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1. Introduction

Many applications of game theory involve settingere players have had
enough experience with analogous games to maké&kegun a reasonable
assumption. If only long-run outcomes matter amaveogence and equilibrium
selection do not depend on the details of learrsngh applications can rely
entirely on equilibrium. Because the cognitive liegments for learning to
converge to equilibrium in a stationary setting mikel—even reinforcement
learning, in which players need not even know thieyplaying a game, usually
suffices—there is then no need for a deeper uratetstg of strategic thinking.

Many other applications involve games played withdear precedents in
which initial outcomes matter. Such applicationkjch include most questions
involving comparative statics or mechanism desigpend on predicting initial
responses to games even if eventual convergeremgittibrium is assured. In
other applications, convergence to equilibriumssusied and only long-run
outcomes matter, but the equilibrium is selectechfmultiple equilibria via
history-dependent learning dynamics (Van HuycK.€1290, 1991 (“VHBB");
see also Crawford 1995). Such applications alsent®pn predicting initial
responses, and may depend on the structure ofrpldgarning rules as well.

The cognitive requirements for initial responsebe in equilibrium are far
more stringent than for learning to converge taldium: Players must have
perfectly coordinated beliefs, which without preest$ generally requires
players to have accurate models of each otherisides. It is easy to imagine
strategic thinking this accurate in simple gamasd.tBe thinking required for
equilibrium in more complex games is often behallgifar-fetched, and even
players who are capable of such thinking may dthditothers are capable, or
doubt that others believe others are capalteeover, there is a growing body
of laboratory evidence that initial responses oftemiate systematically from
equilibrium, especially when it requires thinkirat is not straightforward.

As Costa-Gomes and Crawford (2006; henceforth “Q@®Gte, modeling
initial responses more accurately promises sebemfits. It can establish the
robustness of the conclusions of equilibrium aresdyis games where
boundedly rational rules mimic equilibrium, and kkdrage the conclusions of
applications to games where equilibrium is implbleswithout learning. It can
resolve empirical puzzles by explaining the systanteviations from
equilibrium some games evoke. More generally, it yield insights into
cognition that elucidate other aspects of stratbglwavior, including the
structure of learning rules, where assumptions atagnition determine which
analogies between current and previous games glageognize and sharply
distinguish reinforcement from beliefs-based andesmphisticated rules.

A variety of models have been proposed to desamnitial responses to
games. These models normally allow players’ respots be in equilibrium,
but do not assume it. They include simply addinigeto equilibrium
predictions (“equilibrium plus noise”); McKelvey drPalfrey’s (1995) notion



of quantal response equilibrium (“QRE”") and itsdew special case, logit
QRE (“LQRE"); the levelk models of Nagel (1995), Stahl and Wilson (1995),
Ho et al. (1998), Costa-Gomes et al. (2001), an€CGamerer et al.’s (2004;
“CHC") closely related cognitive hierarchy (“CH”)adel; and Goeree and
Holt's (2004; “GH") model of noisy introspectionNt”).

Levelk/CH models have now been compared with LQRE in several
experimental datasets (Chong et al. 2005, Cravwdactiriberri 2007ab,
Camerer et al. 2007) and at least one field se¢trgfling et al. 2008). In most
cases levell/CH models have better fits, but the results have lsaggestive
rather than conclusive. To our knowledge NI modhelge only been compared
with other models in 2x2 or 3x3 games; and onlyhwiguilibrium, LQRE, or a
single-type levek model (GH, Costa-Gomes and Weizséacker 2008).

This paper provides a critical discussion of tbgrstive requirements of
equilibrium plus noise, LQRE, lev&ICH, and NI models and assesses their
abilities to describe subjects’ initial responsefite of the games used in
VHBB’s (1990, 1991) famous coordination experimeiftse large strategy
spaces of VHBB’s games (with seven decisions prgp) allow more
informative comparisons than the 2x2 or 3x3 gansesl in most previous
work. Further, our analysis is the first to compaagresentatives of each
leading model of strategic thinking, and the ficsfocus on the use of these
noncooperative notions asmplete models of coordination, comparing their
ability to predict with those of equilibrium plugise augmented by
coordination refinements such as risk- or payoffad@mnt equilibrium. Finally,
our analysis is the first to fully address the imipot but seldom studied issue
(but see Ho et al. 1998) of whether people playigerson games take the
independence of others’ responses into accoumistgad model others as if
they were one perfectly correlated person, for WNMEIBB's dataset is ideal.

