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Introduction 
 
This talk concerns experiments that study strategic thinking by eliciting 
subjects’ initial responses to series of different but related games, while 
monitoring and analyzing the patterns of subjects’ searches for hidden but 
freely accessible payoff information along with their decisions. 
 
The talk is based on three papers: 

Costa-Gomes and Crawford, “Cognition and Behavior in Two-Person 
Guessing Games: An Experimental Study,” American Economic 
Review 2006 (“CGC”). 

Crawford, “Look-ups as the Windows of the Strategic Soul: Studying 
Cognition via Information Search in Game Experiments,” in Andrew 
Caplin and Andrew Schotter, editors, Perspectives on the Future of 
Economics: Positive and Normative Foundations, Volume 1, 
Handbooks of Economic Methodologies, Oxford University Press, 
2008 

Costa-Gomes and Crawford, “Studying Cognition via Information Search 
  in Two-Person Guessing Game Experiments,” still in preparation. 
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Other experiments that study strategic thinking via  search patterns 

Camerer, Johnson, Rymon, and Sen, “Cognition and Framing in Sequential 
Bargaining for Gains and Losses,” in Kenneth Binmore, Alan Kirman, and Piero 
Tani, editors, Frontiers of Game Theory, 1993 (“CJ”)  

Johnson, Camerer, Sen, and Rymon, “Detecting Failures of Backward Induction: 
Monitoring Information Search in Sequential Bargaining,” Journal of Economic 
Theory 2002 (“CJ”) 

Costa-Gomes, Crawford, and Broseta, “Cognition and Behavior in Normal-Form 
Games: An Experimental Study,” Econometrica 2001 (“CGCB”) 

Camerer and Johnson, “Thinking about Attention in Games: Backward and 
Forward Induction,” in Isabel Brocas and Juan Carrillo (editors), The 
Psychology of Economic Decisions, Volume Two: Reasons and Choices, 
Oxford, 2004 

Wang, Spezio, and Camerer, “Pinocchio's Pupil: Using Eyetracking and Pupil 
Dilation To Understand Truth-telling and Deception in Games,” 2008 

 
Experiments that study strategic thinking via searc h durations 

Ariel Rubinstein, “Instinctive and Cognitive Reasoning: A Study of Response 
 Times,” Economic Journal 2007
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Adapting methods introduced to the experimental game theory literature 
by CJ and CGCB—previously used extensively to analyze decisions, for 
example by Payne, Bettman, and Johnson 1993—CGC elicited subjects’ 
initial responses to a series of 16 two-person guessing games designed 
for this purpose, while monitoring and analyzing the patterns of subjects’ 
searches for hidden but freely accessible payoff information. 

 

 

Following CGCB, CGC then used an explicit, procedurally rational model 
of cognition to analyze subjects’ searches along with their decisions. 
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GCG’s analysis shows that with careful design, subjects’ search patterns 
can sometimes directly reveal the algorithms used to choose their 
decisions, in such cases making it possible to identify subjects’ decision 
rules even without observing their decisions. 

 

 

The analysis also shows that decisions and search are complementary, 
together making it possible to identify subjects’ decision rules more 
precisely than would be possible even with unlimited decision data. 
 
 
 
CGC’s analysis also illustrates some novel analytical and econometric 
issues that arise in analyzing process data. 
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Motivation 
 
 
 
The topic of studying strategic thinking via information search raises two 
questions of motivation: 
 
 
●  Why study strategic thinking when even unthinking people are likely 
   eventually to converge to equilibrium anyway? 

 

 

●  Why study strategic thinking by monitoring and analyzing process 
   data if the goal is only to predict decisions?    
 
 



 7 

 
 
Why study strategic thinking? 
 
 
Strategic thinking is an essential part of human interaction, but one whose 
importance from a behavioral point of view has been downplayed. 
 
 
 
Most applications of game theory in economics and game theory rely on 
Nash equilibrium. 
 
 
 
But while equilibrium can be viewed as a model of strategic thinking, there 
are many applications for which it is not an adequate model of behavior.   
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Players’ strategies will be in equilibrium if they are rational and have the 
same beliefs about each other’s strategies. 

 

Accepting rationality for the sake of argument, there are two possible 
justifications for the assumption that players have the same beliefs: 

 

● Thinking: If players have perfect models of each other’s decisions, 
strategic thinking will lead them to have the same beliefs immediately, 
and so play an equilibrium even in their initial responses to a game. 

 

● Learning: Even without perfect models, if players repeatedly play 
analogous games, experience may eventually allow them to predict 
each others’ decisions well enough to play an equilibrium in the limit. 
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In many applications the theoretical conditions for learning to converge to 
equilibrium are approximately satisfied, and in such settings both 
experimental and field evidence tends to support assuming that steady-
state strategy choices are in equilibrium (with some qualifications). 
 
 
 
In applications where only long-run outcomes matter, or where 
equilibrium is unique, or where equilibrium selection does not depend on 
the details of learning, analysis can safely rely entirely on equilibrium. 
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However, many other applications involve games played without clear 
precedents, so that the standard learning justification for equilibrium is 
unavailable. 
 
 
In other applications, eventual convergence to equilibrium is assured, but 
initial as well as limiting outcomes matter (e.g. FCC Spectrum auction). 
 
 
And in still other applications, convergence is assured and only long-run 
outcomes matter, but the equilibrium is selected from multiple possibilities 
via history-dependent learning dynamics. 
 
 
 
All such applications depend on reliably predicting initial responses to 
games, which may require a non-equilibrium model of strategic thinking. 
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As will be seen, empirically successful models of strategic thinking normally 
allow equilibrium behavior, but do not assume equilibrium in all games.  
 
 
 
Instead they assume that players follow strategic but non-equilibrium 
decision rules, which yield decisions that mimic equilibrium in simple 
games, but may deviate systematically in more complex games.    
 
 
 
The models thereby provide a way to predict, in a given game, whether 
players’ responses are likely to deviate from equilibrium, and if so, how.      
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Why study process data? 
 
 
An experimental design could, in principle, separate the decisions implied 
by different kinds of strategic thinking well enough to allow us to infer 
thinking entirely from decisions. 

 

 

But in economically interesting games, our ability to distinguish among 
models of strategic thinking is near the limits of experimental feasibility. 

 

 

For example, although CGC’s design, described below, is quite powerful 
from the standpoint of studying decisions alone, it leaves open some 
important questions regarding subjects’ decision rules.  
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If decision data were free, it might be optimal to address open questions 
just by gathering more decision data, perhaps in new environments. 

 

But decision data are far from free, and existing methods for gathering 
them are fairly easily adapted to gather process data at the same time. 

 
Further, with careful design, monitoring search for hidden payoff 
information can give us an independent “take” on strategic thinking, one 
that is more directly related to cognition than are decisions.  
 
As will be seen, monitoring search sometimes allows us to directly 
observe the algorithms subjects use to make their decisions, and to 
distinguish mistakes from intended behavior. 
 
 
Thus, exclusive reliance on gathering more decision data seems unlikely 
always to be optimal: At least for studying thinking, good research 
strategies should be open to process as well as decision data, even if this 
requires developing new methods of analysis. 
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Outline of the talk 

 

The talk begins by summarizing CGC’s experimental design. 

 

 

It then discusses CGC’s results for subjects’ decisions, introducing the 
model based on strategic thinking “types” that underlies their analysis and 
highlighting econometric issues that remain open. 

 

 

It next raises some questions regarding subjects’ thinking that are not 
adequately resolved by analyzing decisions alone, but which might be 
resolved by analyzing decisions and information search.     
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The talk then turns to CGC’s analysis of cognition and search. 
 
