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This paper proposes an adaptive interpretation of the results of some recent 
experiments with repeated tacit coordination games. These experiments revealed 
several behavioral regularities, including a systematic discrimination between 
strict Nash equilibria in certain games, that appear to be driven by strategic 
uncertainty, and are not explained by traditional equilibrium refinements. The 
observed patterns of discrimination correspond closely to predictions based on 
Maynard Smith’s notion of evolutionary stability. An adaptive model, in the spirit 
of the evolutionary dynamics but recognizing the important differences between 
learning in human populations and evolution, promises to yield a unified explana- 
tion of the results. Journal of Economic Literature Classification Numbers: 020, 
026. D 1991 Academic Press, inc. 

1. INTRODUCTION 

In recent years there has been an upsurge of interest in coordination. In 
economics, coordination problems are normally modeled as noncoopera- 
tive games whose players’ preferences are coherent enough to make any 
Pareto-efficient strategy combination a Nash equilibrium, but in which 
there are two or more (equilibrium) combinations at which each player’s 
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strategy is uniquely optimal if the others correctly anticipate it, but not in 
general otherwise. Coordination games involve no incentive problems, as 
these are normally characterized, because their efficient outcomes are 
supportable as equilibria. Nevertheless, playing them often involves real 
difficulties. Similar difficulties lie at the heart of many important questions 
usually analyzed under the assumption that players can coordinate their 
strategy choices on any desired equilibrium. These include the design of 
optimal incentive schemes; the characterization of which outcomes can 
be supported by implicit contract in a long-term relationship; and the 
determination of whether, and how, bargainers share the surplus from 
making an agreement. 

Convincing answers to these questions must go beyond the observation 
that if rational players have commonly known, identical beliefs about how 
a game will be played, those beliefs must be consistent with some equilib- 
rium in the game. But the traditional approach to analyzing games with 
multiple equilibria relies on “refining” Nash’s notion of equilibrium until 
(ideally) only one survives; and the most extensively studied and widely 
accepted refinements are designed mainly to ensure that, if a particular 
equilibrium is already expected to govern play, it is actually in each 
player’s interest to play his equilibrium strategy.’ Coordination games, by 
definition, have more than one equilibrium that passes this kind of test. 
The usual refinement techniques are therefore not much help in playing 
them. Players in a coordination game can therefore be expected to be 
uncertain about how other players will respond to its multiplicity of equi- 
libria, even when they have complete information. This strategic uncer- 
tainty undermines the standard argument that rationality requires players 
to play according to a particular equilibrium, and even calls into question 
the rationality of playing an equilibrium strategy. 

Because standard techniques do not yield convincing characterizations 
of behavior in coordination games, information from other sources about 
how they are played is crucial in answering questions that turn on coordi- 
nation. Van Huyck, Battalio, and Beil (henceforth “VHBB”) (1990, 1991) 
have recently conducted a series of experiments whose designs were 
especially well chosen for learning about behavior under strategic uncer- 
tainty. The remarkable results they obtained may be the cleanest experi- 
mental evidence on coordination now available. In one set of experi- 
ments, their subjects discriminated sharply and systematically between 
strict Nash equilibria-equilibria in which each player’s strategy is a 
unique best reply to the other players’. This is one of several behavioral 
regularities VHBB found that are not explained by traditional game the- 

’ Harsanyi and Selten’s (1988) “general theory of equilibrium selection” k a notable 
exception. Kohlberg and Mertens (1986) explain why the optimality of playing equilibrium 
strategies is not an immediate consequence of the definition of equilibrium. and provide a 
good introduction to the literature on equilibrium refinements. 
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ory, but which make perfect sense (as I shall argue) when strategic uncer- 
tainty is not assumed away. 

VHBB took considerable care in interpreting their results, and the in- 
terpretations they offered add a great deal to the value of their experi- 
ments. However, an adaptive analysis in the spirit of evolutionary game 
theory (see, for example, Maynard Smith, 1982), although not at all incon- 
sistent with VHBB’s interpretations, seems to sharpen them significantly. 
This paper outlines such an analysis, and discusses the behavioral as- 
sumptions required for an adaptive explanation of VHBB’s results. The 
adaptive analysis reflects the differences between learning in the finite 
human populations of the experiments and evolution in the large animal 
populations usually studied in evolutionary game theory. Indeed, al- 
though an uncritical application of Maynard Smith’s notion of evolution- 
ary stability predicts behavior much like that VHBB observed, a full 
explanation appears to depend on recognizing some important differences 
between learning and evolution. 

The rest of this paper is organized as follows. Section 2 summarizes 
VHBB’s experimental designs and results, and reviews their comparisons 
of their results with the predictions of traditional game theory. Section 3 
provides an introduction to the relevant parts of evolutionary game the- 
ory, discusses the relationship between evolutionary stability and Nash 
equilibrium, and compares predictions based on evolutionary stability 
with VHBB’s results, finding a surprisingly close correspondence. Sec- 
tion 4 discusses the differences between evolution and learning in 
VHBB’s experimental environments and outlines an adaptive model that 
reflects these differences and suggests a simple, unified explanation of 
their results. This explanation assigns a central role to strategic uncer- 
tainty, and suggests that VHBB’s subjects had a clearer understanding of 
how it affected their incentives than is consistent with a traditional analy- 
sis of the games they played. 

2. VAN HUYCK, BATTALIO, AND BEIL’S EXPERIMENTAL 
DESIGNS AND RESULTS 

This section summarizes VHBB’s (1990, 1991) experimental designs and 
results and reviews their comparisons of the behavior they observed with 
the predictions of traditional game theory.2 In the experiments, groups of 
2 to 27 subjects played series of one-stage simultaneous-move coordina- 
tion games, each symmetric across players, with no communciation al- 

* VHBB (1990, 1991) provide more complete descriptions of the experiments and results. 
VHBB (1989) report the results of some interesting additional experiments (not discussed 
here) in which the right to participate in VHBB’s (1991) games was auctioned off before 
play, with surprising consequences for observed behavior. 
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lowed before or during play. Most of these games had multiple strict 
Pareto-ranked pure-strategy Nash equilibria; most also had multiple 
mixed-strategy equilibria, which of course were not strict. (In what fol- 
lows, the term “game” is reserved for stage games, and “repeated game” 
is used for series of stage games. “Treatment” refers to a series of plays 
of a given stage game by a group of subjects.) Each experiment involved 
one or more treatments in sequence, each typically lasting between 5 and 
10 stages. With one exception, noted below, subjects played with the 
same group in every stage of a given treatment. A summary statistic of 
subjects’ strategy choices, described below, was publicly announced after 
each stage. The structure of each treatment was publicly announced at the 
start, with two apparently unimportant exceptions: The number of stages 
in a treatment was not announced in advance in some experiments, and 
the structures of future treatments were never announced until they were 
about to begin. At the end of each experiment, subjects were paid the 
(undiscounted) sum of their payoffs in the games they played. There was 
ample evidence that they understood the rules, and that they were paid 
well enough to induce the intended preferences. 

In the descriptions that follow, I use VHBB’s notation whenever possi- 
ble. In each of the games used in the experiments, each player i chose a 
pure strategy, denoted e;, from the set (1, . . . , 7). (Mixed strategies 
were presumably also feasible, but allowing them adds nothing to-and 
takes nothing away from-the explanations offered here.) The value of ei 
is called player i’s “effort” for reasons made clear below. In each stage, 
each player’s payoff was determined by his own effort and a simple sum- 
mary statistic of those of the players in his group. In the experiments 
reported in VHBB (1990) this statistic was the group minimum effort, 
denoted min(+ e-i), where e-i = min(ei , . . . , eipl, eit l, . . . , e,); in 
those reported in VHBB (1991) (in which the number of players was 
always odd) it was the group median effort, denoted M. With minor 
exceptions, only these statistics were announced after each stage. The 
announcements in each case contained all directly payoff-relevant infor- 
mation, and VHBB’s (1990) comparison of the results with those of the 
exceptional treatments, in which entire effort profiles were announced, 
suggests that announcing entire profiles would have made little difference. 

In VHBB’s “minimum” experiments, subject i’s stage-game payoff 
was given by n(ei, ewi) = a[min(ei, e-;)I - be; + c, i = 1, . . . , IZ, with 
a > b 2 0. VHBB motivated this specification by noting that this kind of 
game was suggested by Bryant (1983) (see also Cooper and John, 1988) as 
a model of Keynesian effective demand failures. This game has a long 
history, which can be traced to the Stag Hunt example Rousseau (1973, p. 
78; originally published in 1755) used in his discussion of the origins of the 
social contract. Imagine (adding a bit of game-theoretic detail to Rous- 
seau’s discussion) that each of a group of hunters must independently 
decide how much of his effort to devote to hunting a stag with the others. 
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Hunting a stag requires the cooperation of each member of the group, 
with the minimum of members’ efforts determining the probability of 
success. The opportunity cost of effort devoted to the stag hunt is deter- 
mined by the expected benefit of hunting rabbits, which requires no coop- 
eration. The effort ei in VHBB’s minimum game then corresponds to the 
amount of effort hunter i allocates to the stag hunt, the parameter a 
reflects its expected benefit, given the ei, and the parameter b reflects the 
expected benefit of hunting rabbits. In more prosaic terms, the minimum 
game is a model of team production with equal output shares and costly 
effort. Output more than repays players’ effort costs if all work equally 
hard, but the minimum effort in the team creates a bottleneck, so that if 
anyone shirks, the balance of the others’ efforts is wasted. 

There were four treatments in the minimum experiments, called A, A’, 
B, and C. A given set of 14-16 subjects normally participated in a se- 
quence of treatments, either {A}, {A, B, A’} or {A, B, A’, C}. Treatments 
A, A’, and B used “large” groups consisting of the entire set of 14-16 
subjects; treatment C used “small” groups of 2 (or in one case, 3) sub- 
jects, randomly selected from that set. The members of a pair were told 
only the pair’s minimum effort after each stage. There were in fact two 
versions of treatment C. In one, here called “Cd,” subjects’ pairings were 
different in each stage; in the other, here called “Cr,” they were fixed. 

