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vincent crawford

Because human decisions are the result of cognitive processes, theories of human
behavior rest at least implicitly on assumptions about cognition. Neuroeconomics
reflects the belief that using evidence on neural correlates of cognition will lead us
to better theories of decisions.

Gul and Pesendorfer (Chapter 1; henceforth GP) argue that, on the contrary,
because economic theory was intended to explain only decisions, it should be tested
only by observing decisions. They view neuroeconomics as a radical departure from
economics in part because neural data concern involuntary, unconscious processes.
Such processes are not decisions, so“our”theories cannot be about them.1 Moreover,
they argue, trying to extend our theories to explain neural data would require
sacrificing important strengths of rational-choice analysis.

This chapter attempts to narrow the gap between these views by discussing
some recent experiments that elicit subjects’ initial responses to games with the
goal of identifying the structure of their strategic thinking—subjects’ attempts to
predict others’ decisions by taking their incentives into account.2 Strategic thinking
can, of course, be studied in experiments that elicit decisions alone, via designs
in which different models of cognition imply different decisions, as in Stahl and
Wilson [1994, 1995; henceforth “SW”], Nagel [1995], and Ho, Camerer, and Weigelt
[1998; henceforth HCW]. But the experiments I discuss study strategic thinking
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more directly, by monitoring and analyzing subjects’ searches for hidden but freely
accessible payoff information, as in Camerer, Johnson, Rymon, and Sen [1993] and
Johnson, Camerer, Sen, and Rymon [2002; henceforth collectively CJ, Costa-Gomes,
Crawford, and Broseta [2001; henceforth CGCB], and Costa-Gomes and Crawford
[2006, 2007; henceforth CGC]. My discussion draws extensively on CGC [2007],
which reports and analyzes the information search data from CGC [2006].

CJ’s, CGCB’s, and CGC’s analyses of search rest on explicit models of cognition
and therefore raise some of the same issues that GP raise about neuroeconomics.
But unlike neural correlates of cognition, search is a voluntary, conscious process.
Rational-choice analysis can therefore be used to describe it, eliminating one source
of resistance to studying cognition. Further, the clarity of the insights into behavior
these analyses yield is a “proof of concept” that shows how much can be gained
by expanding the domain of analysis beyond decisions. Although the analysis of
search data sidesteps some important issues raised by studying neural data, I hope
that considering it will bring us closer to agreement on how, and whether, to do
neuroeconomics.

CJ’s, CGCB’s, and CGC’s analyses suggest a concrete answer to GP’s challenge:
Why study cognition if our goal is only to understand and predict decisions? In
CGC’s decision data, for instance, most subjects deviate systematically from equi-
librium, and their deviations are not well explained by noisy generalizations of
equilibrium such as McKelvey and Palfrey’s [1995] quantal response equilibrium
(“QRE” ). Following SW and CGCB, CGC described their behavior via a struc-
tural nonequilibrium model in which each subject’s decisions are determined, in
all games, by one of a small set of decision rules, or types (as they are called in this
literature). The possible types were restricted to general principles of decision mak-
ing, so that the theory’s predictions would be potentially as portable to new games
as equilibrium predictions. CGC showed that to the extent that subjects’ devia-
tions from equilibrium decisions can be distinguished from randomness, which is
considerable, they are best explained by types that are rational and self-interested
and that understand the game, but that base their beliefs on simplified models of
others’ decisions. In other words, subjects’ deviations from equilibrium had mainly
to do with how they model others’ decisions, not with nonstandard preferences or
irrationality.3 Further, CGC’s analysis of subjects’ searches for hidden payoff infor-
mation shows that extending the domain of the theory to include cognition and
information search as well as conventional decisions allows more powerful tests and
precise identification of subjects’ types, sometimes directly revealing the algorithms
subjects use to process payoff information into decisions and/or distinguishing
intended decisions from errors.4

One could still choose to use subjects’ decisions alone to model their behav-
ior via revealed preference, as in GP’s proposal. This requires a generalization of
their proposal, because as stated, it refers only to individual decision problems.



CAPLIN: “CHAP10” — 2008/1/7 — 15:51 — PAGE 251 — #5

look-ups as the windows of the strategic soul 251

In games, given the lack of a rational-choice model of nonequilibrium beliefs,
revealed preference would need to be augmented by assumptions about players’
beliefs, presumably by assuming that beliefs are in equilibrium.5 However, as CGC’s
and previous experiments make clear, such an approach is unlikely to predict reli-
ably beyond sample: in initial responses to new games, subjects’ simplified models of
others’ decisions would yield different patterns of deviation from equilibrium. Only
by coincidence would those patterns be well described by equilibrium (or QRE)
with subjects’ preferences as inferred from previous games. No empirically serious
model of initial responses to games can ignore cognition, and relegating data other
than conventional decisions to an inspirational role arbitrarily limits the use of a
powerful tool for understanding and predicting decisions and may yield a biased
view of behavior.

This critique highlights an important issue in judging GP’s proposal. GP take
the main problem of economics to be uncovering preferences, with rationality in
the decision-theoretic sense (and in games, equilibrium) assumed. By contrast,
CGC’s and previous experiments on initial responses to games test (and mostly
affirm) rationality, induce preferences (and leave little room for doubts about
risk or social preferences), and focus instead on discovering the general princi-
ples that govern strategic thinking. Although many applications involve games
whose players have enough clear precedents to justify equilibrium via learning,
applications involving novel strategic situations, and where strategic thinking
is the main source of uncertainty, are not uncommon. The costs and bene-
fits of GP’s proposal should be evaluated in the latter applications as well as in
the cases involving individual decisions they use to develop and illustrate their
proposal.

The rest of the chapter is organized as follows. I begin by reviewing CJ’s and
CGCB’s designs and results, with the goal of introducing the key design and model-
ing issues in studying cognition via information search in the contexts in which they
first emerged. I then review CGC’s [2006] use of decision data to identify subjects’
types and the evidence that the main source of their deviations from equilibrium is
cognitive, not preference based. Next I introduce CGCB’s and CGC’s [2006, 2007]
model of cognition and search and use CGC’s search data to illustrate its use in
interpreting search data. Following this, I address questions raised by CGC’s [2006]
analysis of decisions that seem likely to continue to resist analysis via decisions alone,
but that search analysis might answer. Last, I outline a deeper explanation of the
assumptions that underlie CGCB’s and CGC’s model of cognition and search, which
views search strategies as rational decisions under plausible assumptions about the
benefits and costs of search and constraints on working memory.6 Throughout the
chapter, I assume that subjects are rational, risk-neutral decision makers, but I allow
“social” preferences that reflect altruism, spite, fairness, or reciprocity when they
seem important, as indicated below.
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Early Experiments That Studied
Cognition in Games by Monitoring

Information Search
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section I review CJ’s and CGCB’s experimental designs and results. Their
and CGC’s experiments randomly and anonymously paired subjects to play series
of different but related two-person games, with different partners each play and
no feedback between plays. The goal was to suppress learning and repeated-game
effects in order to elicit subjects’ responses, game by game, to each game as if played
in isolation, and so to reveal strategic thinking as clearly as possible.7

The structure of the games was publicly announced except for hidden, varying
payoff parameters, to which subjects were given free access, game by game, one
at a time, before making their decisions.8 With low search costs, free access made
the entire structure effectively public knowledge, allowing the results to be used to
test theories of behavior in complete-information versions of the games.9 Varying
the payoff parameters makes it impossible for subjects to remember the current
game’s parameters from previous plays and so gives them incentives to search for
the information their decision rules require. It also allows stronger separation of
the decisions implied by equilibrium and leading alternative decision rules than in
designs such as Nagel’s or HCW’s, in which subjects play the same game over and
over again.

Camerer, Johnson, Rymon, and Sen’s Alternating-Offers
Bargaining Experiments

CJ [1993, 2002] pioneered the use of search for hidden payoff parameters to study
cognition in games, eliciting subjects’ initial responses to series of three-period
alternating-offers bargaining games.10 Previous experiments yielded large, system-
atic deviations from the subgame-perfect equilibrium offer and acceptance decisions
when players have pecuniary preferences, such as those observed in ultimatum
experiments. The deviations were attributed to cognitive limitations preventing
subjects from doing the required backward induction, or believing that their part-
ners would; to subjects having social preferences that modify their pecuniary payoffs;
or both. Most researchers now agree that both factors are important, but in the early
1990s this was less clear.

CJ addressed the cognitive aspect of this question more directly by creating
a design to study cognition via search and by deriving cognitive implications of
alternative models of behavior and using them to analyze the search data. Within
a publicly announced structure, they presented each bargaining game to subjects
in extensive form as in figure 10.1, as a sequence of three pies and the associated
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Figure .. Display for Johnson, Camerer, Sen, and Rymon’s [] alternating-offers
bargaining experiments. From Johnson, Camerer, Sen, and Rymon [, figure 1].

offer and acceptance decisions. Discounting was simulated by shrinking the pies
over time, from roughly $5.00 in round 1 to roughly $2.50 in round 2 and $1.25 in
round 3, but the pies were varied slightly from game to game, to preserve subjects’
incentives to search.

