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Abstract: This paper begins to explore behaviomtimanism design, replacing
equilibrium by a model based on “leyélthinking, which has strong support
in experiments. In representative examples, weidensptimal sealed-bid
auctions with two symmetric bidders who have indejemt private values,
assuming that the designer knows the distributfdewel-k bidders. We show
that in a first-price auction, lev&lbidding changes the optimal reserve price
and often yields expected revenue that exceedsddger (1981) bound; and
that an exotic auction that exploits bidders’ nguiébrium beliefs can far
exceed the revenue bound. We close with some dertesarvations about
levelk auction design.
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1. Introduction

A number of recent papers reconsider core micro@oic questions taking
a “behavioral” view of individual decisions or patlistic judgment (e.g.
Camerer et al. 2003). Most such papers focus osutoner behavior, but a few
analyze questions in mechanism design (Glazer aibihBtein 1998; Neeman
2003; Eliaz and Spiegler 2006, 2007). In those p®wever, the behavioral
aspect is limited to decisions or judgment rathantbeliefs: Despite the
central role of equilibrium assumptions in the ttyeaf mechanism design,
there are very few analyses of design outside dbdilerium paradignf.

Taking a broader view of strategic behavior shanddease the practical
usefulness of mechanism design theory. Design @mltigrinvolves the creation
of new games, for which the learning justificatfon equilibrium may be weak
or nonexistent; yet it is often important for arplgation to work the first
time 2 Further, assuming equilibrium may yield theordbjcaptimal designs
that are too complex for confidence in equilibribehavior, even if learning is
possible. Replacing equilibrium with a model thettér describes people’s
responses to new and/or complex games—nboth equifibiresponses in games
that tend to elicit them and systematic deviationgames that don't—should
allow us to design more effective mechanisms.sib auggests a concrete,
evidence-based way to assess robustness, sompthingusly left to intuition.

This paper begins to explore relaxing the equiitbrassumption in
mechanism design. We consider the leading case oftmal (expected-
revenue maximizing) single-object sealed-bid auctiith two symmetric
bidders who have independent private values, fachvilyerson (1981)
provides a complete equilibrium-based analysis.

To focus sharply on strategic behavior, we mamtlaé standard rationality
assumptions regarding decisions and judgment. Wiehsdrategic behavior
via a class of structural non-equilibrium modellechlevelk models, which
have strong experimental support from experimdrasélicit initial responses
to a variety of gamebin a levelk model players’ decision rules or “types” are
allowed to be heterogeneous, but each player’sisygeawn from a common
distribution. Type_k anchors its beliefs in a nonstrateg@type, which
represents its model of others’ instinctive reawtito the game as discussed
below, and adjusts them via thought-experimenth itgrated best responses:

2 Matsushima (2007, 2008) takes a finitely iteradechinance approach similar in spirit to but
quite different in substance from the one we taeh

3 In the best-known such example, the U.S. FCC mpmcauction (McMillan 1994), billions of
dollars were at stake. Partly because they beliseatéd-bid designs would not yield outcomes
close enough to equilibrium to ensure good resthltssdesigners adopted a progressive, partly
“open” design for which the theory was weaker bygegimental results were more promising.

4 Costa-Gomes and Crawford (2006) and Costa-Gomals @1009) review the literature on
levelk models. Our levekmodel most closely follows that of Crawford andiri (2007), who
showed how to adapt levklmodels to auctions with incomplete information.



L1 best responds 10, L2 to L1, and so ofi.L1 and higher types are rational,
with perfect models of the game. Their only deparfuom equilibrium is
replacing its perfect model of others with a sitfidi model. In applications
the type frequencies are estimated or calibratmd firevious analyses. The
estimated.0 frequency is usually small; and most weight id drandL2.

Like equilibrium, levelk models are general, tractable, and make specific
predictions. Unlike equilibrium, their predictioase stochastic and depend on a
small number of behavioral parameters—the typeuiagies, and precisions
that describe the noisiness of types’ decisions—tHmyt have enough structure
to allow an informative analysis, contingent orligtia parameter values.