The paper is organized as follows. Section 2 wwithe leading models of
strategic thinking and discusses their cognitivpiements. Section 3
introduces VHBB'’s games and assesses the modelsnéuur refined
equilibrium plus noise models, payoff-dominant digtium performs better
than risk-dominant or maximin equilibrium. Amongrandividualistic models,
levelk and CH models usually fit better than LQRE or Nddals. In VHBB'’s
games, payoff-dominant equilibrium plus noise uguék better than levelk
or CH. The data favor versions of the models inclwlgeople model others as
if they were perfectly correlated over the standardependent versions.

2. Alternative Models of Initial Responses to Games

Until recently, the choices for modeling non-eduiilim initial responses
to games were limited. Any notion that is to bectako data must allow for
errors in some way. The most obvious choice, adaiegn-zero noise with a
specified distribution and an estimated precisiarameter to equilibrium
predictions (“equilibrium plus noise”), sometimesed well. However, even in
games with unique equilibria, equilibrium plus reoaften misses systematic



patterns in subjects’ deviations from equilibriummich tend to be sensitive to
out-of-equilibrium payoffs in patterns that it canmaccount for. And in games
with multiple equilibria, particularly VHBB’s wherevery feasible decision is
part of some symmetric pure-strategy equilibriuquikbrium plus noise is
incomplete in that it does not specify a uniquee(eif probabilistic) prediction
conditional on the values of its behavioral parare(in this case, the
precision). Such multiplicity has previously beeald with by estimating an
unrestricted probability distribution over the diia (Bresnahan and Reiss
1991), but such a model very badly overfits VHBB&a. To put equilibrium
plus noise on an equal footing with the other medehsidered here, which are
complete in the above sense, we consider two natamnants, risk-dominant
equilibrium (“RDE") and payoff-dominant equilibriuPDE"), plus noise.
We also consider maximin decisions, which VHBB gaygominent role. In
these symmetric games, maximin functions like ariliégium refinement.

To capture the payoff-sensitivity of deviationsrfr equilibrium, McKelvey
and Palfrey (1995) proposed the notion of QRE, hictv players’ decisions are
noisy, with the probability density of each deaisincreasing in its expected
payoff, evaluated taking the noisiness of otheegisions into account. A QRE
is then a fixed point in the space of decisionrdigtions, with each player’s
distribution a noisy best response to the othés'the distributions’ precision
increases, QRE approaches equilibrium. As it apgtvesizer@RE approaches
uniform randomization over players’ feasible demisi. A QRE model is closed
by specifying a response distribution, which istiagalmost all applications.
The resulting logit QRE or “LQRE” implies error thifutions that respond to
out-of-equilibrium payoffs, often in plausible ways applications LQRE’s
precision is estimated econometrically or calitaetem previous analyses.
With estimated precision, LQRE often fits subjeastial responses better than
an equilibrium model (McKelvey and Palfrey 1995, i¥¢acker 2003).

From the point of view of describing strategiatting, LQRE’s fit comes
at a cost: Players must not only respond to a rgetterate probability
distribution of other players’ responses but aisd & generalized equilibrium
that is a fixed point in a large space of respatisibutions. If equilibrium
reasoning is cognitively taxing, LQRE reasonindasibly taxing. Further, the
mathematical complexity of LQRE means that it nalstost always be solved
for computationally and is not easily adapted talygsis. Finally, in some
settings LQRE fits worse than equilibrium (Cameeal. 2007, Chong et al.
2005, Crawford and Iriberri 2007a), sometimes awalking systematic
qualitative errors (Crawford and Iriberri 2007b tis et al. 2008).

2 Haile et al. (2008) have shown that the distritmei assumptions are crucial, in that with an
unrestricted distribution QRE can “explain” any gfivdataset. The use of the logit distribution
has been guided more by fit, custom, and choicenaithan independent evidence.



Motivated by these considerations and experimentidience, a different
vein of work on strategic thinking considers modbk treat deviations from
equilibrium as an integral part of the structurtaea than as errors or responses
to errors. Although the number of possible non-#gpiiim structures seems
daunting, much experimental evidence supportsticphar class of models
called levelk or cognitive hierarchy (“CH”) models, which alsdeaiate the
cognitive and computational complexity concerns tiomed above.

