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1. Introduction

Although neoclassical microeconomics is 
one of social science’s success stories, a 

growing body of experimental and empirical 
research has documented substantial devia-
tions from its core behavioral assumptions 
and predictions (Selten 1990, 1998; Thaler 
1992; Rabin 1998; Frederick, Loewenstein, 
and O’Donoghue 2002; Camerer 2003; 
Sobel 2005; DellaVigna 2009; Armstrong 

and Huck 2010; Crawford, Costa-Gomes, 
and Iriberri 2013).1 

Because the deviations have identifiable 
systematic components, modeling them and 
integrating them into microeconomics has 
the potential to strengthen our models of 
individual decisions and strategic behavior, 
and the economic analyses that depend on 
them.

Attempts to model the deviations can be 
sorted into two categories, following Harstad 
and Selten’s article in this forum. Most mod-
els in either category can be augmented to 
allow decision errors, which is usually essen-
tial in empirical applications. However, I will 

1 Here and below I make no attempt to give compre-
hensive citations, and I favor surveys when reasonably 
recent ones exist. My goal is to give readers a start in read-
ing their way into an enormous body of relevant literature.
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focus on the models’ deterministic struc-
tures, mentioning decision errors only when 
they are important.

The first, “boundedly rational” category 
includes models that seek to improve upon 
neoclassical models by relaxing their core 
assumption that individuals optimize, in 
favor of various sensible, direct character-
izations of individual decision behavior. 
Although boundedly rational models relax 
optimization, many of them maintain (if 
sometimes implicitly) the customary neo-
classical assumptions about the domain of 
individuals’ preferences, the coherence of 
their goals, and the accuracy of their models 
and the inferences they draw from them.

Examples of boundedly rational models of 
individual decisions can be found in Simon 
(1955), Cyert and March (1963), Newell and 
Simon (1972), Nelson and Winter (1982), 
and Rubinstein (1998), among many oth-
ers. Thoughtful discussions can be found in 
Hogarth and Reder (1986), Selten (1990, 
1998), Conlisk (1996), Munier et al. (1999), 
and Spiegler (2011a, 2011b). 

Examples of boundedly rational models of 
strategic behavior can be found in Rosenthal 
(1989), Rubinstein (1998), Young (2004), 
and, with regard to “reinforcement” learn-
ing, Roth and Erev (1995) and Erev and 
Roth (1998).

Harstad and Selten also view Selten’s 
notions of “learning direction theory” and 
“impulse-balance equilibrium” (Selten and 
Stoecker 1986; Selten and Buchta 1999; 
Selten, Abbink, and Cox 2005; Ockenfels 
and Selten 2005; Selten and Chmura 2008; 
Brunner, Camerer, and Goeree 2011; 
and Selten, Chmura, and Goerg 2011) 
as boundedly rational models and, in an 
important sense, that is correct. However, 
I will argue that there is also an impor-
tant sense in which learning direction the-
ory and impulse-balance equilibrium fall 
into the second category, which I will call 
“optimization-based.” 

Optimization-based models maintain the 
customary neoclassical assumption that 
individuals act as if to optimize something. 
Instead, such models seek to improve on 
neoclassical models by relaxing or replacing 
one or more of the other customary neoclas-
sical assumptions.

As Harstad and Selten note (footnote 1 
and pages 6–7), optimization-based  models, 
broadly construed, have come to  dominate 
modern behavioral economics, much as they 
have long dominated neoclassical micro- 
economics. 

In one branch of behavioral decision 
theory, optimization-based models relax 
customary neoclassical assumptions about 
the domain of individual preferences to 
allow reference-dependent preferences, 
which respond to changes in consump-
tion relative to a reference point as well 
as levels of consumption (Kahneman and 
Tversky 1979; Tversky and Kahneman 
1991; Kőszegi and Rabin 2006). In another 
branch, optimization-based models relax 
the customary domain restrictions to allow 
social preferences and reciprocity, with 
individuals responding to others’ outcomes 
and/or decisions as well as their own (Rabin 
1993; Fehr and Schmidt 1999; Bolton and 
Ockenfels 2000; Andreoni and Miller 2002; 
Charness and Rabin 2002; Sobel 2005).

In still another branch of behavioral deci-
sion theory, predominantly optimization-
based models relax customary assumptions 
about the coherence of individual goals 
to allow present-biased preferences with 
a time-inconsistent tension between the 
desire for immediate and future gratification 
(Laibson 1997; O’Donoghue and Rabin 1999; 
Frederick, Loewenstein, and O’Donoghue 
2002). And in yet another branch, predomi-
nantly optimization-based models relax cus-
tomary assumptions about the accuracy of 
individuals’ models or inferences to allow 
various “heuristics and biases” (Tversky and 
Kahneman 1974; Rabin 2002).
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Turning to behavioral game theory, opti-
mization-based learning models relax the 
customary neoclassical assumption that play-
ers play a Nash equilibrium from the start of 
play, assuming instead that they follow simple 
adaptive rules that may converge to equilib-
rium decisions, if at all, only in the limit. In 
“beliefs-based” adaptive learning models—
unlike the reinforcement adaptive learning 
models I list as boundedly rational—players’ 
adjustments are directly motivated by opti-
mization, even though their beliefs are based 
on oversimplified models of others’ deci-
sions (Woodford 1990; Milgrom and Roberts 
1990, 1991; Selten 1991; Crawford 1995; 
Fudenberg and Levine 1998; Camerer and 
Ho 1999; Camerer, Ho, and Chong 2002).2 

Learning direction theory and impulse-
balance equilibrium postulate players’ 
adjustments that are motivated by optimi-
zation, even though they do not explicitly 
model players’ beliefs. In that sense, learn-
ing direction theory and impulse-balance 
equilibrium are more closely related to con-
ventional beliefs-based learning models than 
they are to most bounded-rationality models 
(Ockenfels and Selten 2005, footnote 11).