 
The types used to analyze decisions play an essential role in analyzing 
search. 
 
CGC’s model of cognition and search takes a procedural view of 
decision-making: 
 
In a given game, a subject’s type first determines his search, and his type 
and search then jointly determine his decision. 
 
In the analysis, the types provide a basis for the enormous space of 
possible decision and search sequences, imposing enough structure to 
allow us to describe subjects’ behavior in a comprehensible way and to 
make it meaningful to ask how their decisions and searches are related. 
 
 
The talk concludes by summarizing CGC’s results for information search 
and highlighting open econometric issues involving search. 
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CGC’s experimental design 
 
CGC’s experiments randomly and anonymously paired subjects to play a 
series of two-person guessing games, with no feedback between games. 
 
 
The design suppresses learning from experience and repeated-game 
effects in order to elicit subjects’ initial responses, game by game. 
 
The goal is to focus on how people model others’ decisions by studying 
strategic thinking “uncontaminated” by learning from experience. 
 
 
“Eureka!” learning remains possible, but CGC tested for it and found it to 
be rare. 

(The results yield insights into cognition that also help us think about how 
to model learning from experience, but that’s another story.) 
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CGC’s design combines the variation of the games each subject played 
of CJ’s 1993 design and Stahl and Wilson’s 1995 GEB design with the 
very large strategy spaces of Nagel’s 1995 AER and Ho, Camerer, and 
Weigelt’s (“HCW”) 1998 AER designs. 
 
 
 
This combination greatly enhances the design’s power: 
 
 
A subject’s profile of guesses forms a “fingerprint” that identifies his 
strategic thinking more precisely than is possible by observing his 
responses to a series of different games with small strategy spaces or 
any single game, even with a very large strategy space.  
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In CGC’s two-person guessing games, each player has a lower and an 
upper limit, both strictly positive, each taking one of two possible values. 

However, players are not required to guess between their limits: Instead 
guesses outside the limits are automatically adjusted up to the lower or 
down to the upper limit as necessary—a trick to enhance the separation 
of decision rules via their information search implications. 
 

Each player also has his own target, taking one of four possible values. 

A player’s payoff increases with the closeness of his adjusted guess to 
his target times the other player’s adjusted guess. 
 

The targets and limits vary independently across players and 16 games, 
with targets either both less than one, both greater than one, or “mixed”. 

(In Nagel’s and HCW’s previous guessing game experiments, the targets 
and limits were always the same for both players, and they varied only 
across treatments with different subject groups, or not at all.) 
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For example, in game γ4δ3 (#5 in CGC’s Table 3), player i’s limits and 
target are [300, 500] and 1.5; and player j’s are [300, 900] and 1.3. 
 
The product of targets 1.5 × 1.3 > 1, and players’ equilibrium adjusted 
guesses are determined (not always directly) by their upper limits: 
 
i’s equilibrium adjusted guess equals his upper limit of 500, but j’s is 
below his upper limit at 650. 
 
In the figure, guesses in the interval R(k) are eliminated in round k of 
iterated dominance; thus the game is finitely dominance solvable. 
 
 
 
 
 
 

 
 
 

 
 
 
 

300 450 500

300 390 585 650 900

R (1)

R (1) R (1)

R (2)

R (2) R (3)

Eq. Guess

Eq. GuessPlayer i

Player j

p i = 1.5

p j = 1.3
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CGC’s sixteen games are all finitely dominance-solvable, in from 3 to 52 
rounds, with essentially (due to automatic adjustment) unique equilibria. 
 
The way in which equilibrium is determined in game γ4δ3, by players’ 
upper limits (in the indirect sense illustrated in the example) when the 
product of their targets is greater than 1—or by their lower limits when the 
product is less than 1—is general in CGC’s games. 
 
 
CGC’s design exploits the discontinuity of the equilibrium correspondence 
when the product of targets is 1 by including some games that differ 
mainly in whether the product is slightly greater, or slightly less, than 1. 
 
Equilibrium responds strongly to such differences, but empirically 
plausible non-equilibrium decision rules are largely unmoved by them. 
 
 
That equilibrium is jointly determined by both players’ payoff parameters 
also helps to separate search implications of equilibrium and other rules. 
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CGC’s types-based model of decisions 

Following CGCB and other previous work in this area, CGC’s analysis of 
decisions uses a types-based structural non-equilibrium model. 
 
The model assumes that each subject’s guesses are determined in all 16 
games, up to logit errors, by a single decision rule or “type” (as they are 
called in this literature; no relation to private-information variables). 
 
CGC’s types, listed on the next slide, all build in risk-neutrality and rule 
out social preferences, again following previous work. 
 
Risk aversion and social preferences are somewhat implausible in this 
context, and the results and CGC’s specification test, explained below, 
suggest that they were not important factors in subjects’ decisions.  
 

The list of types also excludes some others that might seem plausible, 
mainly because they did not show up significantly in earlier analyses; 
CGC’s specification test doesn’t find any empirically important omissions.   
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● L0, L1, L2, and L3, with L0 uniform random between a player’s limits, L1 
  best responding to L0, L2 to L1, and so on.  

  (L0 represents a subject’s instinctive, nonstrategic reaction to the 
game, and usually has zero estimated population frequency. Lk for k 
> 0 is rational, but deviates from equilibrium because it uses a 
simplified model of others’ decisions. It is k-rationalizable, and so 
coincides with equilibrium in games that are k-dominance solvable.) 

● D1 and D2, which does one round (respectively, two) of iterated 
  dominance and best responds to a uniform prior over its partner’s 
  remaining decisions (a selection from the k-rationalizable strategies). 

 (By a quirk of our notation, L2 is D1’s cousin, and L3 is D2’s. Those 
pairs’ guesses are perfectly confounded in Nagel’s AER 1995 games; 
and in two-person games Lk guesses are k-rationalizable, like Dk-1’s.)   

● Equilibrium, which makes its equilibrium decisions. 

● Sophisticated, which best responds to the probabilities of others’ 
  decisions, proxied by subjects’ observed frequencies. 

(Sophisticated is an ideal, included to learn if any subjects have an 
understanding of others’ decisions that transcends mechanical rules.)  
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CGC’s results for decisions 
 
The large strategy spaces of CGC’s games and their variation of targets 
and limits greatly enhance the separation of types’ implications. 
 
(In the table, a player’s lower limit, upper limit, and target are denoted 
ai,bi, and pi respectively; and his partner’s are denoted aj,bj, and pj.) 
 

Types’ guesses in the 16 games, in (randomized) ord er played  
Game ai bi pi aj bj pj L1 L2 L3 D1 D2 Eq So 

1 100 900 1.5 300 500 0.7 600 525 630 600 611.25 750 630 
2 300 900 1.3 300 500 1.5 520 650 650 617.5 650 650 650 
3 300 900 1.3 300 900 1.3 780 900 900 838.5 900 900 900 
4 300 900 0.7 100 900 1.3 350 546 318.5 451.5 423.15 300 420 
5 100 500 1.5 100 500 0.7 450 315 472.5 337.5 341.25 500 375 
6 100 500 0.7 100 900 0.5 350 105 122.5 122.5 122.5 100 122 
7 100 500 0.7 100 500 1.5 210 315 220.5 227.5 227.5 350 262 
8 300 500 0.7 100 900 1.5 350 420 367.5 420 420 500 420 
9 300 500 1.5 300 900 1.3 500 500 500 500 500 500 500 

10 300 500 0.7 100 900 0.5 350 300 300 300 300 300 300 
11 100 500 1.5 100 900 0.5 500 225 375 262.5 262.5 150 300 
12 300 900 1.3 300 900 1.3 780 900 900 838.5 900 900 900 
13 100 900 1.3 300 900 0.7 780 455 709.8 604.5 604.5 390 695 
14 100 900 0.5 300 500 0.7 200 175 150 200 150 150 162 
15 100 900 0.5 100 500 0.7 150 175 100 150 100 100 132 
16 100 900 0.5 100 500 1.5 150 250 112.5 162.5 131.25 100 187 
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Of the 88 subjects in CGC’s main treatments, 43 made guesses that 
complied exactly (within 0.5) with one type’s guesses in from 7 to 16 of 
the games (20 L1, 12 L2, 3 L3, and 8 Equilibrium). 