The payoff parameter c was set at $0.60 in each treatment to avoid 
negative payoffs. In treatments A and C, the parameter a was set at $0.20, 
and the parameter b was set at $0.10.3 In treatment B, b was lowered to 
$0.00, making ei = 7, the highest feasible effort (and the only one consis- 
tent with efficiency), a weakly dominant strategy. Treatment A’ restored 
the payoffs of treatment A following a switch to those of treatment B. For 
any number of players, the payoffs for treatments A, A’, and C were as 
follows: 

Group minimum effort 

7 6 5 4 3 2 1 

7 1.30 1.10 0.90 0.70 0.50 0.30 0.10 
6 1.20 1.00 0.80 0.60 0.40 0.20 
5 1.10 0.90 0.70 0.50 0.30 

Subject’s effort 4 1.00 0.80 0.60 0.40 
3 0.90 0.70 0.50 
2 0.80 0.60 
1 0.70 

3 Despite these low stage-game payoffs, the range of possible payoffs over the course of 
an experiment gave the subjects (undergraduates at Texas A&M University) fairly strong 
incentives to maximize their payoffs: A subject’s possible total earnings in a typical 2-hr 
experiment ranged from $5.74 to $35.30. 
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In VHBB’s “median” experiments, subject i’s stage-game payoff was 
normally given by p(ei, M) = aM - P[M - ei]’ + y, with a > 0 and /3 L 0. 
(I depart from their notation here to avoid confusion with the function 7~(.) 
and the parameters a, 6, and c in VHBB (1990).) Thus, other things equal, 
the closer subjects’ efforts were to the group median effort, the higher 
their payoffs, with higher common effort choices yielding higher payoffs. 
As VHBB suggest, this game resembles the newspaper competitions to 
which Keynes (1936, Chap. 12) likened professional investment, 

. . in which the competitors have to pick out the six prettiest faces from a 
hundred photographs, the prize being awarded to the competitor whose choice 
most nearly corresponds to the average preferences of the competitors as a 
whole; so that each competitor has to pick, not those faces which he himself 
finds prettiest, but those which he thinks likeliest to catch the fancy of the 
other competitors, all of whom are looking at the problem from the same point 
of view. 

There were four different median treatments, called I, Idm, R, and Cp. 
A given set of subjects normally participated in a series of treatments, 
either {I, R, I}, {Idm, a}, {a, I}, or (0, I}. These treatments used groups 
of 9 subjects, with a fixed group playing in each stage of a given treatment, 
except that in the “dual-market” treatment Idm each subject played two 
games simultaneously (each with the same payoff table as treatment I), 
one in a group of 9 and one in a group of 27. VHBB combined the results 
of treatments I and Idm because they found no statistically significant 
differences between them; I follow their lead in this. 

In each median treatment, y was set at $0.60 or $0.65 to avoid negative 
payoffs. In treatments I and Idm, the payoff parameter (Y was normally 
set at $0.10 and p was normally set at $0.05. In treatment @, (Y was 
reduced to $0.00. In treatment fI, subject i’s payoff was $0.00 unless ei = 
M, in which case his payoff was given by p(ei, M) with /? = $0.00 and (Y 
either reduced to $0.05 or left at $0.10. Thus, treatments I and Idm 
combined a preference for a higher median effort, other things equal, with 
increasingly severe penalties for being further and further away from the 

Group median effort 

7 
6 
5 

Subject’s effort 4 
3 
2 
1 

7 6 5 4 3 2 1 

I 
1.30 1.15 0.90 0.55 0.10 -0.45 -1.10 
1.25 1.20 1.05 0.80 0.45 0.00 -0.55 
1.10 1.15 1.10 0.95 0.70 0.35 -0.10 
0.85 1.00 1.05 1.00 0.85 0.60 0.25 
0.50 0.75 0.90 0.95 0.90 0.75 0.50 
0.05 0.40 0.65 0.80 0.85 0.80 0.65 

-0.50 -0.05 0.30 0.55 0.70 0.75 0.70 
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median. Treatment Cp eliminated the preference for a higher median, and 
treatment fi imposed different penalties for being away from the median, 
generally higher than in treatments r and Tdm but independent of the 
distance. The payoffs for treatments r and Tdm were as shown in the 
table at the bottom of p. 30. 

Before summarizing VHBB’s experimental results, it is useful to re- 
view the implications of traditional game theory for behavior in the games 
they studied. I restrict attention to pure strategies; it can be shown that 
the conclusions remain valid when mixed strategies are allowed. I also 
restrict attention to stage-game strategies. Repeated-game strategies are 
theoretically potentially relevant in most of VHBB’s treatments. But al- 
lowing them seems to help in understanding the results only in minimum 
treatment G4 

Recall that in my terminology, “games” are stage games. In every 
game used in VHBB’s experiments but that of minimum treatment B, the 
strategy combinations in which each player chooses the same effort are 
the only pure-strategy Nash equilibria, and each of these is strict, and 
therefore trembling-hand perfect, proper, and strategically stable (taken 
by itself).j In the game used in treatment B, any strategy combination in 
which more than one player’s effort equals the group minimum is a Nash 
equilibrium, but the combination in which each player chooses the highest 
effort, e; = 7, is the only one that does not involve weakly dominated 
strategies. Because this equilibrium is strict, it (unlike the others in this 
game) also satisfies the above refinements. 

The only equilibrium refinement that discriminates between the strict 
equilbria in VHBB’s games is Harsanyi and Selten’s (1988) general theory 
of equilibrium selection. In every game but that of median treatment @ (in 
which all of the pure-strategy equilibria yield the same payoffs), the “pay- 
off-dominance” principle they incorporated into their theory selects the 
equilibrium in which each player chooses the highest effort, because only 
that equilibrium is Pareto-efficient in the set of equilibria.‘j 

4 The learning models proposed below of course resemble repeated-game strategies, in 
that they make players’ current choices history-dependent. Except in treatment Cr. how- 

ever, VHBB’s subjects appeared to use history mainly to predict how the other subjects 

would play, not because they hoped thereby to influence their future choices. 

5 Trembling-hand perfectness follows immediately for strict equilibria, because small 
trembles in players’ strategies do not alter their strict preferences for the equilibrium strate- 
gies; properness follows by a similar argument. II can be shown that each pure-strategy 
equilibrium is a strategically stable set, taken by itself. by “pruning” pure strategies that are 

never weak best responses. 
h Harsanyi and Selten’s theory gives payoff-dominance first priority, subject to the qualifi- 

cation that perfect symmetries and the absence of a common-knowledge labeling of strate- 
gies may make it impossible for players to be sure of coordinating their strategy choices (see 
also Crawford and Hailer, 1990). In such cases, they apply payoff-dominance after an 
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These conclusions, like the rules of the games are used in the experi- 
ments, are readily accessible to common sense. (The simplicity of the 
games VHBB studied probably increased the clarity of their results, by 
allowing subjects to rely on intuitions gleaned from everyday experience 
more than they could in experiments with games that cannot be described 
in simple common-sense terms.) In each case the efficient outcome is an 
equilibrium, so there are no incentive problems as they are normally 
characterized in economic theory. Moreover, the efficient equilibrium is 
the best possible outcome for all players, and the argument in favor of 
playing it does not depend on a deep understanding of game theory: it is 
obviously the “correct” coordinating principle. 

To realize the efficient outcome, however, players must overcome a 
more subtle kind of incentive problem. In the large-group minimum game 
of treatments A and A’, for instance, the highest effort’s higher payoff 
when all players choose it must be traded off against its greater risk of 
lower payoffs if they do not. (This risk is entirely due to strategic uncer- 
‘tainty, hence not reflected in a traditional analysis.) For a player to find it 
rational to choose the highest effort, treating the influence of his choice on 
future developments as negligible, he must believe that the correctness of 
this choice is sufficiently obvious that it is likely that all of the other 
players in his group will believe that its correctness is sufficiently obvious 
to all. Although the payoff-dominance principle that dictates this choice is 
not at all subtle and its rationale does not depend on the number of 
players, when playing games like the minimum game most people appear 
to consider the highest effort a good bet in small groups, but not in large 
groups.’ 

The strategic uncertainty that underlies this incentive problem can pro- 
foundly affect behavior. Despite payoff-dominance, in VHBB’s large- 
group minimum treatments A and A’ subjects initially chose widely dis- 
persed efforts and then rapidly approached the lowest effort, ei = 1: In 
treatment A, 72% of the subjects reached that effort within 10 stages and it 
was the modal IOth-stage effort in every experiment; in treatment A’, 84% 
of the subjects reached that effort within 5 stages and it was the modal 

expected-payoff calculation that takes this uncertainty into account. This qualification is 
relevant here only for median treatment a; its relevance is limited even there, because in 
that treatment VHBB’s subjects appeared to use the labeling VHBB announced to coordi- 
nate their strategy choices. 

’ Note that these beliefs are self-confirming! They are plausible because if players choose 
independently, with probabilities independent of the number of players, the obviousness of 
the principle is less likely to be sufficient, the larger the group. But this intuition concerns a 
choice between strict equilibria, hence is not captured by traditional refinements (with the 
partial exception of the “risk-dominance” part of Harsanyi and Selten’s theory, discussed 
further in Section 4). 
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5th~stage effort in every experiment. By contrast, in the intervening mini- 
mum treatment B, in which the payoff-dominant highest effort was also a 
weakly dominant strategy, 84% of the subjects initially chose that effort 
and 96% of them reached it by the 5th stage. Thus, treatments A and A’ 
revealed a remarkable behavioral regularity that is not explained by tradi- 
tional equilibrium refinements, and is at variance with the only such re- 
finement (payoff-dominance) that discriminates between the strict equilib- 
ria in these treatments. The contrasting regularity observed in treatment B 
was very close to a unique prediction based on weak dominance (and 
therefore reinforced by strategic uncertainty). This suggests that the very 
different results observed in treatments A and A’ were due not to sub- 
jects’ failure to understand their incentives, but to strategic uncertainty. 

