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Abstract: This paper begins to explore behavioral mechanism design, replacing 
equilibrium by a model based on “level-k” thinking, which has strong support 
in experiments. In representative examples, we consider optimal sealed-bid 
auctions with two symmetric bidders who have independent private values, 
assuming that the designer knows the distribution of level-k bidders. We show 
that in a first-price auction, level-k bidding changes the optimal reserve price 
and often yields expected revenue that exceeds Myerson’s (1981) bound; and 
that an exotic auction that exploits bidders’ non-equilibrium beliefs can far 
exceed the revenue bound. We close with some general observations about 
level-k auction design. 
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1. Introduction 
 A number of recent papers reconsider core microeconomic questions taking 
a “behavioral” view of individual decisions or probabilistic judgment (e.g. 
Camerer et al. 2003). Most such papers focus on consumer behavior, but a few 
analyze questions in mechanism design (Glazer and Rubinstein 1998; Neeman 
2003; Eliaz and Spiegler 2006, 2007). In those papers, however, the behavioral 
aspect is limited to decisions or judgment rather than beliefs: Despite the 
central role of equilibrium assumptions in the theory of mechanism design, 
there are very few analyses of design outside the equilibrium paradigm.2 
 Taking a broader view of strategic behavior should increase the practical 
usefulness of mechanism design theory. Design inherently involves the creation 
of new games, for which the learning justification for equilibrium may be weak 
or nonexistent; yet it is often important for an application to work the first 
time.3 Further, assuming equilibrium may yield theoretically optimal designs 
that are too complex for confidence in equilibrium behavior, even if learning is 
possible. Replacing equilibrium with a model that better describes people’s 
responses to new and/or complex games—both equilibrium responses in games 
that tend to elicit them and systematic deviations in games that don’t—should 
allow us to design more effective mechanisms. It also suggests a concrete, 
evidence-based way to assess robustness, something previously left to intuition. 
 This paper begins to explore relaxing the equilibrium assumption in 
mechanism design. We consider the leading case of an optimal (expected-
revenue maximizing) single-object sealed-bid auction with two symmetric 
bidders who have independent private values, for which Myerson (1981) 
provides a complete equilibrium-based analysis.  
 To focus sharply on strategic behavior, we maintain the standard rationality 
assumptions regarding decisions and judgment. We model strategic behavior 
via a class of structural non-equilibrium models called level-k models, which 
have strong experimental support from experiments that elicit initial responses 
to a variety of games.4 In a level-k model players’ decision rules or “types” are 
allowed to be heterogeneous, but each player’s type is drawn from a common 
distribution. Type Lk anchors its beliefs in a nonstrategic L0 type, which 
represents its model of others’ instinctive reactions to the game as discussed 
below, and adjusts them via thought-experiments with iterated best responses: 

                                                 
2 Matsushima (2007, 2008) takes a finitely iterated dominance approach similar in spirit to but 
quite different in substance from the one we take here.  
3 In the best-known such example, the U.S. FCC spectrum auction (McMillan 1994), billions of 
dollars were at stake. Partly because they believed sealed-bid designs would not yield outcomes 
close enough to equilibrium to ensure good results, the designers adopted a progressive, partly 
“open” design for which the theory was weaker but experimental results were more promising. 
4 Costa-Gomes and Crawford (2006) and Costa-Gomes et al. (2009) review the literature on 
level-k models. Our level-k model most closely follows that of Crawford and Iriberri (2007), who 
showed how to adapt level-k models to auctions with incomplete information.  