 

 

For example, CGC’s Figure 2 (next slide) shows the strategic thinking 
“fingerprints” of the twelve subjects whose guesses conformed very 
closely (that is, with high rates of exact compliance) to L2’s guesses. 

 

 

72% (138) of these subjects’ 192 guesses were exact L2 guesses; only 
their deviations are shown in Figure 2. 
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Given how strongly CGC’s design separates types’ guesses, and that 
guesses could take from 200 to 800 different rounded values in the 
games, these subjects’ exact compliance rates are far higher than could 
possibly occur by chance: 
 
 
If a subject chooses 525, 650, 900 in games 1-3, both intuitively and 
econometrically we already “know” he’s an L2. 
 
 
 
 
Further, because CGC’s definition of L2 builds in risk-neutral, self-
interested rationality, we also know that with such high exact compliance, 
a non-Equilibrium subject’s deviations from equilibrium are “caused” not 
by irrationality, risk aversion, altruism, spite, or confusion, but by his 
simplified (in this case L1) model of others. 
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Guessmetrics 

CGC’s other 45 subjects made guesses that conformed exactly to one of 
the types less frequently; analyzing their guesses requires econometrics. 

Our econometric approach builds on Harless and Camerer 1994 
Econometrica, El-Gamal and Grether 1995 JASA, Stahl and Wilson 1994 
JEBO and 1995 GEB, and CGCB; but we estimate subject by subject, 
and because of the very high sample frequency of exact guesses, we use 
a maximum-likelihood error-rate model with “spike-logit” errors: 
 
We assume that in each game, a subject makes his type’s guess exactly 
(within 0.5) with probability 1- ε and otherwise makes logit errors; this 
gives extra likelihood credit for exact guesses, whose likelihood weight is 
discontinuously higher than guesses that are close but not within 0.5. 
 
Estimating a mixture model as in CGCB and most other previous studies 
is often theoretically superior; but in an exploratory study of cognition, 
estimating subject by subject is safer and, comparing CGCB with subject-
by-subject estimates in its earliest version, likely yields similar estimates.    
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Subject i's log-likelihood for guesses reduces to: 
 

(7)    
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where g indexes games and k types. 

The first two terms concern exact guesses; )),(( λi
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logit term for non-exact guesses, with deviation costs measured using 
each type's beliefs; and λ is the logit precision. 
 
The maximum likelihood estimate of ε is ikn /G, the sample frequency of 
subject i's non-exact guesses for type k. 
 
The maximum likelihood estimate of λ is the standard logit precision, 
restricted to non-exact guesses. 
 
The maximum likelihood estimate of the subject’s type k maximizes (7) 
over k, given the estimated ε and λ, trading off the count of exact guesses 
against the logit cost of deviations. 
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Estimation yields type estimates as in column 3 of Table 1: 43 L1, 20 L2, 
3 L3, 5 D1, 14 Equilibrium, and 3 Sophisticated. 
 
(Some of these estimates are called into question by CGC’s specification 
test as discussed below; see Table 1’s columns 4 and 5). 
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The hypothesis that ε = 1 is rejected for all but seven of 88 subjects, so 
the spike is necessary. 

 

 

The hypothesis that λ = 0 (payoff-insensitivity) is rejected for 34 subjects. 

Thus, payoff-sensitive logit errors significantly improve the fit over a 
spike-uniform model like CGCB’s for only 34/88 = 39% of the subjects. 

The lack of significant payoff-sensitivity for most subjects suggests that  
most of their “errors” are either cognitive or due to misspecification. 
 
 
 
The hypothesis {λ = 0 and ε = 1} is rejected at the 5% level for all but ten 
of 88 subjects (6 L1, 2 D1, 1 Equilibrium, 1 Sophisticated). 
 
Thus, the model does significantly better than a completely random model 
of guesses for 78/88 = 89% of the subjects.   
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Specification test 

 

 

For those 45 subjects whose guesses conformed less closely to one of 
CGC’s types, there is room for doubt about whether CGC’s specification 
omits relevant types and/or overfits by including irrelevant types. 

 

 

To test for this, CGC conducted a specification test comparing the 
likelihood of each subject’s econometric type estimate with the likelihoods 
of estimates based on 88 pseudotypes, each constructed from one of 
their subject’s guesses in the 16 games. 



 32

 
With regard to overfitting, for a subject's type estimate to be credible it 
should have higher likelihood than at least as many pseudotypes as it 
would at random: With 8 types, assuming approximately i.i.d. likelihoods, 
this suggests it should have higher likelihood than 87/8 ≈ 11 pseudotypes. 
 
Some subjects’ type estimates do not pass this test, and so are left 
unclassified in columns 5 and 6 of CGC’s Table 1. 
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With regard to omitted types, imagine that CGC had omitted a relevant 
type, say L2 for concreteness. 

 

 

The pseudotypes of CGC’s estimated L2 subjects would then outperform 
the non-L2 types estimated for them, and make approximately the same 
guesses. 

 

 

Finding such a cluster, CGC diagnosed an omitted type, and studied what 
its subjects’ guesses had in common to reveal its decision rule. 
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CGC found five small clusters involving 11 of the 88 subjects, and the 
subjects in these clusters were also left unclassified in Table 1. 

 
The paper and its web appendix discuss what these 11 subjects seemed 
to be doing; most of it appears quite idiosyncratic. 

Because a cluster must contain at least two subjects, it is reasonable to 
anticipate finding more than the five CGC found in a larger sample. 

But because any such clusters did not reach the two-subject threshold in 
CGC’s sample of 88, they are probably at most 2% of any larger sample, 
hence probably not worth modeling. 
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Taking the specification test into account (as in the right-most column of 
Table 1 above), econometric estimates of subjects’ types are 
concentrated on L1, L2, L3, and Equilibrium, in roughly the same 
proportions as the subjects whose types are apparent from their guesses. 
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Note that unlike the often-suggested interpretation of previous guessing 
results—that subjects are performing finitely iterated dominance—
separating Lk from Dk-1 reveals that Dk types don’t exist in any 
significant numbers, at least in this setting. 
 
Further, CGC’s results for robot/trained subjects, discussed below, 
suggest that people find doing iterated dominance highly unnatural—as 
opposed to following Lk  types that make k-rationalizable decisions, and 
so respect finitely iterated dominance without explicitly performing it.  
 
 
 
 
Sophisticated, which is clearly separated from Equilbrium here, as it tends 
to be when not all subjects play equilibrium strategies, also doesn’t exist. 
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Econometric puzzles regarding CGC’s analysis of dec isions 

Although CGC’s specification test addresses the possibility of bias due to 
omitting relevant types and/or overfitting by including irrelevant types, it is 
reasonable to ask if there any way to estimate the distribution of subjects’ 
decision rules without imposing an a priori list of possible types. 

However types are determined, they must be general decision rules that 
are meaningful in any new game. 

That is, they cannot just be lists of predicted guesses in CGC’s 16 games. 

There are at least three reasons for this: 

● A worthy competitor to equilibrium must be a general decision rule. 