The pies were normally hidden in “boxes” as for rounds 2 and 3 in figure 10.1,
but subjects were allowed to look them up as often as desired, one at a time. In
figure 10.1 the subject has opened the box to look up the $5.00 round-1 pie.11

Subjects’ knowledge of the structure of the games and their free access to the pies
allowed them to evaluate their own and their partners’ pecuniary payoffs for any
combination of offer and acceptance decisions.

If free access to the pies induces public knowledge of pecuniary payoffs, and if it
is also public knowledge that subjects maximize their own expected pecuniary pay-
offs, then the results can be used to test theories of behavior in complete-information
versions of the game, which has a unique subgame-perfect equilibrium whose offer
and acceptance decisions are easily computed by backward induction. Even if players
have privately observed social preferences, the incomplete-information version of
the game has a generically unique sequential equilibrium whose strategies are easily
computed by backward induction. In each case, the subgame-perfect or sequen-
tial equilibrium initial offer depends on both the second- and third-round pies, so
the search requirements of equilibrium are mostly independent of preferences.12

From now on I use “subgame-perfect equilibrium” to include pecuniary payoff
maximization.

In CJ’s baseline treatment, in which subjects were rewarded according to their
payoffs playing the games against each other, subjects’ decisions were far from
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the subgame-perfect equilibrium, replicating the results of previous studies and
suggesting that requiring subjects to look up the pies did not significantly affect
their decisions.

CJ took the analysis a step further by using a model of cognition and search
to analyze the search data. They first noted that 10% of their baseline subjects
never looked at the third-round pie and 19% never looked at the second-round pie.
Thus, even if those subjects’ decisions conform to equilibrium (given some speci-
fication of preferences, with or without a social component), they cannot possibly
be making equilibrium decisions for the reasons the theory assumes. In a nonmag-
ical world, their compliance with equilibrium cannot be expected to persist beyond
sample.

This observation motivates a basic general restriction on how cognition drives
search, which—anticipating CGCB’s term for it—I call “occurrence” : If a subject’s
decision rule depends on a piece of hidden payoff information, then that piece must
appear in her/his look-up sequence. Occurrence, as a cognitive restriction, goes
against GP’s proposal, but it is still uncontroversial enough to be widely accepted
by theorists. In this case at least, the epistemic foundations of equilibrium have
implications for the interpretation of decisions it is hard to justify ignoring.

If occurrence were the whole story, there would be little to gain from studying
cognition via search. Because CJ’s subjects who never looked at the second- or
third-round pies tended to make decisions far from subgame-perfect equilibrium,
there is little risk of misinterpreting them; even so, occurrence helps by ruling out
explanations in which subjects’ decisions are in sequential equilibrium for extreme
distributions of social preferences. Inferences based on occurrence are sometimes
useful in CGCB’s and, as we will see, CGC’s analyses as well, but the full power of
monitoring search depends on analyzing the order, and perhaps the duration, of
subjects’ look-ups.

CJ’s analysis of order and duration is based on the argument that in their design
the backward induction that is the easiest way to compute sequential or subgame-
perfect equilibrium decisions has a characteristic search pattern, in which subjects
first look up the third-round pie, then the second-round pie (possibly rechecking
the third), and so on, with most transitions from adjacent later to earlier round
pies. Their argument rests on the empirical generalization that most subjects use
the interface as a computational aid, making the comparisons or other operations
on which their decisions are based via adjacent look-ups and relying on repeated
look-ups rather than memory. This observation motivates another basic restriction,
which—again anticipating CGCB’s term—I call“adjacency”: the hidden parameters
associated with the simplest of the operations on which a subject’s decision rule
depends will appear as adjacent look-ups in his look-up sequence.13

Adjacency, unlike occurrence, requires assumptions that not all theorists find
compelling. It is theoretically possible for a subject to scan the pies in any order,
memorize them, and then “go into his brain” to figure out what to do, in which
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case the order and duration of his look-ups will reveal nothing about cognition.
(Here, brain imaging has a potential advantage over monitoring search because
involuntary correlates of such a subject’s thinking may still be observable.)

Fortunately, subjects’ searches in designs such as CJ’s, CGCB’s, and CGC’s
exhibit strong regularities that make adjacency a reasonable working hypothesis.
When challenged, CJ defended their adjacency-based characterization of backward-
induction search by running a “robot” treatment with the same games as their
baseline, in which subjects were told that they were playing against a computer that
simulated a rational, self-interested player. This was followed after four periods by
a “robot/trained subjects” treatment in which the same subjects received training
in backward induction (but not search) and continued to play against robots as
before. The latter subjects’ search patterns were close to the backward-induction
pattern [CJ 2002, figure 6]. Although the shift in search patterns was small prior to
training, these results provide support for CJ’s characterization, adjacency, and, of
course, occurrence. As illustrated below, further (and sometimes stronger) support
for adjacency is provided by CGCB’s trained subjects, CGC’s robot/trained sub-
jects with high compliance with their assigned type’s guesses, and CGC’s baseline
subjects with high compliance with their apparent rule’s guesses (see tables 10.2 and
10.3 below for more details).

CJ’s robot subjects’ offer and acceptance decisions were shifted away from
the baseline patterns toward subgame-perfect equilibrium, but were still far from
it. Their robot/trained subjects’ decisions were approximately in subgame-perfect
equilibrium [CJ 2002, table II]. These shifts can be attributed to the robot treatment’s
“turning off” social preferences, assuming subjects don’t think of experimenters
or their funding agencies as “people” ; the robot treatment’s eliminating strategic
uncertainty; and/or cognition. CJ suggest that the deviations from equilibrium in
the baseline are due to a combination of social preferences and cognition, with both
important.

Returning to cognition and search, CJ’s baseline subjects’ searches were nearly
the opposite of the searches of robot/trained subjects and CJ’s characterization of
backward induction search: baseline subjects spent 60–75% of the time looking
up the first-round pie and only 20–30% looking up the second-round pie and 5–
10% looking up the third-round pie, with most transitions forward, from earlier
to later rounds. Importantly, subjects who looked up the second- and third-round
pies more often, or had more backward transitions, also had a weak tendency to
make, or accept, offers closer to the subgame-perfect equilibrium [CJ 2002, figures 4

and 5]. Thus, CJ’s baseline subjects’ deviations from backward induction search
were correlated with their deviations from subgame-perfect equilibrium decisions,
in the direction that an epistemic, procedural view of subjects’ decision making
would suggest. Although the correlation is weak, this result is an exciting first
indication that subjects’ search patterns might reveal something about their strategic
thinking.
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Figure .. Display for a  ×  Game in Costa-Gomes, Crawford, and Broseta’s []
matrix-game experiments. From Costa-Gomes, Crawford, and Broseta [, figure 1].

Costa-Gomes, Crawford, and Broseta’s
Matrix-Game Experiments

CGCB adapted CJ’s methods, building on SW’s [1994, 1995] designs, to study cogni-
tion via search in a series of eighteen 2×2, 2×3, or 2×4 matrix games with unique
pure-strategy equilibria, some of which can be identified by iterated dominance and
some without pure-strategy dominance. The games were designed to turn off social
preferences, and CGCB’s results show little evidence of them. I therefore assume
that CGCB’s subjects maximized their own expected pecuniary payoffs.

Within a publicly announced structure, CGCB presented each game to subjects
via MouseLab, as a matrix with players’ payoffs spatially separated to ease cognition
and clarify inferences from search. The payoffs were hidden, but subjects were
allowed to look them up as often as desired. In the 2 × 2 game in figure 10.2, the
subject, framed as the row player, has opened the box with his own payoff, 42, when
he chooses decision # and his partner chooses @.14 If free access induces public
knowledge of the payoffs and it is public knowledge that subjects maximize their
expectations, then the structure is public knowledge and the results can be used to
test theories of behavior in complete-information versions of the games.

Although there are close connections between epistemic analyses of equilibrium
decisions in extensive- and normal-form games, their cognitive foundations are very
different. The different presentation of payoff information in CGCB’s matrix games
allows them to explore aspects of strategic thinking that do not come into play in CJ’s
bargaining games. Moreover, although CGCB’s games have small strategy spaces,
their sequence of 18 games creates a large space of possible decision histories, which
allows their design to separate the implications of leading normal-form theories of
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decisions more strongly than in previous designs in which subjects play series of
different matrix games with small strategy spaces, as in SW [1994, 1995], or in which
they repeatedly play the same normal-form game with large strategy spaces, as in
Nagel and HCW.