In strategic applications where lack of clear 
precedents makes simple learning models 
implausible, models of strategic thinking in 
initial responses to games relax Nash equilib-
rium in favor of “level-k” (Crawford, Costa-
Gomes, and Iriberri 2013) or “cognitive 
hierarchy” (Camerer, Ho, and Chong 2004) 
models. In those models, players’ decisions 
are optimal, given beliefs that are anchored 
in a simple model of other players’ instinctive 
reactions to the game and then adjusted via a 
small number (k) of iterated best responses. 
Other models of strategic thinking relax Nash 
equilibrium in favor of quantal response 

2 I don’t discuss “rational learning” models, which 
assume equilibrium in the game that describes the entire 
learning process, here because adaptive learning models 
tend to be much more useful empirically.

equilibrium (QRE) (McKelvey and Palfrey 
1995), in which individual players’ decisions 
are noisy with a specified distribution, and 
each player’s decision is a noisy best response 
to the other players’ decision distributions.3

Harstad and Selten’s article in this forum 
performs a valuable service by highlighting 
the dominance of optimization-based models 
over boundedly rational models in modern 
microeconomics, and questioning whether 
optimization-based models are a better 
way forward than boundedly rational mod-
els. In their words, “Yet [the optimization 
approach] can no longer be firmly defended 
as an appropriate first approximation to 
 reality. Increasingly persuasive evidence has 
accumulated that the behavioral assump-
tions underlying the optimization approach 
are incorrect, and can point analysis in 
 seriously wrong directions. As neoclassical 
theory has been more clearly elaborated, its 
serious deficiencies have become increas-
ingly apparent” (2).  As Harstad and Selten 
explain (footnote 1), their use of “neoclassi-
cal” here includes “behavioral” optimization-
based models. 

Although Harstad and Selten frame their 
proposed reorientation of microeconom-
ics modestly, describing their article as 
“. . . intended much more as a welcome mat 
than as a critical commentary on the current 
state of affairs” (2), the questions they raise 
pose a challenge to the optimization-based 
approach that is of central importance for 
the future of microeconomics.

Rabin’s article in this forum responds to 
Harstad and Selten, focusing mainly on the 
questions they raise regarding modeling indi-
vidual decisions. Rabin argues that, although 
microeconomics can indeed sometimes be 
improved by deviating from optimization-
based models, maintaining optimization but 

3 McKelvey and Palfrey (1995) suggest using QRE for 
initial responses as well as steady states; but some research-
ers suggest reserving QRE to describe steady states.
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relaxing customary neoclassical assumptions 
about preferences or judgment in specific, 
evidence-based ways—the approach of most 
modern behavioral economics—may be 
more productive in many applications than 
would a comprehensive switch to boundedly 
rational models whose connection to evi-
dence is less direct. 

The present article responds to Harstad 
and Selten, focusing on modeling strategic 
behavior. Like Harstad and Selten and most 
others who apply game theory in microeco-
nomics, I adopt the viewpoint of noncoop-
erative game theory, which starts with a 
complete model of the strategic situation and 
seeks to characterize how players respond 
to it.4 Because noncooperative games are 
simply interdependent individual decision 
problems, Harstad and Selten’s and Rabin’s 
points about modeling individual decisions 
apply with equal force to games. Even so, 
I will follow the usual division of labor in 
microeconomics (behavioral or neoclassical) 
by focusing on the issues Harstad and Selten 
raise that are unique to games.

Recall that the canonical neoclassical 
descriptive model of strategic behavior is 
Nash equilibrium, defined as a combination 
of strategies, one for each player, such that 
each player’s strategy maximizes his expected 
utility or “payoff,” given the others’ strategies 
(Myerson 1999).

The assumption that players will play their 
Nash equilibrium (henceforth sometimes 
shortened to “equilibrium” when the mean-
ing is clear) strategies can be justified in two 
ways (Crawford, Costa-Gomes, and Iriberri 
2013, section 1). If players have enough 

4 The alternative would be cooperative game theory, 
which sidesteps the need to specify the details of the strate-
gic situation by assuming that whatever the details, players 
reach a Pareto-efficient agreement. An important excep-
tion to the dominance of noncooperative game theory 
in microeconomics is the (mostly) cooperative theory of 
matching markets, but the modeling issues matching raises 
do not figure directly in this forum’s discussion.

experience with closely analogous games, 
both theory and experimental results suggest 
that players will usually learn to predict each 
other’s strategy choices well enough that their 
beliefs about others’ strategy choices con-
verge to some Nash equilibrium in the game 
currently being played.5 With such experi-
ence, equilibrium can be viewed as a model 
of players’ steady-state behavior. If, how-
ever, the current game has only imperfect 
precedents, or none at all, then if assuming 
equilibrium is justified, it must be justified as 
a model of strategic thinking in players’ ini-
tial responses to a game. Such thinking can 
lead players to a Nash equilibrium if they are 
rational in the decision-theoretic sense of 
optimizing expected utilities and if they have 
the same, “rational” (in the sense of self-con-
firming) expectations or beliefs about how 
players will play (Brandenburger 1992).6

Some of the notions that Harstad and 
Selten and I discuss refer to steady-state 
behavior in settings where learning is plau-
sible, while others refer to strategic thinking 
in initial responses.