We assume that bidders are drawn from a givenlptipn of levelk types,
whose frequencies are known to the designer. Bedaesguestion of optimal
auctions with levek bidders is a dficult one, most of our analysis considers
representative examples and the narrower questionkat reserve prices are
optimal and how much revenue they yield in firsdtprauctions, the optimality
of auction forms, and the use of exotic auctioas &xploit bidders’ non-
equilibrium beliefs to exceed Myerson’s (1981) mave bound.

Section 2 introduces the main examples we studyrewiews Myerson’s
equilibrium analysis of optimal auctions, followikgishna (2002). Section 3
defines our levek model and develops its implications for revenue-imézing
reserve prices in first-price auctions in the maiamples, showing that the
designer can often adjust the reserve to do bibterthe maximal revenue with
equilibrium bidders. Section 4 gives a differenaigple, in which with
equilibrium bidders the optimal auction is a secpnde auction with reserve
price, but in which an exotic auction can theowsdljc(if bidders’ levelk
behavioral rules are assumed invariant to the dgsigploit bidders’ non-
equilibrium beliefs to obtain expected revenues tlwaexceed the maximal
revenue assuming equilibrium. Section 5 concludés general observations
on levelk auction design, noting problems that arise if thsigh affects the
form of bidders’ strategic decision rules and cdesig difficulties in adapting
the revelation principle to characterize optimattaans with levelk bidders.

5 Lk respect rounds of iterated dominance, so a distributiofoofk types mimics equilibrium

in games that are dominance-solvable in few roupdisinay deviate in more complex games, in
predictable ways. Thus a “robust” mechanism thaiémentsyoodoutcomesandis dominance-
solvable in one or two rounds (compare Matsushi@@/22008) may have an advantage over a
complex mechanism that theoretically implementseoetutcomes but only in equilibrium.

% Costa-Gomes and Crawford (2006) and Costa-Gomes @0®) summarize the evidence in
support of levek models and present the case for using them to niitiel responses to games.
Until recently the choices for modeling nonequiliion behavior were limited to rationalizability;
adding noise to equilibrium predictions as in Pauz2000); or using McKelvey and Palfrey’s
(1995) notion of quantal response equilibrium (“QREO0 our knowledge these models have not
been applied to design, perhaps because ratiobéiligés imprecise (but see Battigalli and
Siniscalchi 2003); QRE must be solved numericalhd in noisy equilibrium or QRE the error
specification is crucial but has little to guidé@osta-Gomes, Crawford, and Iriberri 2009).



2. Equilibrium Analysis of Optimal Auctions

We consider single-object auctions with two riglutral bidders whose
values are independently and identically distridutei.d.”). In this section and
the next we consider two examples, one with inéngeesnd one with
decreasing value density, which lead to differeaitgyns of levek deviations
from equilibrium that, taken together, are représiive of the possibilities.

In the increasing (“I") example values have th&trithution functionF,,(v)
=V on [0,1], with the densitf,(v) = W™ y>0is required foFy,(v) to be a
valid distribution function, and we strengthen ttis > 1 to make the density
increasing. We suppregdelow, writingF, andf, instead of,, andf,,. Because

_1-F (V) :V_l—vy _(y+v_ 1

f, (v) wrteoy o oW
is increasing irv wheny > 1, F, is “regular” in Myerson’s (1981) sense. Thus,
Myerson’s famous result establishes that amongptienal mechanisms in this
environment is a first-price auction with suitabhosen reserve price.
In a first-price auction with reserve pricél [0, 1], the equilibrium bid for
valuev>r can be shown to be (omitted calculations hereb&halv are in an
appendix at http://dss.ucsd.edu/~vcrawfor/#BQAD

r y+1 y
b|E (V) = + v,
(2 2

which increases fromatv=r to

y+1
Ly

y+l y+1

atv = 1. The optimal reserve prige®()) can be shown to be
1

FEW) =+ 7.