The flavor of this evidence is illustrated by NBg€1995) results fon-
person guessing games. Her games are weakly doreisatvable in infinite
numbers of rounds, so that the reasoning requirétkntify equilibrium
strategies is significantly simpler than usual. Beit subjects never played their
equilibrium strategies initially, and their resperdistributions resembled
neither equilibrium plus noise nor LQRE. Insteaeréhwere spikes that suggest
a discrete, heterogeneous distribution of stratdking “types.”

The spikes’ locations and how they vary acrosgtnents are consistent
with two plausible interpretations. In one, sulgecilow iterated dominance
rules. The rule calleBk doesk rounds of iterated dominance for some small
numberk =1 or 2, and then best responds to a uniform ver its partner’s
remaining strategies. In another interpretatiobjexis follow “levelk” rules.

The rule called_k starts with a uniform prior over others’ possigleesses and
then iterates the best response mapkitiges, withk =1, 2, or perhaps 3. In
Nagel's game&k andDk-1 yield identical guesses, and theorists often fmer
her results as evidence that her subjects perfoitaeded dominance. In some
more recent experiments (Stahl and Wilson 1995et+d. 1998) k andDk-1

are weakly separated, and in others they are geparastly by information
search implications (Costa-Gomes et al. 2001)ioited beliefs (Costa-Gomes
and Weizséacker 2008) rather than by their implacagifor decisions. In CGC's
experiments, howevekk andDk-1 are strongly separated by decisions as well
as search, and the results strongly favor l&wler iterated dominance rules.

In a levelk model, as suggested by these results, playersstgpe allowed
to be heterogeneous, but each player’s type isrdfemn a common
distribution. Type_k anchors its beliefs in a nonstrateg@type, which
represents players’ models of others’ instinctactions to the game and is
usually taken as uniformly random over the feassilategies, and adjusts them
via thought-experiments with iterated best respariskebest responds 10,

L2 toL1, and so on. Like equilibrium playets] and higher types are rational,
with perfect models of the game. Their only deparftom equilibrium is
replacing its perfect model of others with a sirfi@dl model of otherd.1 and
higher types make undominated decisions, and iryrgamed.k complies

with k rounds of iterated dominance, so its decision&-anaionalizable.

In applications the population type frequenciesiaferred from data-
fitting exercises or calibrated from previous asaly. The estimated frequency
of LO is normally zero or small; and the type distribatis fairly stable across



games, with most weight dril andL2 (see footnote 8). Unlike LQRE, a level-
k model’s point predictions do not depend on estichatecisions, only on the
estimated type frequencies. In applications itsigally assumed thatl and
higher types make errors, which are often takdrettngit as in LQRE.
However, despite the noisiness of types’ decisiarisyelk model requires
neither that players respond to nondegenerateldisons of others’ responses
(exceptL1's response t@0, whose uniform randomness is simple to respond
to) nor that they find fixed points. This simpleuesive structure avoids the
common criticism of LQRE that finding a fixed pointthe space of
distributions is too taxing for a realistic modélstrategic thinking.

In CHC'’s closely related CH model, typk best responds not tk-1
alone but to a mixture of lower-level types, anel type frequencies are treated
as a parameterized Poisson distribution. Unlike lievelk model,L1 and
higher types are usually assumed not to make einstead the uniformly
randomLO, which has positive frequency in the Poisson itlistion, doubles as
an error structure for the higher types. As invel& model, players need not
respond to the noisiness of others’ decisions {@Xd#&s) or find fixed points,
but they do need to respond to a nondegeneratébdisin of lower types’
responses, in proportions determined by an estafadesson parameter. Like a
levelk model, a CH model makes point predictions thatatodepend on
estimated precisions, only on the Poisson parawmetdso has a recursive
structure, albeit a somewhat more complex one @hamelk model’s structure.

Like RDE, PDE, maximin, and LQRE, leiebnd CH models are
applicable to “any” game and have small numbeltsebiavioral parameters.
Because in many gamkek complies withk rounds of iterated dominance, a
distribution of levelk types that is realistically concentrated on lowelswofk
mimics equilibrium in games that are dominance-aole in a few rounds, but
deviates systematically in some more complex gamesedictable way3.