 3 

L1 best responds to L0, L2 to L1, and so on.5 L1 and higher types are rational, 
with perfect models of the game. Their only departure from equilibrium is 
replacing its perfect model of others with a simplified model. In applications 
the type frequencies are estimated or calibrated from previous analyses. The 
estimated L0 frequency is usually small; and most weight is on L1 and L2. 
 Like equilibrium, level-k models are general, tractable, and make specific 
predictions. Unlike equilibrium, their predictions are stochastic and depend on a 
small number of behavioral parameters—the type frequencies, and precisions 
that describe the noisiness of types’ decisions—but they have enough structure 
to allow an informative analysis, contingent on realistic parameter values.6 
 We assume that bidders are drawn from a given population of level-k types, 
whose frequencies are known to the designer. Because the question of optimal 
auctions with level-k bidders is a difficult one, most of our analysis considers 
representative examples and the narrower questions of what reserve prices are 
optimal and how much revenue they yield in first-price auctions, the optimality 
of auction forms, and the use of exotic auctions that exploit bidders’ non-
equilibrium beliefs to exceed Myerson’s (1981) revenue bound.  
 Section 2 introduces the main examples we study and reviews Myerson’s 
equilibrium analysis of optimal auctions, following Krishna (2002). Section 3 
defines our level-k model and develops its implications for revenue-maximizing 
reserve prices in first-price auctions in the main examples, showing that the 
designer can often adjust the reserve to do better than the maximal revenue with 
equilibrium bidders. Section 4 gives a different example, in which with 
equilibrium bidders the optimal auction is a second-price auction with reserve 
price, but in which an exotic auction can theoretically (if bidders’ level-k 
behavioral rules are assumed invariant to the design) exploit bidders’ non-
equilibrium beliefs to obtain expected revenues that far exceed the maximal 
revenue assuming equilibrium. Section 5 concludes with general observations 
on level-k auction design, noting problems that arise if the design affects the 
form of bidders’ strategic decision rules and considering difficulties in adapting 
the revelation principle to characterize optimal auctions with level-k bidders. 
                                                 
5 Lk respects k rounds of iterated dominance, so a distribution of low-k types mimics equilibrium 
in games that are dominance-solvable in few rounds, but may deviate in more complex games, in 
predictable ways. Thus a “robust” mechanism that implements good outcomes and is dominance- 
solvable in one or two rounds (compare Matsushima 2007, 2008) may have an advantage over a 
complex mechanism that theoretically implements better outcomes but only in equilibrium.   
6 Costa-Gomes and Crawford (2006) and Costa-Gomes et al. (2009) summarize the evidence in 
support of level-k models and present the case for using them to model initial responses to games. 
Until recently the choices for modeling nonequilibrium behavior were limited to rationalizability; 
adding noise to equilibrium predictions as in Pauzner (2000); or using McKelvey and Palfrey’s 
(1995) notion of quantal response equilibrium (“QRE”). To our knowledge these models have not 
been applied to design, perhaps because rationalizability is imprecise (but see Battigalli and 
Siniscalchi 2003); QRE must be solved numerically; and in noisy equilibrium or QRE the error 
specification is crucial but has little to guide it (Costa-Gomes, Crawford, and Iriberri 2009). 
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2. Equilibrium Analysis of Optimal Auctions 
 We consider single-object auctions with two risk-neutral bidders whose 
values are independently and identically distributed (“i.i.d.”). In this section and 
the next we consider two examples, one with increasing and one with 
decreasing value density, which lead to different patterns of level-k deviations 
from equilibrium that, taken together, are representative of the possibilities.7 
 In the increasing (“I”) example values have the distribution function FIγ(v) 
= vγ  on [0,1], with the density fIγ(v) = γvγ-1. γ > 0 is required for FIγ(v) to be a 
valid distribution function, and we strengthen this to γ > 1 to make the density 
increasing. We suppress γ below, writing FI and fI instead of FIγ and fIγ. Because 
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is increasing in v when γ > 1, FI is “regular” in Myerson’s (1981) sense. Thus, 
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7 These examples are the basis of the design for experiments we are conducting to guide our 
specification and test the ideas presented here. The results will be reported in a companion paper.  
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is increasing in v on [α, β], FD is regular. Thus, Myerson’s (1981) result again 
establishes that an optimal mechanism in this environment is a first-price 
auction with reserve price. Moreover, since the virtual valuation is always 
positive, the optimal reserve price must be set to the minimum value, that is, 

αβα =),(* E
Dr . 

 In a first-price auction with reserve price r ∈ [α, β], the equilibrium bid for 
value v ≥ max {α, r} is (see for example Krishna 2002, p. 24)  
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with obvious simplifications when r takes its optimal value of α. 