In the decreasing (“D”) example values have tis¢rithution function

B

FouV) = —2— 1= on fa, A1, with « > 0,
L-a v

with well-defined densityf/[(5-a)V’] that is positive, decreasing and

continuous ond, f]. We suppresa andg below, writingFp andfp instead of

Fp.sandfp,s. Because the virtual valuation

_1-Fy(r) =v_2
fo (V) B

" These examples are the basis of the design fariexents we are conducting to guide our
specification and test the ideas presented heeerd@3ults will be reported in a companion paper.



is increasing irv on [a, f], Fp is regular. Thus, Myerson’s (1981) result again
establishes that an optimal mechanism in this enuent is a first-price
auction with reserve price. Moreover, since théuairvaluation is always
positive, the optimal reserve price must be séteéaminimum value, that is,

rnf(a.B)=a.
In a first-price auction with reserve pricé! [«, f], the equilibrium bid for
valuev> max {a, r} is (see for example Krishna 2002, p. 24)

by (V) = r—Ez 8 + FDl(v) J?fo(x)dx :$[r —-a+a(inv-Inr)],

with obvious simplifications whentakes its optimal value af.
Note that for this distributiorb[f|r (v)is independent gf. Further, although

bglr (V) — 0 as v— oo, it increases extremely slowly, like WnAs a result, if

=a = 1, for example .;r (L000000) =13.82, so that in equilibrium, a bidder

who values the object at $1,000,000 bids only $1.3.8It follows that the
expected revenue to the seller under the optin@lauis:

2 B 2
a -V
. By,
(B-a); v
M 544 1S bounded above by:g/(5-a) = 20 for f >>a. We use this fact

below when we compare the seller’s equilibrium kavelk expected revenues.
3. Levelk Analysis of Optimal Reserve Prices in First-Pricuctions

Recall that in a levef-model, typeLk anchors its beliefs in drD type and
adjusts them via iterated best responkédest responds 10, L2 to L1, and
so on. To complete the specification, we defineLihigype following Crawford
and Iriberri (2007), who found that in a varietyaafction experiments subjects’
initial bids could be described as a mixturd_bfor L2 responses to either a
“random” L0 that bids uniformly over the natural range of Kias in most
previous levek analyses) or a “truthfull.0 that bids its private value. Like
Crawford and Iriberri, we call the associatels or L2s “random” or “truthful”
L1sor L2s even though they are not themselves random tfaii

In our analysis (unlike Crawford and Iriberri’s¢serve prices above the
lowest possible value are potentially important] #iis creates an ambiguity
regarding the “natural range of bids,” which foe thexample could be either
[0,1] or (truncating the value distributiom) 1]; and for the D example could be

I_I Dafr=a =a

8 Using initial-response data from common- or indefent-private-value auction experiments,
Crawford and Iriberri estimated large frequencE®-§5%) of randonh.1 bidders (in auctions
without reserve prices, hence not distinguishiregatiernatives below) and much smaller but
significant frequencies of randoln? (4-9%), truthfulL1 (9-18%), and truthful 2 (1-16%).



either [, A or [r, B]. We focus here on the latter specifications, Whaar pilot

experiments suggest are more descriptive of mdgests’ bidding behavior.
Given this specification, for the | example withl [0, 1], random or

truthful L1sandL2s either decline to bid or, equivalently, bid lésasnr when

v <r. Whenv>r, levelk types bid as follows:

RandomL1’s bid is given by

r+

2

<

bij; (v) Dargmax,,, (v - b)% =

which can be either greater or less tllnﬁr(v) :
Truthful L1's bid is given by

bT (v) Dargmax,,, (v—b)b” = max{r ,yLﬂv} <bf (V).
(Here and below, the inequality becomes strict whem.)
RandomL2's bid is given by