● Allowing completely unrestricted types makes it possible to overfit by 
defining types like Miguel and Vince that just happen to do what 
Miguel and Vince did in the sample 

● Because a type’s search implications depend not only on what guesses 
it implies, but why, and types like Miguel and Vince give us no way to 
predict what they will do beyond the games we estimated them for. 
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But the space of possible types is enormous and it has little mathematical 
structure: Just to avoid ruling out equilibrium, it may have to allow all 
(even discontinuous) piecewise linear functions of the targets and limits. 
 
 
Further, conventional clustering analyses rely heavily on Euclidean 
distance, but without a priori types (whose beliefs imply deviation costs, 
as required for logit errors) it seems hard to find a credible definition of 
what it means for subjects’ decision patterns to be close. 

(For this reason CGC’s specification test’s analysis of clusters gives more 
weight to qualitative and structure-dependent patterns of deviation from a 
reference pattern, such as the tendency, discussed below, of our 
Equilibrium subjects with the clearest fingerprints to deviate much more 
often in games with mixed targets, and always in the direction of L3.) 

 
 
Finally, it is natural to ask if there is better way to do the specification test. 
 



 39

Questions left unresolved by CGC’s analysis of deci sions   

Some questions regarding subjects’ strategic thinking are not resolved by 
analyzing decisions, but might be resolved by analyzing searches. 

 

Here it is necessary to distinguish CGC’s three kinds of treatment. 

In the Baseline, subjects played the games with other subjects, looking up 
both subjects’ targets and limits via an interface as explained below. 

Open Boxes (“OB”) was identical to the Baseline, except that both 
subjects’ targets and limits were continually displayed. 

(All the analysis discussed above pooled the data from CGC’s Baseline 
and OB treatments, which did not differ significantly.) 

Six different Robot/Trained Subjects (“R/TS”) treatments were identical to 
the Baseline, except subjects played against a “robot” (“the computer”) 
and the computer played according to a pre-specified, announced type, 
either L1, L2, L3, D1, D2, or Equilibrium; subjects were trained to identify 
that type’s guesses and paid for their payoffs against the computer. 
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Puzzle A. What are the Baseline “ Equilibrium”  subjects really doing? 
 
Consider the 8 Baseline or OB subjects with near-Equilibrium fingerprints: 
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Ordering the games by strategic structure as in CGC’s Figure 4, with the 
eight games with mixed targets (CGC’s Table 3, not reproduced here) on 
the right, shows that those 8 subjects’ deviations from equilibrium almost 
all (50 out of 59, or 85%) occurred in games with mixed targets. 
 
Thus those subjects, whose exact compliance with Equilibrium guesses 
was off the scale by normal standards, are actually following a rule that 
only mimics Equilibrium, and that only in games without mixed targets.  

Yet all of the ways we teach people to identify equilibria (best-response 
dynamics, equilibrium checking, or iterated dominance) work equally well 
with and without mixed targets: Whatever these subjects were doing, it’s 
something we haven’t thought of yet. 

(And their debriefing questionnaires don’t tell us what it is.) 
 
Whatever it is, it has some structure: All 44 of these subjects’ deviations 
from Equilibrium (solid line) when it is separated from L3 (dotted line) are 
in the direction of (and sometimes beyond) L3 guesses. 

However, this structure could reflect nothing more than the fact that 
Equilibrium guesses are more extreme than other types’ guesses. 
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Equilibrium R/TS subjects’ compliance is as high with as without mixed 
targets, so training eliminates whatever the Baseline subjects were doing: 

Fingerprints of 10 UCSD Equilibrium R/TS Subjects 
(only deviations from Equilibrium’s guesses are shown)  
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Subjects with 16 exact guesses: 603, 704, 705 
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Fingerprints of 18 York Equilibrium R/TS Subjects 
(only deviations from Equilibrium’s guesses are shown) 

 
 

 

 

 
 

0 

100 

200 

300 

400 

500 

600 

700 

800 

900 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Game Numbers 

Guesses 

Eq
. 

L3 

1203 
(11) 

1206 (5) 1303 (15) 1304 (6) 
1306 (15) 1403 (15) 1408 

(15) 
1410 (15) 1503 (5) 1504 (1) 

1505 (15) 1506 (7) 2003 
(15) 

2005 (12) 
Subjects with 16 exact guesses: 1205, 1404, 1405, 1406, 2002 
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Puzzle B. Why are Lk the only non- Equilibrium types that exist? 
 
Recall that a careful analysis of CGC’s decision data reveals many 
subjects of types L1, L2, Equilibrium, or hybrids of L3 and/or Equilibrium, 
but no other types that do better than a completely random model of 
guesses for more than one of 88 Baseline/OB subject. 
 
Why do these few rules predominate out of myriads of possible rules? 
  
Why, for instance, aren’t there Dk subjects, closer to what we teach?  
 
Answering this question may shed some light on bounded rationality.  

 
 

 
We suggest possible explanations of both puzzles after discussing CGC’s 
analysis of information search.  
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CGC’s design for studying cognition via information  search 

In CGC’s design for studying cognition via information search, within a 
publicly announced structure each game was presented via MouseLab, 
which normally concealed the targets and limits but allowed subjects to 
look them up as often as desired, one at a time, by clicking on the boxes. 

 
CGC's Figure 6. Screen Shot of the MouseLab Display  
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Details: 
 
CGC used the click option in MouseLab, versus CJ’s use of the rollover 
option.  
 
Thus, opening and closing boxes both required conscious decisions. 
 
Subjects were not allowed to write, and the data strongly suggest that 
subjects did not memorize the targets and limits. 
 
 
With search costs as low as subjects’ searches make them seem, free 
access made the entire structure effectively public knowledge, so the 
results can be used to test theories of behavior in complete-information 
versions of the games.  
 
The design also maintains control over subjects’ motives for search by 
making information from previous plays irrelevant to current payoffs. 
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From the point of view of studying cognition via search, CGC’s normal-
form design combines the strengths of CJ’s extensive-form design and 
CGCB’s matrix-game design.  
 
 
 
CJ’s extensive-form design allows subjects to search for a small number 
of hidden payoff parameters (pies in alternating-offers bargaining) within a 
simple, publicly announced structure. 

 

 

However, it also makes subjects’ search patterns essentially one-
dimensional, and so less informative than they could be. 
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CGC’s design maintains the simplicity of CJ’s design, allowing subjects to 
focus on predicting others’ decisions without getting lost in the details of 
the structure.  
 
 
Unlike CJ’s design but like CGCB’s, CGC’s design makes search higher-
dimensional, hence more informative. 
 
 
Like CGCB’s design, CGC’s design also independently separates types’ 
implications for search and decisions, revealing relationships between 
them. 
 
 
But unlike CGCB’s design, CGC’s makes types’ search implications 
almost independent of the game, an important convenience in analysis. 
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Search data for representative R/TS and Baseline su bjects 
 
We start by comparing search data for representative R/TS and Baseline 
subjects whose guesses conform closely to their assigned or estimated 
type with the implications of CGC’s theory of cognition and search. 
 
 
Eyeballing compliance with the types’ search implications will suggest 
that there is some usable structure in the data, and provide some hints 
about how to model it. 
 
 
We will then explain CGC’s (and CGCB’s) theory of cognition and 
information search, show how the search implications were derived, and 
show how to use them to model subjects’ searches econometrically. 
 
(Because CGC’s theory is close to CGCB’s, it was almost completely 
specified before these data were generated).    
 
But first…. 
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Speak rodent like a native in one easy lesson! 
 

