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This paper considers whether Maynard Smith's concept of an evolutionarily stable 
strategy, or "ESS", can be used to predict long-run strategy frequencies in large 
populations whose members are randomly paired to play a game, and who adjust 
their strategies over time according to sensible learning rules. The existing results 
linking the ESS to stable equilibrium population strategy frequencies when strategies 
are inherited do not apply to learning, even when each individual always adjusts 
its strategy in the direction of increased fitness, because the inherited-strategies 
stability results depend on aggregating across individuals, and this is not possible 
for learning. The stability of learning must therefore be analyzed for the entire 
system of individuals' strategy adjustments. The interactions between individuals' 
adjustments prove to be generically destabilizing at mixed-strategy equilibria, which 
are saddlepoints of the learning dynamics. Using the inherited-strategies dynamics 
to describe learning implicitly restricts the system to the stable manifold whose 
trajectories approach the saddlepoint, masking its instability. Thus, allowing for the 
interactions between individuals' strategy adjustments extends the widely recognized 
instability of mixed-strategy equilibria in multi-species inherited-strategies models 
to single-species (or multi-species) learning models. 

I. Introduction 

The concept  of  an evolutionarily stable strategy, or "ESS" ,  was introduced by 
Maynard  Smith & Price (1973) and Maynard  Smith (1974) to describe the effects 
of  selection for more successful strategies in environments where an individual 's  
expected rate of  reproduct ion,  or fitness, is jointly determined by its own and other 
individuals '  strategies. In the model  originally analyzed by Maynard  Smith and 
most  often studied by subsequent  writers, individuals are selected at random from 
a popula t ion and matched,  in pairs, to play a symmetric  two-person game. The 
individuals in the popula t ion are identical except for their strategies; these are 
inherited and fixed for life. The populat ion is large enough that the differences 
between the expected strategy frequencies faced by different individuals are negli- 
gible, even though individuals are never paired with themselves and generally play 
different strategies. Individuals reproduce asexually and breed true, passing on their 
strategies unchanged to their offspring. Finally, an individual 's  current fitness is 
jointly determined by its strategy and the strategy of  the individual with which it is 
currently paired, as summarized  by the payoff  matrix of  the garnet.  

I- In what follows, a "'large" population is one in which all individuals are assumed to face the same 
population strategy frequencies, and a "finite" population is one in which this is not assumed. "Mixed 
strategy" refers in general to randomized strategies, but does not exclude "pure" (that is, unrandomized) 
strategies. 

537 

0022-5193/89/200537 + 14 $03.00/0 © 1989 Academic Press Limited 



538 v . P .  CRAWFORD 

Maynard Smith defined an ESS for the model just described as a mixed strategy 
that, if played by all members of  a monomorphic population, has strictly higher 
fitness than any mutant strategy that enters the population with sufficiently low 
frequency. (The definition is the same for polymorphic populations, in which 
individuals play different strategies in equilibrium, with the qualification that mutants 
must then have lower fitness than the population, on average.) The intuition for 
Maynard Smith's definition is that, if the members of  a population all play an ESS, 
mutants that enter the population with low frequency will reproduce more slowly 
than individuals who play the ESS. The mutants'  relative population frequencies 
will therefore approach zero over time, restoring the population strategy frequencies 
of  the ESS. Computing an ESS should then allow the analyst to infer the possible 
long-run values of  these frequencies from the payoff matrix alone, an important 
simplification. 

This intuition was first formalized, for continuous-time versions of  the population 
dynamics, by Taylor & Jonker (1978), Zeeman (1979) and Hines (1980a, b) t .  Taylor 
& Jonker (1978) and Zeeman (1979) studied symmetric two-person finite matrix 
games, requiring individuals to play pure strategies, and considered large polymor- 
phic populations, in which different strategies may persist in equilibrium. They 
showed that, for generic payoffs, a vector of  population strategy frequencies that 
(when treated as a mixed strategy) satisfies the ESS condition with arbitrary mixed 
strategies allowed as mutations is a locally asymptotically stable (henceforth 
"stable")  equilibrium of the population dynamics-?-. Taylor  & Jonker (1978) gave 
an example to show that the converse is not true in general, so that Maynard Smith's 
definition is overly restrictive when individuals are required to play pure strategies: 
Games whose players have more than two pure strategies can have equilibria whose 
strategy frequencies do not satisfy the ESS condition, such that any small group of  
pure-strategy mutants with higher average fitness than the population also has 
individual fitness differences that alter its strategy frequencies over time in such a 
way that the population strategy frequencies return to the equilibrium. 

