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1. Introduction

Strategic thinking pervades human interac-
tion. As soon as children develop enough 

“theory of mind” to model other people as 

independent decisionmakers, they must be 
taught to look both ways before crossing one-
way streets—suggesting that they instinc-
tively assume rationality when predicting 
others’ decisions.1 Our adult attempts to pre-
dict other people’s responses to incentives 

1 In this case, their reliance on rationality is excessive, 
which is why adults have something to teach them. This 
example originally appeared in Camerer (2003, chapter 1), 
courtesy of one of the authors.
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are shaped by similar, though usually more 
subtle, rationality-based inferences.

The canonical model of strategic thinking 
is the game-theoretic notion of Nash equi-
librium. Equilibrium is defined as a com-
bination of strategies, one for each player, 
such that each player’s strategy maximizes 
his expected payoff, given the others’ strate-
gies. Although this definition can be applied 
without reference to its rationale, for the 
purpose of modeling thinking, equilibrium 
is best viewed as an “equilibrium in beliefs” 
in which players who are rational in the 
decision-theoretic sense have beliefs about 
each other’s strategies that are correct, given 
the rational choices they imply. Rationality 
plus this “rational-expectations” assump-
tion yields much more precise predictions 
than rationality alone, which often give a 
plausible and empirically reliable account of 
strategic behavior.2 The precision, generality, 
and tractability of equilibrium analysis have 
made it the method of choice in strategic 
applications (Myerson 1999).

However, equilibrium is better justified 
in some applications than others. If play-
ers have enough experience with analogous 
games, both theory and experimental results 
suggest that learning has a strong tendency 
to converge to equilibrium.3 But in many 
applications, players’ interactions have only 
imperfect precedents, or none at all. If equi-
librium is justified in such applications, it 
must be via strategic thinking rather than 
learning.4

2  Without rational expectations, even common knowl-
edge of rationality implies only that players’ strategies are 
rationalizable (Bernheim 1984 and Pearce 1984), which in 
many games leaves behavior completely unrestricted (sec-
tion 2.2). 

3 Our statement omits some qualifications that are 
important only for extensive-form games.

4 Although equilibrium is normally viewed as a model 
of strategy choices without reference to thinking, strategic 
behavior that is not shaped by learning from experience 
must, if it has any structure at all, reflect some kind of stra-
tegic thinking. Behavior that is not shaped by equilibrium 

Epistemic game theory gives conditions 
under which thinking can focus players’ 
beliefs on an equilibrium even in their ini-
tial responses to a game. But in many games 
the required reasoning is too complex for a 
thinking justification to be behaviorally plau-
sible.5 The signs on trucks that say “If you 
can’t see my mirrors, I can’t see you” are a 
symptom of the fact that—far from always 
following equilibrium logic—we sometimes 
need to be reminded of the importance of 
considering others’ cognition at all (though 
not, we presume, of the laws of optics).

In this paper, we argue that it is often pos-
sible to improve upon equilibrium models 
of initial responses to games, and that better 
models of strategic thinking allow more use-
ful applications. The potential value of better 
models is clear in applications to games with-
out clear precedents. But such models can 
help even when it is plausible that learning 
has long since converged to an equilibrium. 
In applications with multiple equilibria, an 
equilibrium is often selected via learning 
dynamics for which the influence of initial 
responses persists indefinitely (Crawford 
1995; Camerer 2003, chapters 1 and 6).6 And 
in other applications, initial responses are 
important for their own sake, as in the FCC 
spectrum auction (McAfee and McMillan 
1996).

Even researchers who grant the potential 
value of improving on equilibrium mod-
els of initial responses may doubt its feasi-
bility. How can any model systematically 

thinking, for example, will in general track equilibrium 
outcome predictions only by chance.

5 E.g., Brandenburger (1992). Even in high-stakes set-
tings where participants hire consultants, the epistemic 
justification of equilibrium requires at least mutual knowl-
edge that all will follow equilibrium logic, which remains 
empirically questionable.

6 Better models can also elucidate the structure of 
learning rules, where cognition determines which analo-
gies between current and previous games players recog-
nize and distinguishes reinforcement from beliefs-based 
and more sophisticated rules. 
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 out-predict a rational-expectations notion 
such as equilibrium? And how can one iden-
tify better models among the huge number 
of logical possibilities? We suspect that ana-
lysts sometimes assume equilibrium despite 
weak justification, or overestimate the scope 
of learning, because they hope equilibrium 
will still be correct on average, or fear that 
without equilibrium there can be no basis for 
analysis.

There is now a large body of experimen-
tal research to suggest that neither the hope 
nor the fear is justified.7 That research shows 
that subjects’ thinking in initial responses 
to games tends to avoid the fixed-point or 
indefinitely iterated dominance reasoning 
that equilibrium often requires.8 In many 
games this makes their decisions deviate sys-
tematically from equilibrium.

The deviations have a large structural 
component, which favors rules of thumb 
that anchor beliefs in a strategically naïve 
initial assessment of others’ likely responses 
called “level-0” or “L0” and then adjust 
them via iterated best responses, so that L1 
best responds to L0, L2 to L1, and so on. 
People’s rules are heterogeneous, with lev-
els of adjustment—or “types” as they are 
called (no relation to private-information 
variables)—drawn from a distribution con-
centrated on one to three iterations.9 The 
resulting “level-k” (Nagel 1995; Stahl and 
Wilson 1994, 1995 (whose term is “level-n”); 
Costa-Gomes, Crawford, and Broseta 2001; 
Costa-Gomes and Crawford 2006) model 
or the closely related “cognitive hierarchy” 

(CH) model (Camerer, Ho, and Chong 
2004) share the generality and much of the 
tractability of equilibrium analysis, but often 
out-predict equilibrium.