    
 
 

 a p b 
You ( i) 1 2 3 
S/he (j) 4 5 6 

 

MouseLab box numbers 
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Selected R/TS Subjects’ Information Searches and As signed Types’ Search Implications  

        Types' Search Implications      

   MouseLab box  L1 {[4,6],2}       
   a p b  L2 {([1,3],5),4,6,2}      
  You (i) 1 2 3  L3 {([4,6],2),1,3,5}      
  S/he (j) 4 5 6  D1 {(4,[5,1], (6,[5,3]),2}      

       D2 {(1,[2,4]),(3,[2,6]),(4,[5,1],(6,[5,3]),5,2      
       Eq {[2,5],4} if pr. tar.<1,{[2,5],6} if > 1      

                  
Subject 904 1716 1807 1607 1811 2008 1001 1412 805 1601 804 1110 1202 704 1205 1408 2002 

Type(#rt.
) 

L1 (16) L1 (16) L1 (16) L2 
(16) 

L2 
(16) 

L2 
(16) 

L3 
(16) 

L3 
(16) 

D1 
(16) 

D1 
(16) 

D1 (3) D2 
(14) 

D2 
(15) 

Eq 
(16) 

Eq 
(16) 

Eq 
(15) 

Eq (16) 
Alt.(#rt.)            L2 

(16) 
      

Est. style late often early often early    Early         
Game                  

1 123456 146462 462513 135462 134446 111313 462135 146231 154356 254514 154346 135464 246466 123456 123456 123123 142536 
 4623 134646  1313 5213*4 131313 21364* 564623 423213 36231 5213 2646*1 135464 363256 424652 456445 125365 
  23   6 5423 246231 1 2642   313 641321 565365 562525 632132 253616 
       52      342462 626365 6352*4 11 361454 
             422646 652651 65  613451 
             124625 452262   213452 
             5*1224 6526   63 
             654646     
                  
2 123456 462462 462132 135461 134653 131313 462135 462462 514535 514653 515135 135134 123645 123456 123456 123456 143625 
 4231 13 25 354621 125642 566622 642562 546231 615364 6213 365462 642163 132462 525123 244565 456123 361425 
    3 313562 333 223146 546231 23  3 451463 426262 652625 565263 643524 142523 
     52  2562*6     211136 241356 635256 212554 1 625656 
       2     414262 462*13 262365 146662  3 
            135362 524242 456 654251   
            *14654 466135  44526*   
            6 6462  31   

Notes:  The subjects' frequencies of making their assigned types' (and when relevant, alternate types') exact guesses are in parentheses after the 
assigned type. A * in a subject's look-up sequence means that the subject entered a guess there without immediately confirming it. 
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Selected Baseline Subjects’ Information Searches an d Estimated Types’ Search Implications 
        Types’  Search Implications    
   MouseLab box  L1 {[4,6],2}     
   a p b  L2 {([1,3],5),4,6,2}    
  You (i) 1 2 3  L3 {([4,6],2),1,3,5}    
  S/he (j) 4 5 6  D1 {(4,[5,1], (6,[5,3]),2}    
       D2 {(1,[2,4]),(3,[2,6]),(4,[5,1],(6,[5,3]),5,2    
       Eq {[2,5],4} if pr. tar.<1,{[2,5],6} if > 1    
                

Subject 101 118 413 108 206 309 405 210 302 318 417 404 202 310 315 
Type(#rt. L1 (15) L1 (15) L1 (14) L2 L2 L2 L2 L3 (9) L3 (7) L1 (7) Eq (8) Eq (9) Eq (8) Eq Eq 
Alt.(#rt.)         Eq (9) Eq (7) D1 (5) L3 (7) L2 (6) D2 (7)   
Alt.(#rt.)         D2 (8)   L2 (5)  L3 (7)   
Est. style early/la early late early early early/la early early Early early early early early early/la early 

Game                
1 146246 246134 123456 135642 533146 1352 144652 123456 221135 132456 252531 462135 123456 123126 213465 
 213 626241 545612  213  313312 123456 465645 465252 464656 464655 254613 544121 624163 
  32*135 3463*    546232 213456 213213 13242* 446531 645515 621342 565421 564121 
       12512 254213 45456* 1462 641252 21354* *525 254362 325466 
        654 541  462121 135462  *21545  
           3 426256  4*  
            356234    
            131354    
            645    
2 46213 246262 123564 135642 531462 135263 132456 123456 213546 132465 255236 462461 123456 123546 134652 
  2131 62213* 3 31 1526*2 253156 465562 566213 132*46 62*365 352524 445613 216326 124653 
      *3 456545 231654 545463 2 243563 261315 255462 231456 656121 
       463123 456*2 21*266   463562 513565 *62 3 
       156562  54123    23   
       62         
3 462*46 246242 264231 135642 535164 135263 312456 123455 265413 134652 521363 462135 123456 123655 132465 
  466413  53 2231  5231*1 645612 232145 1323*4 641526 215634 123562 463213 544163 
  *426     236545 3 563214  5263*6 *52 3  *3625 
       5233**  563214  52     
       513  523*65       
         4123       
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These data suggest the following conclusions:  

(i) Search is so heterogeneous and noisy that we should study it at the 
individual subject level. 

(ii) There is little difference between the look-up sequences of R/TS and 
Baseline subjects of a given type (assigned type for R/TS, apparent type 
for Baseline), except that the R/TS look-up sequences are usually shorter 
than the Baseline ones. (Perhaps the small difference is unsurprising, 
because R/TS subjects were not trained in search strategies.) 

(iii) A subject’s type’s predicted look-up sequence is unusually dense in 
his searches, at least for types L1 and L2, and one can quickly learn to 
read the algorithms many subjects are using directly from the data.  

(iv) For some subjects search is an important check on decisions; for 
example, Baseline subject 309, with 16 exact L2 guesses, missed some 
of L2’s relevant look-ups in the first few games, avoiding deviations from 
L2 only by luck. (S/he had a Eureka! moment between games 5 and 6, 
and from then on complied perfectly.) This recalls CJ’s finding that in their 
alternating-offers bargaining games, 10% of the subjects never looked at 
the last-round pie and 19% never looked at the second-round pie. 



 54 

 
How does cognition show up in information search? 
 
In studying cognition via information search, CJ followed the tradition in 
the psychology literature, giving roughly equal weight to look-up durations 
and to the numbers of look-ups of each pie (“acquisitions”) and the 
transitions between pies. 
 
Gabaix, Laibson, Moloche, and Weinberg, “Costly Information Acquisition: 
Experimental Analysis of a Boundedly Rational Model,” AER 2006, 
focused on acquisitions and considered aspects of look-up order too. 
 
Rubinstein EJ 2007, which considers some matrix games, considered 
only durations. 
 
 
 
These analyses were mostly conducted at a high level of aggregation, 
both across subjects and over time. 
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By contrast, CGC, following CGCB, took it as a given that cognition is 
sufficiently heterogeneous and search sufficiently noisy that they are best 
studied at the individual level. 
 
 
CGC and CGCB also assumed that which look-ups subjects make, in 
which order, are at least as revealing as look-up durations or acquisition 
frequencies. 
 
(CGC and CGCB made no claim that durations are irrelevant, just that 
they don’t deserve the top priority they have been given. 
 
CGCB present some results on durations, “gaze times” in their Table IV.) 
 
  
CGC’s views were shaped by simple-minded theories of cognition, CJ’s 
R/TS searches, and CGCB’s Equilibrium Trained Subjects’ searches. 
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Thinking types as models of cognition and search 
 
CGC’s (and CGCB’s) models of cognition, search, and decisions are 
based on a procedural view of decision-making, in which a subject’s type 
determines his search, and type and search then determine his decision. 
 
Each type is naturally associated with algorithms that process payoff 
information into decisions. (As noted above, because a type’s search 
implications depend not only on what decisions it specifies, but why, 
something like a types-based model seems necessary here.) 
 