Finally, and most important here, the 8–16 hidden payoffs in CGCB’s design
create a large space of possible information searches, which allows the design to
separate leading theories’ implications for search as well as decisions. In CJ’s design,
a subject’s searches can vary in only one important dimension: backward or forward
in the pies. Measuring a subject’s searches in this dimension can convey a limited
amount of information about his strategic thinking—though this information can
be quite revealing. In CGCB’s games, by contrast, a subject’s searches can vary in
three important dimensions: up-down (or not) in his own payoffs, left-right (or
not) in his partner’s payoffs, and the frequency of transitions from his own to his
partner’s payoffs. With the subject framed as the row player in figure 10.2, it is clear
that, assuming adjacency, the first of these dimensions is naturally associated with
decision-theoretic rationality, the second with using others’ incentives to predict
their decisions, and the third with interpersonal payoff comparisons. It would be
difficult to imagine an empirically successful theory of initial responses to this kind
of game in which those three traits were not independently variable and important.
Only a design with a search space as rich as CGCB’s can separate the implications of
alternative theories for both search and decisions strongly enough to identify their
relationships.

In addition to a baseline treatment that paired subjects to play the 18 games
with other subjects, CGCB conducted a trained subjects treatment, identical to the
baseline except that each subject was trained and rewarded for identifying equilib-
rium decisions. This treatment confirms that subjects trained and motivated to find
equilibrium guesses could do so, and provides data on equilibrium search behavior
that are helpful in evaluating CGCB’s model of cognition and search.

CGCB’s games have unique equilibria that are easily identified by direct check-
ing, best-response dynamics (which always converges in their games), or (in most
of their games) iterated pure-strategy dominance. Yet, as in previous studies of
initial responses to matrix games, CGCB found systematic patterns of deviation
from equilibrium, with high equilibrium compliance in games solvable by one or
two rounds of iterated dominance but much lower compliance in games solvable
by three rounds or the circular logic of equilibrium without dominance [CGCB,
table II]. These patterns are not well explained by noisy generalizations of equilib-
rium such as QRE. CGCB explained them via a structural nonequilibrium model
of initial responses in the spirit of SW’s, Nagel’s, and HCW’s models, in which
each subject’s decisions are determined, in all games, by one of a small set of types,
which determines his decisions, with error, in each game. The possible types were
restricted to general principles of decision making, so that the theory’s predictions
would be potentially as portable to new games as equilibrium predictions.
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The leading types in CGCB’s analysis include L1 (for level 1, as named by SW),
called naive in CGCB and L1 here from now on, which best responds to a uniform
random L0 “anchoring type” ; L2, which best responds to L1; equilibrium, which
makes its equilibrium decision; D1 (dominance 1), which does one round of deletion
of dominated decisions and then best responds to a uniform prior over the other’s
remaining decisions; D2, which does two rounds of iterated deletion and then best
responds to a uniform prior over the other’s remaining decisions; and sophisti-
cated, which best responds to the probabilities of other’s decisions, as estimated
from subjects’ observed frequencies, included to test whether subjects have prior
understanding of others’ decisions that transcends simple rules.15 Because CGCB
gave first priority to separating strategic from nonstrategic types, L1’s decisions
were perfectly confounded with those of a maximax type CGCB called optimistic.
CGCB’s econometric analysis of decisions alone estimated high frequencies of L1,
L2, and D1. Because those types mimic equilibrium in simple games but deviate
systematically in more complex games, this estimated type distribution allows the
model to explain the aggregate relationship between complexity and equilibrium
compliance.

Turning to CGCB’s analysis of search, the main difficulty was imposing enough
structure on the enormous spaces of possible decision and search histories to
describe subjects’ behavior in a comprehensible way. Although CJ identified a
correlation (and a “right” direction for it) between subjects’ decision and search
deviations from subgame-perfect equilibrium in their alternating-offers bargaining
games, their analysis does not show how to define or identify such a relationship in
the higher dimensional spaces of possible decisions and searches created by CGCB’s
design.

CGCB addressed this issue by using the types as models of cognition and search
as well as decisions. They took an explicitly procedural view of decision making,
in which a subject’s type and the associated cognitive process determine his search,
and his type and search then determine his decision, game by game.16 They char-
acterized the link between cognition and search via the occurrence and adjacency
restrictions described above, which generalize the ideas behind CJ’s characterization
of backward-induction search to a much wider class of games, patterns of hidden
payoff information, and types. With these restrictions on cognition and search, the
types provide a kind of basis for the spaces of possible decision and search histories,
imposing enough structure to make it meaningful to ask whether subjects’ decisions
and searches are related in a coherent way.

Incorporating search into the econometric analysis yields a somewhat different
view of subjects’ deviations from equilibrium than previous analyses of decisions.
It shifts CGCB’s estimated type distribution toward L1 at the expense of optimistic
and D1, leaving L1 and L2 as the only empirically important types. Part of this
shift occurs because L1’s searches, unlike L1’s decisions, are clearly separated from
optimistic’s, and L1’s search implications explain more of the variation in subjects’
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searches and decisions than optimistic’s, which are too unrestrictive to be useful.
Another part of the shift occurs because L1’s search implications explain more
of the variation in subjects’ searches and decisions than D1’s, which are much
more restrictive than optimistic’s but too weakly correlated with subjects’ observed
decisions. D1 loses frequency to L2, as well, even though their decisions are only
weakly separated in CGCB’s design, because L2’s search implications explain more
of the variation in subjects’ searches and decisions. Thus, analyzing search not only
yields more precise estimates of subjects’ types, but also can correct distortions in
type estimates based on decisions alone that stem from a design’s failure to fully
separate types.

These shifts illustrate an important principle. Because the number of experi-
mental treatments and subjects that can be run is limited, data are scarce relative to
the plausible theories of behavior, and trade-offs in discriminating among theories
are inevitable. Gathering search (or other nondecision data) as well as decision
data can make such trade-offs less stringent. Although gathering and analyz-
ing nondecision data have their own costs, the optimal amount to gather is not
always zero.

Overall, CGCB’s analysis of decisions and search gives a strikingly simple view of
behavior, with L1 and L2 making up 90% of the population. This type distribution
and the clear relationships between subjects’ cognition as revealed by search and
their decisions support my claim that their deviations from equilibrium in these
games are due mainly to how they think about others.

Costa-Gomes and Crawford’s
Two-Person Guessing Game

Experiments
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CGC [2006, 2007] adapted CGCB’s methods to elicit subjects’ initial responses to a
series of 16 dominance-solvable two-person guessing games, cousins of Nagel’s and
HCW’s n-person guessing games. In this section, I review CGC’s design and their
results for decisions, which provide even stronger evidence that the deviations from
equilibrium in initial responses to games are due mainly to strategic thinking. In
the following section, I review CGC’s analysis of cognition and search.

CGC’s Design

In CGC’s games, newly designed for the purpose of studying cognition via decisions
and search, two players make simultaneous guesses. Each player has his own lower
and upper limit, both strictly positive, as in some of HCW’s games, to ensure finite
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dominance solvability. Unlike in previous designs, however, players are not required
to guess between their limits: to enhance the separation of types via search, guesses
outside the limits are automatically adjusted up to the lower limit or down to the
upper limit as necessary. Thus, the only thing about a guess that affects the outcome
is the adjusted guess it leads to. Each player also has his own target, and (unlike
in Nagel’s and HCW’s “winner-take-all” games) his payoff is higher, the closer his
adjusted guess is to his target times his partner’s adjusted guess.

In the most important departure from previous guessing designs, the targets
and limits vary independently across players and games, with the targets either both
less than one, both greater than one, or (unlike in previous designs) mixed.17 The
resulting games are asymmetric and dominance solvable in 3 to 52 rounds, with
essentially unique equilibria determined (but not always directly) by players’ lower
limits when the product of the targets is less than one or their upper limits when
the product is greater than one. In game 13 in figures 10.4–10.7, for instance, player i
has limits 300 and 500 and target 0.7, and player j has limits 100 and 900 and target
1.5 [CGC, table 3]. The product of targets is 1.05 > 1, player i’s equilibrium guess is
at his upper limit 500, and player j ’s equilibrium guess is at his best response to 500

of 750, below his upper limit.
From the point of view of studying decisions, CGC’s design combines the main

strengths of SW’s and CGCB’s designs, with subjects playing sequences of different
but related games, and the main strengths of Nagel’s and HCW’s designs, games
with very large strategy spaces. This combination greatly enhances the separation
of equilibrium and other leading types’ decisions.