In a level-k model (from now on we will 
use “level-k” to include CH models, except 
when the distinction is important), play-
ers’ types are rational in the sense of best-
responding to some beliefs; they depart from 
equilibrium only in that the beliefs are based 
on simple nonequilibrium models of others. 
Type k for k > 0 makes decisions that are not 
strictly dominated; and a level-k type k (but 
not always a CH type k for k > 1) respects 
k-rationalizability (Bernheim 1984), making 
decisions that in two-person games survive k 
rounds of iterated deletion of strictly domi-
nated strategies, though without explicitly 
performing iterated dominance.

As a result, in simple games the low-level 
types that describe most people’s behavior 
often mimic equilibrium decisions, even 
though their thinking differs from equi-
librium thinking. In such games a level-
k analysis can establish the robustness of 
equilibrium predictions. But in more com-
plex games, level-k types may deviate from 
equilibrium, and a level-k analysis can then 
resolve empirical puzzles by explaining 
the systematic part of observed deviations. 
Importantly, level-k models not only predict 
that deviations sometimes occur; they also 
predict which settings evoke them; the forms 
they take; and given estimated type frequen-
cies, their likely frequencies.

7 Most empirical work in economics relies on observa-
tional data from field settings, which we discuss whenever 
possible. But theories of strategic behavior are notoriously 
sensitive to the details of the environment, and the control 
modern experimental methods allow often gives laboratory 
experiments a decisive advantage in testing such theories.

8 As Selten (1998) put it, “Basic concepts in game the-
ory are often circular in the sense that they are based on 
definitions by implicit properties. . . . Boundedly rational 
strategic reasoning seems to avoid circular concepts. It 
directly results in a procedure by which a problem solution

is found.” This does not mean learning cannot converge 
to something that an analyst would need fixed-point rea-
soning to characterize; just that such reasoning does not 
directly describe people’s thinking.

9 In applications, the behavioral parameters that 
describe this distribution are usually estimated from the 
data or calibrated using previous estimates. Although 
 estimates vary somewhat across settings and populations, 
in most applications a stable distribution that puts signifi-
cant probability only on the lowest levels captures most 
deviations from equilibrium (section 3).
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This paper reviews theoretical, experi-
mental, and empirical research on strategic 
thinking, focusing mainly on level-k models. 
Our goals are to summarize and evaluate the 
evidence for such models, describe their the-
oretical properties, and illustrate their uses 
in applications to settings involving novel or 
complex games in which assuming equilib-
rium is not well justified.

Our premise is not that level-k models 
describe all or most of people’s deviations 
from equilibrium: They stop short of that 
goal, although there is some evidence that 
the deviations they do not describe lack 
readily identifiable structure. Instead we are 
motivated by the scope and importance of the 
phenomena in applications that resist equi-
librium explanation, and the fact that simple, 
tractable models seem capable of explaining 
a substantial part of them. To the extent that 
such applications are better served by level-k 
models, they deserve a place in the toolkit.

We also discuss informal evidence from “folk 
game theory.” Our term (see also Chwe 2013) is 
meant to suggest an analogy with folk physics, 
untrained people’s intuitive beliefs about the 
laws of physics. Why study folk instead of “real” 
game theory? Folk physics imperfectly reflects 
real physics, but yields insight into human cog-
nition. Folk game theory imperfectly reflects 
traditional game theory, but yields insight into 
behavioral game theory, its empirical counter-
part. As will be seen, folk game theory vividly 
illustrates the need for nonequilibrium models 
of strategic thinking and provides further sup-
port for level-k models.

For simplicity, we assume throughout 
that players have accurate models of the 
game and that their strategies are rational 
responses to some beliefs, except for errors. 
We also focus on normal-form games, except 
when we study communication. The paper is 
organized as follows. 

Section 2 reviews the leading models of 
strategic thinking: equilibrium; k-rational-
izability and finitely iterated dominance 

(Bernheim 1984 and Pearce 1984); quantal 
response equilibrium (QRE); (McKelvey 
and Palfrey 1995); and level-k or CH models. 

Section 3 reviews experimental evidence 
on strategic thinking in symmetric-infor-
mation games. We begin with guessing 
games in the style of John Maynard Keynes’s 
(1936) beauty contest example (Nagel 1995; 
Ho, Camerer, and Weigelt 1998; Bosch-
Domènech et al. 2002) and continue with 
evidence from other normal-form and guess-
ing games (Stahl and Wilson 1994, 1995; 
Costa-Gomes, Crawford, and Broseta 2001; 
Costa-Gomes and Crawford 2006; Costa-
Gomes and Weizsäcker 2008). In this liter-
ature, L0 is usually assumed to be uniform 
random over others’ possible decisions, as 
a way of capturing the strategically naïve 
assessments of others’ likely responses that 
anchor L1’s and, indirectly, higher types’ 
beliefs. The evidence from the above and 
other papers generally supports level-k mod-
els in which players anchor beliefs in a uni-
form random L0.10 But more work is needed 
to evaluate the models’ domains of applica-
bility, portability, and stability of parameter 
estimates across types of games; specification 
testing; and testing for overfitting. Section 3 
concludes by reviewing existing evidence on 
those questions and highlighting directions 
for future work.