The analysis uses the algorithms as models of cognition, deriving a type’s 
search implications under simple assumptions about how cognition 
determines search. 
 
The types then provide a basis for the enormous space of possible 
decision and search sequences, imposing enough structure to describe 
subjects’ behavior in a comprehensible way, and to make it meaningful to 
ask how subjects’ decisions and searches are related. 
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How Does Cognition Determine Search? 
 
 
Without further assumptions, nothing precludes a subject’s scanning and 
memorizing the information and then “going into his brain” to figure out 
what to do, in which case his searches will reveal nothing about cognition. 
 
 
But inspecting the sample of actual searches above suggests that there 
are strong regularities in search behavior, and that subjects’ searches 
might therefore contain a lot of information about cognition. 
 
 
The goal in analyzing search is to add enough assumptions to make it 
possible to extract the signal from the noise in subjects’ look-up 
sequences; but not so many that they distort the meaning of the signal. 
 
 
CGC’s (and CGCB’s) assumptions are conservative, resting on types’ 
minimal search implications and adding as little structure as possible. 
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Types’ Search Implications 
 
CGC derived types’ minimal search implications from their ideal guesses, 
those they would make if they had no limits. (With automatic rounding of 
guesses and quasiconcave payoffs, ideal guesses are all that subjects 
need to know, and all that matters for minimal search implications.) 
 
Evaluating a formula for a type’s ideal guess requires a series of 
operations, some of which are basic in that they logically precede any 
other operation. 
 
For example, [aj+bj] (averaging the partner’s limits) is the only basic 
operation for L1's ideal guess, pi[aj+bj]/2. 
 

CGC derived types’ search implications assuming that subjects perform 
basic operations one at a time via adjacent look-ups, remember their 
results, and otherwise rely on repeated look-ups rather than memory. 
 
These empirically-based assumptions seem to yield a reasonably 
accurate model of most subjects’ search behavior.  
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The left side of Table 4 on the next slide lists the formulas for types’ ideal 
guesses in CGC’s games. 
 
 
The right side of Table 4 lists types’ minimal search implications, derived 
as just explained: first in terms of our notation, then in terms of the box 
numbers in which MouseLab records the data. 
 
Basic operations are represented by adjacent look-up pairs that can 
appear in either order, but cannot be separated by other look-ups.   

Such pairs are grouped within square brackets, as in {[aj, bj], pi} for L1. 
  
Other operations can appear in any order and their look-ups can be 
separated. 

Such operations are represented by look-ups grouped within curly 
brackets or parentheses. 
 
A type’s operations are listed in the order that seems most natural, if 
there is one; but this is not a requirement of the theory. 
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Type Ideal guess Relevant look-ups 

L1 pi [aj+bj]/2 {[ aj,bj],pi} ≡ {[4, 6], 2} 

L2 piR(aj,bj; pj[ai+bi]/2) {([ ai,bi],pj),aj,bj,pi} ≡ {([1, 3], 5), 4, 6, 2}  

L3 piR(aj,bj; pjR(ai,bi; pi[aj+bj]/2)) {([aj,bj],pi),ai,bi,pj} ≡ {([4, 6], 2), 1, 3, 5}  

D1 pi(max{ aj,pjai} + min{ pjbi,bj})/2 {(aj,[pj,ai]),(bj,[pj,bi]),pi} ≡ 
{(4,[5,1]),(6,[5,3]),2} 

D2 pi[max{max{aj,pjai},pjmax{ai,piaj}} 
+min{pjmin{pibj,bi},min{pjbi,bj}}]/2 

{(ai,[pi,aj]),(bi,[pi, 
bj]),(aj,[pj,ai]),(bj,[pj,bi]),pj,pi} 

≡ {(1,[2,4]),(3,[2,6]),(4,[5,1]),(6,[5,3]),5,2} 

Eq. piaj if  pipj < 1 or pibj if pipj > 1 
{[pi,pj],aj} ≡ {[2, 5], 4} if  pipj < 1 

or {[ pi,pj],bj} ≡ {[2, 5], 6} if  pipj > 1 

Soph. 
[no closed-form expression, but 
CGC took its search implications 

to be the same as D2’s] 

{(ai,[pi,aj]),(bi,[pi, 
bj]),(aj,[pj,ai]),(bj,[pj,bi]),pj,pi} 

≡ {(1,[2,4]),(3,[2,6]),(4,[5,1]),(6,[5,3]),5,2} 
 

CGC's Table 4. Types’ Ideal Guesses and Relevant Lo ok-ups 
(p is a target; a (b) is a lower (upper) limit; i and j are the player and his 

partner; and R(·) is the automatic adjustment function.) 
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L1’s search implications 
(Unlike in this picture, subjects could never open more than one box at a time.) 

 
 

L1’s ideal guess: pi[aj+bj]/2 = 750. L1’s search implications: {[aj, bj], pi} ≡ {[4, 6], 2}. 
 

(L1 does not need to look up its own limits because it can enter its ideal guess 
and rely on automatic adjustment to ensure that its adjusted guess is optimal. Thus this 
design even separates L1 from a Solipsistic type that only looks up its own parameters.)    
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L2’s search implications: first step 
(Unlike in this picture, subjects could never open more than one box at a time.) 

 
 

L2’s model of its partner’s L1 guess: pi[aj+bj]/2 = 300. 
Search implications: {[ai,bi],pj} ≡ {[1,3],5}. 

 
(L2 needs to look up its own limits only to predict its partner’s L1 guess; like L1 it can enter 
its ideal guess and rely on automatic adjustment to ensure its adjusted guess is optimal.) 
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L2’s search implications: second step 
(Unlike in this picture, subjects could never open more than one box at a time.) 

 
 

L2’s ideal guess: piR(aj,bj; pj[ai+bi]/2) = 450. 
L2’s search implications: {([ai,bi],pj),aj,bj,pi} ≡ {([1, 3], 5), 4, 6, 2}. 

 
(L2 needs to look up its partner’s limits aj = 4 and bj = 6 to predict its partner’s L1 adjusted 
guess.) 
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Aside on types’ search implications  
 
L1, L2, L3, D1, D2 search implications are easy to derive from the 
formulas in Table 4.  
 
Note that although most theorists instinctively identify Lk with Dk-1, etc., 
they are cognitively very different: 
 
Lk starts with a naïve prior over the other’s decisions and iterates the 
best-response mapping; Dk-1 starts with reasoning based on iterated 
knowledge of rationality and closes the process with a naïve prior. 
 
This difference shows up clearly in their search implications in Table 4: 
 
{([ai,bi],pj),aj,bj,pi} ≡ {([1, 3], 5), 4, 6, 2} for L2 
 
versus 
 
{(aj,[pj,ai]),(bj,[pj,bi]),pi} ≡ {(4,[5,1]),(6,[5,3]),2} for D1.   
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Equilibrium can use any workable method to find its ideal guess; we allow 
any method, and seek the one with minimal search requirements. 

Equilibrium-checking (conjecturing guesses and checking them for 
consistency with equilibrium) is less demanding than other methods, but 
requires more luck than almost all of our subjects appeared to have. 

Accordingly, we allow Equilibrium to use both targets to determine 
whether the equilibrium is High or Low, and then to enter its own target 
times its partner’s lower (upper) limit when the product of targets is < (>) 
1, which CGC’s Observation 1 shows ensures its adjusted guess is in 
equilibrium. 

This has the same search requirements as equilibrium-checking except 
that it requires the targets to be adjacent; and thereby avoids the need for 
luck. 

(Unlike in CGCB’s and CJ’s designs, Equilibrium’s search implications are 
just as simple as L1’s, and simpler than other boundedly rational types’!) 