Harstad and Selten illustrate the need 
for boundedly rational models of strategic 
behavior and their potential benefits by giv-
ing several examples of observed phenom-
ena that appear to resist Nash equilibrium 
explanations. As possible partial remedies for 
these apparent failings of an optimization-
based approach, they also propose two illus-
trative models of strategic behavior.

Probably the most important of Harstad 
and Selten’s examples is the occurrence of 
bubbles and crashes in financial markets 

5 This statement omits some qualifications that are 
important only for extensive-form games.

6 Equilibrium yields much more precise predictions 
than assuming only that players optimize, given some 
beliefs. Without requiring beliefs to be self-confirming, 
even common knowledge that players optimize implies 
only that their strategies are rationalizable (Bernheim 
1984; Pearce 1984), often leaving behavior completely 
unrestricted. 
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(their section 4). Bubbles and crashes cannot 
occur in a conventional rational-expectations 
equilibrium (Milgrom and Stokey 1982; 
Tirole 1982). Yet they do occur in financial 
market experiments even when subjects are 
fully informed, so that informational infer-
ences from others’ decisions are not relevant 
(Smith, Suchanek, and Williams 1988; Lei, 
Noussair, and Plott 2001). On that basis, 
Harstad and Selten argue that bubbles and 
crashes cannot be explained by a model that 
is entirely optimization-based.

Another of Harstad and Selten’s examples 
(section 4) is the “winner’s curse,” in which 
bidders in common-value auctions fail to 
adjust their value estimates for the informa-
tion that would be revealed, via the logic 
of Nash equilibrium, if they won.7 Winning 
reveals that the bidder’s own estimate was 
higher than other bidders’ estimates and 
therefore likely to overestimate the common 
value. Bidders who fail to make this informa-
tional inference bid higher than in equilib-
rium, often losing money if they win (Capen, 
Clapp, and Campbell 1971; Milgrom and 
Weber 1982; Samuelson and Bazerman 
1985; Selten, Abbink, and Cox 2005). As 
Harstad and Selten note, the winner’s curse 
is linked to the more general phenomenon 
Eyster and Rabin (2005) call “cursedness” 
and Crawford, Costa-Gomes, and Iriberri 
(2013, section 5) call “informational naiveté,” 
whereby people fail to draw correct infer-
ences from the link between others’ private 
information and their decisions. Through 
its effects on herding, informational naiveté 
may also exacerbate bubbles and crashes in 
financial markets (Eyster and Rabin 2010).

Harstad and Selten’s final example 
(section 4) refers to games with strat-
egy spaces large or complex enough to 
make a directly optimization-based model 
implausible.

7 In independent-private-value auctions, such informa-
tional inferences are not relevant.

Harstad and Selten’s first illustrative model 
(section 7) is a boundedly rational model 
of players’ decisions in games with such 
large or complex strategy spaces, following 
Selten, Pittnauer, and Hohnisch (2012) and 
Arad and Rubinstein (2012). Harstad and 
Selten frame their model as one of strategic 
thinking in initial responses, although their 
approach might also be adapted to model 
the steady states of a learning process. In 
their proposed model, players first edit their 
strategy spaces into a manageable (although 
theoretically suboptimal) form. Players then 
follow a simple level-k (Crawford, Costa-
Gomes, and Iriberri 2013) or cognitive 
hierarchy (Camerer, Ho, and Chong 2004) 
model of strategic thinking, but as applied to 
the edited game.

Harstad and Selten’s second illustrative 
model (section 7) is Selten’s notion of learn-
ing direction theory (Selten and Stoecker 
1986; Selten and Buchta 1999; Selten, 
Abbink, and Cox 2005) and its steady-state 
counterpart, impulse-balance equilibrium 
(Selten, Abbink, and Cox 2005; Ockenfels 
and Selten 2005; Selten and Chmura 2008; 
Brunner, Camerer, and Goeree 2011; Selten, 
Chmura, and Goerg 2011). Impulse-balance 
equilibrium applies to games played with the 
ample precedents that make simple learn-
ing models plausible, and is thus an alterna-
tive to a Nash equilibrium or QRE model of 
steady states.

The rest of this article is organized as 
follows. 

In section 2, I discuss impulse-balance 
equilibrium and learning direction theory, 
focusing on independent-private-value auc-
tions, in which informational inferences 
from others’ decisions are not relevant; and 
on simple matrix games. I compare the infor-
mational requirements and predictive per-
formance of impulse-balance equilibrium 
with those of other steady-state notions, 
Nash equilibrium, and QRE; and with those 
of level-k and cognitive hierarchy models of 
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strategic thinking. Here the challenge is not 
to an optimization-based approach per se, 
but to find a way to extend impulse-balance 
equilibrium’s blend of boundedly rational 
and optimization-based insights to a class 
of games more nearly as general as those to 
which Nash equilibrium applies.  

In section 3, I discuss Harstad and Selten’s 
example of bubbles and crashes in financial 
markets. I note that the results ruling out 
bubbles and crashes depend on extreme 
common-knowledge assumptions, over and 
above the assumption that people optimize. 
Relaxing common knowledge is empirically 
at least as plausible as relaxing optimization, 
nor is it hard to find optimization-based mod-
els that are consistent with the occurrence of 
bubbles and crashes (Barberis and Thaler 
2003; Brunnermeier and Oehmke 2013; 
Xiong forthcoming). The challenge is to find 
a model (optimization-based or not) whose 
behavioral assumptions are well-grounded in 
evidence, and which is not merely consistent 
with bubbles and crashes, but which reliably 
explains their observed fact patterns. I close 
by suggesting one possible candidate for 
such a model, which is optimization-based 
but reflects evidence-based limitations on 
thinking. 