The dynamics were very different in the small groups of minimum 
treatments Ca and Cr, which had the same payoff table as treatments A 
and A’, and in the various median treatments, which had comparable 
numbers of players. In each case subjects’ initial effort choices varied 
substantially. In treatment Cd subjects’ choices drifted over time with no 
clearly discernible trend, while in treatment Cr 90% of the subjects 
reached the highest effort within seven stages. By contrast, in every 
median experiment subjects converged completely, within 5 or 10 stages 
(with three minor exceptions), to the Nash equilibrium determined by the 
historical accident of their initial treatment median, despite considerable 
variation in the initial median across treatments. 

Two features of these results are particularly noteworthy. There is a 
striking contrast between subjects’ behavior in large- and small-group 
minimum games, with large groups discriminating very sharply between 
strict equilibria and small groups discriminating either much less sharply 
or in the reverse direction, depending on whether or not their pairings 
were fixed. There is also a striking contrast between subjects’ behavior in 
large-group minimum games and median games, with no history-depen- 
dence whatsoever in the former but very strong history-dependence in the 
latter. There can be little doubt that these results are replicable. Similar 
results have been obtained in formal experiments with games like the 
large-group minimum game by Isaac et al. (1989), and with games like the 
median game by VHBB (1989); these are easily reproduced in informal 
experiments with simplified versions of VHBB’s games. Moreover, infor- 
mal experiments and the results of VHBB’s treatment A’ (which was 
preceded by an A treatment with the same structure and subjects) suggest 
that the patterns of behavior VHBB observed do not disappear when 
subjects learn to anticipate them; if anything, they are reinforced. Thus, 
although VHBB’s subjects’ behavior is not fully consistent with any tradi- 
tional notion of rationality, it passes what is arguably the most reasonable 
test of rationality in coordination games. 
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3. EVOLUTIONARY GAMETHEORY 

Explaining VHBB’s experimental results promises to help in under- 
standing how the difficulty of coordination influences strategic behavior. 
It may also shed some light on how group size affects cooperation, an- 
other important question that has long resisted analysis along traditional 
lines. In this section and the next, I outline a unified adaptive explanation 
of the behavior they observed. 

My basic premise is that in environments with strategic uncertainty, 
players’ expectations are likely to be heavily influenced by what they can 
learn about other players’ likely strategy choices from their experience 
with analogous games. To learn in this way, players must assume, at least 
implicitly, that some aspect of the stochastic process that describes other 
players’ behavior remains constant over time. In environments with the 
repeated-game structure of VHBB’s experiments, previous plays of the 
stage game provide the closest analogies. It is therefore natural (except 
when repeated-game strategies are plainly essential, as in treatment Cr) to 
begin by considering models in which stage-game strategies are the ob- 
jects of choice, with players adjusting them over time on the assumption 
that the distribution of the other players’ strategy choices will remain 
approximately constant from one stage to the next. 

Models with these features, whose assumptions correspond closely to 
the structures of VHBB’s experimental environments, were introduced 
by &helling (1973; 1978, Chap. 7) and Maynard Smith (1974, 1982). Pre- 
dictions based on Maynard Smith’s notion of evolutionary stability are 
surprisingly close to the patterns of discrimination between Nash equilib- 
ria in VHBB’s experiments. Understanding why this is so is helpful in 
constructing an adaptive explanation of VHBB’s results, even though the 
true explanation cannot be literally evolutionary. This section provides an 
introduction to evolutionary game theory and shows how it can be applied 
to VHBB’s games; my discussion draws on Crawford (1990b), which 
provides more detail and further references. Section 4 then discusses the 
differences between learning in human populations and evolution, and the 
changes in the model required for a full explanation of VHBB’s results. 

Unless otherwise noted, “game” and “strategy” refer to the stage 
game. In the simplest versions of Schelling’s and Maynard Smith’s 
models, a population of identical players repeatedly play a symmetric 
game. (This specification includes, but is not limited to, the familiar case 
in which pairs of players are randomly selected from the population to 
play a two-person game.) Players’ strategies are identified, so that it is 
meaningful to say that different players choose the same strategy, or that 
a player chooses the same strategy in different stages. Individual players 
play only pure strategies, with each player’s payoff determined by his own 
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strategy and the population frequencies of the other players’ strategies, so 
that it make no difference “who did what” among the others. The popula- 
tion is large, in the sense that each player’s strategy has a negligible effect 
on the population strategy frequencies, the population frequencies can be 
treated as continuous variables, and the average payoff of those using 
each strategy can be identified, via the law of large numbers, with its 
mathematical expectation. Finally, the dynamics have the property that 
strategies with higher current payoffs increase in frequency over time. In 
Maynard Smith’s model, this follows from the assumptions that players 
inherit their parents’ strategies and reproduce asexually, at rates deter- 
mined by their payoffs. In Schelling’s model, it is an aggregate conse- 
quence of a plausible hypothesis about individual strategy adjustment.8 

It is natural to hope that the dynamics of the population strategy fre- 
quencies are convergent, so that their limiting behavior can serve as a 
simple summary of the model’s implications. Because global stability is 
usually too much to hope for in coordination games, Schelling focused on 
frequencies that are locally stable, in the standard sense that the popula- 
tion returns to them, at least asymptotically, after any sufficiently small 
departure. This idea of local stability of the population strategy frequen- 
cies is also the motivation for Maynard Smith’s notion of evolutionary 
stability. He defined an evolutionarily stable strategy (or “ES,“) as a 
strategy (pure or mixed) that, if played by all members of a large popula- 
tion, has strictly higher payoff than any mutant strategy that enters the 
population with sufficiently low frequency.9 

Maynard Smith’s definition rests on the intuition that if the members of 
a population all play an ESS, any mutants that enter the population with 
low frequency reproduce more slowly than players who play the ESS. As 
a result, the relative frequency of the mutants approaches zero over time, 
restoring the population strategy frequencies of the ESS. This intuition 
has since been formalized by Taylor and Jonker (1978), Zeeman (1979), 
and Hines (1980a, 1980b), who showed (with varying degrees of general- 
ity) that evolutionary stability corresponds closely to local stability of the 

x This hypothesis finds considerable support in VHBB’s observations of their subjects’ 
behavior and predictions of each other’s behavior, and in other experimental work; see 
Banks et al. (1988). Isaac e/ crl. (1989), and Selten and Stoecker (1986). 

y A formal definition is given below. Although Maynard Smith’s definition refers to a 
monomorphic population, in which all players play the same strategy in equilibrium, a 
mixed-strategy ESS can also be used (as illustrated below) to characterize the limiting 
behavior of a polymorphic population, in which players play different strategies in equilib- 
rium. In a polymorphic equilibrium, evolutionary stability requires that on average, the 
members of the population have higher expected payoff than any mutant. I allow mixed- 
strategy ESS’s, despite my simplifying assumption that players play only pure strategies, to 
avoid arbitrarily ruling out such equilibria. 
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evolutionary dynamics; Crawford (1989, Sect. 1) provides a brief survey 
and further references. 

It is well known (see, for example, Maynard Smith, 1982, p. 14) that 
there is also a close correspondence between evolutionary stability and 
Nash equilibrium. For instance, in the random-pairing model referred to 
above, with a large population, a strategy that is not a best response to 
itself can clearly be invaded by a low-frequency mutation that is a best 
response to that strategy. It follows that in this model, an ESS must 
correspond to a Nash equilibrium in the two-person game played by 
paired players; the definition requires that this equilibrium be symmetric 
across players. It can also be shown that any strict, symmetric Nash 
equilibrium corresponds to an ESS. It is shown below that this correspon- 
dence extends to a much wider class of models. The results of Taylor and 
Jonker, Zeeman, and Hines can thus be viewed as an adaptive justifica- 
tion for Nash equilibrium. 

Schelling’s and Maynard Smith’s models differ from traditional game 
theory in two important ways. First, it is evident that their characteriza- 
tion of behavior is not “rational” in any of the traditional senses. Strate- 
gies are not even chosen in Maynard Smith’s model. Although they are 
chosen in Schelling’s model, they are not in general best responses to 
rationality-based predictions about their current and future conse- 
quences. Instead, the population in effect comes to know the equilibrium 
strategy frequencies as they evolve: players’ experience with analogous 
games is substituted for deductions based on rationality. 

Some such departure from traditional notions of rationality appears to 
be essential for a full understanding of how strategic uncertainty affects 
behavior.‘O It is clear from Section 2’s arguments that ignoring the dy- 
namics of learning and applying traditional equilibrium refinements to the 
stage game leaves far too much unexplained. And although there is no 
obstacle in principle to a traditional analysis of the entire learning pro- 
cess, in which players choose decision rules that are in (suitably refined) 
equilibrium in the repeated game, a repeated game normally inherits the 
multiple-equilibrium problems of the stage games that make it up. Such an 
approach compounds coordination problems rather than resolves them, 
and requires the unrealistic, question-begging assumption that players’ 
expectations are coordinated at the start of play-usually, in practice, at 
an equilibrium selected by applying refinements that are largely insensi- 
tive to strategic uncertainty. 

lo Such a departure would be difficult to defend, for applications involving human players, 
if it persisted indefinitely. In the games considered here, however, the dynamics normally 
converge to a Nash equilibrium in the stage game. 
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The second important difference is that, in conjunction with evolution- 
ary stability, the labels that identify players’ strategies have substantive 
implications: they are the language in which conventions that emerge to 
solve coordination problems must be expressed. Their role is best illus- 
trated by considering some examples from the theory of traffic. Imagine a 
large population of identical players, repeatedly paired at random to play 
one of the following two-person games: 

G 

S 

G S 

0 1 
0 1 El 1 0 
1 0 

Intersection 

L R 

L l1 o” q R o” l1 
Confrontation 

These games are stylized versions of the situations drivers face when 
meeting on different roads at an intersection, and when confronting each 
other head-on on a single road; the labels G and S refer to Go and Stop, 
and L and R refer to driving on the Left and on the Right. In Intersection, 
but not in Confrontation, players must choose strategies with different 
labels to achieve efficient coordination, even though they have no way to 
distinguish their roles in the game. Because this is “only” a difference in 
labeling, these games would be treated as equivalent in a traditional analy- 
sis (see, however, Harsanyi and Selten, 1988). But it is clear that this kind 
of difference can matter a great deal in practice. 