I|r

-1
2Ry O -b)(2b-r)’ = _r+_y <bE (v).
by, (v) Dargmax, (v—Db)(2b—r) max{r,y+1 y+1v} b (V)
Truthful L2's bid is the same as truthful's

Ir Ir

BT (v) = argmax,., (v - b) (-1 by = maxgr,— b < bE. (v).
: y y+1

Thus in the | example, all types except possiahdomL1 underbid,
relative to equilibrium. Examples suggest that whidieling predominates even
for randomL1. Intuitively, random types tend to underbid heeeduse they
anchor their beliefs in a uniform randdu®, which makes them respond to the
increasing density less than equilibrium bidders do

In characterizing the optimal reserve prices éoelk bidders, we focus on
the cases in which both bidders are the same kygbe | example, the optimal

reserve price facing two randdra bidders,r,"?()/) , can be shown to be
St

() = @y+1) ¥,
which is greater (less) than the optimal equilibriteserve price*E(y) if y<
(>) 2. We have been unable to solve for the opti@serve prices facing two
randomL2 bidders, two truthfuL1 bidders, or two truthful2 bidders; but it
can be shown numerically that that they can beeetiilgher or lower than the
optimal equilibrium reserve price. For lgvand sufficiently highr, randomL2,
truthful L1, and truthfulL2 all bidr for all valuesv. As a result, the optimal
reserve price for low for these three types are identical.

In the D example with O [a, ], random or truthfuL1s andL2s either
decline to bid or bid less tharwhenv <r. Whenv > r, they bid as follows:



RandomL1’s bid is given by
b-r _v+r

Bt —72b§|r(V)-

(Here and below, the inequality becomes strict whem.)
Truthful L1's bid is given by
b3, (v) Dargmax ..., (v — b)F (b) = max{r, (av)""?} 2 b5, ()}.
RandomL2's bid is given by
b3y (v) Dargmax .. (v — b) F ((byy) ™ (b))

1? (V) U argmax ., (V - b)

=argmax{ —b)F(max{r,2b-r}) = % +% Zvaj "> b§|, V).

Finally, truthfulL2's bid is given by
b3}, (v) = argmax. .. ,(v = b) F (b5, ) (b))
= argmax,,..,(v-b)[B /(- L a* 1b?]
=max{r,z-a?/37 ,wherez=(a’v’ +a® 127)"* + a*]"?, so that

o (V) 2 b5, (V).

Thus in the D example, all types overbid relatvequilibrium. Intuitively,
random types tend to overbid with declining deasitvecause they anchor their
beliefs in a uniform randor0, while equilibrium bidders take into account the
fact that higher values in the support are lesgylikhan lower values.

Note that for large values uf by, (V) is approximately linear ia, b, (V)
andog (v) are proportional to, and b3, (v)is proportional ta/°. By
contrast,bEIr (v) is proportional to Irv, which is much smaller for large values
of v. For example, if = a = 1, thenbg; (1L,00Q000) = 500,000.5 and

bp, (1,000000) = 1000, much larger thalf, (1,000000) = 13.82.

In characterizing optimal levd&dreserve prices in the D example, we again
take both bidders to be of the same type. It can te shown numerically that
the optimal reserve prices facing two randotror two randoni2 bidders, are

both higher than the optimal equilibrium reserviegr,®(a, 8) =a . The

optimal reserve prices facing two truthful or two truthfulL2 bidders, are
both equal to the optimal equilibrium reserve price

The optimal reserve prices for randamor L2 bidders in the D example
illustrate an interesting and potentially importpotnt. It is a commonplace

% For randon_1 or random_2 bidders, the revenue function is single-peakesbater > «. For
truthful L1 or truthful L2 bidders, it declines steadily over the entire eafyvaluesd, f].



that price lists in other settings create “mene&#,” whereby the presence of
high-priced items increases buyers’ demands foetewviced items (Kantor
2006). The reserve price can evoke a similar effeah auction, but in the D
example with equilibrium bidders this effect is sttong enough to make a
reserve price a useful instrument. But in the Dngpda with randonik bidders

the reserve price has a stronger effect, whiclesibhecauskek bidders anchor

on anLO that is uniform random omn [5]. As a result, a reserve price becomes a
useful instrument, although the optimal reservegremains smatf.