In section 4, I turn to Harstad and Selten’s 
example of the winner’s curse in sealed-bid 
common-value auctions, where informa-
tional inferences from others’ decisions are 
essential to optimal bidding (equilibrium or 
not). I also consider the more general phe-
nomenon of informational naiveté in games 
where informational inferences are impor-
tant. I compare Selten, Abbink, and Cox’s 
(2005) explanation of the winner’s curse 
in terms of learning direction theory and 
impulse-balance equilibrium, with optimi-
zation-based explanations via Eyster and 
Rabin’s (2005) steady-state notion of “cursed 
equilibrium” in common-value auctions, and 
Crawford and Iriberri’s (2007) level-k model 
of initial responses to common-value and 

independent-private-value auctions. I next 
discuss Brocas et al.’s (2010) experimental 
and theoretical level-k analysis of zero-sum 
betting, for which a game-theoretic analogue 
of Milgrom and Stokey’s (1982) “no-trade” 
theorem for market equilibria holds. I then 
discuss Eyster and Rabin’s (2010) analysis of 
naive herding.

In section 5, I take up Harstad and Selten’s 
first illustrative model, of behavior in games 
with strategy spaces large and complex 
enough to render optimization-based mod-
els implausible. I put Harstad and Selten’s 
proposed boundedly rational model into 
context, and sketch the issues that must be 
resolved to enable further progress along 
these lines.

In section 6, I conclude with some general 
remarks.

2. Learning Direction Theory,  
Impulse-Balance Equilibrium, and Steady 

States in Independent-Private-Value 
Auctions and Simple Matrix Games 

In this section, I discuss Selten’s notion 
of learning direction theory (Selten and 
Stoecker 1986; Selten and Buchta 1999; 
Selten, Abbink, and Cox 2005) and its 
steady-state counterpart impulse-balance 
equilibrium (Selten, Abbink, and Cox 
2005; Ockenfels and Selten 2005; Selten 
and Chmura 2008; Brunner, Camerer, and 
Goeree 2011; Selten, Chmura, and Goerg 
2011). I focus on independent-private-value 
auctions, in which informational inferences 
from others’ decisions are not relevant, and 
simple matrix games.

Learning direction theory is a simple 
model of learning in settings that permit 
direct learning from experience. A player is 
assumed to observe not only his own deci-
sion and its realized payoff, but also to have 
enough information about the game to 
assess the payoffs that would have resulted 
from alternative decisions. The feasible 
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decisions are assumed to be ordered along 
a single dimension, so that directions are 
well-defined. Learning direction theory then 
assumes that if a higher (respectively, lower) 
decision than the one actually chosen would 
have yielded a higher payoff, the player 
adjusts his decision upward (downward).

Learning direction theory’s informational 
requirements are very close to those of the 
“what if?” reasoning that underlies beliefs-
based learning, and far from the require-
ments of reinforcement learning, in which 
players simply react to the realized payoffs of 
their chosen actions, with no counterfactual 
reasoning (Selten, Abbink, and Cox 2005, 7). 
Learning direction theory can be viewed as 
a form of beliefs-based learning in which 
players estimate their optimal decisions non-
parametrically (Ockenfels and Selten 2005, 
footnote 11). See also Crawford (1995), who 
takes a similar approach, borrowed from the 
engineering adaptive control literature via 
Woodford (1990), to model learning in coor-
dination games.

Learning direction theory is qualitative 
in that it determines bounds on players’ 
adjustments without specifying their magni-
tude. Impulse-balance equilibrium, by con-
trast, gives a quantitative characterization of 
learning direction theory’s steady-state rest 
points, whose greater precision is helpful in 
applications. In Harstad and Selten’s words 
(footnote 23), an impulse-balance equilib-
rium results when the chosen decision (sto-
chastically) balances three impulses: “[a] 
when a higher action could have led to a 
better payoff, there is an impulse to adjust 
the chosen action upward, [b] when a lower 
action could have led to a better payoff, 
there is an impulse to adjust the chosen 
action downward, and [c] when an action led 
to a negative payoff that a lower action could 
have avoided, there is an impulse to adjust 
the chosen action downward.” Harstad and 
Selten also argue that, if the three impulses 
[a], [b], and [c] are “treated as a priori 

equally strong, impulse balance equilibrium 
can be considered a parameter-free model.” 
However, the impulse weights play a role 
akin to loss aversion, and are sometimes 
estimated (Ockenfels and Selten 2005). 
With that interpretation, impulse balance 
equilibrium is equivalent to Nash equilib-
rium in a game with payoffs transformed to 
reflect loss aversion. There is then no a pri-
ori reason why the weights should be equal, 
but equal weights correspond to a loss 
aversion coefficient of 2, close to estimates 
from other settings (Brunner, Camerer, and 
Goeree 2011).

The informational requirements of 
impulse-balance equilibrium are close to 
those of Nash equilibrium, QRE, and level-k 
rules. Although Harstad and Selten view 
learning direction theory and impulse-bal-
ance equilibrium as boundedly rational theo-
ries, they are also optimization-based in the 
same sense as other beliefs-based learning 
models are.

The main empirical issue that models of 
steady-state behavior in games must address 
is the fact that people’s decision distributions 
are normally sensitive to out-of-equilibrium 
payoffs. This sensitivity is usually in deci-
sion-theoretically intuitive directions in that 
increasing one or more of a decision’s out-of-
equilibrium payoffs makes it more likely to 
be chosen.