Section 4 illustrates the mechanics of 
level-k models in a simple symmetric-infor-
mation “outguessing” game from folk game 
theory. The game has a unique mixed-strat-
egy equilibrium, and the main strategic issue 
is how to respond to payoff asymmetry. The 

10  The general principle that a level-k player anchors his 
beliefs in a strategically naïve assessment of others’ likely 
responses has been adapted to other classes of games in 
two alternative ways: In settings where salient decision 
labels have an important influence, L0 is allowed to favor 
salient decisions; and in games with communication via 
“cheap talk,” L0 is allowed to favor literal interpretations of 
messages. These adaptations are motivated and discussed 
in sections 8 and 9.
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 heterogeneity of players’ level-k thinking 
gives a coherent account of strategic uncer-
tainty, while avoiding equilibrium’s unrealis-
tic comparative statics implications in such 
games. This application also concretely moti-
vates the uniform random specification of L0 
used in most applications. 

Sections 5 through 9 illustrate the use of 
level-k models in a variety of applications for 
which equilibrium analysis does not always 
give an adequate account of behavior.

Section 5 considers games with symmet-
ric information, using a level-k model that 
extends the uniform random specification 
of L0 to require it to be independent of the 
realizations of others’ private information. 
The model is used to analyze the results of 
experiments on zero-sum betting (Camerer, 
Ho, and Chong 2004; Brocas et al. 2010) and 
auctions with private information (Crawford 
and Iriberri 2007b). It gives a unified account 
of the informational naïveté often observed 
with asymmetric information—people’s 
failure to consider how other’s responses 
depend on their private information, as in 
the winner’s curse—and other aspects of 
nonequilibrium strategic thinking that paral-
lel those in games with symmetric informa-
tion. Section 5 next discusses CH analyses 
of field data with asymmetric information 
(Brown, Camerer, and Lovallo 2012; Östling 
et al. 2011). It concludes by discussing theo-
retical applications of level-k models to the 
design of optimal auctions (Crawford et al. 
2009) and efficient bargaining mechanisms 
(Crawford 2013).  

Section 6 considers symmetric-informa-
tion market-entry games, where the main 
strategic issue is coordination via symmetry-
breaking, which is important in many other 
applications. In Kahneman’s (1988) and 
Rapoport, Seale, and Parko’s (2002) experi-
mental results, subjects’ aggregate choice 
frequencies came surprisingly close to the 
symmetric mixed-strategy equilibrium—a 
result Kahneman (quoted in Camerer, Ho, 

and Chong 2004; see also section 6) called 
“magic.” Perhaps more surprisingly, sub-
jects’ ex post coordination was systematically 
better than in the symmetric equilibrium. 
Following Camerer, Ho, and Chong’s (2004) 
(section III.C) CH analysis, we use a level-k 
model to analyze the simplest possible entry 
game, Battle of the Sexes. A level-k (or CH) 
model resolves both puzzles, and suggests an 
alternative to the traditional game-theoretic 
view of coordination that is behaviorally more 
plausible and has important implications in 
other applications. Section 6 concludes with 
discussions of Goldfarb and Yang’s (2009) 
and Goldfarb and Xiao’s (2011) CH empiri-
cal analyses of market entry with asymmetric 
information in the field.

Section 7 continues the level-k analysis of 
coordination in Stag Hunt-style games like 
those in Diamond and Dybvig’s (1983) clas-
sic model of bank runs. Those games have 
multiple symmetric, Pareto-ranked equilib-
ria. In the Pareto-superior equilibrium, play-
ers’ payoffs are more vulnerable to deviations 
by others; and accordingly, the main strate-
gic issue is the “assurance” needed to sup-
port that equilibrium. The workhorse model 
of equilibrium selection in such games has 
been “global games” analysis (Morris and 
Shin 1998; Frankel, Morris, and Pauzner 
2003), which replaces the original game with 
a payoff-perturbed version in which iterated 
dominance selects a unique equilibrium. In 
the simplest such games, the equilibrium 
selected is the risk-dominant one (Harsanyi 
and Selten 1988); and a global games analy-
sis is widely believed to strengthen the argu-
ment for that conclusion. Section 7 argues 
that a level-k analysis gives stronger behav-
ioral foundations for that conclusion in the 
simplest Stag Hunt-style games, but may 
yield different conclusions in more complex 
games.

Section 8 discusses work on coordination 
and outguessing games with salient labels. 
Because the labeling of players and  strategies 
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does not affect payoffs, it is traditionally 
excluded from consideration in equilib-
rium analysis. But it would be surprising if 
behavior did not respond to salient labels, 
and they influenced behavior in Schelling’s 
(1960) classic experiments with coordina-
tion games and in Crawford, Gneezy, and 
Rottenstreich’s (2008) and Bardsley et al.’s 
(2010) experiments revisiting Schelling’s. 
In their main treatments, Crawford et al. 
replicate Schelling’s finding that subjects 
can use salient labels to coordinate with 
high frequency for games in which play-
ers’ payoffs are identical. But they found 
that even slight payoff differences create 
a player-role-asymmetric tension between 
label salience and the inherent salience of 
higher own payoffs, which interferes with 
the use of labels to coordinate. Bardsley 
et al. replicate many of Schelling’s find-
ings in different settings, while also finding 
some puzzling results. And in Rubinstein’s 
(1999)11 experiments on zero-sum two-
person hide-and-seek games played on 
nonneutral “landscapes” of salient location 
labels, subjects deviate systematically from 
the unique mixed-strategy equilibrium 
in patterns that respond to labeling, even 
though the essential uniqueness of equilib-
rium seems to preclude such influence.