(End of aside) 
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Searchmetrics 
 
CGC’s econometric analysis of guesses and search extends CGC’s (and 
CGCB’s) maximum likelihood error-rate models of decisions to explain 
search compliance as well as decisions, treating search as just another 
kind of decision as much as possible. 
 
The main econometric problem is extracting signals from subjects' highly 
idiosyncratic, noisy look-up sequences, without a well-tested model that 
implies strong restrictions on how cognition drives search.  
 
Among other things, subjects vary in the location of look-ups relevant to 
their types in their sequences. 
 
CGC filter this out via subject-specific nuisance parameters called style 
(“early” or “late”), assumed constant across games for each subject. 
 
(58 of 71 Baseline subjects’ estimated styles are early, 10 are late, and 3 
are tied.) 
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CGC summarize a subject’s compliance with a type’s search implications 
in a game by the density of the type’s look-up sequence in the relevant 
part (as determined by estimated style) of the subject’s look-up sequence. 
 
 
If, for example, style is early, a subject’s search compliance for a given 
type is defined by starting at the beginning of his look-up sequence and 
continuing until the type’s relevant sequence (Table 4) is first completed. 
 
Compliance is then the length of the relevant sequence divided by the 
length of the sequence that first completed it. 
 
 
 
This definition filters out irrelevant look-ups (except if they separate the 
adjacent look-ups required for a basic operation) in a simple way, while 
making compliance meaningfully comparable across games and styles. 
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CGC assume that a subject’s type and style determine his search and 
guess in a given game, each with error. 
 
 
 
They further assume that, given type and style, errors in search and 
guesses are independent of each other and across games. 
 
(This strong but useful simplifying assumption makes the log-likelihood 
separable across guesses and search, avoiding complications in CGCB.) 
 
 
 
To avoid stronger distributional assumptions CGC discretized compliance 
into three categories: CH ≡ [0.67,1.00], CM ≡ [0.33,0.67], and CL ≡ [0,0.33]. 
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Subject i's guesses-and-search log-likelihood is: 
 

≡











++−−+∑ ∑

∈c Ng

i
g

i
g

k
g

iskisk
c

isk
cc

isk
c

isk
c

xRdnnmm )),((ln)ln()1ln()()ln( λεεζ

[ ] ,ln2lnln)),((ln)ln()ln()( GGmmGGxRdnnnGnG
c

isk
c

isk
c

Ng

i
g

i
g

k
g

ikikikik

ik

−+−++−− ∑∑
∈

λ
 

 

where 
isk
cm is the number of games for which subject i has type-k style-s  

compliance c.  
 
 

The search term is convex in the 
isk
cm , and therefore favors types for 

which compliance varies less across games, because such types 
"explain" search behavior better. See CGCB, Section 4.D. 
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The maximum-likelihood estimates of ε  and cζ , given k and s, are 
ikn /G 

and Gm isk
c / , the sample frequencies with which subject i's adjusted 

guesses are non-exact for that k and i has compliance c for that k and s.  

The maximum likelihood estimate of λ is the standard logit precision. 
 
The maximum likelihood estimate of subject i's type k maximizes the 
above log-likelihood over k and s, given the estimated ε and λ. 
 
Note that the model favors such types without regard to whether 
compliance is high or low. 
 
This seems appropriate because compliance is neither meaningfully 
comparable across types (as opposed to across games and styles); nor is 
it guaranteed to be high for the “true” type (which could be cognitively 
very difficult). 
 
But it means that CGC need to rule out estimates where a type wins 
simply because its compliance is very low in all games.   
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Most guesses-and-search type estimates, especially those for subjects 
whose guess fingerprints were clear, reaffirm guesses-only estimates. 
 
Thus, overall, incorporating search into the econometric analysis confirms 
our conclusions, including the absence of significant numbers of subjects 
of types other than L1, L2, Equilibrium, or hybrids of L3 or Equilibrium. 
 
Incorporating search does refine and sharpens our conclusions in some 
ways; and a few subjects’ type estimates change (Table 1, 7A, and 7B). 
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For some subjects the guesses-and-search estimate resolves a tension 
between guesses-only and search-only estimates in favor of a type other 
than the guesses-only estimate. 

 

The search part of the likelihood has weight only about 1/6 of the guesses 
part, because our theory of search makes much less precise predictions 
than our theory of guesses—a necessary evil, given the noisiness and 
idiosyncrasy of search behavior. 
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For other subjects the guesses-only type estimate has 0 search 
compliance in 8 or more games, and so CGC rule it out a priori. 

 

For example, Baseline 415, with apparent type L1 with 9 exact guesses, 
had 0 L1 search compliance in 9 of the 16 games because s/he had no 
adjacent [aj,bj] pairs as required for L1. 

However, her/his sequences were unusually rich in (aj,pi,bj) and (bj,pi,aj) 
triples, in those orders. 

Because the sequences were not rich in such triples with other 
superscripts, we conclude that 415 was a true L1 who was more 
comfortable with several numbers in working memory than our 
characterization assumes, or than our other subjects were comfortable 
with. 

But because this violated our assumptions on search, this subject was 
“officially” estimated to be a D1. 

(This is why we downplay the official estimate above.) 
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Many subjects’ types can be reliably identified from search alone (Table 7A): 
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And most subjects’ types can be more precisely identified by decisions 
and search than by decisions or search alone (Table 7B): 
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Econometric puzzles regarding CGC’s analysis of sea rch 
 
 
Are there better ways to do the search analysis econometrically? 
 
 
Our search analysis has so far focused on the order of look-ups. How can 
we incorporate duration data while retaining order information?   
 
 
Can we say more about types’ cognitive difficulty using duration data? 
 
 
To what extent can Baseline subjects’ guess “errors” be explained by a 
more detailed analysis of search? 
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Can we separate the effects of training from the strategic-uncertainty-
eliminating effects of robot treatments? 
 
Conditional on style, how does search differ between Baseline subjects 
with clear fingerprints (Equilibrium, L1, L2, or L3) and successful R/TS 
subjects of same type? 
 
 
(Baseline subjects with high compliance for some type are like robot 
untrained subjects, which don’t usually exist because you can’t tell robot 
subjects how they will be paid without teaching them how the robot works, 
and so training them. Thus we can separate the effects of training and 
strategic uncertainty, by comparing Baseline and R/TS subjects: 

 

Either Equilibrium is natural with mixed targets, but untrained subjects 
don’t see it; or Equilibrium is unnatural, and/or subjects don’t believe even 
trained others will make Equilibrium guesses with mixed targets.) 
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Possible answers via search to puzzle A. What are t hose 
Baseline “ Equilibrium”  subjects really doing? 
 
 
(i) Can we tell how Baseline Equilibrium subjects find equilibrium in 
games without mixed targets: best-response dynamics, equilibrium 
checking, iterated dominance, or something else that doesn’t “work” with 
mixed targets? 
 
The absence of Baseline Dk subjects suggests that they are not using 
iterated dominance. 
 
Best-response dynamics, perhaps truncated after 1-2 rounds, seems 
more likely. 
 
Can check by refining characterization of Equilibrium search and redoing 
the searchmetrics, separately with and without mixed targets. 
 
(At the very end of these slides is a refined characterization of Equilibrium 
search.) 
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(ii) Is there any difference in Baseline Equilibrium subjects’ search 
patterns in games with and without mixed targets? If so, how does the 
difference compare to the differences for L1, L2, or L3 subjects? 
 
 
(Our 20 Baseline apparent L1 subjects’ compliance with L1 guesses is 
almost the same with and without mixed targets (CGC’s Figure 1, below), 
unsurprisingly because the distinction is irrelevant to L1. 
 