Hines (1980a, b) (see also Cressman & Hines, 1984; Hines, 1987, section 4; 
Maynard Smith, 1974, 1982, chapter 2 and appendix D; Zeeman, 1979, 1981) 
identified a closer link between the ESS condition and stability, showing that when 
individuals in a large polymorphic or monomorphic  population are allowed to play 
mixed strategies, the ESS condition is generically necessary as well as sufficient for 
stability of  the population strategy frequencies. A population whose strategy frequen- 
cies violate the ESS condition is vulnerable to any mixed-strategy mutant with higher 
fitness, because the strategy frequencies of such mutants (unlike those of groups of  
pure-strategy mutants) do not evolve when there are fitness differences between 
their constituent pure strategies. This result unifies the treatment of pure and mixed 
strategies on the individual level and shows how to use the concept of  evolutionary 
stability, originally formulated for monomorphic  populations, to characterize the 
long-run effects of strategy selection in polymorphic populations of  mixed strategies. 

tTaylor & Jonker (1978) also considered discrete-time versions of the dynamics, for which the 
arguments in support of Maynard Smith's definition are weaker; see also Hines (1987: 241,245-246). 

$ A locally asymptotically stable equilibrium is one that has a neighborhood such that any trajectory 
that originates in the neighborhood converges to the equilibrium. 
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It is important in what follows to note that,' because the results just summarized 
relate relative strategy frequencies and fitnesses, they apply equally well to growing, 
fixed, or shrinking populations. Also, because a large population playing a strategy 
that does not maximize fitness against itself is clearly vulnerable to a low-frequency 
mutation that does maximize fitness against that strategy, an ESS must be a symmetric 
Nash equilibrium of the game played by matched pairst. The stability arguments 
of Taylor & Jonker, Zeeman and Hines can therefore be viewed as an alternative 
justification for this standard game-theoretic characterization of behavior as well 
as for the ESS. 

In recent years, the idea of evolutionary stability has been applied extensively in 
biology, and its usefulness has been found surprisingly robust to deviations from 
the original population model (see for example Hines, 1987, sections 4-6). Perhaps 
encouraged by this robustness, a number of biologists and social scientists have 
suggested using the ESS to explain behavior in human or animal populations in 
which inheritance of strategies is supplemented or supplanted by learning (Axelrod, 
1984; Harley, 1981; Hines, 1987; Hines & Bishop, 1983; Houston & Sumida, 1987; 
Maynard Smith, 1982, chapters 5, 13; Sugden, 1986; Zeeman, 1979, 1981). Such 
applications rest implicitly on a dynamic justification like that developed for 
inherited strategies by Taylor & Jonker, Zeeman and Hines. Learning plainly fits 
the inherited-strategies model if it proceeds purely by imitation, with members of 
successive generations choosing strategies, once and for all, in numbers proportional 
to the payoffs of earlier adherents of those strategies. But this rules out individual 
strategy adjustment, an essential feature of learning. This paper considers whether 
it is possible to construct a sensible justification for using the ESS to describe the 
consequences of learning that involves individual strategy adjustment. 

The issues raised by individual strategy adjustment stand out most clearly when 
it is the only source Of of change in population strategy frequencies. From now on, 
I shall use the term "learning" in this special sense, further restricting attention for 
simplicity to fixed populations. 

There are important similarities between the inherited-strategies dynamics and 
sensible learning dynamics, because if each individual in a large population adjusts 
in the direction of increased payoffs, the population strategy frequencies also move 
in that direction. For this reason, it is often assumed (see, for example, Axelrod, 
1984; Sugden, 1986; Taylor & Jonker, 1978: 146, 153; Zeeman, 1981: 251) that the 
inherited-strategies justification for the ESS extends to learning. It is shown here, 
however, that mixed-strategy equilibria (but not pure-strategy equilibria, in general) 
are generically unstable for sensible specifications of the learning dynamics. It 
follows that if the learning dynamics converge, they must converge to a configuration 
in which individuals play only pure strategies. 

Learning and inherited strategies can have different implications for stability 
because the results of Taylor & Jonker, Zeeman and Hines depend on aggregating 
across individuals; aggregation is justified in large populations for inherited 
strategies, but not, in general, foi" learning. Learning must therefore be analyzed at 

t An equilibrium in the game played by matched pairs will he called a "Nash equilibrium" whenever 
this is necessary to preserve the distinction between game-theoretic equilibria and the equilibria of the 
population dynamics. 
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the individual level, taking into account the interactions between individuals' strategy 
adjustments. These prove to be generically destabilizing at mixed-strategy equilibria, 
which are saddlepoint equilibria of the learning dynamics. Using the aggregate 
inherited-strategies dynamics to describe learning in effect restricts these dynamics 
to the stable manifold whose trajectories approach the saddlepoint, masking this 
instability. 