CGC’s games explore different aspects of strategic thinking than CJ’s, CGCB’s,
or Nagel’s and HCW’s games. Of particular note is the subtle way in which the
location of the equilibrium is determined by the product of players’ targets, which
adds greatly to the power of the design to distinguish equilibrium from boundedly
rational strategic thinking. The only important difference between some of CGC’s
games is whether the product of targets is slightly greater or slightly less than one.
Equilibrium responds very strongly to this difference, but low-level Lk, or Dk, types,
whose guesses vary continuously with the targets, respond much less. Also note-
worthy is the strong separation of Lk’s, and Dk−1’s decisions, which are perfectly
confounded in most of Nagel’s and HCW’s treatments and only weakly separated
in their other treatments and in CGCB’s design.

In addition to a baseline treatment that paired subjects to play the 16 games
with other subjects, CGC conducted six different robot/trained subjects treatments,
identical to the baseline except that each subject was trained and rewarded as a
type: L1, L2, L3, D1, D2, or equilibrium. These treatments assess the types’ cog-
nitive demands, confirming, for instance, that subjects trained and motivated to
make equilibrium guesses could do so; and provide data on the search behavior of
subjects of known types that are helpful in evaluating the model of cognition and
search.
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Figure .. Display for Costa-Gomes and Crawford’s [, ] two-person guessing
games. From Costa-Gomes and Crawford [, figure 6].

In all treatments, within a publicly announced structure, CGC presented each
game to subjects as an array of targets and limits, with those payoff parameters
hidden but subjects allowed to look them up as often as desired, one at a time, using
MouseLab’s click option as in CGCB. In figure 10.3, the subject has opened the box
to look up his own (“Your” ) lower limit, 100.

CGC’s Analysis of Decisions

The strong separation of types’ implications for guesses [CGC 2006, figure 5] and
the clarity of CGC’s baseline subjects’ responses allow many of their types to be
confidently identified from guesses alone. Of 88 subjects, 43 have clear “fingerprints”
in that they made guesses that complied exactly (within 0.5) with one type’s guesses
in 7–16 of the games (20 L1, 12 L2, 3 L3, and 8 equilibrium).18 figure 10.4 [CGC
2006, figure 2] shows the fingerprints of the 12 whose apparent types were L2. Of
their 192 (= 12 × 16) guesses, 138 (72%) were exact, which means they tracked the
complex pattern of the games’ L2 guesses with a remarkable degree of accuracy.
I stress that these baseline subjects, unlike the robot/trained subjects, were taught
nothing about strategic thinking: The models of others’ guesses implicit in their
apparent types were self-generated.

Given how strongly CGC’s design separates types’ guesses, and that guesses
could take 200–800 different rounded values, these 43 subjects’ compliance is far
higher than could occur by chance. Further, because the types specify precise, well-
separated guess sequences in a very large space of possibilities, their compliance
rules out alternative interpretations of their guesses.19 In particular, because the
types build in risk-neutral, self-interested rationality and perfect models of the
game, the deviations from equilibrium of the 35 whose apparent types are L1, L2,
or L3 can be attributed to nonequilibrium beliefs, not irrationality, risk aversion,
altruism, spite, or confusion.
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Figure .. “Fingerprints” of 12 apparent level-2 (L2) baseline subjects. Only deviations
from L2’s guesses are shown 138 (72%) of these subjects’  guesses were exact L2

guesses. From Costa-Gomes and Crawford [, figure ].

CGC’s other 45 subjects’ types are less apparent from their guesses, but L1,
L2, and hybrids of L3 and/or equilibrium are still the only types that show up
in econometric estimates.20 The fact that most subjects follow low-level Lk types,
which mimic equilibrium in games that are dominance solvable in small numbers
of rounds but deviate systematically in some more complex games also explains
the inverse relationship between strategic complexity and equilibrium compliance
observed in CGCB and previous experiments [CGCB, table II].

CGC’s results for decisions provide very strong evidence that subjects’deviations
from equilibrium in initial responses to games are due mainly to nonequilibrium
strategic thinking, not preferences or irrationality. As noted in the introduction to
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this chapter, one could still use subjects’ guesses alone to model their behavior via
revealed preference, but such a model would misattribute the cause of the deviations
and so would predict well beyond sample only by coincidence.

Costa-Gomes and Crawford’s Analysis
of Cognition and Search

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CGC’s [2006, section II.E; 2007] model of cognition and search refines CGCB’s
model, adapting their occurrence and adjacency restrictions to give a tractable
characterization of each type’s search requirements. With regard to search, CGC’s
design combines the strengths of CJ’s presentation of games as functions of a small
number of hidden parameters within an intuitive common structure, which allows
subjects to focus on predicting others’ responses without getting lost in the details
of the structure; and CGCB’s high-dimensional search spaces, which make search
more informative and allow greater separation via search. CGC’s design strongly and
independently separates the implications of leading types for search and decisions,
which makes it easier to identify relationships between them and multiplies the
power of the design. Finally, it makes each type’s implications search independent
of the game, which simplifies the analysis.21

This section begins with a discussion of the issues that arise in specifying a model
of cognition and search. It then presents CGC’s leading types’ search requirements
and illustrates how they are derived. Finally, it presents sample search data for some
of CGC’s robot/trained and baseline subjects. As these data will be used to show,
CGC’s design and characterization of types’ search implications make it possible to
read the algorithms that a large minority of subjects used to choose their guesses
directly from their search sequences. Other subjects’ cognition is not apparent from
their searches, but CGC’s [2006] measures of their compliance with leading types’
search implications have considerable discriminatory power in the econometric
analysis, often allowing those subjects’ types to be reliably estimated from searches
alone, without regard to guesses.

Specification Issues

Studying cognition via search requires a model of how cognition determines sub-
jects’ look-up sequences. Previous articles have taken quite different positions on
this issue. CJ’s analysis gave roughly equal weight to look-up durations and total
numbers of look-ups (“acquisitions” ) of each pie and to the numbers of transi-
tions between look-ups of adjacent pies. Rubinstein’s [2007] analysis considered
only durations. Gabaix et al. [2006] focused on total numbers of look-ups rather
than durations, but also considered some aspects of the order of look-ups. CGCB’s
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and CGC’s analyses focused instead on which look-ups subjects make, in the sense
of occurrence, and on the order of look-ups in the sense of adjacency, relegating
durations to a secondary role.

On another dimension, CJ’s and Rubinstein’s analyses and most of Gabaix et
al.’s aggregated search data across subjects and over time, while CGCB and CGC
took the position that cognition and search are so heterogeneous that it is essential
to study them at the individual level.

CGCB’s and CGC’s focus on occurrence and adjacency follows naturally from
a procedural view of decision making and the empirical tendency, now confirmed
by a large body of MouseLab data, of most subjects to perform the operations
on hidden parameters on which their decisions are based via adjacent look-ups,
relying on repeated look-ups rather than memory. In this view—perhaps too
extreme—duration is unimportant because the information content of a look-
up is independent of its length as long as it suffices for cognition; look-ups too
short for comprehension (< 0.18 sec) were filtered out in the analyses discussed
here. Although duration might still be correlated with time spent thinking about a
particular parameter, which might be important in a more refined model of cogni-
tion, search, and decisions, a procedural view does not suggest such a correlation,
and CGCB’s and CGC’s subjects sometimes left boxes open for long periods while
staring out the window, and so on which would weaken any such correlations.23

Total numbers of look-ups are important but are captured indirectly through CGC’s
notion of search compliance.

CGC’s Model of Cognition and Search

In CGC’s model of cognition and search, each leading type implies a generically
unique, pure adjusted guess in each game, which maximizes its expected payoff
given the beliefs regarding others’ guesses implicit in the type. (The leading types all
specify best responses to some beliefs.) Each type is thereby naturally associated with
algorithms that process hidden payoff information into decisions, which CGC used
as models of cognition. Given the need to go beyond occurrence and the lack of an
accepted theory of cognition and search, the goal was to add enough restrictions to
extract the signal from subjects’ search sequences but not so many that they distort
its meaning. CGC derived types’ minimal search implications under conservative
assumptions, based on occurrence and adjacency, about how cognition determines
search [CGC 2006, section I.B].

The leading role in these derivations is played by a type’s ideal guesses, those
that would be optimal given the type’s beliefs, ignoring its limits. Given the quasi
concavity of CGC’s payoff functions, a subject can enter his ideal guess and know
that his adjusted guess will be optimal without checking his own limits. Thus, a
type’s ideal guess not only determines its adjusted guess and the resulting outcome
but also determines the type’s minimal search implications.
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Table .. Types’ Ideal Guesses and Minimal Search Sequences [Costa-Gomes
and Crawford, ].