To explain Rubinstein’s (1999) puzzling 
hide-and-seek results, Crawford and Iriberri 
(2007a) propose a level-k model in which 
L0’s strategically naïve initial assessment of 
others’ likely responses deviates from the 
uniform random specification by favoring 
salient decision labels, following the same 
principles in either player role. Crawford, 
Gneezy, and Rottenstreich (2008) propose 
a similar level-k model to describe some of 
their coordination results, in which L0 now 

11 The work reported in Rubinstein (1999) builds on 
earlier work that Rubinstein did with Amos Tversky and 
Dana Heller; the full citations are given in Crawford and 
Iriberri (2007a). 

responds to payoff salience as well as label 
salience.

By contrast, some of Crawford, Gneezy, 
and Rottenstreich and Bardsley et al.’s 
(2010) other results appear to reflect a 
notion Bardsley et al. (40) call “team reason-
ing,” whereby “each player chooses the deci-
sion rule which, if used by all players, would 
be optimal for each of them.” Section 8 con-
cludes with a discussion of directions for 
future work to identify the ranges of appli-
cability of level-k and team reasoning mod-
els, and to further explore the foundations of 
level-k models with salience.

Section 9 considers level-k models of stra-
tegic communication that has no direct pay-
off consequences, or cheap talk. Equilibrium 
analysis as in Crawford and Sobel (1982) 
misses important features of real communi-
cation via natural language. The fact that the 
receiver has rational expectations about the 
sender’s motives implies that in two-person 
games of pure conflict with known prefer-
ences, cheap talk messages must be uninfor-
mative, and must be ignored. And the fact 
that messages do not directly affect payoffs 
precludes any role for their literal mean-
ings. Yet deceptive messages are common in 
real conflicts, and sometimes successful; and 
messages’ literal meanings play a prominent 
role in how they are interpreted.

Crawford (2003) introduces a level-k 
model of one-sided preplay communica-
tion in a two-person game of pure conflict. 
Here it would be behaviorally odd if a play-
er’s assessment of the meaning of a message 
did not start with its literal interpretation, 
and Crawford accordingly assume that L0 
is truthful for senders and credulous for 
receivers. Crawford also introduces the pos-
sibility that with given probabilities, some 
players in each role are Sophisticated and 
play (Bayesian) equilibrium strategies in a 
game in which both they and their possibly 
Sophisticated partners take into account the 
likelihoods that senders and receivers are 
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level-k or Sophisticated. The model gives 
a richer and more realistic account of real 
communication, in which, depending on the 
population frequencies, Sophisticated play-
ers may gain from exploiting level-k players, 
and Sophisticated senders can sometimes 
deceive even Sophisticated receivers.

Section 9 next discusses Ellingsen and 
Östling’s (2010) and Crawford’s (2007) level-
k analyses of communication of intentions in 
coordination and other games. They use sim-
ilar level-k models to elucidate long-standing 
puzzles about how the effectiveness of com-
munication varies with its structure and with 
the payoff structure in experiments and pre-
sumably in the field.

Section 9 next considers Wang, Spezio, 
and Camerer’s (2010) experimental analysis 
of communication of private information in 
sender–receiver games with partially con-
flicting preferences. In such games Crawford 
and Sobel (1982) showed that cheap talk can 
convey information in equilibrium but that 
information transmission must be noisy; and 
that more information is transmitted in the 
most informative equilibrium, the closer 
are players’ preferences. Wang, Spezio, and 
Camerer (2010) find, as in previous experi-
ments, that most senders exaggerate the 
truth in the direction that would, if believed, 
move receivers toward senders’ ideal action. 
Despite senders’ exaggeration, their mes-
sages contain some information and most 
receivers are credulous, responding to 
the sender’s message even more than they 
should. But in spite of those deviations from 
equilibrium, Wang, Spezio, and Camerer’s 
(2010) results support the equilibrium-based 
comparative-statics prediction that more 
information will be transmitted, the closer 
the sender’s and receiver’s preferences. 
Wang, Spezio, and Camerer’s (2010) analy-
sis of subjects’ decisions and information 
searches gives strong support to Crawford’s 
(2003) level-k model, and reconciles sub-
jects’ nonequilibrium behavior with the  

validation of the equilibrium-based compar-
ative-statics prediction.

Section 9 concludes with discussions of 
Malmendier and Shanthikumar’s (2007, 
2009) CH empirical analyses of the interac-
tion between stock analysts and traders.

Section 10 is the conclusion.

2. Theoretical Models of  
Strategic Thinking

This section reviews the leading mod-
els of strategic thinking: equilibrium plus 
noise, k-rationalizability and finitely iter-
ated strict dominance, and QRE; followed 
by level-k and CH models, which are the 
primary focus. Like equilibrium, the alter-
natives are general models, applicable to 
any game; and can be viewed as models of 
thinking as well as decisions.

2.1 Equilibrium Plus Noise

Any notion that is to be taken to data must 
allow for errors. The obvious way to do so 
in an equilibrium analysis, equilibrium plus 
noise, simply adds errors to equilibrium pre-
dictions. The errors are usually assumed to 
have a given distribution with zero mean and 
estimated precision, with likelihoods sen-
sitive to the payoff costs of deviations as in 
the logit distribution. The resulting model 
resembles QRE (section 2.3) in allowing 
cost-sensitive errors; but it is unlike QRE in 
that the costs are evaluated assuming that 
others play equilibrium strategies exactly.