The rest of the paper is organized as follows. Section 2 defines the ESS for large 
populations and reviews its relationship to the symmetric Nash equilibria of the 
game played by matched pairs, and to the stable equilibrium population strategy 
frequencies of the inherited-strategies dynamics. Section 3 compares the inherited- 
strategies dynamics with sensible learning dynamics, showing that the latter do not 
allow aggregation, even in large populations. Section 4 shows that mixed-strategy 
equilibria are generically unstable for the learning dynamics introduced in section 
3. The stability analysis is carried out explicitly only for the "Hawk-Dove" example 
of Maynard Smith & Parker (1976) and Maynard Smith (1982); section 5 discusses 
the straightforward extension to more general symmetric two-person finite matrix 
games. Section 5 also discusses other extensions of the analysis and related work. 

2. Inherited Strategies 

This section defines the ESS for large populations and discusses its relationship 
to the symmetric Nash equilibria of the game played by matched pairs and to the 
stable equilibria of the inherited-strategies dynamics. 

Consider a large population of identical individuals, repeatedly and anonymously 
paired at random to play a symmetric two-person finite matrix game. Recall that 
an ESS is a mixed strategy that, if initially played by all members of the population, 
has higher expected payoff than any mutant mixed strategy that enters the population 
with low frequency. Let q and s be vectors that give the expected frequencies with 
which the pure strategies are played in the population, and let E (qls) be the expected 
payoff of the mixed strategy q when the expected population frequencies are given 
by s. (With random pairing in a large population, it makes no ditterence whether 
the distribution of strategies that yields these frequencies is monomorphic or poly- 
morphic.) An ESS can then be formally defined as a mixed strategy s such that for 
any q ~ s and any sufficiently small e > 0, 

E[ql(1-e)s+eq]. (1) 

Using the linearity in probabilities of expected payoffs reduces eqn (1)t to 

(1-e)E(sls)+eE(slq)>(1-e)E(qts)+eE(qlq). (2) 

This inequality holds for all small e > 0 if and only if, for all q, 

g(sls)-> E(qls), (3) 
and 

E(s lq)> E(qlq) whenever E(s ls)= E(qls). (4) 

t Equations (1)-(6) are inequalities. 
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Inequality (3) simply requires (s, s) to be a symmetric Nash equilibrium in the game 
played by matched pairs; eqn (4) is a further implication of evolutionary stability, 
discussed in Maynard Smith (1982, chapter 2) and elsewhere. 

The Hawk-Dove game can be used to illustrate this definition and its relationship 
to stability of  the population strategy frequencies for the inherited-strategies 
dynamics. The Hawk-Dove game has payoff matrix 

H D 

H A b 

D c d 

In this matrix, H and D stand for Hawk and Dove, and only the Row player's 
payoffs are shown; the Column player's payoffs can be deduced by symmetry. 

I begin by considering monomorphic populations. Let z denote each individual's 
equilibrium probability of  playing H (so that sl -= z and sz =- 1 - z in terms of the 
more general notation used above to define the ESS). Ignoring borderline cases for 
simplicity, eqns (3) and (4) imply that z = 1 is an ESS if and only if a > c, z = 0 is 
an ESS if and only if d > b, and z*=  ( b -  d ) / ( b -  d + c -  a) is an ESS if and only 
if c > a and b > d (in which case 0 <  z * <  1). The first two of  these conclusions 
follow immediately from eqn (3). To verify the third, note that playing z* yields 
( bc - a d ) /  ( b - d + c - a)  against the population frequency z*, as does any alternative 
mixed strategy q; thus z* satisfies eqn (3). To satisfy eqn (4), z* must yield a higher 
expected payoff against q than q does against itself, so that 

z*[qa + (1 - q ) b ]  + (1 - z * ) [ q c +  ( 1 - q ) d ]  > q[qa + (1 - q ) b ]  + (1 - q ) [ q c +  ( 1 - q ) d ]  

(5) 

or, equivalently, 

( z * -  q){[qa + (1 - q ) b ]  - [qc + (1 - q ) d ] }  > 0. (6) 

It is easy to verify eqn (6) from the parameter restrictions c > a and b > d. 
The inherited-strategies population dynamics for this model are easiest to describe 

if it is assumed, following Taylor & Jonker (1978) and Zeeman (1979), that the 
population is polymorphic and each individual plays a pure strategy. Then the state 
of  a large population can be summarized by its strategy frequencies, and because 
all individuals who play a given strategy have the same fitness, the expected 
proportional rate of growth of a strategy's population frequency equals the current 
difference between its fitness and the population frequency-weighted average fitness 
of all pure strategies. Let g denote the expected population frequency of H. Then 
~, the time rate of  change of  £', equals :~ times the fitness of  H minus the population 
average fitness when its expected frequency is :?: 