Type Ideal Guess

L1 pi[aj + bj ]/2 {[aj , bj ], pi} ≡ {[4, 6], 2}
L2 piR(aj ,bj ; pj [ai + bi]/2) {([ai , bi], pj), aj , bj , pi}≡ {([1, 3], 5),

4, 6, 2}
L3 piR(aj ,bj ; pjR(ai ,bi ; pi[aj + bj ]/2)) {([aj , bj ], pi), ai , bi , pj} ≡ {([4, 6], 2),

1, 3, 5}
D1 pi(max{aj , pjai}+ min{pjbi , bj})/2 {(aj , [pj , ai]), (bj , [pj , bi]), pi} ≡ {(4, [5,

1]), (6, [5, 3]), 2}
D2 pi[max{max{aj , pjai}, pj max{ai ,

piaj}} + min{pj min{pibj , bi},
min{pjbi , bj}}]/2

{(ai , [pi , aj ]), (bi , [p,i bj ]), (aj , [pj , ai]),
(bj , [pj , bi]), pj , pi} ≡ {(1, [2, 4]),
(3, [2, 6]), (4, [5, 1]), (6, [5, 3]), 5, 2}

Equilibrium piaj if pipj < 1 or pibj if pipj > 1 {[pi ,pj],aj} ≡ {[2, 5], 4} if pipj < 1 or
{[pi ,pj],bj} ≡ {[2, 5], 6} if pipj > 1

Sophisticated (No closed-form expression, but
CGC took sophisticated ’s search
implications to be the same as D2’s]

{(ai ,[pi ,aj]),(bi ,[pi , bj]), (aj ,[pj ,ai]),
(bj ,[pj ,bi]),pj , pi} ≡ {(1,[2,4]),
(3,[2,6]),(4,[5,1]), (6,[5,3]),5,2}

Note: R(a, b; x) ≡ min{b, max{a, x}} ≡ max{a, min{b, x}} denotes x ’s adjusted guess with limits a and b.

The left-hand side of table 10.1 [CGC 2006, table 4] lists the formulas for the
leading types’ ideal guesses in CGC’s games, which are easily derived as in CGC
[2006, section I.B], using CGC’s notation for the limits and targets, ai for the player’s
own lower limit, bi for the player’s own upper limit, and pi for the player’s own lower
target, with analogous notation using superscript j for the player’s partner’s limits
and target. The right-hand side of table 10.1 lists the leading types’ minimal search
implications expressed as sequences of parameter look-ups, first in CGC’s notation
and then in terms of the associated box numbers (1 for ai , 2 for pi , 3 for bi , 4 for
aj , 5 for pj , 6 for bj) in which MouseLab records subjects’ look-up sequences in our
design. Table 10.1 shows look-ups in the order that seems most natural, but that
order is not required in the analysis.24

The search implications are derived as follows. Evaluating a formula for a type’s
ideal guess requires a series of arithmetic operations, some of which—the inner-
most operations, whose parameters are in square brackets in the right-hand side
of table 10.1, such as [aj , bj ] for L1—are basic in that they logically precede other
operations. Like CGCB, CGC assumed that subjects perform basic operations via
adjacent look-ups, remembering their results, and otherwise relying on repeated
look-ups rather than memory. Basic operations are then represented by adjacent
look-ups that can appear in either order but cannot be separated by other look-ups.
The look-ups of other operations can appear in any order and are (conservatively)
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allowed to be separated. In table 10.1 such operations are represented by look-ups
within braces or parentheses.25

An L1 player i, for instance, best responds to the belief that player j ’s guess is uni-
formly distributed between his limits. This yields a guess for j that is never adjusted,
and that averages [aj + bj ]/2. CGC [2006, section I.B] shows via a certainty equiva-
lence property of CGC’s games (observation 2) that L1’s ideal guess is pi[aj + bj ]/2,
which will be automatically adjusted, if necessary, to R(ai , bi ; pi[aj + bj ]/2) ≡
min{bi ,max{ai , pi[aj + bj ]/2}}. The only basic operation is [aj + bj ]. An L1

player i therefore has minimal look-up sequence: {[aj , bj ] (to compute j ’s aver-
age guess), pi (to identify i’s ideal guess)= {[4, 6], 2}, of which [4, 6] cannot be
separated.

An L2 player i best responds to the belief that player j is L1, taking the adjustment
of j ’s guess into account. An L1 player j ’s adjusted guess is R(aj , bj ; pj [ai + bi]/2), so
an L2 player i’s ideal guess is piR(aj , bj ; pj [ai + bi]/2), which will be automatically
adjusted to R(ai , bi ; piR(aj , bj ; pj [ai + bi]/2)). An L2 player i therefore has look-up
sequence {([ai , bi], pj) (to predict j ’s L1 ideal guess), aj , bj (to predict j ’s L1 adjusted
guess), pi (to identify i’s ideal guess)} = {([1, 3], 5), 4, 6, 2}.26 This illustrates the fact
that CGC’s design separates the search implications of different types as strongly as
it separates their implications for guesses [CGC 2006, figure 5].

In CGC’s [2006] econometric analysis of search, not discussed here, search
compliance for a given subject, type, and game is measured by the density of the
type’s complete minimal search sequence in the subject’s look-up sequence for
the game, allowing for the heterogeneity of search behavior.27 CGC’s measure is
a significant advance on CGCB’s measure, which is based on the percentages of a
type’s occurrence and adjacency requirements satisfied by the entire sequence.

Sample Search Data

Table 10.2 gives a sample of the information search data for CGC’s robot/trained
subjects, and table 10.3 gives an analogous sample for baseline subjects of various
assigned or apparent types (see table 10.1 for the search implication for each type).
Table 10.4 shows how the numbers in tables 10.2 and 10.3 are used to represent
different MouseLab boxes. In each case, the subjects were chosen for high exact
compliance with their types’ guesses, not for compliance with any theory of search;
subjects’ frequencies of exact guesses are in parentheses after their types. Only the
orders of look-ups are shown, and only from the first two or three games, but those
games are representative.

Recalling that the theory allows any order of look-ups grouped within brack-
ets, braces, or parentheses, the searches of high-guess-compliance robot/trained
or baseline subjects conform closely to CGC’s theory, with a subject’s assigned
or apparent type’s minimal sequence unusually dense in his observed sequence.28

The only exception is the equilibrium subjects, who search far longer and in more
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Table .. Selected Robot/Trained Subjects’ Information Searches.

Subject Type/Alta Game 1b Game 2b

904 L1 (16) 1234564623 1234564321
1716 L1 (16) 14646213464623 46246213
1807 L1 (16) 462513 46213225
1607 L2 (16) 1354621313 1354613546213
1811 L2 (16) 1344465213*46 13465312564231356252
2008 L2 (16) 1113131313135423 131313566622333
1001 L3 (16) 46213521364*24623152 4621356425622231462562*62
1412 L3 (16) 1462315646231 462462546231546231

805 D1 (16) 1543564232132642 51453561536423
1601 D1 (16) 25451436231 5146536213

804 D1 (3)/L2 (16) 1543465213 5151353654623
1110 D2 (14) 1354642646*313 135134642163451463211136

414262135362*146546
1202 D2 (15) 246466135464641321342462

4226461246255*1224654646
123645132462426262241356
462*135242424661356462

704 DEq (16) 123456363256565365626365
6526514522626526

123456525123652625635256
262365456

1205 Eq (16) 1234564246525625256352*465 123456244565565263212554
14666265425144526*31

1408 Eq (15) 12312345644563213211 1234564561236435241
2002 Eq (16) 142536125365253616361454

61345121345263
1436253614251425236256563

a Shows the assigned type of each subject and, in the case of subject 804, an alternative assignment, as
well. The subjects’ frequencies of making their assigned types’ (and, where relevant, alternatives types) exact
guesses are in parentheses after the assigned type.
b An asterisk in a subject’s look-up sequence means that the subject entered a guess without immediately
confirming it.

complex patterns than CGC’s theory suggests, perhaps because its minimal equilib-
rium search requirements allow more luck than these subjects enjoyed.29 Baseline
L1, L2, and perhaps L3 and equilibrium subjects’ searches are very close to those of
their robot/trained counterparts, suggesting that (unlike in CJ) training had little
effect on their search behavior.30 Perhaps equilibrium search in normal-form games
is less unnatural than backward-induction search in CJ’s extensive-form games. For
the simpler types L1, L2, and perhaps L3, the algorithms that subjects use to identify
their types’ guesses can be directly read from their searches.

CGC’s [2006, section II.E, table 7] econometric analysis shows that such infer-
ences are usually consistent with estimates based on guesses alone, and that search
compliance as measured here is also useful in identifying the types of subjects whose
types are not apparent from their searches. For some subjects, econometric esti-
mates based on guesses and search together resolve tensions between guesses-only
and search-only estimates in favor of a type other than the guesses-only estimate.
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Table .. Selected Baseline Subjects’ Information Searches.