 Note that for this distribution, )(| vbE
rD is independent of β. Further, although 
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rD → ∞ as  v → ∞, it increases extremely slowly, like ln v. As a result, if r 

= α = 1, for example, )000,000,1(|
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who values the object at $1,000,000 bids only $13.82. It follows that the 
expected revenue to the seller under the optimal auction is: 
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ααβ =Π rD | is bounded above by 2αβ/(β-α) ≈ 2α for β >> α. We use this fact 

below when we compare the seller’s equilibrium and level-k expected revenues. 
3. Level-k Analysis of Optimal Reserve Prices in First-Price Auctions  
 Recall that in a level-k model, type Lk anchors its beliefs in an L0 type and 
adjusts them via iterated best responses: L1 best responds to L0, L2 to L1, and 
so on. To complete the specification, we define the L0 type following Crawford 
and Iriberri (2007), who found that in a variety of auction experiments subjects’ 
initial bids could be described as a mixture of L1 or L2 responses to either a 
“random” L0 that bids uniformly over the natural range of bids (as in most 
previous level-k analyses) or a “truthful” L0 that bids its private value. Like 
Crawford and Iriberri, we call the associated L1s or L2s “random” or “truthful” 
L1s or L2s even though they are not themselves random or truthful.8 
 In our analysis (unlike Crawford and Iriberri’s), reserve prices r above the 
lowest possible value are potentially important, and this creates an ambiguity 
regarding the “natural range of bids,” which for the I example could be either 
[0,1] or (truncating the value distribution) [r,1]; and for the D example could be 
                                                 
8 Using initial-response data from common- or independent-private-value auction experiments, 
Crawford and Iriberri estimated large frequencies (59-65%) of random L1 bidders (in auctions 
without reserve prices, hence not distinguishing the alternatives below) and much smaller but 
significant frequencies of random L2 (4-9%), truthful L1 (9-18%), and truthful L2 (1-16%). 
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either [α, β] or [r, β]. We focus here on the latter specifications, which our pilot 
experiments suggest are more descriptive of most subjects’ bidding behavior.  
 Given this specification, for the I example with r ∈ [0, 1], random or 
truthful L1s and L2s either decline to bid or, equivalently, bid less than r when 
v < r. When v ≥ r, level-k types bid as follows: 
Random L1’s bid is given by 
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Truthful L2’s bid is the same as truthful L1’s 
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 Thus in the I example, all types except possibly random L1 underbid, 
relative to equilibrium. Examples suggest that underbidding predominates even 
for random L1. Intuitively, random types tend to underbid here because they 
anchor their beliefs in a uniform random L0, which makes them respond to the 
increasing density less than equilibrium bidders do.     
 In characterizing the optimal reserve prices for level-k bidders, we focus on 
the cases in which both bidders are the same type. In the I example, the optimal 

reserve price facing two random L1 bidders, )(1* γR
Ir , can be shown to be 
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which is greater (less) than the optimal equilibrium reserve price )(* γE
Ir if γ < 

(>) 2. We have been unable to solve for the optimal reserve prices facing two 
random L2 bidders, two truthful L1 bidders, or two truthful L2 bidders; but it 
can be shown numerically that that they can be either higher or lower than the 
optimal equilibrium reserve price. For low γ and sufficiently high r, random L2, 
truthful L1, and truthful L2 all bid r for all values v. As a result, the optimal 
reserve price for low γ for these three types are identical. 
 In the D example with r ∈ [α, β], random or truthful L1s and L2s either 
decline to bid or bid less than r when v < r. When v ≥ r, they bid as follows: 
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Random L1’s bid is given by 
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Finally, truthful L2’s bid is given by 
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 Thus in the D example, all types overbid relative to equilibrium. Intuitively, 
random types tend to overbid with declining densities because they anchor their 
beliefs in a uniform random L0, while equilibrium bidders take into account the 
fact that higher values in the support are less likely than lower values.  

 Note that for large values of v, )(1
| vb R
rD  is approximately linear in v, )(1

| vb T
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and )(2
| vb R
rD are proportional to v½, and )(2
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contrast, )(| vbE
rD is proportional to ln v, which is much smaller for large values 

of v. For example, if r = α = 1, then )000,000,1(1
|
R
rDb = 500,000.5 and 

)000,000,1(1
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rDb  = 1000, much larger than )000,000,1(|

E
rDb = 13.82. 

