rational subject looks up all freely available 
information that might affect its beliefs, and then best responds to his beliefs. 

In our design each type is naturally associated with algorithms that process 
information about targets and limits into guesses. We take those algorithms as 
models of cognition, and infer a type's minimal search implications from them 
under conservative assumptions about how cognition affects search:  

a. Basic operations are associated with adjacent look-ups, and can appear in 
any order. 

b. Other operations can be separated, and can appear in any order. 

(Similar, but not identical, to CGCB's "Occurrence" and "Adjacency".) 

Motivated by limitations on working memory, "efficient" information 
processing; compare CJ's characterization of search implications of backward 
induction in extensive-form alternating-offers bargaining games. 

The argument is essentially empirical: It's theoretically possible for a subject to 
scan and memorize the parameters in any order, then go into his brain and 
process them, in which case his search pattern yields no information about 
cognition (unless he fails to look at a parameter he needs to know).      

Now for a look at the search data, but first…
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SPEAK RODENT LIKE A NATIVE IN ONE EASY LESSON! 
 

    
 
 

 a p b 
You (i) 1 2 3 
S/he (j) 4 5 6 

 
Type Ideal guess Relevant look-ups 

L1 pi [aj+bj]/2 {[aj,bj],pi} ≡ {[4, 6], 2} 

L2 piR(aj,bj; pj[ai+bi]/2) {([ai,bi],pj),aj,bj,pi} ≡ {([1, 3], 5), 4, 6, 2} 

L3 piR(aj,bj; pjR(ai,bi; pi[aj+bj]/2)) {([aj,bj],pi),ai,bi,pj} ≡ {([4, 6], 2), 1, 3, 5} 

D1 pi(max{aj,pjai} + min{pjbi,bj})/2 {(aj,[pj,ai]),(bj,[pj,bi]),pi} ≡ {(4,[5,1]),(6,[5,3]),2} 

D2 pi[max{max{aj,pjai},pjmax{ai,piaj}} 
+min{pjmin{pibj,bi},min{pjbi,bj}}]/2 

{(ai,[pi,aj]),(bi,[pi, bj]),(aj,[pj,ai]),(bj,[pj,bi]),pj,pi} 
≡ {(1,[2,4]),(3,[2,6]),(4,[5,1]),(6,[5,3]),5,2} 

Eq. piaj if pipj < 1 or pibj if pipj > 1 
{[pi,pj],aj} ≡ {[2, 5], 4} if pipj < 1 

or {[pi,pj],bj} ≡ {[2, 5], 6} if pipj > 1 

Soph. [no closed-form expression; search 
implications are the same as D2's] 

{(ai,[pi,aj]),(bi,[pi, bj]),(aj,[pj,ai]),(bj,[pj,bi]),pj,pi} 
≡ {(1,[2,4]),(3,[2,6]),(4,[5,1]),(6,[5,3]),5,2} 

 
Despite comparatively weak assumptions, the theory yields high resolution of 
cognition, with implications almost independent of the game, so that one can 
often see the algorithms subjects are using in the search data.
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Selected R/TS Subjects' Information Searches and Assigned Types' Search Implications
         

 
  Types' Search Implications 

  MouseLab box numbers L1 {[4,6],2}  
   a p b L2 {([1,3],5),4,6,2}  
  You (i) 1  2 3 L3 {([4,6],2),1,3,5}  
  S/he (j) 4   5 6 D1 {(4,[5,1], (6,[5,3]),2}    
     D2 {(1,[2,4]),(3,[2,6]),(4,[5,1],(6,[5,3]),5,2}  
      Eq {[2,5],4} if pr. tar.<1,{[2,5],6} if > 1    
       

Subject                

            

904 1716 1807 1607 1811 2008 1001 1412 805 1601 804 1110 1202 704 1205 1408 2002 
Type(#rt.) L1 (16) L1 (16) 

 
L1 (16) 

 
L2 (16) L2 (16) L2 (16) L3 (16) L3 (16) D1 (16) D1 (16) 

 
D1 (3) D2 (14)

16)
D2 (15) Eq (16) Eq (16) Eq (15) Eq (16) 

 Alt.(#rt.) L2 (
Est. style late  often early  often early early   

Game     

 

    
      
      
    
     

     

 
 

    
   
    
    
    

  
1 123456 

 
146462 462513 

 
135462 

 
134446 111313 462135 146231 154356 254514 

 
154346 135464 246466 123456 123456 123123 142536 

 4623 134646  1313 5213*4 131313 21364* 564623 423213 36231 5213 2646*1 135464 363256 424652 456445 125365
  23 