Nash equilibrium rules out such sensi-
tivity to out-of-equilibrium payoffs a priori 
because they do not affect the expected 
payoffs of a player who expects others to 
play their Nash equilibrium strategies with 
certainty. QRE captures such sensitivity by 
assuming that a player’s decision responds 
to the distribution of others’ noisy decisions, 
which make out-of-equilibrium payoffs rel-
evant to his expected payoffs. Level-k and 
cognitive hierarchy models capture sensi-
tivity to out-of-equilibrium payoffs struc-
turally, via a mixture of players who best 
respond to various nonequilibrium decisions 
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(Crawford, Costa-Gomes, and Iriberri 2013, 
sections 2.4–5). 

Selten and Chmura (2008), Brunner, 
Camerer, and Goeree (2011), and Selten, 
Chmura, and Goerg (2011) ask which of 
these steady-state notions (and some others 
that are less relevant here) best describes 
subjects’ behavior in a variety of experimen-
tal settings, including first- or second-price 
sealed-bid independent-private-value auc-
tions, in which informational inferences 
from others’ decisions are not relevant; and 
simple asymmetric matching pennies games.

In first- or second-price auctions with 
independent private values, experimental 
subjects have a strong, robust tendency to 
overbid, relative to the standard of the risk-
neutral Bayesian Nash equilibrium (Kagel 
and Levin 1993; Ockenfels and Selten 2005). 
This tendency persists even with ample 
opportunity to learn. By contrast, there is 
no corresponding tendency to overbid in 
English auctions, the progressive analogues 
of second-price sealed-bid auctions.

Building on Kagel, Harstad, and Levin’s 
(1987) suggestion, Harstad (2000) suggests 
an explanation of overbidding in second-
price auctions with independent private val-
ues in the spirit of learning direction theory 
and impulse-balance equilibrium. Ockenfels 
and Selten (2005) suggest a similar impulse-
balance equilibrium explanation of overbid-
ding in first-price auctions. 

If impulse-balance equilibrium is optimi-
zation-based, how can it explain systematic 
overbidding in second-price independent-
private-value auctions, where bidding one’s 
true value is a weakly dominant strategy? The 
key, in first-price as in second-price auctions, 
is the asymmetry of the out-of-equilibrium 
payoff feedback that players receive when 
their bids are higher or lower than their 
equilibrium bids. In second-price auctions, 
as Harstad (2000, 262) puts it, “When a sub-
ject loses money because both their bid and 
the second-highest bid exceed their value, 

this is negative feedback suggesting they 
may be bidding too aggressively. However, 
in a second-price auction, a subject might 
overbid, win, and still make money: it may 
happen that no rival bids between his over-
bid and his value. Such an occurrence may 
be viewed (mistakenly) as positive feedback, 
serving to offset the negative feedback if 
overbids are not too large. No corresponding 
occurrence is possible in an English auction, 
as the question of whether to overbid does 
not really arise until the price has reached a 
subject’s value and competitors remain.”

In first-price auctions, the feedback asym-
metry is different, but Ockenfels and Selten 
(2005) show that impulse-balance equilib-
rium also explains their subjects’ tendency to 
overbid.

Thus, impulse-balance equilibrium pro-
vides a simple explanation of the system-
atic, persistent patterns of deviation from 
Bayesian Nash equilibrium in independent-
private-value sealed-bid auctions, via the 
asymmetric effects of out-of-equilibrium 
payoffs. In second-price auctions, such 
effects can even explain systematic devia-
tions from a dominant strategy.

Turning to asymmetric matching pennies 
matrix games, the comparative statics of the 
unique Nash equilibrium’s mixed-strategy 
probabilities with respect to changing a 
payoff in both player roles (thus preserving 
the zero-sum property) are decision-theo-
retically intuitive in one player role, in that 
the “improved” pure strategy is played with 
higher probability; but counterintuitive in the 
other player role (Crawford and Smallwood 
1984; Crawford, Costa-Gomes, and Iriberri 
2013, section 4). This comparative statics 
implication has been tested in experiments, 
but usually only by varying only one player’s 
payoff for one pure-strategy combination 
across treatments. In that case, the compara-
tive statics are analogous because, in these 
games, each player’s equilibrium mixed strat-
egy is determined by the other’s payoffs; but 
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the comparative statics may then be only 
weakly intuitive or counterintuitive.

In contrast to the theoretical results, 
experimental subjects’ aggregate responses 
to such payoff changes across treatments 
tend to be at least weakly intuitive in both 
player roles; and Nash equilibrium therefore 
predicts poorly. QRE, impulse-balance equi-
librium, and level-k or cognitive hierarchy 
models all avoid the counterintuitive impli-
cation. As a result, QRE and impulse-bal-
ance equilibrium  fit approximately equally 
as well, and significantly better than Nash 
equilibrium (Brunner, Camerer, and Goeree 
2011, section 2).8

Given Nash equilbrium’s lack of sensitiv-
ity to out-of-equilibrium payoffs, it seems 
remarkable that a steady-state concept such 
as impulse-balance equilibrium can avoid the 
counterintuitive implications of Nash equi-
librium and track subjects’ observed sensi-
tivity to out-of-equilibrium payoffs, without 
directly assuming that players best respond 
to decision noise.

However, more work is needed to learn 
whether impulse-balance equilibrium’s fit 
reflects its accuracy in describing the struc-
ture of people’s adjustments in response to 
feedback, or is simply due to the fact that in 
these games impulse-balance equilibrium 
mimics the effects of loss aversion. If the lat-
ter, loss aversion could easily be incorporated 
into a Nash equilibrium model, which would 
then fit approximately as well as impulse-
balance equilibrium in this setting (Brunner, 
Camerer, and Goeree 2011, section 2). 