J =- ~.([ga + (1 - Z ) b ]  - ' {_~[Za + (1 - Z ) b ]  + (1 - Z)[.~c + (1 - -~ )d ] } )  

e ( 1 - e ) { [ e a + ( 1 - Z ) b ] - [ • c + ( 1 - Z ) d ] } .  (7) 
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The assumption that the population is large underlies eqn (7) in three ways: it 
justifies treating the population frequency as a continuous variable, it justifies using 
the same value of this frequency to calculate different individuals' fitnesses, and it 
justifies, via the law of large numbers, identifying the total realized rate of growth 
of the individuals playing each pure strategy and the fitness that equals its mathemati- 
cal expectation. These observations can be used to show that eqn (7) holds exactly 
in infinite populations, and that it continues to hold, approximately, in sufficiently 
large finite populations. 

The differential eqn (7) has three equilibria: :~=0, ~ = l ,  and ~=~.*=-(b-d)/ 
( b - d +  c - a ) .  Taylor & Jonker (1978) showed that, aside from borderline cases, 
each of these equilibria is stable if and only if the payoff parameters are such that 
it is an ESS. When ~ = :~*, for instance, the term in square brackets in the second 
line of eqn (7) equals zero, and 

O~/OY.]e=e.=Y.*(l-2*)(a-b-c+d)=(c-a)(d-b)/(b-d+c-a); (8) 

thus, given that 0 < ~* < 1, the stability condition 0~/0~1 ~=.-. < 0 is equivalent to the 
parameter restrictions c > a and b > d. As noted above, Taylor & Jonker, Zeeman 
and Hines extended this generic equivalence between the ESS condition and stability 
to all symmetric two-person finite matrix games in which individuals may play 
mixed strategies. 

3. Learning and Aggregation 

This section introduces sensible specifications of the learning process and shows 
that they do not allow the use of aggregate relationships like eqn (7) to describe 
the dynamics of strategy frequencies in infinite populations. My argument assumes 
a specific individual adjustment process for concreteness, but it will be clear that 
its conclusion does not depend on the details of the process. 

The use of  aggregate dynamics like eqn (7) to describe learning is often justified 
informally by noting that, if each individual in an infinite population adjusts its 
strategy in the direction of increased payoffs, the population strategy frequencies 
also adjust in that direction, as eqn (7) requires. Justifying eqn (7), however, also 
requires an aggregation argument. To see when aggregation is possible, imagine 
that each individual chooses a mixed strategy, adjusting it over time in response to 

J and i the differences between the current payoffs of its pure strategies. Let sj s ,  
respectively, denote individual i's probability of playing its j th  pure strategy and 
i's vector of mixed-strategy probabilities. Let .~ denote the vector of expected 
population strategy frequencies, and let ej denote the j th  pure strategy, expressed 
as a mixed-strategy probability vector with a one in the j th  place and zeroes 
elsewhere. Otherwise maintaining the notation and assumptions of  section 2, and 
ignoring boundary problems, which are not germane to the point made here, assume 
that, for each i and j, individual i adjusts i ts j th  mixed-strategy probability according 
to 

• i i sj --- sj[ E (ej [ ~,) - E(s'  ].~)]. (9) 
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The differential equation system defined by eqn (9) sets the vector of proportional 
rates of change of each individual's mixed-strategy probabilities equal to the vector 
of partial derivatives of  the individual's expected payoff with respect to those 
probabilities, computed taking into account the linearity in probabilities of expected 
payoffs and that the probabilities must be rescaled proportionally so they will 
continue to sum to one. (Summing eqn (9) over j and recalling that E ( s i l ~ ) -  -- 
Xj sjE(ejl~) shows that ~i gJ-= 0 for each i.) 

Thus eqn (9) defines a gradient process for each individual, adjusting its mixed 
strategy in the current direction of greatest payoff increase in the simplex of feasible 
probability vectors. These gradient processes are plausible descriptions of"atheoret i-  
cal" learning, in which individuals who lack either the sophistication or the knowl- 
edge of the structure of their environment to draw complex inferences from the 
information they receive discover how their strategies influence their payoffs by 
experimenting occasionally with small adjustments, favoring those that yield the 
largest payoff improvements. 