Except in the simplest games, a player can 
only find his equilibrium decision via fixed-
point or indefinitely iterated dominance rea-
soning. The experimental evidence (section 
3) suggests that the more complex that rea-
soning, the less likely it is to directly describe 
people’s thinking. 

In games with multiple equilibria, equilib-
rium plus noise is incomplete in that it does 
not specify a unique prediction conditional on 
the values of its behavioral parameters. This 
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has been dealt with by estimating an unre-
stricted probability distribution over equilib-
ria, but in our view it is usually preferable to 
complete the model by adding a refinement 
such as risk- or payoff-dominance (Harsanyi 
and Selten 1988).12 That makes equilibrium 
yield predictions specific enough to be use-
ful, and puts it on an equal footing with other 
models of strategic thinking.

In many applications equilibrium plus 
noise fits subjects’ initial responses well. But 
in others, even if equilibrium is unique, ini-
tial responses deviate systematically from 
equilibrium, in ways that are sensitive to a 
subject’s out-of-equilibrium payoffs not only 
when others play their equilibrium strategies 
but also when they do not. QRE, level-k, and 
CH models all attempt to account for the sen-
sitivity of such deviations, in different ways.

2.2 Finitely Iterated Strict Dominance and 
k-Rationalizability

A common reaction to implausibility of 
equilibrium’s thinking justification is to 
maintain some or all of its reliance on ratio-
nality and iterated knowledge of rationality, 
while relaxing its strong rational-expectations 
assumption. This yields the notions of ratio-
nalizability and k-rationalizability (Bernheim 
1984 and Pearce 1984).  k-rationalizability 
reflects the implications of finite levels of 
iterated knowledge of rationality: A 1-ratio-
nalizable strategy is one for which there is 
a profile of others’ strategies that makes it 
a best response; a 2-rationalizable strategy 
is one for which there is a profile of others’ 
1-rationalizable strategies that makes it a best 

12  In Costa-Gomes, Crawford, and Iriberri (2009, sec-
tion 7), we argue that estimating a probability distribution 
over equilibria risks overfitting. With some qualifications, 
Harsanyi and Selten defined payoff-dominance as Pareto-
efficiency within the set of equilibria. In pure coordination 
games, this coincides with team reasoning (Bardsley et al. 
2010; section 8.3). Level-k and CH models ensure com-
pleteness despite multiple equilibria (sections 2.4–2.5; see 
also sections 5–9).

response; and so on. In two-person games 
a strategy is k-rationalizable if and only if 
it  survives k rounds of iterated deletion of 
strictly dominated strategies. (There are 
subtle differences in n–person games, unim-
portant for our purposes.) Rationalizability 
is equivalent to k-rationalizability for all k, 
reflecting common knowledge of rationality 
with no further restrictions on beliefs.13 

Equilibrium, by contrast, reflects the 
implications of common knowledge of ratio-
nality plus at least mutual knowledge of 
beliefs. Any equilibrium strategy is k-ratio-
nalizable for all k, but not all combinations 
of rationalizable strategies are in equilib-
rium. However, in games that are strictly 
dominance-solvable in k rounds or less, 
k-rationalizability implies that players have 
the same beliefs, so that any combination of 
k-rationalizable strategies is in equilibrium. 
In two-person games, a player can find his set 
of k-rationalizable strategies via k rounds of 
iterated strict dominance, without the need 
for fixed-point reasoning. Thus, k-rationaliz-
ability is cognitively less taxing than equilib-
rium, especially for small k. 

With or without multiple equilibria, ratio-
nalizability and k-rationalizability are incom-
plete, in general implying only set-valued 
restrictions on individual players’ strategies.  
In games that are not strictly dominance-
solvable in k rounds, k-rationalizability allows 
a range of deviations from equilibrium, 
which for low k are often consistent with the 
patterns in subjects’ observed deviations. 
However, this consistency is obtained via 
predictions that may be so vague that they 
are useless. In the outguessing and coordina-
tion games discussed below, any strategy is a 
best response to some beliefs. One can then 
construct a “helix” of beliefs, consistent at all 
levels with iterated knowledge of rationality, 

13 Unlike equilibrium, rationalizability and k-rational-
izability restrict individual players’ strategies, not their 
relationship.
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and even rationalizability does not restrict 
behavior at all. But for most k-rationalizable 
or rationalizable outcomes, the beliefs in the 
helix rest on rationality-based inferences at 
implausibly high levels and/or cycle unrealis-
tically across levels.

2.3 Quantal Response Equilibrium

To capture the sensitivity of subjects’ 
deviations from equilibrium to their out-of-
equilibrium payoffs when others may deviate 
from their equilibrium strategies, McKelvey 
and Palfrey (1995) (see also Rosenthal 1993) 
proposes the notion of QRE.14 In a QRE, 
players’ decisions are noisy with a specified 
distribution, logit in most applications, tuned 
by a precision parameter. The density of a 
decision is increasing in its expected pay-
off, evaluated taking the noisiness of others’ 
decisions into account—QRE’s key differ-
ence from equilibrium plus noise. A QRE 
is thus a fixed point in the space of decision 
distributions, with each player’s distribution 
a noisy best response to the others’. As preci-
sion increases QRE converges to equilibrium 
without noise; and as precision approaches 
zero QRE converges to uniform randomiza-
tion over all feasible strategies.