Given that in the D example, all levetypes bid more aggressively than
equilibrium bidders, a designer facing a knownriistion of levelk bidders
should be able to realize more expected revenureishaossible with
equilibrium bidders. We can derive a lower boundtos revenue by
calculating it for two randorhl bidders and reserve price= 0 and then
multiplying by the probability that two such biddeare drawn. It is feasible for
the designer to design optimally for this continggrignoring all others, and
the optimal design can do no worse. Set@tg) = Fp (v)?, the expected
revenue from two randoinl bidders and reserve price= O is

B 2
[SdG ) = 9 (ng-mha+2-1.
22 (B-a) B

Notably, this expression» « (albeit slowly, like In5) asa is held fixed ang
— oo, If & = 1 ands = 5000, the value of this expression is approxétyal.5,
almost four times as large as thetBat approximates the seller's expected
revenue with equilibrium bidders. Since the prolighof drawing two random
L1s is about 1/3, it is clear that in at least soases, the seller can realize
more expected revenue than with equilibrium bidders

As noted in Section 2, for the D example, a sequak auction with
reserve price < a is optimal with equilibrium bidders. But becausstl
independent private values) a second-price auatimkes the equilibrium bid a
dominant strategy, levédbids coincide with equilibrium bids. Thus, with
levelk bidders a second-price auction yields only theldayiiim expected
revenue. Our analysis therefore shows that in tlexdnple with levek
bidders, a first-price auction with suitable resepvice yields higher expected
revenue than the best second-price auction. Urisingly, this also shows that
revenue-equivalence breaks down with levbleders. Further, the advantage
of using a first-price auction relative to the sierxgand perhaps cheaper method
of selling at a posted price is larger with lekehan with equilibrium bidders.

As we have seen, the optimal reserve price cdarge with equilibrium
bidders but small with leved-bidders, or vice versa. It would be interesting to
find general conditions that determine when a r&sprice induces more

9 For example, in the D example withe 1 andg = 10, the optimal reserve price~isl.33 for
randomL1 bidders and- 1.25 for randonh.2s, slightly above the lowest possible value.



aggressive bidding for equilibrium than lekdbidders, and the extent to which
this makes optimal levéd-higher than optimal equilibrium reserve prices.
4. Exotic Auctions that Exploit Levelk Bidders’ Non-Equilibrium Beliefs

We now give an example in a slightly different @omment that illustrates
the fact that a designer can exploit lekdlidders’ non-equilibrium beliefs to
obtain very large expected revenues. As in SecRaarsd 3, we consider a
single-object auction with two risk-neutral biddersose values are
independently and identically distributed, but vesvrsuppose that the values
are uniformly distributed on the unit interval. Timaximum expected surplus
(ignoring incentive constraints) for this environmhes E[max{vy, v»}] = 2/3.
Myerson (1981) showed that a second-price auctitmneserve price 0.5 is
optimal here, and it can be shown to yield expentednuex 0.417.

Consider the following exotic auction. Bidders sufssimultaneous sealed
bidsb,, b, ([0, 1]. A bidder who bids 1 wins the object if tb#her bids less
than 1. If both bid 1, the winning bidder is chosandomly. A bidder who bids
1 pays 0 if the other bidder bids less than 1 aydlel > 1 if the other bidder
bids 1. A bidder who bids less than 1 pays nothing,cannot win the object.