This allows levek and CH models, like LQRE, to capture the sensitigft
deviations from equilibrium to out-of-equilibriunapoffs; and they often fit
subjects’ initial responses better than PDE or RIREome applications the
Poisson constraint is not very restrictive (Chongle2005), and removing it
does not improve the fit of the CH model; but iheas (CGC, Crawford and
Iriberri 2007ab) that constraint would be stronigigding.

McKelvey and Palfrey (1995) suggest using LQREifiitial responses and
limiting outcomes both, with increasing precisiaaareduced-form model of
learning. But while LQRE has been the most populadel of initial responses,
not all researchers consider it suitable for theippse. GH suggest reserving
LQRE for limiting outcomes, instead proposing anniidel to describe initial

3 Levelk models thus provide an evidence-based way to giwkit robustness of mechanisms.
Mechanisms that implement desired outcomes in damistrategies may have an advantage
over more complex mechanisms that implement supeudtzomes, but only in equilibrium.



responses. Their NI model relaxes LQRE’s equilibrassumption while
maintaining its assumption that players resporaltondegenerate probability
distribution of other players’ responses. Instelagqrs form beliefs by
iterating best responses as in a ldvsiodel, but higher-order beliefs reflect
increasing amounts of noise, converging to unifoemdomness. For given
noise distributions, the NI model makes probaldigtedictions that depend on
how fast the noise grows. In the extreme case wtheraoise does not grow
with the number of iterations, NI mimics LQRE. Otlextremes mimic level-
types: If the noise jumps immediately to infinityi beliefs are liked_1's; if it is
zerf for one iteration and then jumps to infinityf,beliefs are likd_2's, and so
on.

In applications GH assume that the noisinessgifdriorder beliefs grows
geometrically with iterations, which yields beliefisnilar but by no means
identical toLk's; slower noise growth is like a highlerThe resulting NI model
is more flexible than LQRE, and cognitively lessitg because it requires no
fixed-point reasoning; but such an NI model is mareng than a levet-or CH
model because players’ choices are indefinitelaigzl best responses to noisy
higher-order beliefs (although for computationalgmses in applications GH
truncate the iteration to ten rounds). NI's stroetlike LQRE'’s, is not directly
grounded in evidence. And in fact the evidence fimgel’'s and more recent
experiments suggests that neither the iteratidsest responses beyond two or
three rounds nor the assumed homogeneity of sicatggking is realistic.

3. Van Huyck, Battalio, and Beil's (1990, 1991) codination games

This section compares RDE and PDE, maximin, l&yv€H, LQRE, and
NI models in VHBB’s (1990, 1991) coordination gamésiBB’s subjects
played symmetric coordination games in which theyse among seven effort
levels, with payoffs determined by their own eféoaind an order statistic, the
minimum or median, of their own and others’ effoltée consider five of their
treatments, in all of which subjects chose amofaytsf{1, ...,7}: their 1990
“minimum” treatment A, in which groups of 14-16 $atts played games in
which, denoting subjedts effort x; and the group minimum, subject’s
payoff in (1987) dollars was (\2- 0.1x, + 0.6; their 1990 minimum treatment
B, in which the same groups played the same gamntesith the cost of effort
lowered to 0, making effort 7 a weakly dominanasgy; their 1990 minimum
treatment @ in which subjects subsequently played a two-pegsome with
the same payoff function as in treatment A, witlesv, randomly selected
partner each periodheir 1991 “median” treatmeit, in which groups of 9
subjects played games in which, denoting the groegianM, subject’s
payoff was 0.M — 0.05(M — x)? + 0.6; and their 1991 median treatm@nin
which subject’s payoff was 0.M + 0.6 wherx, = M but was 0 whenx; # M.

4 Compare Camerer et al. (2007), who also nest géned variants of LQRE and CH models.
5 Anderson et al. (2001) compare LQRE as precisggiaaches infinity with limiting outcomes



In each case a subject’s payoff was highest, dliiegs equal, when his
effort equaled the relevant order statistic, thmugrminimum in treatment A or
B, the pair minimum in treatment®r the median in treatmefitor Q. Any
combination in which all players choose the sarferteis an equilibrium; in
these equilibria players’ payoffs are higher, tighbr the effort; and these
Pareto-ranked equilibria are the only pure-stratagyilibria. Thus, all-7 is the
payoff-dominant equilibrium in all the games we sider. The games are
nonetheless non-trivial because there is a termbmeen the higher payoff of
the all-7 equilibrium and its fragility, which isare extreme for minimum than
median games; and more extreme for minimum garhesnbre players there
are. As a result, the risk-dominant equilibriunalis7 in treatment§, Q, and
B; all-4 in treatment ¢ and all-1 in treatment A (see Crawford 1991, .f&.
27). The maximin decisions and equilibria are alt-freatments A and {all-
3inT, and anything in B an@.