The fact that QRE responds to the noise 
in others’ decisions is essential to its  ability 
to improve upon equilibrium plus noise. But 
this response makes QRE’s  predictions highly 
sensitive to distributional assumptions—more 
so than in quantal response models of indi-
vidual decisions or in other models of strate-
gic thinking. Haile, Hortaçsu, and Kosenok 

(2008) show that by varying the distribution 
QRE can “explain” any given dataset that has 
only one observation per game-player pair. 
Goeree, Holt, and Palfrey (2005) shows, how-
ever, that QRE with a plausible monotonic-
ity restriction on responses to payoffs but no 
further distributional assumptions does imply 
some restrictions even with one observation 
per game-player pair; and that QRE implies 
some cross-game restrictions even without 
monotonicity. QRE is still more than usu-
ally sensitive to the error distribution; there 
is little theory to guide its specification (but 
see Mattsson and Weibull 2002); and the fre-
quent use of the logit is guided mostly by fit 
and custom.

A QRE player must respond to a distribu-
tion of others’ responses and find his part 
of a fixed point in a large space of response 
distributions. If equilibrium reasoning is 
cognitively taxing, QRE reasoning is doubly 
taxing; and QRE is less behaviorally plausi-
ble as a model of thinking.

In applications, QRE’s precision is either 
calibrated from previous analyses or deter-
mined by fitting the model to data. The logit 
QRE or “LQRE” that results from assuming 
a logit distribution often fits initial responses 
better than equilibrium plus noise (McKelvey 
and Palfrey 1995; Goeree and Holt 2001; 
Goeree, Holt, and Palfrey 2005). But in some 
settings, LQRE fits worse than equilibrium 
plus noise, sometimes with errors that devi-
ate from equilibrium in the wrong direction 
to fit the data (Chong, Camerer, and Ho 
2005; Crawford and Iriberri 2007a, Online 
Appendix; Östling et al. 2011, Section II.C).15

14 McKelvey and Palfrey (1995) suggest using QRE for 
both initial responses and limiting outcomes, with increasing 
precision as a reduced-form model of learning. But although 
QRE has until recently been the most popular model of ini-
tial responses, not all researchers consider it suitable for 
that purpose. Goeree and Holt (2004) suggest reserving 
QRE for limiting outcomes, and instead propose a “noisy 
introspection” (NI) model to describe initial responses. NI 
relaxes QRE’s equilibrium assumption by assuming that 
players form beliefs by iterating noisy best responses as in 
a level-k model, except that players respond to the noise 

in others’ responses. Higher-order beliefs are assumed to 
reflect increasing amounts of noise, converging to uniform 
randomness. In special cases NI coincides with QRE or L1. 
NI is cognitively less taxing than QRE because it requires 
no fixed-point reasoning, but more taxing than level-k or 
CH because it requires more iterated best responses, and 
to noisy beliefs. We don’t discuss NI further because it is 
seldom applied beyond Goeree and Holt (2004).

15 QRE, or LQRE, is seldom easily adapted to theoreti-
cal analysis, and usually must be solved for numerically.
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2.4 Level-k Models 

Aside from the Keynes (1936) quotation 
that heads section 3, level-k models seem 
to have been proposed first by Nagel (1995) 
and Stahl and Wilson (1994, 1995). In a 
level-k model, players anchor their beliefs in 
a strategically naïve initial assessment of oth-
ers’ likely responses to the game called “L0,” 
and then adjust them via thought-experi-
ments with iterated best responses: L1 best 
responds to L0, L2 to L1, and so on. Players’ 
levels are heterogeneous, but each player’s 
level is usually assumed to be drawn from a 
common distribution. 

Even though L0 normally has zero fre-
quency, its specification has an important 
influence. In most applications, including 
those in sections 3 to 7, L0 is assumed to be 
uniform random over others’ feasible deci-
sions; or sometimes when there are more 
than two players, over the relevant summary 
of others’ decisions.16 This reflects the model’s 
compartmentalization of a player’s thinking 
into a strategically naïve initial assessment of 
others’ likely responses to the game followed 
by strategic thinking via a series of iterated 
best responses. An L1 player, for instance, is 
aware that he is playing a game in which his 
payoff is influenced by others’ decisions as 
well as his own; but the L0 by which he eval-
uates his decisions’ expected payoffs reflects 
a strategically naïve assessment of others’ 
responses to the incentives the game cre-
ates. An L2 player assesses others’ responses 
less naively, but his L1 model of others is still 
simpler than his model of himself. Note that 
on this interpretation there is no presump-
tion that L0 players exist: L0 is simply L1’s 
model of others, L2’s model of L1’s model of 
others, and so on.

16  Sections 8 and 9 discuss alternative specifications for 
games with salient labels or communication, as explained 
in footnote 10.

Lk rules rest on the cognitively simple 
operation of iteration of best responses to 
a naïve prior, and so avoid the criticisms 
that epistemic reasoning based on iterated 
knowledge of rationality or finding a QRE’s 
fixed point in distribution space are too tax-
ing for a realistic model of thinking.17 Except 
for L1’s response to a uniform random L0, 
Lk rules need not respond to the noisiness 
of others’ responses. A level-k model avoids 
QRE’s sensitivity to distributional assump-
tions by treating deviations from equilibrium 
as part of the deterministic structure, rather 
than as errors or responses to errors. Because 
Lk rules respect simple dominance, level-k 
models limit the probability of violations of 
simple dominance more than equilibrium 
plus noise or QRE, where those probabilities 
can approach 50 percent. The fact that Lk 
rules may deviate systematically from equi-
librium in ways that are sensitive to out-of-
equilibrium payoffs, often allows a level-k 
model to out-predict equilibrium plus noise 
or LQRE. 