More work is also needed to clarify 
whether the explanation for overbidding in 
second-price auctions is really as mechani-
cal as impulse-balance equilibrium’s success 

8 Brunner, Camerer, and Goeree did not consider 
level-k or cognitive hierarchy models, which as models of 
initial responses rather than steady states are less relevant 
here. But other work, on initial responses, suggests that 
level-k or cognitive hierarchy models would also fit approx-
imately as well as QRE and impulse-balance equilibrium.

suggests, or if the overbidding stems from 
deeper cognitive limits such as an inability or 
unwillingness to reason contingent on future 
events. 

A final challenge is to find a way to define 
a notion like impulse-balance equilibrium 
for games whose feasible decisions are not 
ordered along a single dimension, so that 
its blend of boundedly rational and optimi-
zation-based insights can be extended to a 
class of games more nearly as general as that 
to which Nash equilibrium applies. If that 
problem proves to have a solution, I conjec-
ture that it will be found by thinking of how 
players in such games might nonparametri-
cally estimate their optimal decisions, adap-
tively or in steady state. 

3. Bubbles and Crashes in Financial 
Markets

In this section, I discuss Harstad and 
Selten’s example of bubbles and crashes 
in financial markets. Bubbles and crashes 
cannot occur in a conventional rational-
expectations equilibrium (Milgrom and 
Stokey 1982; Tirole 1982). Yet they do occur 
in experiments whose subjects are fully 
informed (Smith, Suchanek, and Williams 
1988; Lei, Noussair, and Plott 2001). On that 
basis, Harstad and Selten argue that bubbles 
and crashes cannot be explained by a model 
that is entirely optimization-based. In their 
words, bubbles and crashes in such markets 
are “. . . at odds with behavioral economics 
and level-k models just as [. . .] with main-
stream microtheory” (8).

However, the results ruling out bubbles 
and crashes depend on the extreme com-
mon-knowledge assumptions that underlie 
the notion of a rational-expectations equi-
librium, over and above the assumption that 
people optimize. Barberis and Thaler (2003), 
Brunnermeier and Oehmke (2013), and 
Xiong (forthcoming) survey models that have 
the potential to explain bubbles and crashes, 
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some of which are optimization-based but 
allow people to have diverse beliefs.

The challenge is to find a model (optimiza-
tion-based or not) whose behavioral assump-
tions are well-grounded in evidence; and 
which is not merely consistent with bubbles 
and crashes, but makes specific predictions 
that help to explain their observed empiri-
cal regularities. In settings as rich as financial 
markets, specific predictions require a spe-
cific structure. I now sketch an illustrative 
optimization-based candidate model that has 
the potential to explain the empirical regu-
larities of bubbles and crashes, by relaxing 
common-knowledge assumptions in favor 
of a structural model with diverse beliefs, 
which seems to accord with evidence.9 

There is considerable evidence, going 
back to Selten and Stoecker’s (1986) finitely 
repeated Prisoner’s Dilemma experiments, 
that few people consider the future con-
sequences of their current decisions far 
enough ahead to support the epistemic 
rational-expectations argument on which 
the no-bubbles results depend. The finitely 
repeated Prisoner’s Dilemma has a unique 
Nash equilibrium (subgame-perfect or not), 
in which players defect in every period, with-
out regard to the history of play. Yet Selten 
and Stoecker (1986) find that most subjects 
cooperate until close to the end of the ten-
period horizons of their Prisoner’s Dilemma 
games; that the timing of first defection varies 
across subjects, but defection tends to persist 
after a subject’s first one; and that more and 
more subjects defect as the end comes closer. 
These patterns suggest a model in which peo-
ple consider the future consequences of their 
current decisions only a small,  heterogeneous 

9  The model I have in mind is roughly similar to Morris, 
Postlewaite, and Shin’s (1995) model, but replaces their 
epistemic arguments with a simpler model of behavior that I 
believe has stronger behavioral foundations. See also Abreu 
and Brunnermeier (2003). Harstad and Selten do not pro-
pose a specific boundedly rational model of bubbles and 
crashes.

number of periods ahead, perhaps due to 
cognitive limitations, or to the perception 
that others have limitations, etc.

Finally, Selten and Stoecker (1986) find 
that, when the entire ten-period game is 
repeated, the timing of defections “unrav-
els,” with subjects starting to defect earlier 
and earlier. This last pattern is what origi-
nally suggested learning direction theory to 
Selten and Stoecker.

Johnson et al. (2002) find similar patterns 
of heterogeneity in the extent to which sub-
jects considered the future consequences 
of their current decisions in experiments 
designed to elicit subjects’ initial responses 
to three-period alternating-offers bargain-
ing games. They explain their results via an 
explicit structural model, in which subjects 
“think ahead” a small, heterogeneous num-
ber of periods, following optimization-based 
rules that vary according to how many peri-
ods ahead a player thinks.

A similar optimization-based model of 
financial markets would have firmer behav-
ioral foundations, and might help to explain 
the empirical regularities of bubbles and 
crashes. Although boundedly rational expla-
nations are also possible, I am unaware of 
any evidence that would guide the choice 
among the many possible boundedly rational 
models one could specify. 