The gradient learning model defined by eqn (9) is also the closest individual- 
adjustment analog, in large populations, of the inherited-strategies dynamics studied 
by Taylor & Jonker, Zeeman and Hines. Summing eqn (9) over i would immediately 
yield those dynamics if the E(silg) term on its right-hand side were replaced by 
E(glg). But this would make s~/s~ independent of s i, and eqn (9) could then no 
longer ensure, even in a large population, that each individual's mixed-strategy 
probabilities remain in the feasible simplex. Thus, the presence of the E(s ~ IS) term 
on the right-hand side of eqn (9) reflects an inherent difference between learning 
and inherited strategies. 

This difference has the important consequence that, even in large populations, 
individuals' learning processes cannot be aggregated to give g as a function of g 
alone. To see this, return to the Hawk-Dove game, letting z i denote i's mixed-strategy 
probability of playing H and again letting ~ denote the expected population 
frequency of H. Equation (9) specializes to 

~'-= z'([ Za + (1 - ,~)b] - {z'[~a + (1 - ~')b] + (1 - z')[Zc + (1 - Z)d]}) 

~- z*(1 - z'){[2a + ( 1 - ~)b] - [:~c + ( 1 - ~)d ]}. 

Equation (10) does not yield an aggregate relationship between ~ and ~, because 
its right-hand side is non-linear in zi: In general, ~ depends on the individual z ~, 
not just on ~. The impossibility of  aggregation is easiest to see in a finite population 
with N members, where 

N 

~-~ Z z ' / N  (11) 
i = 1  

and 
N N 

~=-- Y. ~' /N--{[~a+(1-~)b]-[Y.c+(1-~.)d]} Y. z ' ( 1 - z ' ) / N  
i = l  i = l  

(12) 
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which relates ~ to the individual z ~ as well as ~. But even in a large population, the 
aggregation required for a learning interpretation of  eqn (7) is justified only when 
each individual plays the same mixed strategy throughout,  so that z ~ --- 2 for all it .  

4.  S t a b i l i t y  

This section studies the stability of the learning dynamics introduced in section 
3, showing that individuals' strategies are generically unstable at mixed-strategy 
equilibria. (The implications or this result for the stability of  population strategy 
frequencies are considered in section 5.) 

Because individuals' learning processes cannot be aggregated, the analysis must 
be carried out for the entire system of their strategy adjustments. To give a clear 
account of  the issues that arise in specifying this system, and to describe the 
interactions between individuals'  adjustments precisely, I work with finite popula- 
tions, otherwise maintaining the assumptions and notation of  sections 2 and 3. The 
finite-population analysis reveals what happens in large populations by passing to 
the limit and shows why the normal practice of doing this at the start of  the analysis 
is misleading in this case. It is assumed throughout  that the population still has 
enough members to justify identifying realized population strategy frequencies and 
their expectations. 

To adapt Maynard Smith's ESS definition to finite populations, assume a fixed 
population of  size N and write the expected payoff of individual i playing mixed 
strategy q as E(qI.~i), where 

N 

~=- ~ si /(S-1) (13) 
i =  I 

gives the expected population strategy frequencies, excluding individual i. This 
generalizes the large-population definition given in section 2 to environments where 
excluding an individual's strategy from the population has a non-negligible effect 
on its strategy frequencies. 

As before, an ESS, if played by all members of  the population, must have an 
expected payoff at least as high as any mutant strategy that enters the population 
with sufficiently low frequency. The formal definition is derived, following Schaffer 
(1988) and Maynard Smith (1988), by taking "low frequency" to mean 1/N,  assuming 
that the single mutant switches strategies from the ESS (so that the population 
remains fixed at size N) ,  and comparing the payoffs of the mutant and the individuals 
who continue to play the ESS. An ESS is now a mixed strategy s such that, for any 
q # s ,  

E s N l S +  q ->E(qls) ;  (14)1: 
- N - 1  

? Even if, by chance, z ~ = $ for all i initially, random deviations of realized payoffs from their expected 
values in finite populations would quickly throw the system off, making aggregation impossible. 

$ Equation (14) is an inequality. 



E V O L U T I O N A R Y  G A M E S  545 

inequality (14) is the finite-population analog of inequality (3). [Schaffer, 1988, 
supplemented inequality (14) with a "stability" condition that plays the role of 
inequality (4), showing that the ESS for the Hawk-Dove game implied by inequality 
(14) also satisfies this supplementary condition. The points made here, however, 
rely only on inequality (14).] 