We focus on subjects’ initial responses to eadh@fgames they played
(VHBB 1990, Tables 2 and 5; VHBB 1991, Table II;see Crawford 1991,
Table I)f5 We define maximin, RDE and PDE plus noise, LQREelk types,
and NI with logit errors, each with estimated psemi.

In specifying the models for thesgperson games, one important issue is
whether players take the independence of othecsSidas into account in
forecasting the group minimum or median. Althougtieipendence is standard
in game theory, and is normally built into all bEtmodels compared here;
there is experimental evidence that people oft@pia single model of others’
decisions, implicitly assuming that they are petfecorrelated (for example,
Ho et al. 1998). This effectively reduces the game two-person game, and
reduces the cognitive load. Because of the noniityeaf the payoff functions,
and the variation between two- amgberson versions of the “same” game,
VHBB’s games are ideally suited to testing for sommtal simplifications.
Accordingly, we consider two alternative versiohd QRE, levelk, NI, and
CH, one in which a player views others’ choicegdependent, and one in
which he views them as perfectly correlated. Ferl@velk and CH models,
however, we take this to refert®, which is the channel by which the
correlation influences players’ choices, through tigher-level types, in those
models. Correlated maximin and PDE are the santigeaadependent ones.

in VHBB’s minimum games, and Yi (2003) does the sdar their median games. An appendix
at http://dss.ucsd.edu/~vcrawfor/#VHBRscusses LQRE as a model of limiting outcomes.

® The subject groups were large enough for subfedreat their own influences on future
choices as negligible, so that their initial resggsto each game can be viewed as responses to
the game as if played in isolation. There was sewdence of order effects in later treatments,
particularly G, which was run last; but these are beyond theesobthis paper’s analysis.

" Because maximin does not (and cannot) have ratimliafs, we evaluate its expected

deviation costs using the beliefs of the associatpdlibrium.




Correlated RDE remains all-7 in treatmen{$2, and B and all-4 in treatment
Cq; and becomes all-4 in treatment A (because it si@kequivalent to ¢.
Table 1 summarizes the results of the comparisimes left-most columns
give the log-likelihoods of the empirical frequeziand random frequencies,
which provide upper and lower bounds on the attdbkelihoods for any
model. (The upper bound is not 0, as is usual feeréect fit, because the
estimated models predict nondegenerate randonibditms of outcomes.) In
VHBB’s symmetric games, for both the levednd CHmodelsL2 and higher
types coincide with.1, so these models share the homogeneity of maximin,
PDE, RDE, LQRE, and NI. We therefore simplify byigg only the modal
actions implied by each model in each treatmertt,camparing fits by log-
likelihoods without reporting type frequencies ther parameter estimates.
The results in Table 1 suggest several concluskinst, the correlated
versions of the models almost always do as wdiletter than the independent
versions (the exceptions are lekdéh B and levek, LQRE, and NI ifT):
Despite its importance in treatment A, few subjettiisiking reflects the
independence of others’ decisions. Second, amangdhilibrium selection
criteria maximin, PDE, and RDE, PDE always fit$egtst as well as the others,
and often better; this is surprising given previtindings for 2x2 games that
favor RDE. Third, among the individualistic modeRRE, levelk, CH, and
NI, levelk and CH perform comparably well: Each wins 4 pasevi
comparisons, ties 2, and loses 4. Ldveersus either NI or LQRE wins in 4
comparisons, ties in 5, and loses in 1. CH verghsreNI or LORE wins in 5
comparisons, ties in 2, and loses in 3. NI verdQRE wins in 2 comparisons
and ties in 8. Comparing PDE, the best selectitar@n, against levek-and
CH, the best individualistic models, PDE wins inomparisons and loses in 3.
Thus, the structural non-equilibrium models coesed here, levdt-and
CH, are promising alternatives to LQRE, NI, RDEJ&DE; but the choice