4. The Winner’s Curse and  
Informational Naiveté

In this section, I turn to Harstad and 
Selten’s example of the winner’s curse in 
common-value auctions, where informa-
tional inferences from others’ decisions are 
essential to optimal bidding, equilibrium 
or not (Capen, Clapp, and Campbell 1971; 
Milgrom and Weber 1982; Samuelson and 
Bazerman 1985; Selten, Abbink, and Cox 
2005). I also consider the more general phe-
nomenon of informational naiveté in games 
like the “acquiring a company” game where 
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informational inferences are important, 
which Harstad and Selten argue underlies 
much of the high volume of speculative 
trade in financial markets (Samuelson and 
Bazerman 1985; Charness and Levin 2009; 
Crawford, Costa-Gomes, and Iriberri 2013, 
section 5.3).

Selten, Abbink, and Cox (2005) propose 
an explanation of the winner’s curse in terms 
of learning direction theory and impulse-bal-
ance equilibrium, much as Harstad (2000) 
and Ockenfels and Selten (2005) use them 
to explain overbidding in second- and first-
price auctions with independent private 
values. Yet it remains unclear whether the 
curse is really a mechanical consequence of 
impulse balance, or if it stems instead from 
deeper facts about human cognition, such as 
an inability or unwillingness to reason con-
tingent on future events.

As Harstad and Selten acknowledge, 
Eyster and Rabin (2005) give a credible 
optimization-based steady-state account of 
the winner’s curse via their notion of “cursed 
equilibrium,” whereby individuals do not 
fully attend to the possible correlations 
between others’ decisions and others’ private 
information, but otherwise follow the logic 
of Bayesian Nash equilibrium. Cursed equi-
librium is a plausible candidate for a model 
of steady states if people really do not attend 
to the relation between others’  decisions 
and private information. And Crawford 
and Iriberri (2007) use a level-k model in  
which players anchor their beliefs in a 
“level-0” that randomizes independently 
of its own private information to give a 
 similar account of informationally naive ini-
tial responses in independent-private- and 
 common-value auctions.  

In other contributions, Brocas et al. (2010) 
report experiments on a zero-sum betting 
design, for which a game-theoretic analogue 
of Milgrom and Stokey’s (1982) “no-trade” 
theorem for market equilibria holds. They 
show that their results are well explained 

by a level-k model like that Crawford and 
Iriberri (2007) proposed (see also Crawford, 
Costa-Gomes, and Iriberri 2013, sections 2.4 
and 5.1). Eyster and Rabin (2010) conduct 
an optimization-based theoretical analysis of 
“naive herding,” in which people make infor-
mational inferences from others’ decisions 
using rules that are informationally naive in 
ways that resemble Crawford and Iriberri’s 
(2007) “random level-2” rules. Their results 
accord with intuitions about how herding 
works in practice better than those of the 
standard neoclassical analyses of herding.

In most settings, the winner’s curse and 
informational naiveté seem to be reasonably 
well accounted for by optimization-based 
models. But cursed equilibrium and level-k 
models fit experimental data poorly for 
games like acquiring a company (Charness 
and Levin 2009), which suggests that closer 
attention to cognitive limitations is needed. 
Neither optimization-based nor boundedly 
rational models have yet to give a fully sat-
isfactory account of cognitive limitations in 
such settings, which is a challenge and an 
opportunity for both approaches.

5. Games with Large and Complex 
Strategy Spaces

In this section, I take up Harstad and 
Selten’s first illustrative model of behavior in 
games with strategy spaces large and com-
plex enough to render optimization-based 
models implausible.

Harstad and Selten organize their dis-
cussion of this issue around Arad and 
Rubinstein’s (2012) experimental and theo-
retical analysis of “Colonel Blotto” games, 
where the strategy spaces are so large that 
it is difficult to imagine anyone optimizing 
in them. An even more striking illustration 
is implicit in Ewerhart’s (2000) analysis of 
chess. Ewerhart shows that chess can theo-
retically be solved by applying two rounds 
of iterated elimination of weakly dominated 
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strategies. Thus, by the usual measures, 
chess has an exceedingly simple strategic 
structure. This highlights that much of the 
game’s difficulty is due to its enormous and 
complex strategy spaces.

Although this conundrum could be posed 
with regard to modeling the steady states 
of behavior in games where learning from 
experience with closely analogous games is 
possible, Harstad and Selten pose it with 
regard to modeling strategic thinking in ini-
tial responses.10

Harstad and Selten sketch a behavioral 
model of strategic thinking following Selten, 
Pittnauer, and Hohnisch (2012) and Arad 
and Rubinstein (2012). Players first edit 
their strategy spaces into a few manage-
able dimensions, ignoring other aspects of 
their strategies. Players then follow a think-
ing model such as level-k (Crawford, Costa-
Gomes, and Iriberri 2013) or cognitive 
hierarchy (Camerer, Ho, and Chong 2004), 
but dimension by dimension in the edited 
game. The behavioral model is thus a hybrid 
of boundedly rational and optimization-
based approaches.

Harstad and Selten’s proposal is a prom-
ising approach to the difficult problem of 
modeling people’s strategic thinking in real-
istically complex applications. As they are 
aware, much more work is needed before it 
can be applied with the precision, general-
ity, and portability across games that have 
made Nash equilibrium models so com-
petitive. The most important gap regards 
the principles that govern players’ editing. 
It might be possible to close their model 
by adding a theory of analogies, perhaps 
as in Mullainathan (2000), Gabaix (2011), 
or Samuelson (2001).11 To me it seems no 

10 If it is desired to model steady-state behavior instead 
of strategic thinking, genetic algorithms (Holland 1992), 
which model evolution in complex strategy spaces, might 
yield insights into how people learn in complex games.

11 Jehiel (2005) suggests a way to integrate a model of 
analogies into a general model of strategic behavior.

accident that those theories of analogies all 
blend small measures of bounded rationality 
with large doses of optimization.