A useful alternative definition of the ESS for finite populations, also due to 
Schaffer, requires a mixed strategy s to solve 

(i , )  m a x q E ( q l s ) - E  s N_------~S+N_lq , (15) 

where the maximization is taken over all mixed strategies q. This is plainly equivalent 
to requiring inequality (14), because inequality (14) holds with equality if q=s .  
Two important conclusions for finite populations follow from this equivalence. First, 
although any ESS converges to a symmetric Nash equilibrium as the population 
grows, an ESS is no longer a symmetric Nash equilibrium in general. Second, the 
implication of Nash equilibrium that the pure strategies in the support of a mixed 
ESS all yield equal expected payoffs against the expected population strategy 
frequencies no longer holds exactly. Instead, any mutant playing a mixture of 
strategies in the support of a mixed-strategy ESS has the same expected payoff as 
an individual playing the ESS, taking into account the fact that the individuals 
playing the ESS (unlike the mutant) are matched with the mutant with probability 
1/ (N-  1). This follows from the linearity of the objective function in eqn (15) and 
the fact that its maximized value is zero. 

I now argue that the equilibria (stable or unstable) of sensible learning dynamics 
in finite populations with sufficiently many members must be located at symmetric 
Nash equilibria. It follows that ESS's are equilibria of these dynamics only in large 
populations, in general, and that a learning justification for the ESS depends on 
establishing the stability of symmetric Nash equilibria in large populations. 

Reiterating the second conclusion about the finite-population ESS from above, 
if s is a mixed-strategy ESS, it must satisfy 

E ( e j l s ) = E  s N - 1  - s + ~ - ~  ej (16) 

for all pure strategies j in its support. [Requiring eqn (16) for the extreme points 
ej of the support of s is a proxy, given the linearity in q of 

(i E ( q l s ) - E  s ~S-i-s+-~L-~-q , 

for requiring eqn (16) for all q that have the same support as s.] For individuals' 
adjustment processes to reach equilibrium at s, they would have to respond [gen- 
eralizing the expressions in eqn (16) to polymorphic populations] to differences 
between the E(ejl~ i) and the 

E(s i  N - 2 _ ~  1 es ) 
~-~--~ s + N - 1  " 
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Rescaling problems (which are non-trivial but not insurmountable) aside, there 
seems to be no sensible way to justify this kind of response when individuals 
experiment independently. If  individuals' experiments are rare, simultaneous experi- 
ments by matched individuals are rare indeed. Individual i's payoff experience, 
whether experimenting or not, is therefore generated against a population whose 
expected strategy frequencies are approximately ~. Thus, independent experiments 
cannot provide the information individuals would need to respond to differences 
between the E(ej[~ i) and the 

E ( s ~ I N - 2 " ~ ' +  1 ) 
N - 1  N - 1  ej " 

This argument suggests that, at least when the population has many members, 
the finite-population analog of  eqn (9) is a sensible model of  the learning process. 
This model sets, for each i and j, 

- i _ _  i s j = s j [  E ( e j l ~ ' ) -  E(s ' l~ ' ) ] .  (17) 

The system defined by eqn (17) is in equilibrium at symmetric Nash equilibria, but 
not, in general, at ESS's in finite populations. I now consider whether eqn (17) 
yields a learning justification for the symmetric Nash equilibrium and the ESS in 
sufficiently large finite populations. 

The analysis is carried out explicitly only for the Hawk-Dove game; extensions 
to more general games are considered in section 5. Let 

N 

~'=- Z z ' / ( N - 1 )  (18) 
j = l  
j ¢ i  

and specialize eqn (17) to 

~'=-- z'([~.'a + (1 - .~ ' )b ]  - { z ' [ ~ . ' a  + (1 - .~ ' )b ]  + (1 - z ' ) [ -~ 'c  + ( 1  - e ' ) d ] } )  

-- z'( 1 - z'){[ Z'a + ( 1 - Z')b] - [Z'c + ( 1 - e')d]} 

= - - z ' ( 1 - z ' ) ( ~ . ' a + f l ) ,  i = 1 , . . . ,  N, (19) 

where a = - a - b - c + d  a n d f l = - b - d .  
The differential equation system (19) is the finite-population analog of eqn (10). 

Like eqn (10), it allows aggregation only if individuals always play the same mixed 
strategies, so that z i, and therefore ~i, is independent of i. The stability analysis 
must therefore be carried out for the entire system. 