Evolutionary game theory models the effects of this difference by ruling 
out systematic differences between players’ strategy choices when they 
have no way to distinguish their roles. In Intersection, for instance, it is 
easy to verify from the definition, or directly from the population dy- 
namics, that the only ESS is “G with probability 4”; the resulting strategy 
frequencies can be realized as a pure-strategy polymorphism, with half 
the players choosing G and half choosing S. ‘I Although individual players 
play only pure strategies in this configuration, the symmetry across play- 
ers imposed by evolutionary stability rules out both of the pure-strategy 
Nash equilibria in the two-person game. 

‘I A strictly evolutionary analysis would allow these frequencies to be realized in many 
other ways, including in particular each player playing the mixed-strategy ESS. It is argued 
in Crawford (1989), however, that sensible learning dynamics must converge, if at all, to a 
configuration in which individual players play only pure strategies. 
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In Confrontation, by contrast, there are two ESS’s: “L with probability 
one” and “R with probability one”; the associated strategy frequencies 
can be realized only by players all choosing L or all choosing R. These 
outcomes of course correspond to the symmetric pure-strategy Nash 
equilibria in the two-person game. In this case, however, there is no ESS 
that corresponds to the symmetric mixed-strategy equilibrium in that 
game. 

It is intuitively clear that players might be able to coordinate their 
decisions better in Intersection if they could find some way to distinguish 
their roles when they meet. Evolutionary game theory models the effect 
of such a coordination device by building it into the game and then requir- 
ing symmetry across players in the larger strategy space that results. 
Installing a stoplight in an intersection, for instance, allows a player to 
make his decisions contingent on what color light he sees. Assuming that 
the light is green for one player at the intersection if and only if it is red for 
the other, and that it is red and green with equal probabilities for both, 
yields an expanded Intersection game with payoff matrix: 

G,G S,S G,S S,G 

G,G 

ss 

GS 

S,G 

0 1 l/2 l/2 

1 0 l/2 l/2 

l/2 I/2 1 0 

l/2 l/2 0 1 

Intersection with stoplight 

(“G,,” stands for the strategy “Go on green, Stop on red”; “S,G” 
stands for “Stop on green, Go on red”; and so on. The single number in 
each cell represents both players payoffs for the associated strategy com- 
bination.) In the expanded strategy space, symmetry across players is 
consistent with efficient coordination. It is easy to show that evolutionary 
stability actually requires players to use the stoplight to solve the coordi- 
nation problem in the familiar way-though not necessarily with our con- 
ventional meanings of red and green. 

To see how these ideas can be applied to VHBB’s experimental envi- 
ronments, it is best to begin with a simplified version of the minimum 
game used in their treatments A, A’ and C, which 1 shall call the “Stag 
Hunt.” Consider a group of players, each of whom must choose simulta- 
neously between two efforts, 1 and 2. As before, the minimum of their 
chosen efforts determines total output, which they share equally. Each 



“EVOLUTIONARY” INTERPRETATION 39 

player’s effort cost increases with effort, but effort is sufficiently produc- 
tive that if all players in the group choose the same effort, the resulting 
output shares more than repay the cost. Assume, for definiteness, that 
output per capita is twice the minimum effort and that each player’s unit 
cost of effort is one. Then each player’s payoffs, for any finite number of 
players, each player’s payoffs are as follows: 

Group minimum effort 
2 1 

Player’s effort 

Stag Hunt 

This game has two pure-strategy Nash equilibria, one in which all players 
choose effort 2 and one in which all choose effort 1; all players prefer the 
former to the latter. 

It is important in what follows to distinguish between two population 
models. The random-pairing model, in which players are randomly se- 
lected from the population and paired to play a symmetric two-person 
game, has already been discussed. The simultaneous-play model allows 
players to interact in any way that can be described as simultaneous play, 
by all members of the population, of a single symmetric game.i2 

The random-pairing Stag Hunt is a simplified model of VHBB’s treat- 
ment Cd and the simultaneous-play Stag Hunt is a simplified model of 
their treatments A and A’. When players have only two pure strategies 
and the population is large, a graphical stability analysis of these models is 
possible. (The same conclusions can be obtained directly from the ESS 
definition.) Figure 1 graphs the expected payoffs of efforts 1 and 2 for a 
representative player in the random-pairing Stag Hunt against the popula- 
tion frequency of effort 1. With random pairing, a player’s expected pay- 
off is a population frequency-weighted average of his effort’s payoffs 

rz The simultaneous-play model was introduced in economics by &helling (1973; 1978, 
Chap. 7). and in biology (where it is called the “playing the field” model) by Maynard Smith 
(1982, pp. 23-27), who attributed it to Hammerstein. Random pairing can be seen as a 
special case of simultaneous play by thinking of players’ interactions as a single symmetric 
game, in which players choose their strategies before the uncertainty of pairing is resolved. 
Both models can also be viewed as special cases of a still more general model, in which 
randomly selected n-person subsets of the population play an n-person game, as in Schaffer 
(1988). (Curiously, this model can also be viewed as simultaneous play, by the above 
device.) 
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0 l/2 1 

FREQUENCY OF EFFORT LEVEL 1 

FIG. I. Stag Hunt with random pairing. 

when his partner chooses efforts 1 and 2, and therefore a linear function of 
the population frequencies. Figure 2 graphs the payoffs for a representa- 
tive player in the simultaneous-play Stag Hunt. The payoff of effort 1 is 
again constant, but there is now a discontinuous drop in the payoff of 
effort 2, which falls from 2 to 0 as the frequency of effort 1 rises above 0. 
This is due to the fact that in the simultaneous-play Stag Hunt each 
player’s payoff can be substantially altered by a small change in the other 
players’ strategy frequencies, even in a large population.r3 

To avoid confusion with Nash equilibrium, I shall call an equilibrium of 
the dynamics of the population strategy frequencies a stationary point. It 
is clear from Fig. 1 that there are three stationary points in the random- 

I3 This discontinuity is not pathological from the point of view of traditional game theory. 
Although the payoffs in this game can be represented, for any number of players, only by a 
discontinuous function of the population strategy frequencies, this kind of continuity is not a 
substantive restriction if the size of the population is bounded. For any given finite number 
of players, the payoff function yields a well-defined game that satisfies all of the assumptions 
of traditional game theory. (Allowing mixed strategies in this game would not alter my 
conclusions, and would make players’ payoffs continuous in the traditional sense in the 
larger strategy space.) The difference between the simultaneous-play and random-pairing 
Stag Hunts is that in the former model, small individual probabilities of choosing effort I 
imply a much larger probability that the group minimum effort is I, while this effect is 
attenuated by sampling in the latter model. Thus, in terms of the most general model 
discussed in footnote 12, the essential difference between these two models is whether the 
subsets of the population that play the Stag Hunt game are large or small. 
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EFFORT LEVEL 
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EFFORT LEVEL 1 

EFFORT LEVEL 2 

b 
\ 

0 1 
FREQUENCY OF EFFORT LEVEL 1 

FIG. 2. Stag Hunt with simultaneous play. 

pairing Stag Hunt, at population frequencies 0, 2 (the frequency that 
equalizes the expected payoffs of the two efforts), and 1. Each of these 
corresponds to a Nash equilibrium in the two-person Stag Hunt game. 
The stationary points at frequencies 0 and 1 are stable, and the stationary 
point at frequency & is unstable. The outcome is determined by the initial 
population strategy frequencies. If (as informal experiments suggest) 
most players initially choose effort 2, the population converges to the 
efficient Nash equilibrium. It is also possible, however, for the population 
to get stuck forever at the inefficient equilibrium. 

In the simultaneous-play Stag Hunt there are two stationary points, at 
population frequencies 0 and 1. Each corresponds to a Nash equilibrium 
in the large-group Stag Hunt game. The stationary point at frequency 1, 
which corresponds to the inefficient Nash equilibrium, is stable. How- 
ever, the stationary point at frequency 0, which corresponds to the effi- 
cient Nash equilibrium, is unstable, because if even a single player 
switches to effort 1, it then has the higher payoff. Thus, even though the 
efficient equilibrium is strict, unless all players initially choose effort 2 the 
population converges to the inefficient equilibrium. 

Although these conclusions are‘encouragingly close to VHBB’s results, 
the informal analysis just given raises as many questions as it answers: 
Why does selection, in which a “beggar-thy-neighbor” mutation that 
lowers a player’s payoff but lowers other players’ payoffs even more can 
be evolutionarily advantageous, lead to Nash equilibrium, in which play- 
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et-s maximize purely individualistic payoffs? Does the tendency of the 
population dynamics to converge to Nash equilibrium extend to the finite 
populations, larger strategy spaces, and more complex payoff determina- 
tion of VHBB’s experimental environments? How does evolutionary sta- 
bility discriminate between equilibria in those environments? 

These questions can be answered only by a formal analysis. It is sim- 
plest to begin with large populations. The definitions that follow apply to 
simultaneous play as well as random pairing. Let the probability vectors Y 
and s represent a player’s mixed strategy and the population strategy 
frequencies, respectively, and let E(rls) denote the payoff of a player 
playing r when the population frequencies are given by s. (In a large 
population, it does not matter whether or not s includes the player’s own 
strategy, because it is a negligible part of the population frequencies.) I 
shall abuse terminology somewhat by calling E(*l.) the payofffunction. In 
the random-pairing model, E(rls) is linear in s for any given value of Y, as 
noted above; and the linearity in probabilities of expected payoffs makes 
E(rls) linear in Y for any given value of s. E(rls) is also linear in Y in the 
simultaneous-play model, for the same reason; but it is in general nonlin- 
ear in s. 