Because Lk respects k-rationalizability, 
and k can vary across players, a level-k model 
can be viewed as a heterogeneity-tolerant 
refinement of k-rationalizability. It avoids 
rationalizability or k-rationalizability’s unre-
alistic rationality-based inferences and 
cycles in beliefs by smoothing beliefs in an 
evidence-based way. Unlike unrefined equi-
librium or QRE, level-k models are generi-
cally complete even in games with multiple 
equilibria. 

In empirical applications, it is assumed 
that L1 and higher types make errors, often 

17  In our view, people stop at low levels mainly because 
they believe others will not go higher, not due to cognitive 
limitations; but the evidence on this is not yet conclusive. 
Allowing level-k types to consider the possibility that oth-
ers are the same level leads to fixed-point problems like 
those with equilibrium, which we have argued are the main 
reason people deviate from equilibrium. Closing the loop 
by requiring rational expectations about the level distribu-
tion leads back to equilibrium, and so is empirically a dead 
end.
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taken to be logit as in equilibrium plus noise 
or LQRE. Applications sometimes also allow 
for the possibility that some people play their 
equilibrium strategies, and/or that some 
are Sophisticated in the sense of playing 
(Bayesian) equilibrium strategies in a game 
that takes into account that other players are 
either level-k or Sophisticated. The popula-
tion type frequencies are estimated or cali-
brated from previous analyses. As expected, 
the estimated frequency of L0 is usually zero 
or small. The type distribution is fairly stable 
across settings, with most weight on L1, L2, 
and perhaps L3.

2.5 Cognitive Hierarchy (CH) Models

In Camerer, Ho, and Chong’s (2004) 
closely related CH model, Lk best responds 
not to Lk-1 alone but to a mixture of lower 
types. The distribution of rules is usually 
approximated as Poisson, with its param-
eter estimated from the data or calibrated 
from previous estimates. Lk rules’ beliefs are 
assumed to be derived from that distribution 
by Bayesian updating, assuming other play-
ers’ levels are lower than the player’s own. 
Thus, a CH L1 is the same as a level-k L1, 
but a CH L2 or higher type may differ from 
its level-k counterpart. A CH L1 or higher 
type makes undominated decisions like its 
level-k counterpart. But unlike a level-k Lk, 
a CH Lk may not respect k–rationalizability.

Section 2.4’s observations about the cogni-
tive ease of level-k types mostly carry over 
to CH types. In particular, CH L2 or higher 
types need not find fixed points or respond 
to others’ noise.

In a CH model, unlike in a level-k model, 
L1 and higher types are usually assumed not 
to make errors. Instead the uniform random 
L0, which the Poisson distribution con-
strains to have positive frequency, doubles as 
an error structure for higher types, though 
this is not in any way essential. Like a level-
k model, given the assumed distribution a 
CH model makes point or mean predictions 

that do not depend on an estimated preci-
sion. But unlike a level-k model, and to some 
extent like QRE, the form of the distribution 
influences the model’s point predictions. 

In some applications, the Poisson distribu-
tion is not very restrictive (Camerer, Ho, and 
Chong 2004, section II.B; Chong, Camerer, 
and Ho 2005). But in others it seems exces-
sively restrictive (Chong, Camerer, and Ho 
2005; Costa-Gomes and Crawford 2006; 
Crawford and Iriberri 2007a, 2007b). Like a 
level-k model, a CH model limits the prob-
ability of violations of simple dominance 
more than equilibrium plus noise or QRE. 
If the Poisson specification is correct, CH 
Lk beliefs, unlike level-k Lk beliefs, become 
more accurate as k increases (Camerer, 
Ho, and Chong 2004, section II.A; Chong, 
Camerer, and Ho 2005, section 2.1). Even 
if the Poisson specification is incorrect, if 
the CH model is defined flexibly enough a 
higher k implies a more accurate model of 
others’ fitted decisions. But because levels 
higher than L3 are rare, this seems relatively 
unimportant.

The fact that CH Lk rules may deviate sys-
tematically from equilibrium often allows a 
CH model to out-predict equilibrium plus 
noise or LQRE.

3. Keynes’s Beauty Contest:  
Experimental Evidence from Guessing 

and Other Normal-Form Games 

. . . professional investment may be likened 
to those newspaper competitions in which 
the competitors have to pick out the six pret-
tiest faces from a hundred photographs, 
the prize being awarded to the competitor 
whose choice most nearly corresponds to the 
average preferences of the competitors as a 
whole; so that each competitor has to pick, 
not those faces which he himself finds pret-
tiest, but those which he thinks likeliest to 
catch the fancy of the other competitors, all 
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of whom are looking at the problem from the 
same point of view. It is not a case of choos-
ing those which, to the best of one’s judg-
ment, are really the prettiest, nor even those 
which average opinion genuinely thinks the 
prettiest. We have reached the third degree 
where we devote our intelligences to antici-
pating what average opinion expects the 
average opinion to be. And there are some, 
I believe, who practice the fourth, fifth and 
higher degrees.