 In characterizing optimal level-k reserve prices in the D example, we again 
take both bidders to be of the same type. It can then be shown numerically that 
the optimal reserve prices facing two random L1 or two random L2 bidders, are 

both higher than the optimal equilibrium reserve price, αβα =),(* E
Dr . The 

optimal reserve prices facing two truthful L1 or two truthful L2 bidders, are 
both equal to the optimal equilibrium reserve price.9 
 The optimal reserve prices for random L1 or L2 bidders in the D example 
illustrate an interesting and potentially important point. It is a commonplace 

                                                 
9 For random L1 or random L2 bidders, the revenue function is single-peaked at some r > α. For 
truthful L1 or truthful L2 bidders, it declines steadily over the entire range of values [α, β]. 
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that price lists in other settings create “menu effects,” whereby the presence of 
high-priced items increases buyers’ demands for lower-priced items (Kantor 
2006). The reserve price can evoke a similar effect in an auction, but in the D 
example with equilibrium bidders this effect is not strong enough to make a 
reserve price a useful instrument. But in the D example with random Lk bidders 
the reserve price has a stronger effect, which arises because Lk bidders anchor 
on an L0 that is uniform random on [r, β]. As a result, a reserve price becomes a 
useful instrument, although the optimal reserve price remains small.10            
 Given that in the D example, all level-k types bid more aggressively than 
equilibrium bidders, a designer facing a known distribution of level-k bidders 
should be able to realize more expected revenue than is possible with 
equilibrium bidders. We can derive a lower bound on this revenue by 
calculating it for two random L1 bidders and reserve price r = 0 and then 
multiplying by the probability that two such bidders are drawn. It is feasible for 
the designer to design optimally for this contingency, ignoring all others, and 
the optimal design can do no worse. Setting G(v) = FD (v)2, the expected 
revenue from two random L1 bidders and reserve price r = 0 is 

).1ln(ln
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Notably, this expression → ∞ (albeit slowly, like ln β) as α is held fixed and β 
→ ∞. If α = 1 and β = 5000, the value of this expression is approximately 7.5, 
almost four times as large as the 2α that approximates the seller’s expected 
revenue with equilibrium bidders. Since the probability of drawing two random 
L1s is about 1/3, it is clear that in at least some cases, the seller can realize 
more expected revenue than with equilibrium bidders.   
 As noted in Section 2, for the D example, a second-price auction with 
reserve price r ≤ α is optimal with equilibrium bidders. But because (with 
independent private values) a second-price auction makes the equilibrium bid a 
dominant strategy, level-k bids coincide with equilibrium bids. Thus, with 
level-k bidders a second-price auction yields only the equilibrium expected 
revenue. Our analysis therefore shows that in the D example with level-k 
bidders, a first-price auction with suitable reserve price yields higher expected 
revenue than the best second-price auction. Unsurprisingly, this also shows that 
revenue-equivalence breaks down with level-k bidders. Further, the advantage 
of using a first-price auction relative to the simpler and perhaps cheaper method 
of selling at a posted price is larger with level-k than with equilibrium bidders. 
 As we have seen, the optimal reserve price can be large with equilibrium 
bidders but small with level-k bidders, or vice versa. It would be interesting to 
find general conditions that determine when a reserve price induces more 