6. Conclusion

Harstad and Selten’s article in this forum 
performs a valuable service by highlighting 
the dominance of optimization-based models 
over boundedly rational models in modern 
microeconomics, and questioning whether 
optimization-based models are a better way 
forward than boundedly rational models.

This article responds to Harstad and 
Selten’s proposed reorientation of micro-
economics, focusing on modeling strategic 
behavior. I comment on their examples of 
observed phenomena that appear to resist 
Nash equilibrium explanations, and the 
models of strategic behavior they propose 
as possible partial remedies. I try to put the 
models that Harstad and Selten propose into 
a broader context, to highlight the mostly 
optimization-based work that has already 
been done to address their examples, and to 
identify the challenges that remain and some 
ways forward.

Nash equilibrium dominates the analysis 
of strategic behavior in the social sciences 
because it has important advantages of trac-
tability, precise predictions, generalizabil-
ity, and portability across games (Myerson 
1999). A successful competitor to Nash equi-
librium must give a more accurate account of 
strategic behavior, implicitly or explicitly by 
identifying and modeling systematic devia-
tions from Nash equilibrium, while preserv-
ing most of its advantages.

Of the several challengers to Nash equi-
librium, Harstad and Selten and I discuss, 
level-k and cognitive hierarchy models, my 
sketched model of limited thinking ahead in 
financial markets (section 3), and Harstad 
and Selten’s sketched model of strategic 
thinking in games with large or complex 
strategy spaces (section 5) all maintain the 
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assumption that players optimize. Learning 
direction theory and impulse-balance equi-
librium are optimization-based in the weaker 
sense that they use optimization as the moti-
vation for players’ strategy adjustments with-
out directly imposing it on their strategy 
choices. QRE and cursed equilibrium are 
also optimization-based, while maintaining 
rational expectations in different senses.

It is noteworthy that all of these models, 
including those that Harstad and Selten 
propose and those I propose or refer-
ence in response to their examples, are to 
some degree optimization-based, though 
often with elements of bounded rational-
ity. Although Harstad and Selten might well 
view the predominance of optimization-
based models, even in a forum on bounded 
rationality, as simply proving their point, I 
think it follows from the logic of what we are 
all trying to accomplish, and is therefore not 
a bad thing.

In most settings, there is an enormous 
number of logically possible models, opti-
mization-based or boundedly rational, 
that deviate from neoclassical models. In 
attempting to improve upon neoclassical 
models, it is essential to have some prin-
cipled way of choosing among alternatives. 
Modern behavioral economics and behav-
ioral game theory guide model selection by 
grounding assumptions firmly in experimen-
tal and empirical evidence on preferences, 
judgment, learning, strategic thinking, and 
cognition more generally.  

Of course, the direct characterizations 
of individual behavior on which bound-
edly rational models are built also reflect 
evidence on cognition and behavior. But to 
move forward, those who advocate bounded 
rationality modeling must find comparably 
convincing, evidence-based ways to choose 
among the equally enormous number of pos-
sible nonoptimizing models. This, I think, 
will prove a more difficult task than finding 
empirical support for optimization-based 

deviations from neoclassical models, because 
the benchmark that optimization provides 
seems to aid the evidence-gathering process.

To improve on a neoclassical model, one 
must identify systematic deviations; oth-
erwise one would do better to stick with a 
noisier neoclassical model. Behavioral deci-
sion theory is built on such systematic devia-
tions—the empirical regularity that a great 
majority of people are either “neoclassical” 
or present-biased, very rarely future-biased; 
the regularity that a great majority of people 
are either neoclassical or loss-averse, very 
rarely gain-averse; and so on. These behav-
ioral “biases” would likely have been invis-
ible to researchers without a neoclassical, 
optimization-based benchmark to measure 
them against.

Behavioral game theory is also built on 
systematic deviations. To take an illustra-
tion that is connected with many of the 
issues that Harstad and Selten and I discuss, 
level-k and cognitive hierarchy models of 
strategic thinking rest on the empirical reg-
ularity that people seem unable or unwill-
ing to do the fixed-point or indefinitely 
iterated reasoning that a thinking justifica-
tion for Nash or Bayesian equilibrium often 
requires. The experimental and some field 
evidence suggests that people are therefore 
often driven to use level-k rules that anchor 
beliefs in a simple model of others’ instinc-
tive reactions to the game and then adjust 
them via a small number (k) of iterated best 
responses (Costa-Gomes and Crawford 
2006; Crawford, Costa-Gomes, and Iriberri 
2013, section 3). It seems unlikely that 
researchers would have looked for evidence 
on people’s ability or willingness to do fixed-
point or indefinitely iterated reasoning if it 
did not figure in the theory of Nash equi-
librium. Yet the avoidance of such reason-
ing has important implications for strategic 
behavior, and using a specific behavioral 
model yields insights in settings where Nash 
equilibrium does not describe observed 



525Crawford: Boundedly Rational versus Optimization-Based Models

behavior (Crawford, Costa-Gomes, and 
Iriberri 2013).

For all of these reasons, it seems to me 
that the most promising way forward is to 
learn more about how best to specify opti-
mization-based models, and how to use 
them in applications. That said, Harstad and 
Selten are right to point out that the things 
optimization-based models get wrong leave 
them open to challenge by boundedly ratio-
nal models. The reciprocal challenge for 
strategic modeling is to find evidence-based 
boundedly rational models that have the pre-
cision, generalizability, and portability to be 
worthy competitors to Nash equilibrium.
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