 
  6

 
5423 246231 1 2642  313 641321 565365 562525 632132 253616 

 52 342462 626365 6352*4 11 361454
 422646 652651 65 613451
 124625 452262 213452
 5*1224 6526 63
 654646

 
2 123456 

 
462462 

 
462132 

 
135461 134653 131313 462135 462462 514535 514653 

 
515135 135134 123645 123456 123456 123456 143625 

 4231
 

13 25
 

354621
  

 125642 566622 642562 546231 615364 6213 365462
 

642163 132462 525123 244565 456123 361425
 3 313562

 
333 223146 546231 23  3 451463 426262 652625 565263 643524 142523

  52 2562*6 211136 241356 635256 212554 1 625656
  2 414262 462*13 262365 146662 3
  135362 524242 456 654251
  *14654 466135 44526*
  6 6462 31

Notes:  The subjects' frequencies of making their assigned types' (and when relevant, alternate types') exact guesses are in parentheses after the assigned type. A * in a subject's 
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Selected Baseline Subjects' Information Searches and Estimated Types' Search Implications 
        

 
  Types' Search Implications 

  MouseLab box numbers L1 {[4,6],2}
   a p b L2 {([1,3],5),4,6,2}
  You (i) 1 2 3 L3 {([4,6],2),1,3,5}
  S/he (j) 4   5 6 D1 {(4,[5,1], (6,[5,3]),2}   
    D2 {(1,[2,4]),(3,[2,6]),(4,[5,1],(6,[5,3]),5,2}
      Eq {[2,5],4} if pr. tar.<1,{[2,5],6} if > 1   
     

Subject   101 118 413 108 206 309 405 210 302 318 417 404 202 310 315
Type(#rt.) L1 (15) L1 (15) L1 (14) L2 (13) L2 (15) L2 (16) L2 (16) L3 (9) L3 (7) L1 (7) Eq (8) Eq (9) Eq (8) Eq (11) Eq (11)
Alt.(#rt.)    Eq (9) Eq (7) D1 (5) L3 (7) L2 (6) D2 (7)
Alt.(#rt.)     D2 (8)  L2 (5) L3 (7)
Est. style early/late early  late early early early/late early early early early early early early early/late early

Game     
1 146246 

 
246134 123456 135642

 
533146 1352 144652 123456 221135 132456 252531 462135 123456 123126 213465

 213
 

626241 545612 213 313312 123456 465645 465252 464656 464655 254613 544121 624163
 32*135

 
 3463*

 
 

 
   
    
    
    
    

 

 
     
     
    

  
    
     

546232 213456 213213 13242* 446531 645515 621342 565421 564121
 12512 254213 45456*

 
 1462

 
641252 21354* *525 254362 325466

 654 541 462121 135462 *21545
 3 426256 4*

 356234
 131354
 645

2 46213
 

246262 123564 135642
 

531462 135263 132456 123456 213546 132465 255236 462461 123456 123546 134652
 2131

 
 62213*

 
3 31 1526*2 253156 465562 566213 132*46

  
62*365 352524 445613 216326 124653

 *3 456545 231654 545463 2 243563 261315 255462 231456 656121
 463123 456*2 21*266 463562 513565 *62 3
 156562 54123 23
 62

3 462*46 
 

246242 264231 
  

135642 535164 135263 312456 123455 265413 134652 521363 462135 123456 123655 132465
 466413 53 2231 5231*1 645612 232145 1323*4

  
641526 215634 123562 463213 544163

 *426
 

 236545 3 563214 5263*6 *52 3 *3625
 5233** 563214 52
 513 523*65

     4123  

 21



SEARCHMETRICS CONTINUED 
 
Combine above guessmetrics with a maximum-likelihood error-rate model of 
search as in CGCB (but subject-by-subject, not mixture model). 
 
The main econometric problem is extracting signals from subjects' highly 
idiosyncratic, noisy look-up sequences, without a well-tested model that 
implies strong restrictions on how cognition drives search.  

Subjects vary in the location of look-ups relevant to their types in their 
sequences. Filter this out via subject-specific nuisance parameter called style 
("early" or "late"), assumed constant across games for each subject. (58 of 71 
Baseline subjects' estimated styles are "early," 10 are "late," and 3 are tied.) 

Quantify compliance with a type's search implications as the density of the 
type's relevant look-up sequence in the subject's look-up sequence. If style is 
early, start at the beginning of the sequence and continue until the type's 
relevant sequence is first completed. Compliance is the length of the relevant 
sequence divided by the length of the sequence that first completes it. This 
definition makes compliance meaningfully comparable across games, styles. 
 