But our 12 apparent L2 and 3 apparent L3 (CGC’s Figures 2-3, below) 
subjects’ compliance with their apparent types’ guesses is lower with 
mixed targets. This is curious, because for L2 and L3, unlike for 
Equilibrium, games with mixed targets require no deeper understanding.)  
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CGC’s Figure 1
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CGC’s Figure 2
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CGC’s Figure 3 
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(iii) Can we tell how R/TS Equilibrium subjects with high compliance 
manage to find their Equilibrium guesses even with mixed targets? How 
does their search in those games differ from Baseline Equilibrium 
subjects’ search? 
 
CGC strove to make the R/TS Equilibrium training as neutral as possible, 
but something must come first. 
 
CGC taught them equilibrium checking first, then best-response 
dynamics, then iterated dominance (some were taught only one method). 
 
To the extent that subjects used one of those methods, it explains why 
they have equal compliance with mixed targets. 
 
If subjects used something else, and it deviates from equilibrium in games 
with mixed targets, it might provide a clue to what CGC’s Baseline 
Equilibrium subjects did.  
 
Does it help to know which Understanding Test questions an R/TS 
Equilibrium subject missed?
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R/TS Equilibrium subjects’ exact compliance is sensitive to the method 
that subjects were taught. 
 
These average rates are for exact compliance, and so are quite high. 
 
 
 

 R/TS Subjects’ Exact Compliance according to Equili brium Method  
 Eq.(N/A) Eq.(A) EF BR ID EqC 

Number of subjects 29 50 11 13 13 13 
% Compliance|Passed UT2 70.3 78.4 88.1  86.1 62.5 85.1 

% Failed UT2  19.4 27.5 0.0 0.0 27.8 51.9 
 



 85 

Possible answers to puzzle B. Why are Lk the only types other 
than Equilibrium with nonnegligible frequencies? 
 
 
(i) Most R/TS subjects could reliably identify their type’s guesses, even 
Equilibrium or D2.  
 
These average rates are for exact compliance, and so are quite high. 
 
Individual subjects’ compliance was usually bimodal within type, on very 
high and very low.  
 
 

 R/TS Subjects’ Exact Compliance with Assigned Type’ s Guesses and 
Duration  

 L1 L2 L3 D1 D2 Eq.(N/A) 
Number of subjects 25 27 18 30 19 29 

% Compliance|Passed UT2 80.0 91.0 84.7 62.1 56.6 70.3 
% Failed UT2  0.0 0.0 0.0 3.2 5.0 19.4 

Duration (seconds) 45.4 54.9 79.2 77 120.5 96.3  
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(ii) But there are noticeable signs of differences in difficulty across types: 

 

(a) No one ever failed an Lk Understanding Test, while some failed the 
Dk and many failed the Equilibrium Understanding Tests. 

 

(b) For those who passed, compliance was highest for Lk types, then 
Equilibrium, then Dk. This suggests that Dk is harder than Equilibrium, but 
could be an artifact of more stringent screening of the Equilibrium Test.   

 

(c) Among Lk and Dk types, compliance was higher for lower k as 
expected, except L1 was lower than L2 or L3 compliance. 

(We suspect that this is because L1 best responds to a random L0 robot, 
which some subjects think they can outguess; L2 and L3 best respond to 
a deterministic L1 or L2 robot, which doesn’t invite “gambling” behavior.) 
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(d) Remarkably, 7 of 19 R/TS D1 subjects passed the D1 Understanding 
Test, in which L2 answers are wrong; and then “morphed” into L2s when 
making their guesses, significantly reducing their earnings (next slide). 
 
(Recall that it is L2 that is D1’s cousin.) 
 
For example R/TS D1 subject 804 made 16 exact L2 (and so only 3 exact 
D1) guesses. Her/his search also suggests L2 rather than D1 thinking. 
 

 
 

L2 {([1,3],5),4,6,2} 
D1 {(4,[5,1], (6,[5,3]),2} 

 
This kind of morphing, in this direction, is the only kind of morphing that 
occurred: compelling evidence that Dk types are unnatural. 
 
However, a comparison of Lk’s and Dk-1’s search and storage 
requirements may add something, as Dk-1 needs more memory than Lk. 
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Fingerprints of 7 R/TS Subjects who morphed  from D1 to L2

(only deviations from D1's guesses are shown)
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Aside: Refined characterization of Equilibrium search 
 
Equilibrium's ideal guess can be identified by (1) evaluating a formula, (2) 
equilibrium-checking, (3) iterated dominance, or (4) best-response 
dynamics. 
 
(1) Two ways to evaluate a formula: using Equilibrium’s ideal guess, or 
using Observation 1’s proxy for Equilibrium’s ideal guess. 

Because they are logically related, our theory cannot distinguish them. 
The latter is less stringent, and yields requirements: 
 
(1) {[pi,pj],aj} ≡ {[2, 5], 4} if pipj < 1 or {[pi,pj],bj} ≡ {[2, 5], 6} if pipj > 1. 
 
(2) Equilibrium-checking’s requirements are almost the same, usually 
requiring both of the partner’s limits but excluding one in some cases, 
depending on luck. 
 
I omit the requirements here, noting only that this method also requires 
[pi,pj]. 
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(3) Iterated dominance we assume requires one or more complete 
rounds, stopping when there is a clear up-or-down direction in which 
dominance eliminates guesses, enough to guess whether the equilibrium 
is High or Low. 
 
Once the required rounds are completed, the player can use CGC’s 
Observation 1’s proxy for Equilibrium’s ideal guess; this adds a pi times 
either aj (Low equilibrium) or bj (High) to his sequence. 
 
As it happens, the search requirements for k rounds are independent of k; 
thus, the search requirements for iterated dominance are like CGC’s 
characterization for D2 (D2, not D1, because unlike D1, a k-round 
iterated-dominance player must delete k rounds of dominated guesses for 
himself too). 
 
(3)    {(ai, [pi, aj]), (bi, [pi, bj]), (aj, [pj, ai]), (bj, [pj, bi]), pj, pi}  

≡ {(1, [2, 4]), (3, [2, 6]), (4, [5, 1]), (6, [5, 3]), 5, 2}. 
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(4) For best-response dynamics we assume the subject does only one 
complete round: that is, starting with a trial guess for one player, best-
responding for the other, and then best-responding back for the first 
player. 
 
We also assume the subject can infer from whether the iterated best 
response goes up or down (if it changes) whether equilibrium is High or 
Low. 
 
(4) {([ai,pj] or [bi,pj] or [aj,pi] or [(bj,pi]), pi,pj,(all but at most one of ai,bi,aj, 
and bj)}. 
 
The main difference among Equilibrium methods is that methods 1 and 2 
have a [pi, pj] requirement and methods 3 and 4 do not. 
 
We know from the absence of Baseline Dk subjects in CGC’s guesses-
and-search estimates that method 3’s requirements don’t fit the data well. 
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Its also seems, from the data, that [pi, pj] are comparatively rare for 
Baseline apparent Equilibrium subjects, and even for R/TS Equilibrium 
subjects. 
 
Thus searchmetrics may favor best-response dynamics, truncated 1-2 
rounds. 
 
(CGC strove to make the R/TS Equilibrium training as neutral as possible, 
but something must come first. A subset of the R/TS subjects were taught 
equilibrium-checking first, then best-response dynamics, then iterated 
dominance; another subset was taught only one of the methods. To the 
extent that they used one of those methods, it explains why they have 
equal compliance with and without mixed targets. If they used something 
else that deviates from equilibrium with mixed targets, it might be a clue 
to what Baseline Equilibrium subjects did.) 
 
(End of aside.)  