Subject Type/Alta Game 1b Game 2b Game 3b

101 L1 (15) 146246213 46213 462*46
118 L1 (15) 24613462624132*135 2462622131 246242466413*426
413 L1 (14) 1234565456123463* 12356462213* 264231
108 L2 (13) 135642 1356423 1356453
206 L2 (15) 533146213 53146231 5351642231
309 L2 (16) 1352 1352631526*2*3 135263
405 L2 (16) 144652313312546232

12512
1324562531564565
4546312315656262

3124565231*123654
55233**513

210 L3 (9)
Eq (9)
D2(8)

123456123456213456
254213654

1234564655622316
54456*2

1234556456123

302 L3 (7)
Eq (7)

221135465645213213
45456*541

2135465662135454
6321*26654123

265413232145563214
563214523*654123

318 L1 (7)
D1 (5)

13245646525213242*
1462

132465132*462 1346521323*4

417 Eq (8)
L3 (7)
L2 (5)

252531464656446531
6412524621213

25523662*3652435
63

5213636415265263*
652

404 Eq (9)
L2 (6)

462135464655645515
21354*135462426256
356234131354645

46246135252426131
5463562

462135215634*52

202 Eq (8)
D2 (7)
L3 (7)

123456254613621342
*525

1234564456132554
6251356523

1234561235623

310 Eq (11) 123126544121565421
254362*21545 4*

1235462163262314
56*62

123655463213

315 Eq (11) 213465624163564121
325466

1346521246536561
213

132465544163*3625

a Shows the assigned type of each subject and, in some cases, an alternative assignment, as well. The subjects’
frequencies of making their assigned types’ (and, where relevant, alternatives types) exact guesses are in
parentheses after the assigned type.
b An asterisk in a subject’s look-up sequence means that the subject entered a guess without immediately
confirming it.

Table .. MouseLab Box Numbers.

Person a p b

You (i) 1 2 3
S/he ( j) 4 5 6

Those estimates confirm the presence of significant numbers of subjects of types
L1, L2, equilibrium, or hybrids of L3 and/or equilibrium in the population, and
the absence of significant numbers of subjects of other types. Once again, subjects’
deviations from equilibrium can be attributed mostly to nonequilibrium strategic
thinking, not preferences or irrationality.
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For some subjects, search is an important check on type inferences based on
guesses. Baseline subject 309, whose 16 exact L2 guesses seem overwhelming evidence
that his type is L2, violated L2 occurrence by missing one of its required look-ups
in each of games 1–5 (table 10.3 shows his look-ups for games 1–3). Just as for CJ’s
subjects who never looked at the second- or third-round pie, in games 1–5 this
subject could not have been making L2 guesses for the reason the theory assumes,
and his compliance could not be expected to persist beyond sample. Fortunately, 309

had a Eureka! moment after game 5, and from then on complied almost perfectly
with L2’s search requirements as well as its guess requirements.31

Further Questions Search Analysis
Might Answer

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To illustrate some of the further possibilities for search analysis, this section discusses
two questions raised by CGC’s [2006] analysis of decisions that resist analysis via
decisions alone. These questions are addressed in CGC [2007].

What Are CGC’s Baseline Apparent Equilibrium
Subjects Really Doing?

Figure 10.5 [CGC 2006, figure 4] graphs the guesses of CGC’s eight baseline subjects
with seven or more exact equilibrium guesses. The 16 games are ordered by strategic
structure as in CGC [2006, table 3] (not in the randomized order in which subjects
played them), with the eight games with mixed targets (one greater and one less than
one) in the right half of the figure. Of these subjects’ 128 guesses in the 16 games,
69 (54%) were exact equilibrium guesses. In CGC’s [2006] likelihood-based econo-
metrics, given their a priori specification of possible types and the large strategy
spaces of CGC’s games, this is overwhelming evidence that their types are equilib-
rium. But as figure 10.5 makes clear, their equilibrium compliance was far higher
for games without mixed targets (55 out of 64 possible exact equilibrium guesses,
or 86%) than for games with mixed targets (14 out of 64, or 22%). Thus, it is (even
nonparametrically) clear that these subjects, despite equilibrium compliance that
is off the scale by normal standards, are actually following a rule that only mimics
equilibrium, and only in games without mixed targets.

The puzzle is deepened by noting that all the ways game theorists teach people
to identify equilibria (best-response dynamics, equilibrium checking, and iterated
dominance) work equally well with and without mixed targets. Further, CGC’s
equilibrium robot/trained subjects who were taught these three ways to identify
their equilibrium guesses have roughly the same equilibrium compliance with and
without mixed targets [figure 10.6; CGC 2007]. Thus, whatever the baseline apparent
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Figure .. “Fingerprints” of 10 UCSD equilibrium robot/trained subjects. Only
deviations from equilibrium guesses are shown; three subjects (603, 704, 705) had 16

exact guesses, and 92 (58%) of these subjects’ 160 guesses were exact equilibrium guesses.

equilibrium subjects were doing, it is not one of the first things a game theorist
would think of. (Subjects’ debriefing questionnaires did not reveal what it was.)
Nonetheless, the rule or rules they follow have a decidedly nonrandom structure: all
44 of those subjects’deviations from equilibrium (the solid line in figure 10.5) when it
is separated from L3 (dotted line), with or without mixed targets, are in the direction
of (and sometimes beyond) their L3 guesses, though this could reflect the fact that
in CGC’s games, L3 guesses are always less extreme than equilibrium guesses.
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CGC’s [2007] analysis tries to resolve the puzzle by using the search data to
answer the following questions:

1. How do the baseline apparent equilibrium subjects find their equilibrium
guesses in the games without mixed targets: best-response dynamics,
equilibrium checking, iterated dominance, or something else that doesn’t
“work” with mixed targets? Refining CGC’s [2006] characterization of
equilibrium search to separate the three methods and redoing the
estimation with the refined compliance measures, separately for games with
and without mixed targets, should be revealing. The absence of baseline Dk

subjects suggests that iterated dominance, even finitely truncated, is
unlikely. Best-response dynamics, perhaps truncated after one or two
rounds, seems more likely.

2. How do the baseline apparent equilibrium subjects’ search patterns differ in
games with and without mixed targets? How do the differences compare to
the differences for baseline L1, L2, or L3 subjects? CGC’s 20 apparent
baseline L1 subjects’ compliance with L1 guesses is almost the same with and
without mixed targets [CGC, 2006, figure 1], which is unsurprising because
whether or not the targets are mixed is irrelevant to subjects who do not try
to model others’ responses to incentives. But the 12 apparent L2 [figure 10.4;
CGC, 2006, figure 2] and 3 apparent L3 [CGC, 2006, figure 3] subjects’
compliance with their types’ guesses is much lower with than without
mixed targets. This is curious, because for L2 and L3, unlike for equilibrium,
games with mixed targets require no deeper understanding.

3. How do equilibrium robot/trained subjects with high compliance find their
equilibrium guesses even in games with mixed targets? How do their
searches in those games differ from baseline apparent equilibrium subjects’
searches? CGC strove to make equilibrium robot/trained subjects’ training
as neutral as possible, but something must come first, and they were taught
equilibrium checking first, then best-response dynamics, then iterated
dominance. To the extent that these subjects used one of those methods, it
explains why they have equal compliance with and without mixed targets.
But if some of them used something else that deviates from equilibrium
mainly in games with mixed targets, it might provide important clues to
what the baseline equilibrium subjects did.

Why Are Lk the Only Types Other Than Equilibrium
with Nonnegligible Frequencies?

CGC’s [2006] analysis of decisions and search estimated significant numbers of sub-
jects of types L1, L2, equilibrium, or hybrids of L3 and/or equilibrium, and nothing
else that does better than a random model of guesses for more than one subject.
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Why do these types predominate, out of the enormous number of possibilities?
Why, for instance, are there no significant numbers of Dk types, which are closer to
what game theorists teach?

CGC’s [2007] analysis tries to answer this question by using search and other
methods to look more deeply into the following phenomena:

1. Most robot/trained subjects could reliably identify their type’s guesses, even
for types as difficult as equilibrium or D2. Individual subjects’ exact
compliance with their type’s guesses was usually bimodal within type, on
very high and very low. Even so, there are several signs of differences in
difficulty across types.

2. None of CGC’s 70 robot/trained Lk subjects ever failed their type’s
understanding test, while 1 of 31 failed the D1 test, 1 of 20 failed the D2 test,
and 7 of 36 failed the equilibrium test.

3. For those who passed the test, compliance was highest for Lk types, then
equilibrium, then Dk types. This suggests that Dk is harder than
equilibrium, but more analysis is needed to tell if this was an artifact of the
more stringent screening of the equilibrium test.

4. Within the Lk and Dk type hierarchies, compliance was higher for lower k
as one would expect, except that L1 compliance was lower than L2 or L3

compliance. This may be because L1 best responds to a random L0 robot,
which some subjects think they can outguess, but L2 and L3 best respond to
a deterministic L1 or L2 robot, which doesn’t invite gambling.