Assume that c > a and b > d, so that a < 0 and/3 > 0, and z* = (b - d ) / ( b  - d + c - 
a)  = - f l / a  is the only interior equilibrium of eqn (19) and the only symmetric Nash 
equilibrium of the game. Partially differentiating eqn (19) and evaluating the results 
at z i=  - / 3 / a  for all i reveals that, for all i, 

a ~ / a z  ' = 0 (20) 

and, for all i and all j # i, 

a z ' / a z J = ( - f l / a ) ( l + / 3 / a ) a / ( N - 1 ) = - f l ( l + / 3 / a ) / ( N - 1 ) < O .  (21) 

The matrix of  the locally linearized version of eqn (19) thus has zeroes along its 
main diagonal and a constant, K-=-f l (1  + f l / o ~ ) ( N - 1 ) ,  everywhere else. 
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Because the trace of  a matrix equals the sum of  its eigenvalues, in this case zero, 
at least generically one or more of  the eigenvalues must have a strictly positive real 
part, making the system unstable. For the Hawk-Dove  game, it can be shown that 
the eigenvalues equal ( N - 1) K -= -/3 ( 1 +/3 / t~) < 0 and - K ~/3 (1 +/3 / a ) / ( N  - 1) > 
0, the latter having multiplicity N -  1 (as is necessary for the eigenvalues to sum to 
the trace of  the matrix in this case), so that the system is always unstable• The proof, 
due to Dennis Smallwood (personal communicat ion),  is as follows: 

Letting A denote the matrix of  the locally linearized system determined by eqns 
(20) and (21), the eigenvalues, denoted A, and the associated eigenvectors, denoted 
x, can be obtained by solving Ax = hx, x # 0, where 0 denotes a vector of zeroes 
conformable to x. Writing out Ax = hx, given that A has zeroes on the main diagonal 
and K'S everywhere else, yields: 

KX2"-I- K X 3 J r . . .  "{- K X n _  I -Jr KX n = AX  I 

KX l  + K X 3 + . . . + K X n _ I + K X n  = A X  2 

• . o 

• o , 

KX I -t- KX2Jr  K X 3 - F . . .  

(22) 

+ K X  n = A X . _  ! 

KX 1 -Jr KX2-  ~- KX3~- . . . - ~ -  K X n _  I = A X  n.  

Summing the equations in (22) yields 

K ( N - 1 )  ~ x , = h  ~ xi. (23) 
i = 1  i = l  

Because K and ( N - 1 )  differ from zero, this has only one solution for h when 
Y . ~  x~ # 0 ,  namely h'---- K(N-- 1); the associated eigenvector can be taken to be 
x ~ -  ( 1 , . . . ,  1). Other solutions are possible when ~ i ~  x~ = 0, it is easy to verify that 
the x j-= ( 1 , 0 , . . . , 0 , - 1 , 0 , . . . , 0 ) ,  where -1  is t h e j t h  component ,  j = 2  . . . . .  N, are 
also eigenvectors, each with associated eigenvalue A~--------K. These N linearly 
independent  eigenvectors and the associated eigenvalues, with multiplicity as indi- 
cated above, constitute a complete set. 

Thus, all of  the eigenvalues of  the locally linearized system are real (as indicated 
by the symmetry of  A), and N - 1 of  them are strictly positive. The true, non-linear 
system is therefore unstable, like the linear system. The system drifts away from 
equilibrium approximately at an exponential  rate proport ional  to 1/N,  hence the 
drift is very slow when N is large. The system is unstable, however, for any finite 
popula t iont .  

t The instability of  mixed-strategy equilibria is described as only generic because the restrictions on 
payoff parameters under which it was proven for the Hawk-Dove game rule out non-generic parameter 
configurations for which K = 0. The zero eigenvalues that result in such cases make the locally linearized 
dynamics unstable, but useless in determining whether the true non-linear dynamics are stable. (The 
parameter configurations that cause this problem are harder to identify for more general games, but still 
non-generic.) Working with a large population from the start of  the analysis would evidently also yield 
zero eigenvalues, again making the local stability analysis inconclusive. 
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Only if z ~ --- :~ throughout for all i can eqn (19) be aggregated to obtain eqn (7), 
and the inherited-strategies analysis be used to show that the learning dynamics are 
stable. The eigenvalue of the locally linearized version of eqn (7) equals ( N -  1)K- 
-/3 (1 +/3 /a) ,  the only stable eigenvalue of the locally linearized learning dynamics. 
Thus, using the inherited-strategies dynamics to analyze the stability of learning in 
effect restricts the system to its stable manifold, masking its instability. 

5. Conclusion 

This section discusses extensions of the analysis and related work. The instability 
result established here is mathematically closely related to the multi-species 
inherited-strategies results of Eshel & Akin (1983), Hines (1981) and Maynard Smith 
(1982, appendix J), and to the instability results established for learning processes 
like those considered here by Crawford (1974, 1985) in a closely related game- 
theoretic frameworkt. The main contribution of the present paper is to show that 
the already widely recognized instability of mixed-strategy equilibria for multi- 
species inherited-strategies dynamics extends to sensible single-species (or 
multi-species) learning dynamics, once the finiteness of the population and the 
impossibility of aggregating individuals' learning processes are recognized$. 