A large-population ESS can be formally defined as a mixed strategy, p, 
such that, for each mixed strategy 4 f p, there exists an E(q) > 0 for 
which 

E(p((1 - E)P + 4 > E(ql(1 - E)P + W) (1) 

whenever 0 < E < F(q).14 A large-population ESS is thus a strategy that, if 
initially played by all members of a monomorphic population, has strictly 
higher payoff than any mutant strategy that enters the population with 
sufficiently low frequency, after the mutants enter. 

Although the large-population idealization is often helpful, it is not fully 
adequate for an analysis of VHBB’s games. For a player’s payoff in a 
simultaneous-play minimum game to be determined by his own strategy 
and the population strategy frequencies when each player’s strategy is a 
negligible part of the population frequencies, it must depend on the mini- 
mum effort with positive frequency in the population, not on the minimum 
effort. (An analogous observation applies in defining the payoff function 
for large-population median games.) But then lowering a player’s effort 
lowers his effort cost without reducing his output share, so the efficient 

I4 It is sometimes useful to strengthen this definition by requiring that there exists an E > 
0, independent of 4 # p, such that (I) holds whenever 0 < E < E. Crawford (199Oa) shows 
that this stronger definition is equivalent to the one in the text for any p for which there 
exists a neighborhood of s = p throughout which E(rls) is continuous in s for all r. Thus, this 
section’s results arc readily extended to the stronger definition. 
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strategy combination in which all players choose the highest effort is not a 
Nash equilibrium, even though it is an equilibrium in any finite popula- 
tion, however large. This discontinuity, in conjunction with the finiteness 
of the populations in VHBB’s (or anyone else’s!) experiments, suggests 
that the large-population assumption should be used with care, checking 
its conclusions against those of a parallel finite-population analysis. 

Schaffer (1988) and Maynard Smith (1988) argued that the large-popula- 
tion ESS definition remains adequate for finite populations (with one qual- 
ification, discussed below), provided that individual players’ effects on 
the population strategy frequencies are taken into account in comparing 
the payoffs of mutants and ESS-players.‘j Let @r(s) again denote the 
payoff function, with r representing the player’s mixed strategy and s 
representing the frequencies of the other players’ strategies. (This defini- 
tion is consistent with my notation for large populations.) Assuming that 
any mutants switch strategies from the ESS, so that the size of the popula- 
tion remains fixed at N players, a finite-population ESS can be defined as 
a mixed strategy, p, such that for each mixed strategy 4 # p, 

Condition (2) plays the role of condition (1) in the large-population ESS 
definition, requiring that ESS-players must have greater payoffs than any 
mutant that enters the population with sufficiently low frequency-in this 
case, 1/N.16 

I now turn to an evolutionary analysis of the games that describe 
VHBB’s experimental treatments. In these games, as in the Stag Hunt 
models discussed above, the assumption that players play only pure strat- 
egies makes it possible to express each player’s payoff as a function of the 
population strategy frequencies and his own strategy, with the form of 
this function the same for all players and independent of population size. 

In the large-group minimum treatments A and A’, lower efforts always 
yield the same output shares as higher efforts, but at lower cost. Thus, in 

I5 Here, as in Schaffer’s and Maynard Smith’s analyses, players’ realized payoffs are 
identified with their mathematical expectations, even though the law of large numbers does 
not fully justify this substitution in a finite population. 

I6 For reasons explained in Schaffer (1988) and Crawford (199Ob). no nondegenerate 
mixed strategy p can satisfy the strict inequality in (2) in a random-pairing model. Schaffer 
(1988) and Maynard Smith (1988) therefore weakened the finite-population ESS definition by 
allowing equality in (2), as long asp has strictly higher payoff than any mutant that enters the 
population with frequency higher than l/N. The ESS’s in VHBB’s games are all monomor- 
phic, and all satisfy the strict inequality in (2). Thus, even though I allow mixed-strategy 
ESS’s to avoid ruling out polymorphic equilibria a priori, the simpler definition in the text is 
adequate for my purposes. 
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any population, large or finite, a mutation to an effort that is the minimum 
in the population, after the mutation, then has higher payoff than all other 
efforts. The strategy configuration in which all players choose the lowest 
effort is therefore the unique ESS in these treatments. 

Because effort is costless in minimum treatment B, it is impossible for a 
strategy to satisfy the strict inequality in (1) or (2) (or the weaker finite- 
population ESS definition discussed in footnote 16). There is, therefore, 
no ESS in this treatment. It is often possible, in cases like this, to restore 
existence by generalizing the ESS definition to allow sets of strategies that 
collectively resist invasion by mutants, but not by each other. However, it 
seems more informative in this case to increase the discriminatory power 
of evolutionary stability by assuming, following Selten (1983), that play- 
ers implement their strategies with small probabilities of error. Weakly 
dominated strategies then have uniformly lower expected payoffs, and the 
weakly dominant highest effort is therefore the unique ESS.17 

To see what evolutionary stability entails in treatment Cd, consider a 
pure-strategy mutant x invading a population playing the pure strategy y. 
A mutation to x > y plainly yields lower payoff than y, so it can be 
assumed that x < y without loss of generality. It is easily verified that if 
E(rls) denotes the payoff function in treatment Cd and x < y, then E(xl y) 
= E(xlx) = (a - b)x + c andE(ylx) = ax - by + c. The ESS condition (2) 
becomes 

E(YlGY + J&x) = g&Y) + &E(YlX) 

N-2 
= ~-l [(a - b)y + cl (3) 

+ & [ax - by + c] > (a - b)x + c = E(x( y), 

which reduces, when a > b > 0, to N > (2~ - b)l(u - b). Because a = 
$0.20 and b = $0.10 in VHBB’s minimum experiments, any pure-strategy 
effort is a monomorphic ESS whenever N 2 4, hence in their experi- 
ments with this treatment, in which N ranged from 14 to 16.‘* 

” The error probabilities assumed in this case are clearly a step in the direction of realism, 

but they may appear ad hoc because they are not used in my evolutionary analyses of 
VHBB’s other treatments. Those analyses, however, rest on strict fitness inequalities, so 
that small error probabilities would not alter their conclusions. 

‘* For completeness, I record the conclusions for N = 2 and 3. When N = 2, any x < ?: can 
invade, because (2a-b)/(a-b) > 2; thus, only the lowest effort is an ESS in this case. When N 

= 3, (3) holds with equality when n = $0.20 and h = $0. IO, but the more general version of 
the ESS definition discussed in footnote I6 can be used to show that only the lowest effort is 
an ESS. 
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In treatment Cr, unlike in the other treatments, repeated-game strate- 
gies were clearly essential, and were recognized as such by VHBB’s 
subjects. Because the experiments were too short to allow significant 
learning about repeated-game strategies, an evolutionary analysis of this 
treatment may not be very helpful in explaining VHBB’s results. I there- 
fore confine myself to the remark that intuition, aided by the parallel 
traditional analysis in Crawford and Haller (1990) and the evolutionary 
analysis in Kim (1990), suggests that the random-pairing model that de- 
scribes this treatment has evolutionarily stable repeated-game strategies 
that correspond closely to VHBB’s results (and, possibly, some that do 
not). 

In median treatments I and Idm, a player’s payoff is always higher, 
other things equal, when his effort is closer to the group median. (Finite 
populations are assumed for simplicity to contain odd numbers of players 
in median games.) It follows that a mutation to an effort that is the median 
in the population, after the mutation, then has higher payoff than any 
other effort. Although such a mutation might change the median, in a 
polymorphic population there must always be at least one player (or set of 
players with positive frequency in a large population) who can switch 
strategies to the current median without changing it. It follows that poly- 
morphic ESS’s are impossible. Further, because no low-frequency muta- 
tion can change the median in a monomorphic population, any strategy 
configuration in which all players choose the same effort corresponds to 
an ESS in this game. Similar arguments extend this conclusion to median 
treatments fi and a. 

Thus, the conclusions of the evolutionary analysis correspond closely 
to subjects’ limiting behavior in the minimum experiments. And although 
evolutionary stability per se does not help to explain subjects’ behavior in 
the median experiments, because any strict Nash equilibrium is an ESS in 
those games, the evolutionary dynamics at least suggest an explanation 
for the very strong history-dependence observed in the median treat- 
ments. When combined with the analysis of subjects’ initial choices out- 
lined in Section 4, this yields a plausible interpretation of subjects’ behav- 
ior. 

The fact that evolutionary stability discriminates between strict Nash 
equilibria in the large-group minimum game of treatments A and A’ is 
crucial to explaining the systematic patterns of discrimination VHBB 
observed. It is also somewhat puzzling, because this kind of discrimina- 
tion cannot occur in the large-population random-pairing model most fa- 
miliar to economists (and biologists). From a more general point of view, 
it may also seem puzzling that discrimination between widely separated 
equilibria follows from an ESS definition designed to ensure only local 
stability of the dynamics. In any case, because any adaptive explanation 
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of VHBB’s results must imply a similar pattern of discrimination between 
equilibria, it is important to understand why it occurs. 

Because the pattern of discrimination takes precisely the same form in 
large and finite populations, population size seems unlikely to be the key 
to understanding it. The graphical analysis of the simultaneous-play Stag 
Hunt model suggests that it is due to discontinuities in the payoff func- 
tion. I now confirm this by generalizing the correspondence between 
Nash equilibrium and evolutionary stability from the large-population 
random-pairing model to large- and finite-population simultaneous-play 
models in a way that makes clear the role of continuity. 