5. Remarkably, 7 of our 19 robot/trained D1 subjects who passed the D1

understanding test, in which L2 answers are wrong, then “morphed” into
L2s when making their guesses, significantly reducing their earnings
(figure 10.7 and subject 804 in table 10.2; recall that L2 and D1 are cousins,
both making 2-rationalizable guesses). This kind of morphing is the only
kind that occurred, which seems compelling evidence that Dk types are
unnatural. But a comparison of Lk’s and Dk − 1’s search and storage
requirements may have something to add.

A Rational-Choice Model of Optimal
Search for Hidden Payoff

Information
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This section outlines a simple rational-choice analysis in support of the occurrence
and adjacency assumptions that underlie CGCB’s and CGC’s models of cogni-
tion and search. The analysis is general in that it takes as given the formula that
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Figure .. “Fingerprints” of six York robot/trained subjects who “morphed” from
dominance-1 (D1) to level-2 (L2). Only deviations from D1’s guesses are shown; 28 (29%)

of these subjects’ 96 guesses were exact D1 guesses, and 72 (75%) were exact L2
guesses.

relates a type’s decision to the hidden parameters. It views search for hidden payoff
information as just another kind of rational decision, deriving subjects’ demand for
it from the benefits of making better decisions under plausible assumptions about
the benefits and costs of search and storing numbers in working memory.

The model rests on two assumptions about cognition and search:

1. The costs of look-ups are small. There is a great deal of evidence that
subjects in experiments with hidden but freely accessible payoff parameters
perceive the cost of looking them up as negligible, scarcely larger than the
cost of reading them in a printed table. Having to look things up has small
effects on their decisions (as shown in CGCB’s and CGC’s [2006] open
boxes control treatments); subjects usually make many more look-ups than
efficient search requires, and they usually make some motivated purely by
curiosity.

2. There is a flow cost of keeping numbers in working memory, which starts
small for the first number but even then is larger than the cost of a look-up,
and which increases with the number of stored numbers. Total memory
cost is the time integral of the flow cost and is therefore proportional, other
things equal, to total storage time, and increasing in the number of stored
numbers. (If working memory were free, nothing would prevent the
scanning and memorization referred to in my discussions of CJ and CGCB,
but this is plainly unrealistic.)

Occurrence follows immediately from assumption 1. A rational player looks
up all costlessly available information that might affect his beliefs. When, as in
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these designs, information comes in discrete quanta with nonnegligible effects on
beliefs and the optimal decision, this conclusion extends to information available at
low cost.32

Given occurrence, adjacency [in CGC’s sense that the basic (innermost) oper-
ations in square brackets in the right-hand side of Table 10.1 are represented by
adjacent look-ups] follows from assumption 2. Under this assumption, a player
minimizes the total memory plus look-up cost by processing the basic operations
needed to evaluate the expression for his ideal guess before other operations with
whose results they are to be combined, storing the results (meanwhile “forgetting”
the parameters they combine), and then combining them. Basic operations take
precedence over other operations because “distributing” them increases memory
cost.33 For example, in evaluating the expression pi[aj + bj ]/2 for L1’s ideal guess,
processing [aj + bj ] first, storing the result, and then combining it with pi yield the
following sequence of numbers of numbers in working memory: 1, 2, 1, 2, 1. The
distributed alternative of processing pi aj , storing the result, and then processing pi

bj and combining it with pi aj yields the sequence 1, 2, 1, 2, 3, 2, 1, which dominates
the first sequence. The first method also saves the cost of looking up pi a second
time, but this is much less important.

Although occurrence and adjacency are only necessary conditions for optimal
search, I stop with them because they have considerable empirical support, they
make the main patterns of subjects’ search behavior in CJ’s extensive-form and
CGCB’s and CGC’s normal-form games intelligible, and they seem more transpar-
ent than other conditions for optimality and thus more likely to be descriptive of
subjects’ search behavior.

I close by noting that although this model supports CJ’s, CGCB’s, and CGC’s
use of occurrence and adjacency, it says nothing directly about how to measure
search compliance in an econometric analysis. CGC’s use of the density of a type’s
minimal search sequence in the part of the observed sequence where the subject
tends to make his relevant look-ups (his search “style,” in CGC’s terminology) is a
judgment call, which seems to be well supported by inspectingthe data.

Conclusion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CJ’s, CGCB’s, and CGC’s analyses of cognition in games via monitoring subjects’
searches for hidden but freely accessible payoff information bridge part of the gap
between neuroeconomics and conventional economics because they rest on explicit
models of cognition, but search, unlike neural correlates of cognition, can be viewed
as a rational choice. This chapter has used those analyses to make two points about
the potential uses of neural data in economics.
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First, standard assumptions of rational choice and equilibrium have yielded
successful explanations of many phenomena, which as GP note can usefully be
tested via revealed preference analysis of decision data. But there are other, equally
important phenomena that appear to stem from failures of the implicit assumptions
about cognition that underlie standard analyses, for which tests that don’t take
cognition explicitly into account are likely to be biased and misleading.

Second, with unbounded capacity for experimentation, it might be possible to
discover all we need to know about behavior by observing decisions alone. But this is
an arbitrary constraint, and CJ’s, CGCB’s, and CGC’s analyses show that expanding
the domain of analysis beyond decisions can yield a clearer view of behavior than is
practically achievable by observing only decisions.

N O T E S
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This chapter is based on joint work with Miguel Costa-Gomes, University of York, and
Bruno Broseta, Red de Institutos Tecnológicos de la Comunidad Valenciana, particularly on
Costa-Gomes and Crawford [2006, 2007]. I thank Miguel Costa-Gomes for our many
discussions over the years, and Andrew Caplin for his very helpful comments on a previous
draft. The experiments and analysis on which this chapter is based were funded in part by
the U.S. National Science Foundation under grant SES- 0100072 and the U.K. Economic
and Social Research Council under grant R/000/22/3796.

1. GP do allow an “inspirational” role for data other than decisions, but they exclude
such data from theory testing.

2. Why study strategic thinking when with enough experience in a stationary
environment, even amoebas—or human reinforcement learners, who need not even know
that they are playing a game—usually converge to equilibrium? Many applications of
game theory involve situations with no clear precedents. (Should you sell U.S. airline stocks
when the market reopens after 9/11, or buy them on the anticipation that others will
overreact?) Comparative statics and design questions inherently involve new games with
new equilibria, which players cannot reach by copying behavior from analogous games. In
such situations, subjects’ initial responses are often plainly “strategic” but nonetheless
deviate from equilibrium. Even in settings in which players can be expected to converge to
equilibrium, the structure of strategic thinking can influence the rate of convergence
and equilibrium selection.

3. This conclusion is consistent with SW’s, Nagel’s, HCW’s, and CGCB’s results, but
their evidence is less clear.

4. CGCB’s and CJ’s analyses make this point in different ways. Camerer (chapter 2),
Caplin (chapter 15), and Schotter (chapter 3) argue cogently, in complementary ways, for the
use of nonchoice data and outline frameworks to guide their use in analyses. Köszegi and
Rabin (chapter 8) discuss using decision data to distinguish intended decisions from errors.

5. Or, if the rules and possible preferences allow multiple equilibria, the equilibrium
identified by some agreed-upon selection principle. Although GP’s chapter focuses entirely
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on individual decisions, private communications suggest that they accept the need for
extending their proposal to games by assuming equilibrium.

6. The proposed explanation differs greatly from classical search theory in purpose,
but only slightly in methods.

7. “Eureka!” learning remains possible, but it can be tested for and seems to be rare.
Initial responses yield insights into cognition that also help us think about how to model
learning from experience, but that is another story.

8. Access was via a MouseLab interface that automatically records a sequence of
parameter opening and closing times, which makes it possible to test models of the order
and/or duration of parameter look-ups. Subjects were not allowed to write, and the
frequencies with which they looked up the parameters made clear that they did not
memorize them. Subjects were taught the mechanics of looking up parameters and
entering decisions, but not information-search strategies. MouseLab is an automated way
to track search as in eye-movement studies of individual decisions (Payne, Bettman, and
Johnson [1993]; www.cebiz.org/mouselab.htm). Wang, Spezio, and Camerer [2006]
illustrate the use of a modern, more powerful eye-tracking method.

9. A partial exception is that CJ’s experiments evoked nonpecuniary social preferences
like those in ultimatum experiments, and these and subjects’ risk aversion are uncontrolled
and privately known. Privately known social preferences are easily accommodated in the
analysis of CJ’s results, and risk aversion was probably insignificant.