The generic instability of mixed-strategy equilibria for learning dynamics extends 
to symmetric (or asymmetric) finite matrix games with any number of pure strategies. 
For any such game, the matrix of the locally linearized learning dynamics has zeroes 
along the main diagonal, so that, for generic payoffs, there is at least one eigenvalue 
with strictly positive real part. These zeroes arise because each individual's expected 
payoff is linear in its own mixed strategy, so that the first-order equalities required 
for equilibrium in individual adjustment processes like eqn (17) immediately imply 
that the second-order effects measured by the partial derivatives in eqn (20) equal 
zero. This is true of mixed-strategy equilibria in general, and their instability is 
therefore a robust result. In particular, individual adjustment processes with equili- 
bria at the ESS in finite populations, as discussed in section 4, would also be unstable. 

As noted in Crawford (1974, 1985) and Hines (1981), the proof given here, which 
ignores boundary problems, extends, generically, to equilibria in which some pure 
strategies are played with zero probability, as long as two or more are played with 
positive probability. Then, the pure strategies that have zero probability can simply 

t There are many surface differences between evolutionary games and the environments studied by 
Crawford (1974, 1985); this paper follows the conventions of evolutionary game theory as closely as 
possible. The models of Crawford (1974, 1985) assume (by contrast) a fixed, finite population; possibly 
non-linear, absolute (instead of proportional) adjustment of mixed-strategy probabilities; discrete time; 
and repeated interaction of a single group of possibly asymmetric players, who ignore the effects of their 
current strategy adjustments on each other's future strategies (instead of anonymous, random pairing 
of identical players from a large population). The instability result survives all of these changes. It does 
depend on the form of the assumed learning rules, in that mixed-strategy adjustments must be differenti- 
able functions of the payoff differences between pure strategies. Crawford (1985) gives references to the 
game-theoretic literature on learning. 

~4 Although the instability result established here depends on recognizing the finiteness of the population, 
it differs from other finite population-based criticisms of Maynard Smith's original ESS definition in the 
literature (see Schaffer, 1988; Maynard Smith, 1988; and the references given there) and, unlike those 
criticisms, remains significant in populations of indefinite size. 
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be eliminated from the game and the stability analysis of section 4 carried out for 
the reduced game. Except in borderline cases, section 4's argument is unaffected 
by this reduction. 

Given the general instability of mixed-strategy equilibria, pure-strategy configu- 
rations are the only possible stable outcomes of the learning dynamics. My instability 
arguments clearly do not apply to equilibria of these dynamics at which all 
individuals play pure strategies. In fact, it is not hard to see that any pure-strategy 
Nash equilibrium that satisfies inequality (3) with strict inequality must be a locally 
stable equilibrium of learning dynamics like those studied here, and analysis of 
simple examples suggests that pure-strategy polymorphisms may also be locally 
stable. [The results of Hines (1980b) and Zeeman (1981) for the inherited-strategies 
dynamics are inconclusive on this point for the learning dynamics, because they 
depend on using the large-population assumption to justify aggregation, eliminating 
the interactions between individuals' adjustments studied here.] 

I close by mentioning some important related work. The results of the present 
paper complement those of Hines & Bishop (1983), who introduced learning effects 
into the inherited-strategies dynamics by allowing small individual gradient adjust- 
ments in parents' strategies immediately before their transmission to offspring. They 
treated the differences between the expected strategy frequencies faced by different 
individuals in a large population as negligible, aggregating individuals' adjustment 
processes and thereby eliminating the effects of the interactions between them studied 
here. They showed that the kind of learning effects they studied can increase strategy 
diversity over time, and can even lead to differences between the long-run population 
strategy frequencies and evolutionarily stable frequencies in the analogous inherited- 
strategies model. By way of comparison, the analysis presented here shows that, 
when learning effects predominate over fitness effects, the interactions between 
individuals' strategy adjustments alone, in any finite population, however large, can 
increase strategy diversity. 

Selten (1988) studied the effect of individuals' anticipations of each other's strategy 
adjustments in a multi-species large-population model that otherwise resembles the 
model of Crawford (1974, 1985), showing that such anticipations can sometimes 
make mixed-strategy Nash equilibria stable. 

Finally, Fudenberg & Kreps (1988) developed a game-theoretic model of learning 
by experimentation, with individuals much more sophisticated and better informed 
about the structure of their environment than assumed here, and used it to evaluate 
the intuition that persistent experimentation eventually leads individuals to a 
(suitably refined) Nash equilibrium. 

I am grateful to Dennis Smallwood and the referees for helpful advice, to Yong-Gwan 
Kim for research assistance, and to the National Science Foundation for research support 
under grant SES 8703337. 
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