                                                 
10 For example, in the D example with α = 1 and β = 10, the optimal reserve price is ≈ 1.33 for 
random L1 bidders and ≈ 1.25 for random L2s, slightly above the lowest possible value. 
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aggressive bidding for equilibrium than level-k bidders, and the extent to which 
this makes optimal level-k higher than optimal equilibrium reserve prices. 
4. Exotic Auctions that Exploit Level-k Bidders’ Non-Equilibrium Beliefs 
 We now give an example in a slightly different environment that illustrates 
the fact that a designer can exploit level-k bidders’ non-equilibrium beliefs to 
obtain very large expected revenues. As in Sections 2 and 3, we consider a 
single-object auction with two risk-neutral bidders whose values are 
independently and identically distributed, but we now suppose that the values 
are uniformly distributed on the unit interval. The maximum expected surplus 
(ignoring incentive constraints) for this environment is E[max{v1, v2}] = 2/3. 
Myerson (1981) showed that a second-price auction with reserve price 0.5 is 
optimal here, and it can be shown to yield expected revenue ≈ 0.417.  
 Consider the following exotic auction. Bidders submit simultaneous sealed 
bids b1, b2 ∈[0, 1]. A bidder who bids 1 wins the object if the other bids less 
than 1. If both bid 1, the winning bidder is chosen randomly. A bidder who bids 
1 pays 0 if the other bidder bids less than 1 and pays M > 1 if the other bidder 
bids 1. A bidder who bids less than 1 pays nothing, but cannot win the object.   
 For this auction, with the uniform value distribution, both truthful and 
random L0 bidders imply uniform random bid distributions on the unit interval. 
As a result, truthful and random L1, defined as in Section 3 for an auction with 
no reserve, both believe that if they bid 1 they will win the object and pay 0. 
Given truthful and random L0s’ bid distributions, truthful and random L1 assign 
zero prior probability to the possibility that they will have to pay M if they bid 
1. Consequently, truthful and random L1 are willing to participate, and both bid 
1, whatever their values. Given this behavior, both truthful and random L2 
believe that the other bidder will bid 1 for certain, and therefore expect that 
bidding 1 will result in their winning the object for the price of M > 1 with 
probability 0.5. Hence they decline to bid or, equivalently, bid less than 1.  
 Truthful and random L3, L5, …, behave the same as truthful and random 
L1; and truthful and random L4, L6, …, behave the same as truthful and 
random L2. Thus when both bidders have k odd the seller’s expected revenue is 
M, and when at least one of the bidders has k even it is 0. Even a designer who 
does not know the type distribution can obtain very large expected revenue by 
setting M very large to exploit level-k bidders’ non-equilibrium beliefs. 
5. General Observations on Level-k Auction Design 
 This section concludes with some general observations on level-k auction 
design. First, our formulation of the design problem takes the level-k model’s 
specification as given, independent of the design, just as the standard analysis 
assumes that bidders will play an equilibrium for any design. Although our 
specification is based on substantial experimental evidence and is general 
enough to apply to any game, there is reason to doubt this assumption for exotic 
auctions like Section 4’s, which go beyond the evidence on which our level-k 
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specification is based (Crawford and Iriberri 2007). For example, bidders might 
view Section 4’s auction as having a reserve price of 1, in which case the most 
natural L0 specification (random or truthful) implies a spike of bids at 1, with 
the result that a value of M high enough to be profitable would make even 
truthful and random L1 bidders decline to bid. More generally, an auction 
design that is optimal for a level-k specification when it is assumed independent 
of the design might not be an auction for which the level-k model describes 
behavior well.11 A general formulation of the design problem must take a 
position on how the design influences the rules that describe bidders’ behavior 
and develop new methods to deal mathematically with that influence.  
 Even without influences like those just discussed, the heterogeneity of 
level-k strategic decision rules and beliefs complicates the characterization of 
optimal auctions.12 In the standard analysis there is no loss of generality in 
using the revelation principle to restrict attention to incentive-compatible direct 
mechanisms because if equilibrium is assumed, each bidder can check that all 
bidders have an incentive to reveal their values truthfully. Given the restriction 
to direct mechanisms, the design problem is guaranteed to have a solution. 
 By contrast, Section 4’s example shows that even with a known, 
homogeneous population of level-k bidders, the differences between their 
beliefs about their own and others’ behavior may be exploitable in a way that 
makes the design problem as usually formulated fail to have a solution. There 
are also problems with extending the revelation principle to this setting, which 
we take to mean finding a direct mechanism that creates incentives for all 
bidders to reveal their private values, while respecting (in the associated 
indirect mechanism) their wishes to follow their non-equilibrium decision rules. 
For, a direct mechanism that would give a bidder an incentive to reveal his 
value truthfully, assuming that other bidders reveal truthfully, might not 
convince the bidder that others will reveal truthfully, because his model of 
others’ decision rules is different from his own rule. Our preliminary analyses 
suggest that there are important cases where progress can nonetheless be made: 
If, for example, all bidders are known to be truthful Lk for some k, the incentive 
constraint for L1s also ensures truthful revelation for higher Lks, and L0 is 
automatically truthful. In this case, and possibly some others, it may be possible 
to adapt Myerson’s (1981) equilibrium methods to characterize optimal 
auctions for level-k bidders. Such analyses pose interesting challenges, which 
should increase the practical usefulness of design theory. 

                                                 
11 A similar criticism applies to equilibrium auction design. For example, a first-price 
auction with no reserve price is theoretically optimal in our D example with equilibrium bidders, 
but we believe very few actual bidders with values of $1,000,000 would bid as low as $13.82. 
12 This is somewhat surprising because Crawford and Iriberri (2007) show that many other results 
from equilibrium auction theory generalize straightforwardly to level-k auction theory. 
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