10. CJ’s [1993, 2002] designs differed in some ways, for example framing in losses
versus in gains, that are not important for my purposes and are not discussed here. At
roughly the same time in the early 1990s, Camerer and Johnsan [2004] did a MouseLab
study of forward induction in extensive-form games. Algaze (Croson) [1990] reported a
very brief study of search for hidden payoff information in matrix games. Neither of the
latter papers is discussed here.

11. CJ used a “rollover” option in MouseLab, in which subjects could open the box that
concealed a pie by moving the cursor into it, revealing the pie for as long as the cursor was
in the box. Subjects could also use the interface to look up their roles in each round, but
these were known, and those look-ups were not reported or analyzed.

12. Only “mostly” because with only pecuniary preferences, the first-round pie, as long
as it is large enough, does not affect the equilibrium initial offer. With social preferences,
the first-round pie may be relevant because it may influence the responder’s acceptance
decision.

13. This informal definition, like the one for occurrence, is intentionally vague
regarding how often look-ups or operations appear to accommodate variations in CJ’s,
CGCB’s, and CGC’s use of occurrence and adjacency. The notions are made more precise
in CGCB’s analysis and, as explained below, CGC’s. Note that both are general restrictions
on how cognition drives search, which can be applied across a variety of games and
decision rules.

14. Instead of the rollover option CJ used, CGCB used a “click” option, in which
subjects could open a box by moving the cursor into it and left-clicking the mouse. Before
he could continue, a subject had to close the box by right-clicking, which could be done
from anywhere in the display.

15. Lk’s and Dk − 1’s decisions both survive k rounds of iterated elimination of
dominated decisions and so in two-person games are k-rationalizable [Bernheim 1984].
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Although Dk − 1 types are closer to how theorists analyze games, Lk types seem more
natural and predominate in applications.

16. Because a type’s search implications depend not only on what decisions it specifies,
but also on why, something like a types-based model seems necessary here. In CJ [1993],
types are implicit in the discussion and limited to two, which might be called
“subgame-perfect equilibrium” and “other.” CJ [2002] adapted CGCB’s analysis by defining
extensive-form “types” modeled after CGCB’s and SW’s normal-form types, using them to
construct a more structured data analysis than CJ’s [1993].

17. In previous designs, the targets and limits were the same for both players and
varied only across treatments.

18. Eleven of these subjects were from an “open boxes” treatment, not discussed here,
identical to the baseline but with the parameters continually visible. The results of this
treatment (and analogous treatments in CJ and CGCB) confirm that making subjects look
up the parameters does not significantly affect their decisions, so the data can be pooled
with baseline decision data, as here. CGC’s open boxes subjects have numbers that begin
with a 5.

19. By contrast, in SW’s or CGCB’s matrix-game designs, even a perfect fit does not
distinguish a subject’s best-fitting type from nearby omitted types; and in Nagel’s and
HCW’s guessing-game designs, with large strategy spaces but with each subject playing
only one game repeatedly, the ambiguity is worse.

20. Nagel’s results are often viewed as evidence that subjects perform finitely iterated
dominance, as in Dk − 1. But Lk’s and Dk − 1’s decisions are perfectly confounded in
Nagel’s main treatments and weakly separated in Nagel’s and HCW’s other treatments and
in CGCB’s design. CGC’s clear separation of Lk from Dk − 1 allows them to conclude that
Dk types don’t exist in significant numbers, at least in this setting, and thus that subjects
respect low levels of iterated dominance as a by-product of following Lk types, not because
they explicitly perform it. Sophisticated, which is clearly separated from equilibrium, also
doesn’t exist in significant numbers. CGC’s [2006, section II.D] specification test rules out
significant numbers of other types omitted from the specification.

21. By contrast, the lack of a simple common structure in CGCB’s design makes rules’
search implications vary from game to game in ways so complex you need a “codebook” to
identify them.

22. CGCB and CGC made no claim that durations are irrelevant, just that durations
don’t deserve priority. CGCB [table IV] present some results on durations under the
heading of “gaze times.”

23. Wang, Spezio, and Camerer’s [2006] eye-tracking methods have an advantage in
avoiding this ambiguity.

24. In CGC’s design, unlike in CGCB’s, equilibrium’s minimal search implications are
simpler than any boundedly rational type’s implications. This makes it harder to explain
deviations from equilibrium by cognitive complexity. But we will see that high-compliance
equilibrium robot/trained subjects search more than high-compliance robot/trained
subjects of other types, so CGC’s equilibrium search implications may not reflect its
complexity.

25. L1’s search implications illustrate an important advantage of the automatic
adjustment feature of CGC’s design. L1’s ideal guess depends on its own target but only its
partner’s limits, while L2’s and D1’s depend on both players’ targets and limits and
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equilibrium’s depends on both players’ targets and a combination of its own and its
partner’s lower or upper limits. In other designs, such as CGCB’s, L1’s decisions almost
inevitably depend only on its own payoff parameters, and more sophisticated types’
decisions depend on both own and other’s parameters. Thus, the automatic adjustment
feature allows CGC to separate solipsism from the strategic naivete of L1. CGC’s data give
no evidence of solipsism, but a great deal of evidence of naivete. CGC’s data also show that
most subjects understood and relied upon automatic adjustment, which was carefully
explained to them.

26. With automatic adjustment, an L2 player i does not need to know his own limits to
play the game or think about the effects of his own guess being adjusted, only to predict j ’s
L1 guess. By contrast, an L1 player i doesn’t need to know his own limits, only j ’s. Because
the possible values of the limits are not public knowledge, an L2 player i cannot infer that
adjustment of player j ’s ideal guess can occur only at his upper (lower) limit when pj > 1
(pj < 1). An L2 subject who incorrectly infers this may omit aj = 4
(bj = 6) when pj > 1 (pj < 1).

27. As is evident from Tables 10.2 and 10.3, subjects’ look-up sequences vary widely in
what CGC called “style” : Most robot/trained and baseline subjects with high exact
compliance consistently look first at their type’s minimal search sequence and then
continue looking, apparently randomly, or stop and enter their guess (for example L2

robot/trained subject 910, L3 subject 1008, and D1 subject 1501 in Table 10.2; and L2 baseline
subjects 108 and 206 in Table 10.3). But some such subjects look randomly first and turn to
the relevant sequence at the end (L1 robot/trained subject 904). CGC’s [2006, Section II.E]
econometric analysis uses a binary nuisance parameter to distinguish these “early” and
“late” styles and filter them out to obtain a better measure of search
compliance.

28. CGC’s specification analysis turned up only one clear violation of their proposed
characterization of types’ search implications, which is instructive. Baseline subject 415 (not
shown in table 10.3), whose apparent type was L1 with nine exact guesses, had zero L1 search
compliance in 9 of the 16 games because he had no adjacent [aj , bj ] pairs. His look-up
sequences, however, were rich in (aj , pi , bj) and (bj , pi , aj) triples, in those orders, but not
in such triples with other superscripts. This strongly suggests that 415 was an L1 who
happened to be more comfortable with three numbers in working memory than CGC’s
characterization of search assumes, or than their other L1 subjects were. But because this
violated CGC’s assumptions on search, this subject was “officially” estimated
to be D1.

29. One of the methods CGC allow for identifying equilibrium guesses is equilibrium
checking, which has the least search requirements among all methods. Equilibrium
checking can identify the equilibrium guess very quickly if the player has the luck to check
the equilibrium first [CGC 2006, appendix H; CGC 2007]. Allowing this is unavoidable
without risking incorrectly concluding that a subject has violated equilibrium’s search
implications.

30. CGC’s baseline subjects with high compliance for some type are like
robot/untrained subjects, which do not usually exist because one cannot tell robot subjects
how they will be paid without training them in how the robot works. These “naturally
occurring” baseline robot subjects provide an unusual opportunity to separate the effects of
training and strategic uncertainty, by comparing their behavior with robot/trained subjects’
behavior.
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31. Subject 309 omitted look-ups 4 and 6 (his partner’s lower and upper limits) in
game 1 and look-up 4 in games 2–5. This suggests that he did not yet understand the need
to check his partner’s lower limit to be sure of his L2 guess even when his own target, or the
product of targets, was greater than 1. However, he omitted look-up 4 even in game 4 where
both targets were less than 1, showing that his error was probably more complex. That these
omissions did not lead to non-L2 guesses in games 1–5 is an accident of our design with no
greater significance.

32. Note that because MouseLab allows a subject to enter a tentative guess without
confirming it (the asterisks in the data in tables 10.2 and 10.3), thereby saving storage cost,
the variations in search style described in note 24 are consistent with optimality when
look-up costs are negligible even if storage costs are not.

33. This effect is related to the reason that backward induction is the most efficient
way to solve a finite-horizon dynamic programming problem such as those that subjects
faced in CJ’s design: other ways are feasible, but wasteful of storage and computational
capacity (though the latter is assumed to be freely available here).
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