The main result for large populations can be stated as follows: 

THEOREM 1. If p is a large-population ESS and the payofffunction, 
E(rls), is continuous in s at s = p for all r, then p corresponds to a 
symmetric Nash equilibrium in the game that describes the simultaneous 
interaction of the players in the population. Conversely, if p corresponds 
to a strict, symmetric Nash equilibrium in that game, and E(rls) is contin- 
uous in s at s = p for all r, then p is a large-population ESS.19 

Proof. If p is a large-population ESS and the payoff function E( rls) is 
continuous in s at s = p for all r, then letting E + 0 in (1) yields 

(4) 

for all q # p. Because excluding a player’s strategy has a negligible effect 
on the strategy frequencies in a large population, (4) implies that p maxi- 
mizes any player’s payoff, given that the other players are playing p. 
Thus, p corresponds to a symmetric Nash equilibrium in the game that 
describes the simultaneous interaction of the players in the population. 

Conversely, if p corresponds to a strict, symmetric Nash equilibrium in 
that game, so that (4) holds with strict inequality for all q # p, then the 
continuity of E( t-is) in s at s = p for all r implies that, for each q f p, there 
exists an E(q) > 0 such that (1) holds whenever 0 < E < E(q). Thus, p is a 
large-population ESS. w 

Theorem l’s continuity condition is implied by the linearity of E( r Is) in 
s in the random-pairing model, which explains why discrimination be- 
tween strict Nash equilibria cannot occur in that model. It is clear from 

I’) See, for example, Maynard Smith (1982, p. 24) or Schaffer t 1988, pp. 470-471), where 
this correspondence is discussed without examining the role of continuity. Theorem I is a 
true generalization of the familiar correspondence for random pairing: It is easy to show that 
strategies that are in symmetric Nash equilibrium in the game played simultaneously by the 

entire population, with the expected payoffs of players’ strategies evaluated before they are 
paired, are also in symmetric Nash equilibrium in the two-person game they play once 
paired, and vice versa. A somewhat more general version of Theorem I is stated without 
proof in Crawford (199Ob). 
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the Stag Hunt example that this continuity condition need not hold in 
nonpathologic simultaneous-play models. As the theorem shows, the ESS 
condition implies the global best-response property of a Nash equilibrium, 
even though it is designed to ensure only local stability of the population 
frequencies, because it includes the ability to resist all low-frequency 
mutations. (Low-frequency mutations, even to distant strategies, induce 
small changes in the population frequencies.) 

It is easy to construct examples to show that, without Theorem l’s 
continuity condition, a large-population ESS need not correspond to a 
Nash equilibrium. This can be done, for instance, by modifying the simul- 
taneous-play Stag Hunt example, raising the payoff of effort 2 above that 
of effort 1 when (and only when) the population frequency of effort 1 is 1. 
Then, as required for effort 1 to be an ESS, mutations at low but positive 
frequencies have payoffs lower than effort l’s payoff. But any individual 
player can increase his payoff by switching from effort 1 to effort 2, so 
that effort 1 does not correspond to a Nash equilibrium. A similar conclu- 
sion is reached below for finite populations. 

I now turn to finite populations. Schaffer (1988) and Maynard Smith 
(1988) presented a simple random-pairing example in which the ESS dif- 
fers from the Nash equilibrium in any finite population, however large, 
but converges to it as the population grows. Thus, in general, the corre- 
spondence between Nash equilibrium and evolutionary stability is at best 
approximate in finite populations. Theorem 2 shows that, as their example 
suggests, a correspondence between Nash equilibrium and evolutionary 
stability like that found in large populations holds approximately for suffi- 
ciently large finite populations in any random-pairing or simultaneous- 
play model with finite numbers of pure strategies, provided that the payoff 
function satisfies a continuity condition like Theorem 1’s. Moreover, this 
correspondence is exact for strict, pure-strategy equilibria in any suffi- 
ciently large finite population. (The correspondence is inexact for Schaf- 
fer’s and Maynard Smith’s example because it had a mixed-strategy equi- 
librium, which was not strict.) 

THEOREM 2. Zf a sequence offinite-population ESS’s converges, as 
the population grows, to a limit, p, such that the payofffunction, E(r Is), 
is continuous in s at s = p for all r, then p corresponds to a symmetric 
Nash equilibrium in the game that describes the simultaneous interaction 
of the players in the limiting large population. Conversely, if p corre- 
sponds to a strict, symmetric Nash equilibrium in that game and there 
exists a neighborhood of s = p throughout which E(rls) is continuous in s 
for all r, then p is a finite-population ESS in any sufJiciently large finite 
population.20 

N A more general version of Theorem 2 is stated without proof in Crawford (199Ob). 
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PROOF. Recall that, under my assumptions, the same payoff function 
can be used to describe the relationship between a player’s payoff and 
players’ strategies in large and finite populations, and that in either case, 
E(rjs) gives the payoff of Y when the frequencies of the other players’ 
strategies are given by s. If p satisfies the conditions in the first part of the 
theorem, then letting N+ CQ in (2) and using the continuity of E(rls) at s = 
p for all r yields (4) for all 4 # p. It follows that p corresponds to a 
symmetric Nash equilibrium in the game that describes the simultaneous 
interaction of the players in the population. 

Conversely, if p corresponds to a strict, symmetric Nash equilibrium, 
so that (4) holds with strict inequality for all 4 # p, then the continuity of 
E(rls) in s at s = p for all r implies that, for each q # p, there exists an 
N(q) such that (2) holds whenever N > N(q). If E(rls) is also continuous 
G s throughout a neighborhood of s = p,then, by the argument of Craw- 
ford (1990a) (see footnote 14), there also exists an N, independent of q, 
such that (2) holds for all q # p whenever N > _N. Thus, p is an ESS in any 
sufficiently large finite population. W 

The proof of Theorem 2 makes clear why the beggar-thy-neighbor as- 
pect of selection need not “bias” a large-population ESS away from Nash 
equilibrium: As Schaffer (1988) showed, because q/(N - 1) + 0 as N --$ 
~0, the effect of low-frequency mutations on the payoffs of ESS-players 
becomes negligible in large populations, at least when the payoff function 
is continuous in the population strategy frequencies. As my evolutionary 
analysis of the simultaneous-play minimum game makes clear, however, 
in games with discontinuous payoff functions beggar-thy-neighbor selec- 
tion can occur even in large populations, 

The discrimination between strict Nash equilibria that results in that 
game appears to contradict the common intuition (see, for example, Fu- 
denberg and Kreps, 1988) that any strict equilibrium must be locally stable 
for sensible adaptive dynamics. However, small perturbations in the pop- 
ulation pure-strategy frequencies are quite different from the small pertur- 
bations in the population mixed-strategy profile contemplated in the com- 
mon intuition.21 As Theorems I and 2 show (recalling that their 
conclusions would not be altered if individual players were allowed to 
play mixed strategies), this difference does not destroy the correspon- 
dence between Nash equilibrium and evolutionary stability for games 
with continuous payoff functions. But, although the strong payoff interac- 
tions that show up as discontinuities in the population strategy frequen- 
cies are not pathological, they can make the implications of evolutionary 

:I The payoff implications of each player in the simultaneous-play Stag Hunt deciding, by 
independent randomization, whether to reduce his effort from 2 to 1 are very different from 
the implications of a subset of the players with the same expected frequency, however small, 

doing so with probability one. 
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stability very different from those of the more familiar notion of local 
stability. 

Theorems 1 and 2 clarify the correspondence between Nash equilib- 
rium and evolutionary stability in a wide class of economically interesting 
environments. They also help to identify environments in which evolu- 
tionary stability discriminates between strict Nash equilibria, and to pre- 
dict the pattern of discrimination. In the simultaneous-play minimum 
game of treatments A and A’, for instance, the payoff function is clearly 
continuous whenever the population frequency of the lowest effort is 
positive, hence throughout a neighborhood of the strategy configuration 
at which all players choose that effort. But raising the frequency of the 
lowest effort above zero causes a discontinuous drop in output, and the 
payoff function violates the continuity condition of Theorems 1 and 2 
whenever the frequency of the lowest effort is zero, hence at each of the 
six symmetric strategy configurations with higher efforts. Although these 
configurations correspond to strict, symmetric Nash equilibria in any fi- 
nite population, however large, none of the higher efforts is an ESS. In 
VHBB’s median games, by contrast, there are similar discontinuities, but 
they do not occur at the configurations that correspond to those games’ 
strict, symmetric Nash equilibria, and each of those equilibria corre- 
sponds to an ESS. 

4. AN “EVOLUTIONARY" INTERPRETATION 

Although Section 3’s analysis suggests that evolutionary game theory 
can be of considerable help in understanding how strategic uncertainty 
affects behavior, it is important not to rest content with a mechanical 
application of the ESS definition. Although strategic behavior is usually 
less sophisticated than traditional game theory assumes, it is plainly more 
complex than the simple characterization that underlies the evolutionary 
dynamics. Human players often draw subtle inferences from their ob- 
servations and anticipate the effects of their strategy choices, taking the 
structure of the environment into account. Further, there is no guarantee 
that evolutionary stability’s success in capturing the effects of strategic 
uncertainty in VHBB’s experimental environments will extend to other 
settings in which coordination is difficult. (Modifying the rules of the 
large-group Stag Hunt to allow a small fraction of the population to 
choose effort 1 without destroying the payoff advantage of effort 2, for 
instance, makes the efficient strategy configuration in which all players 
choose effort 2 evolutionarily stable; but few analysts would expect sub- 
jects’ behavior to be significantly altered by this change.22) Finally, there 

22 The fragility of the efficient strategy configuration is reflected in the smallness of its 
“basin of attraction,” but this is unlikely to fully capture the effects of strategic uncertainty. 
Smoothing this example makes it clear that payoff discontinuities are not necessary for 
discrimination between strict Nash equilibria to occur in practice. 
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are strong regularities in the dynamics of players’ strategy choices that 
are not explained by evolutionary stability; and the final outcome often 
depends on players’ initial choices, about which the evolutionary analysis 
is completely silent. 

These considerations suggest that an adaptive model, combining the 
advantages of the evolutionary framework with a more sophisticated view 
of players’ behavior and an explicit account of their uncertainty about 
each others’ choices, would yield a better explanation of VHBB’s experi- 
mental results. This section outlines such a model. The interpretation of 
VHBB’s results it suggests is close to theirs in most respects. My goals 
here are to highlight the issues that must be confronted in constructing an 
explanation and to show that an “evolutionary” analysis, based on sim- 
ple, plausible hypotheses about subjects’ behavior, can provide one. 