8 For levelk we allow only types.1 andL2; the estimated frequency b is usually zero in

other settings, and in VHBB’s games, higher typesilal be identical t&.2. For CH we allow all
types. For NI we truncate iterations at 10, as ®HANd we approximate LQRE by setting NI's
telescoping parameter equal to one. Plainly thasgeg are not well suited to identifying type
distributions. It does not follow that the types aever identified. In the levélmodel, because
L1 andL2 have different beliefs their deviation costs afféedént, so their frequencies are
usually identified via the logit error structureytln our experience such identification is weak. |
the CH model, becausd and higher types make identical predictions in VFB@ames, their
frequencies are identified only by the estimatedjfiency of.0 and the assumed Poisson type
distribution, in which there is little independeaason for confidence. The maximin, PDE, RDE,
and LQRE models each have one estimated parartteterprecisions. The levédmodel has

two, the population frequency bl (versus.2) and the types’ common precision. However, due
to the low or nonexistent separation betweg&randL2 in VHBB'’s games, the levét-model has
effectively one parameter. Given its usd.6fto explain all errors, the CH model has one
parameter, for its Poisson type distribution; dmel Xl model has two, its initial precision and a
“telescoping” parameter measuring the rate at whieltision declines with iterations. An
appendix ahttp://dss.ucsd.edu/~vcrawfor/#VHBBovides additional detail on the estimates.




among models must be guided by more than VHBB’a.dats noteworthy that

levelk and CH models completely change our view of camiibn: Unlike in

PDE or RDE, players do not first identify the seequilibria and then refine it.

Instead they respond to coordination games usimgdme decision rules they

use to respond to other games; and both equilibandhequilibrium selection

are by-products of how those rules interact withgame. This makes leviel-
and CH models of coordination closer to our modéldecisions in other
games and decision problems, and in our view, befraly more plausible.
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Table 1: Log-Likelihood Comparisons for Alternative Models

Independent RDE Independent LQRE Independent Levelt-

Independent CH

Independent NI

Model Flfergﬂlgggles Frzgﬂgzg?es '\?sl)gg;r (I\I;I)(l)jclizal (Modal effort) (Modal effort) (Modal effort) (Modal effort) (Modal effort)
Treatment (Modal effor¥)  (Modal effort)  effort) effort) Correlated RDE  Correlated LQRE  Correlated Levek Correlated CH  Correlated NI
(Modal effort) (Modal effort) (Modal effort) (Modal effort) (Modal effort)
-208.2124 -208.2124 -208.2124 -208.2124 -208.2124
A -172.1785 -208.2124 208-2124 -186.9741 Q) 1-7) a-7) (1-7) (1-7)
(5) a-7) ('1) (7 -207.8228 -208.1302 -207.8228 -207.9439 -208.1302
(4) (4) (4) (4) (4)
-100.3950 -172.0179 -69.7289 -67.6081 -172.0179
B -63.8718 -177.0778 177-0778 -100.3950 (7) (4,5-7) (7 7 (4,5-7)
(7) 1-7) (1'_7) (7) -100.3950 -111.8437 -98.0386 -67.6081 -111.8437
() (7) (7) () ()
-58.3773 -58.3773 -58.3773 -58.3108 -58.3773
c -49.3084 -58.3773 -58.3773 -57.8714 4) 1-7) -7) 4) (1-7)
d (7) -7) 1) (7 -58.3773 -58.3773 -58.3773 -58.3108 -58.3773
(4) (1-7) (1-7) (4) (1-7)
-46.8985 -44.1974 -48.3459 -50.4512 -44.1808
r -41.0777 -52.5396 -52.5396 -46.8985 (") (5) 4 4) (5)
(5) 1-7) 3 (7 -46.8985 -49.8153 -49.8153 -50.4512 -49.8153
() (4) (4) (4) (4)
-41.9893 -52.5396 -52.5396 -52.5396 -52.5396
0 -28.9699 -52.5396 -52.5396 -41.9893 ) 1-7) 1-7) (1-7) (1-7)
(7 1-7) 1-7) (7 -41.9893 -41.0017 -37.6399 -41.9894 -37.8427
() (7) (7) () ()

*The modal and median efforts are the same irreditinents, excepty@here the median is 4 afdwhere the median is 4 or 5.
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