For this auction, with the uniform value distritmut, both truthful and
randomLO bidders imply uniform random bid distributions the unit interval.
As a result, truthful and randolni, defined as in Section 3 for an auction with
no reserve, both believe that if they bid 1 thely win the object and pay 0.
Given truthful and random0s’ bid distributions, truthful and randoini assign
zero prior probability to the possibility that thegll have to pay if they bid
1. Consequently, truthful and randdrhare willing to participate, and both bid
1, whatever their values. Given this behavior, bnithful and random.2
believe that the other bidder will bid 1 for centaand therefore expect that
bidding 1 will result in their winning the objeairfthe price oM > 1 with
probability 0.5. Hence they decline to bid or, eqlently, bid less than 1.

Truthful and random3, L5, ..., behave the same as truthful and random
L1; and truthful and randoir4, L6, ..., behave the same as truthful and
randomL2. Thus when both bidders hakedd the seller’'s expected revenue is
M, and when at least one of the bidderskegen it is 0. Even a designer who
does not know the type distribution can obtain Jarge expected revenue by
settingM very large to exploit level-bidders’ non-equilibrium beliefs.

5. General Observations on Levek Auction Design

This section concludes with some general obsemsitbn levek auction
design. First, our formulation of the design problakes the level-model’s
specification as given, independent of the degigt,as the standard analysis
assumes that bidders will play an equilibrium foy design. Although our
specification is based on substantial experimeatialence and is general
enough to apply to any game, there is reason tbtdbis assumption for exotic
auctions like Section 4's, which go beyond the eme on which our leved-



specification is based (Crawford and Iriberri 200/9r example, bidders might
view Section 4's auction as having a reserve ick in which case the most
naturalLO specification (random or truthful) implies a spidebids at 1, with

the result that a value & high enough to be profitable would make even
truthful and randonh.1 bidders decline to bid. More generally, an auction
design that is optimal for a levklspecification when it is assumed independent
of the design might not be an auction for whichléwelk model describes
behavior wellt* A general formulation of the design problem mageta

position on how the design influences the rules dieacribe bidders’ behavior
and develop new methods to deal mathematically tiwdhinfluence.

Even without influences like those just discussid,heterogeneity of
levelk strategic decision rules and beliefs complicatesctiaracterization of
optimal auctions? In the standard analysis there is no loss of gdityemn
using the revelation principle to restrict attentto incentive-compatible direct
mechanisms because if equilibrium is assumed, leidcler can check that all
bidders have an incentive to reveal their valuathtully. Given the restriction
to direct mechanisms, the design problem is gueeato have a solution.

By contrast, Section 4's example shows that evidm avknown,
homogeneous population of levebidders, the differences between their
beliefs about their own and others’ behavior magXx@oitable in a way that
makes the design problem as usually formulatedddibve a solution. There
are also problems with extending the revelationgipie to this setting, which
we take to mean finding a direct mechanism thaiteseincentives for all
bidders to reveal their private values, while resipg (in the associated
indirect mechanism) their wishes to follow theimpequilibrium decision rules.
For, a direct mechanism that would give a biddeinaantive to reveal his
value truthfully, assuming that other bidders réwedhfully, might not
convince the bidder that others will reveal trutlyffubecause his model of
others’ decision rules is different from his owhertOur preliminary analyses
suggest that there are important cases where @oga® nonetheless be made:
If, for example, all bidders are known to be truthfk for somek, the incentive
constraint folL1s also ensures truthful revelation for highks, andLO is
automatically truthful. In this case, and poss#dyne others, it may be possible
to adapt Myerson’s (1981) equilibrium methods tareleterize optimal
auctions for levek bidders. Such analyses pose interesting challemgash
should increase the practical usefulness of debigory.

11 A similar criticism applies to equilibrium auctiatesign. For example, a first-price

auction with no reserve price is theoretically opati in our D example with equilibrium bidders,
but we believe very few actual bidders with valo€$1,000,000 would bid as low as $13.82.

2 This is somewhat surprising because Crawford ghdrti (2007) show that many other results
from equilibrium auction theory generalize strafghwvardly to levelk auction theory.
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