The major hurdles the explanation must surmount are explaining the 
differences between VHBB’s results for large- and small-group minimum 
games (sharp discrimination between Nash equilibria in large groups but 
not in small groups) and between their results for large-group minimum 
games and median games (no history-dependence in the former but very 
strong history-dependence in the latter). It is the absence of history- 
dependence in the large-group minimum game and the concomitant dis- 
crimination between equilibria that are most difficult to explain. Why 
would an intelligent, well-informed player ever move away from the effi- 
cient Nash equilibrium (or any strict equilibrium) in that game? The evo- 
lutionary analysis suggests why plausible adaptive dynamics might keep 
such a process going once it began: Although a mutation to a lower effort 
reduces the payoff of the mutant, it reduces the payoffs of players who 
choose higher efforts even more. Thus, once such mutants enter the 
population, they take it over in beggar-thy-neighbor fashion. But VHBB’s 
subjects’ strategy choices were voluntary, and the first step in this evolu- 
tionary process appears to depend crucially on the involunt&y character 
of mutations. 

The key to this puzzle lies in recognizing that, although players’ strat- 
egy choices are voluntary, the beliefs that underlie them are involuntary. 
It is shown below that in environments with significant strategic uncer- 
tainty, the differences between players’ beliefs can drive the adaptive 
dynamics like the mutations that drive the evolutionary dynamics. 

The adaptive analysis follows Section 3’s evolutionary analysis in most 
respects. Players are again restricted to pure stage-game strategies. Each 
player’s strategy choices are governed by his beliefs about the group 
minimum or median (or, more precisely, how it is likely to depend on his 
choice), the only payoff-relevant aspect of other players’ choices. In me- 
dian games and large-group (but not small-group) minimum games, it is 
assumed that each player treats the probability that his effort influences 
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the group median or minimum as negligible.23 In each stage, each player 
adjusts his strategy in the direction of increased payoffs, given his be- 
liefs.24 These adjustments determine a new group minimum or median. 
Players then observe it, update their beliefs, and the process continues. 

Strategic uncertainty can affect the outcome of this process in two 
ways: through its effect on players’ beliefs in initial treatment stages, and 
through its effect on how they interpret their shared experience in subse- 
quent stages. The latter effect can be thought of as due to differences in 
how players model the stochastic process that generates the group mini- 
mum or median. Although any reasonable model must predict the mini- 
mum or median correctly if it remains constant long enough, strategic 
uncertainty may lead to differences between players’ predictions of the 
minimum or median before it converges, even if their initial beliefs are the 
same and they always observe the same history. 

I defer, for the moment, discussion of how players’ initial beliefs are 
determined, and focus on the dynamics. A simple observation clarifies 
how strategic uncertainty can affect the outcome. Suppose that there are 
no differences in the models players use to interpret their experience, so 
that differences in their initial beliefs are the only possible source of 
differences in their beliefs in subsequent stages.” Then, under plausible 
assumptions, players never adjust their strategy choices beyond the cur- 
rent group minimum or median. The minimum or median therefore re- 
mains constant as they adjust, because it is an order statistic and there is 
no overshooting. It follows that as players’ experience accumulates, their 
beliefs and efforts converge to the initial minimum or median, so that the 
final outcome necessarily coincides with it. The dynamics are perfectly 
history-dependent, and discrimination between equilibria occurs only 
through players’ initial choices. 

This perfect history-dependence corresponds closely to the results of 
the median experiments. However, it is inconsistent with the results of 
the minimum experiments, in which history influenced the outcome 

23 In the large-group minimum experiments of treatments A and A’, subjects were alone at 

the group minimum in only IO out of 70 stages and 0 out of 32 stages, respectively. An 
individual subject’s effort therefore determined the group minimum only rarely. Similarly, 

an individual subject’s effort rarely influenced the group median in the median experiments. 
A player would, of course, expect to have a nonnegligible influence on the group minimum if 
he chose an effort below what he expected the minimum of the others’ efforts to be, but he 

has no incentive to do this. 
24 VHBB’s subjects’ adjustments were on average approximately proportional to the dis- 

tance between their current efforts and those that would have maximized their payoffs, and 

usually partial, in that they stopped short of the maximizing efforts. 

25 Recall that each player receives the same information, except that only he observes his 
own effort; except in two-person groups, this difference is negligible, because the probability 
that his effort influences the minimum or median is negligible. 



52 VINCENT P. CRAWFORD 

weakly in small groups and not at all in large groups, and overshooting 
was not uncommon. To capture this difference, I assume that players’ 
beliefs are subject to idiosyncratic random shocks, which reflect the dif- 
ferences in how they interpret their experience. Because these shocks 
represent an unpredictable component of players’ beliefs, it is natural to 
assume that they are distributed independently across players. Their in- 
fluence on players’ adjustments can be expected to die out over time. 
because as players’ shared experience accumulates, their beliefs become 
more precise and they are more likely to choose the common value of 
effort their experience suggests is optimal. Before their influence dies out, 
however, these shocks can significantly alter the course of players’ ad- 
justments, and thereby the final outcome. This influence varies across 
treatments in a way that allows a unified explanation of VHBB’s results. 

For simplicity, I describe each player’s beliefs in terms of its imphca- 
tions for his effort choice, following Woodford (1990); provided that the 
adjustment process reflects the increasing precision of beliefs, this in- 
volves no significant loss of generality. In the large-group minimum 
games, I assume that a player’s next-stage effort choice is most likely to 
equal the current minimum, but lies above or below it with small probabil- 
ities (determined by the distribution of his idiosyncratic shock), which 
decline over time as experience accumulates and his beliefs become more 
precise. Behavior is similar in small-group minimum games, except that a 
player whose effort is at the minimum then has a higher probability of 
increasing his effort, because he knows that there is a good chance that it 
alone determined the minimum. Thus, the average player whose effort is 
above the minimum reduces it; and the average player whose effort is at 
the minimum increases it in small groups, and leaves it approximately 
unchanged in large groups. 

In the median games, I assume, similarly, that a player’s next-stage 
effort choice is most likely to equal the current median, but lies above or 
below it with small probabilities, which again decline over time as his 
beliefs become more precise. 

The model could now be closed by specifying how the probability distri- 
butions of players’ idiosyncratic shocks depend on the history of the 
system. However, its implications are largely independent of the details 
of this specification. I therefore proceed by showing in general terms why 
it implies behavior like that VHBB observed. 

For the group minimum to go up in the large-group minimum game of 
treatments A and A’, all players at the minimum must increase their 
efforts, and all players above it must reduce theirs by less than the dis- 
tance to the minimum. The former possibility is highly unlikely without 
significant idiosyncratic shocks to their beliefs, and in a large group the 
latter possibility is highly unlikely with them. Because the shocks are 
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independent across players, the probability that the minimum in a large- 
group minimum game ever goes up is therefore near zero with or without 
shocks. In fact the minimum went up (by one unit) in only one out of 102 
stages in VHBB’s experiments with treatments A and A’. 

As noted above, once players reach a stage after which the effects of 
the shocks to their beliefs are negligible, their efforts converge to the 
Nash equilibrium determined by the minimum in that stage. Until such a 
stage is reached, however, the group minimum has a strong tendency to 
fall. Although the average player whose effort is above the current mini- 
mum does not reduce his effort below it, there is a positive probability 
that any such player’s idiosyncratic shock will lead him to do so. Suppose 
for the sake of argument that there are L players with efforts above the 
minimum, that this probability is z for each of them, and that players at 
the minimum never reduce their efforts below it. (This view of players’ 
adjustments is reinforced by VHBB’s observation that a given subject 
rarely remained at his group minimum in successive stages.) Because 
players’ shocks are independent, the probability that the minimum is 
lower in the next stage is then 1 - (1 - z)le. This probability converges to 
zero with z, as it must for the common intuition about local stability to be 
valid in the absence of significant strategic uncertainty. The rate of con- 
vergence is very slow, however, unless L is very small. If, for instance, L 
= 14 (a typical value in the early stages of treatment A), then 1 - (1 - z)~ 
= 0.13 if z = 0.01, 0.25 if z = 0.02, 0.51 if z = 0.05, 0.69 if z = 0.08, and 
0.77 if z = 0.10. In fact, in the experiments with treatment A the minimum 
effort went down in 9 out of the 13 stages (69%) in which it was not 
already at the lowest possible level. 

The outcome in a large-group minimum game is therefore determined 
by how quickly players’ learning from their experience reduces their stra- 
tegic uncertainty, relative to the rate at which that uncertainty makes the 
group minimum fall. It is theoretically possible for players to learn so 
quickly that they converge to a Nash equilibrium with efforts above the 
lowest level; this possibility can even have positive prior probability un- 
der my assumptions. However, VHBB’s subjects’ predictions for the first 
stage of treatment A and their subsequent behavior indicate that the large- 
group minimum game initially generated a great deal of strategic uncer- 
tainty, much of which persisted until the minimum reached the lowest 
effort.26 The local stability of this game’s strict Nash equilibria therefore 
had little relevance for the probability distribution of final outcomes. 

The analysis is essentially the same for treatment A’, which restored 
the payoffs of treatment A following those of treatment B. Subjects’ pre- 

x It is clear that this result would extend to some games without the extreme form of 
payoff interactions that lead to discontinuities in the large-group minimum game. 
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vious experience with this game appeared to reduce their initial level of 
strategic uncertainty below that observed for treatment A. However, this 
reduction consisted mainly of making their beliefs closer to the final out- 
come of treatment A. This kind of reduction tends to make the dynamics 
converge more quickly to that outcome, as occurred in VHBB’s results 
for this treatment. 