We assume that a subject’s type and style determine his search and guess in 
a given game, each with error; and we further assume that, given type and 
style, errors in search and guesses are independent of each other and across 
games. This strong but useful simplifying assumption makes the log-likelihood 
separable across guesses and search, avoiding some complications in CGCB. 
 
To avoid stronger distributional assumptions, we discretize compliance into 
three categories: CH ≡ [0.67, 1.00], CM ≡ [0.33, 0.67], and CL ≡ [0, 0.33]. 
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Subject i's guesses-and-search log-likelihood is: 

≡
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++−−+∑ ∑

∈c Ng

i
g

i
g

k
g

iskisk
c

isk
cc

isk
c

isk
c

xRdnnmm )),((ln)ln()1ln()()ln( λεεζ

[ ] ,ln2lnln)),((ln)ln()ln()( GGmmGGxRdnnnGnG
c

isk
c

isk
c

Ng

i
g

i
g

k
g

ikikikik

ik

−+−++−− ∑∑
∈

λ

where is the number of games for which subject i has type-k style-s  

compliance c. (The search term is convex in the , and therefore 
favors types for which compliance varies less across games, because 
such types "explain" search behavior better. See CGCB, Section 4.D.) 

isk
cm

isk
cm

The maximum-likelihood estimates of ε  and cζ , given k and s, are /G 

and , the sample frequencies with which subject i's adjusted 
guesses are non-exact for that k and i has compliance c for that k and s. 
The maximum likelihood estimate of λ is the standard logit precision. 

ikn
Gmisk

c /

 
The maximum likelihood estimate of subject i's type k maximizes the 
above log-likelihood over k and s, given the estimated ε and λ. 
 
The model favors such types without regard to whether compliance is high or 
low. This seems appropriate because compliance is neither meaningfully 
comparable across types nor guaranteed to be high for the "true" type (which 
could be cognitively very difficult). But it means we need to rule out estimates 
where a type wins simply because its compliance is very low in all games.   
 
A few subjects' type estimates change (Table 1) when search is included: 
 
For some subjects a tension between guesses-only and search-only type 
estimates is resolved in favor of the search estimates. (The search part of the 
likelihood has weight only about 1/6 of the guesses part, because our theory 
of search makes much less precise predictions than our theory of guesses—a 
necessary evil, given the noisiness and idiosyncrasy of search behavior.) 
 
For other subjects the guesses-only type estimate has 0 search compliance in 
8 or more games, and so we rule it out a priori. 
 
ECONOMETRIC PUZZLE: Are there better ways to do this? 
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MISCELLANEOUS QUESTIONS 
 
To what extent can Baseline subjects' guess "errors" be explained by a more 

detailed analysis of search? 
 

What more can we say about subjects with high guess compliance but 0 
search compliance in several games? (E.g. Baseline subject 415, who 
could remember 3 parameters at a time; and the "perfect-16" R/TS L2 
subject 2008, who missed L2's search requirements in first 5 games.)  

 
Can we separate the effects of training from the strategic-uncertainty- 

eliminating effects of robot treatments? Conditional on style, how does 
search differ between Baseline subjects with clear fingerprints 
(Equilibrium, L1, L2, or L3) and successful R/TS subjects of same type? 

 
(Baseline subjects with clear fingerprints are, to the extent that we know their 

beliefs, like robot untrained subjects, which usually don't exist because 
you have to teach true robot subjects what the robot's decision rule is. Are 
there any systematic differences between the errors Baseline subjects 
with clear fingerprints make and the errors made by R/TS subjects of the 
same type? If so, what can the differences tell us about cognition?) 
 

Can we divide decision rules into those that just don't occur to subjects, and 
those that (like Dk) are unnatural even after training? 

 
Our search analysis has so far focused on the order of look-ups. (Compare 

CJ, "Thinking about Attention in Games: Backward and Forward 
Induction" and Rubinstein, "Instinctive and Cognitive Reasoning: A Study 
of Response Times.") Is there useful information in look-up durations? 
Can we say more about the difficulty of types using duration data? 

Average time per guess according to subjects' estimated types (incomplete): 

Baseline: L1 (22): 63.7 seconds, L2 (13): 82.1, Eq. (8): 117.2.      

Baseline overall 74.5 seconds vs. OB overall 91.9. 

Baseline overall 74.5 seconds vs. UCSD R/TS overall 65.2. 
 
We also plan nonparametric analyses of search durations, transitions. 

 24


	D2