The analysis of treatment B (in which the highest effort was a weakly 
dominant strategy) is even simpler. Because players’ shocks make them 
choose different efforts with positive probability, higher efforts generally 
yield higher expected payoffs in treatment B; players therefore tend to 
adjust their efforts upward until they reach the highest effort, as in 
VHBB’s experiments. 

The adaptive dynamics have quite different implications in treatment 
Cd. Recall that players in this treatment learned only their current pair’s 
minimum after each stage. As in treatments A and A’, the average player 
whose effort is above his current pair’s minimum reduces his effort and 
the average player whose effort is at his current pair’s minimum increases 
his effort. These upward and downward adjustments should be roughly 
equal in magnitude. (VHBB found, in fact, that the average subject at the 
minimum in treatment Cd increased his effort by 1.1, and the average 
subject above the minimum reduced his effort by 1 .O.) Because there are 
roughly equal numbers of players in the population who are above and 
below their pairs’ minima, players’ efforts can be expected to drift over 
time, without strong trends, until experience eliminates their uncertainty. 

This explanation of the difference between VHBB’s results for small- 
and large-group minimum games requires that each player make sophisti- 
cated use of the information he receives, taking into account the fact that 
he is a nonnegligible fraction of the pairs he forms. Otherwise, a player 
whose effort is at his current pair’s minimum would have no strong ten- 
dency to increase his effort. Players’ idiosyncratic shocks would then 
tend to make their efforts drift downward over time, on average, perhaps 
converging to the lowest effort. Subjects’ efforts in treatment Cd had, if 
anything, an upward trend, and there is certainly no evidence that they 
were converging to the lowest effort. 

In median games, the adaptive dynamics tend to make players’ efforts 
move toward the current group median. The idiosyncratic shocks to play- 
ers’ beliefs do not induce a significant trend in the median, because of its 
symmetry. The dynamics are therefore most likely to converge to the 
Nash equilibrium at which players’ efforts equal the initial group median, 
although they may converge, with positive probability, to equilibria with 
other common efforts. These conclusions correspond closely to VHBB’s 
results: In the 27 treatments of the median experiments (12 I, 3 Idm, 9 R, 
and 3 +), totaling 195 stages, the median never changed during a treat- 
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TABLE I 

Minimum treatment 

A (%) B (%) A’ (%) Cd (%I cr (%) 

Subject’s 7 33 (31) 76 (84) 23 (25) 11 (37) 
initial 6 10 (9) I (I) 1 (1) 1 (3) 
effort 5 34 (32) 2 (2) 2 (2) 2 (7) 

4 18 (17) 5 (5) 7 (8) 5 (17) 
3 5 (3 1 (1) 7 (8) 3 (IO) 
2 5 (5) I (1) 17 (19) 1 (3) 
I 2 (2) 5 (5) 34 (37) 7 (23) 

Totals 107 (101) 91 (99) 91 (100) 30 (100) 

13 (42) 
0 (0) 
6 (19) 
2 (6) 
1 (3) 
1 (3) 

8 (26) 
31 (99) 

Median treatment 

r, I’dm (%) 0 (%) @ (%) 

Subject’s 7 
initial 6 
effort 5 

4 
3 
2 
I 

Totals 

8 (15) 
4 (7) 

I5 (28) 
19 (35) 

8 (15) 
0 (0) 
0 (0) 

54 (100) 

14 (52) 
I (4) 
9 (33) 
3 (II) 
0 (0) 
0 (0) 
0 (0) 

27 (100) 

2 (7) 
3 (II) 
9 (33) 

II (41) 
2 (7) 
0 (0) 
0 (0) 

27 (99) 

ment, and, with three minor exceptions, each subject’s effort converged 
to the Nash equilibrium determined by the initial treatment median. 

The history-dependence in the results for the median treatments (and, 
to a lesser extent, in minimum treatment C,) makes a full explanation of 
VHBB’s results depend on understanding their subjects’ choices in initial 
treatment stages. There were strong regularities in subjects’ initial 
choices throughout the experiments. In the median treatments, for in- 
stance, no subject ever began with an effort below ei = 3. These regulari- 
ties are not explained by evolutionary stability or by traditional equilib- 
rium refinements. I now consider whether they can be understood as 
sensible responses to strategic uncertainty. 

VHBB’s subjects’ initial effort choices can be summarized in Table I 
(the median table, which is adapted from Table II in VHBB (1991), in- 
cludes only the first treatments in each sequence). 

As far as I am aware, the only systematic attempt to make precise 
predictions of behavior in coordination games is Harsanyi and Selten’s 
(1988) (henceforth “HS”) general theory of equilibrium selection. HS’s 
theory follows the traditional approach of assuming that players’ beliefs 
about each other’s strategy choices always converge to a particular Nash 
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equilibrium before play begins; but the mental tatonnements they use to 
model the convergence process are sensitive to strategic uncertainty. 
Their predictions are therefore a useful starting point for examining 
VHBB’s results for initial treatment stages. 

I again assume that players focus on their choices of stage-game strate- 
gies, ignoring any possible influence of their choices on future develop- 
ments. As noted in footnote 6, HS’s theory gives priority to payoff-domi- 
nance, and therefore predicts the e; = 7 equilibrium in the initial stages of 
all treatments except treatment a. In treatment @, all pure-strategy equi- 
libria yield the same payoffs and HS’s theory therefore predicts the ei = 4 
equilibrium in response to the symmetries of the game. These predictions 
correspond to the modal first-stage choices in treatments B, Cr, Cd, Sz, and 
@‘; run a close second in treatment A and a more distant second in treat- 
ment A’; and tie for a distant third in treatments I? and Idm. (The corre- 
spondence for treatment Ct should be discounted because it may be due in 
part to players’ attempts to influence each other’s future choices.) Thus, 
HS’s solution theory does fairly well overall in predicting subjects’ modal 
initial responses. However, their assumption that players can perfectly 
coordinate their beliefs before play begins leads to severe underestimates 
of the amount of strategic uncertainty, and their theory predicts the first- 
stage group minimum or median effort incorrectly in most treatments.” 

Subjects’ uncertainty often seemed to take the form of doubts about 
which of two (or more) equilibrium selection principles would govern 
other subjects’ choices. (See Schelhng (1960) and Roth (1985) for evi- 
dence of similar doubts in other settings.) In treatment A, for instance, 
subjects’ initial choices were bimodal, with peaks at efforts pi = 7 and ej = 
5: the “obvious” efficient equilibrium and a conservative, but still opti- 
mistic, response to uncertainty about whether it would be obvious to 

?’ The resulting first-stage inefficiency suggests that HS’s solution theory might predict 
better if it did not give priority to payoff-dominance. (HS’s arguments in support of payoff- 
dominance are almost completely separable from their arguments in support of the rest of 
their theory; and it is the latter arguments that embody most of their ideas about modeling 
players’ responses to strategic uncertainty.) HS’s theory without payoff-dominance would 
make the same predictions in treatments B (because HS also give priority to the elimination 
of weakly dominated strategies by working with the limits of “uniformly perturbed” games); 
in treatments F, Tdm, and R (because risk-dominance also favors higher efforts in these 
games); and in treatment @ (because of the symmetries in this game). HS’s theory would 
predict the equilibrium with common effort ei = I in treatments A and A’ (because risk- 
dominance favors lower efforts in large-group Stag Hunt games) and the equilibrium with 
common effort e, = 4 in treatment C, with two players (because risk-dominance is neutral in 
two-person Stag Hunt games, and HS’s theory therefore applies the tracing procedure to a 
uniform prior over the undominated strategies). Thus, without payoff-dominance, HS’s 
theory predicts subjects’ first-stage behavior worse in treatments A and Cd, and better in 
treatment A ’ 
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everyone. In treatments A’ and C, subjects’ initial choices also seemed to 
be influenced by doubts about the extent to which other subjects would 
treat the outcomes of the preceding A and B treatments as relevant prece- 
dents. Interestingly, subjects seemed more optimistic at the start of treat- 
ment C than at the start of the immediately preceding A’ treatment, al- 
though their negative experience in the A’ treatment might have been 
expected to make them less optimistic. 

The distributions of initial choices in median treatments I, Idm, and R 
were similar, in this respect, to those of minimum treatment A. The sim- 
ple payoff table of treatment fi (which had zeros everywhere off the main 
diagonal) seemed to give subjects somewhat more confidence in the effi- 
cient equilibrium. The symmetries of the game used in treatment @ and 
the fact that it does not have a uniquely efficient equilibrium led to qualita- 
tively different responses. Some subjects responded to the symmetries as 
HS’s theory predicts, by choosing e; = 4, but most “shaded” their 
choices upward, perhaps due to a “top-left” focal point effect or a fear 
that other players would be influenced by such an effect. (This effect 
makes the inefficiencies observed in the other treatments more striking, 
because the efficient Nash equilibrium occupied the top-left position in 
their payoff tables.) 

The sequencing of treatments in the median experiments revealed an- 
other interesting regularity, which may prove important in other environ- 
ments. In the median experiments, the group median never fell from one 
treatment to the next, even when the sequencing of treatments was re- 
versed. With treatment sequence {I, a, I}, the observed sequences of 
(initial and final) treatment medians were (4, 7, 7}, (5, 7, 7}, and (5, 5, 5). 
Treatment sequence {I’dm, Ln} yielded median sequences {4,7}, {4,7}, and 
(5, S}; and treatment sequence (0, I} yielded median sequences (7, 7}, (5, 
7}, and (7, 7). Finally, treatment sequence {Q, I} yielded median se- 
quences (4, 61, (5, 71, and (5, 7). (The increases in this last sequence 
should be discounted, because the e; = 7 equilibrium was not uniquely 
efficient in treatment 0.) Thus, when one treatment was replaced by 
another, subjects did not just continue playing the Nash equilibrium to 
which they had converged in the “old” game (which was always an 
equilibrium in the “new” game). Instead they experimented, treating the 
old equilibrium as a benchmark, from which improvements could safely 
be sought in the new game, in the “sensible” direction. Changing treat- 
ments seemed to enable subjects to coordinate the timing of their experi- 
ments, increasing the chance of success. 
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