—Keynes (1936, chapter 12)

Keynes’s famous analogy suggests an 
n-person game whose players must outguess 
each other’s responses to a payoff-irrelevant 
landscape of judgments about prettiness. 
Equilibrium analysis is not very helpful 
because it rules out the influence of such 
landscapes, and there are too many equi-
libria. Instead the analogy suggests a level-k 
model. His “fourth, fifth and higher degrees” 
is more than evidence suggests is realistic 
but may be only a coy reference to himself.18

This section reviews evidence on stra-
tegic thinking from experiments that elicit 
initial responses to normal-form symmetric-
information games. The evidence we pres-
ent here is representative of other evidence 
from symmetric-information games, with 
exceptions noted and discussed below. We 
begin with Nagel’s (1995), Ho, Camerer, and 
Weigelt’s (1998), and Bosch-Domènech et 
al.’s (2002) analyses of symmetric n-person 
guessing games directly inspired by Keynes’s 
analogy. We then discuss Stahl and Wilson’s 
(1994, 1995) analyses of symmetric two-
person matrix games and Costa-Gomes, 
Crawford, and Broseta’s (2001) analysis of 

18  Tellingly, in one of the first reviews of von Neumann 
and Morgenstern (1944), Marschak (1946) quoted this 
Keynes passage and said (with reference to their theory of 
zero-sum two-person games) “ . . . it seems to us that prop-
erly stated differences in degrees of knowledge or intel-
ligence of individual players can also be regarded as rules 
of the game.”  

asymmetric two-person matrix games. We 
next discuss Costa-Gomes and Crawford’s 
(2006) analysis of (mostly asymmetric) two-
person guessing games. We close with a sum-
mary and directions for future work.

Readers uninterested in the detailed evi-
dence can skip ahead to sections 3.4 and 3.5. 

3.1 Guessing or Beauty Contest Games

In Nagel’s (1995) and Ho, Camerer, 
and Weigelt’s (1998) games, n subjects 
(n = 15–18 in Nagel 1995, n = 3 or 7 in Ho, 
Camerer, and Weigelt 1998) made simulta-
neous guesses between lower and upper lim-
its (0 and 100 in Nagel 1995, 0 and 100 or 100 
and 200 in Ho, Camerer, and Weigelt 1998). 
In Bosch-Domènech et al. (2002), some of 
the same games were played in the field, by 
7,500+ volunteers recruited through the 
newspapers Financial Times, Spektrum der 
Wissenchaft, or Expansión. In each case, 
the subject who guessed closest to a target 
( p = 1/2, 2/3, or 4/3 in Nagel; p = 0.7, 0.9, 
1.1, or 1.3 in Ho, Camerer, and Weigelt 1998; 
p = 2/3 in Bosch-Domènech et al. 2002) 
times the group average guess won a prize. 
Each treatment had identical targets and lim-
its for all players. The structures were publicly 
announced, to justify comparing the results 
with symmetric-information predictions.

Although Nagel’s (1995) and Ho, Camerer, 
and Weigelt’s (1998) subjects played a game 
repeatedly, their first-round guesses can be 
viewed as initial responses if they treated 
own influences on future guesses as negli-
gible, as is plausible for all but Ho, Camerer, 
and Weigelt’s (1998) three-subject groups. 
Bosch-Domènech et al.’s (2002) subjects 
played only once.

With symmetric information, in all but one 
treatment the game is dominance-solvable in 
a finite (limits 100 and 200) or infinite (limits 
0 and 100) number of rounds, with a unique 
equilibrium in which all players guess their 
lower (upper) limit when p < 1 ( p > 1). 
The epistemic argument for this “all–0” 
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equilibrium is stronger than usual, in that 
it depends “only” on (sometimes infinitely) 
iterated knowledge of rationality, not on 
mutual knowledge of beliefs.

Bosch-Domènech et al.’s (2002) figure 1 
illustrates the results (see also Nagel’s 1995 
figure 1 and Ho, Camerer, and Weigelt’s 
1998 figures 2A–H and 3A–B). Subjects 
seldom made equilibrium guesses initially. 
Most guesses respected at most three rounds 
of iterated dominance, although more were 
needed to reach equilibrium. The guess 
distributions have spikes that track 50 pk for 
k = 1, 2, 3 across the different targets p in 
the treatments. Like the spectrograph peaks 
that foreshadow the existence of chemical 
elements, the spikes suggest that subjects’ 
deviations from equilibrium have a coher-
ent structure, one that is discrete and indi-
vidually heterogeneous. The deviations are 
inconsistent with “equilibrium plus noise” or 
“equilibrium taking noise into account” as in 
QRE, for any reasonable distribution.

Nagel’s (1995), Ho, Camerer, and Weigelt’s 
(1998), and Bosch-Domènech et al.’s (2002) 
designs are distinguished by their large strat-
egy spaces, which greatly increase the infor-
mativeness of results. But for the purpose of 
studying strategic thinking, it is a weakness 
that their subjects’ initial responses were 
limited to one game. One observation yields 
very limited information about the rule a 
subject was following.

There are two plausible interpretations of 
how the spikes’ locations vary across treat-
ments. In one, subjects follow “level-k” rules 
based on a uniform random L0 as in section 
2.4, interpreted in this n-person game as rep-
resenting a strategically naïve estimate of the 
group average guess.19 Lk then iterates best 
responses k times, so that in these games 

19 In this paper, we focus mainly on two-person games, 
but in n-person games it may matter whether L0 is inde-
pendent across players, and the limited evidence (Ho, 
Camerer, and Weigelt 1998; Costa-Gomes, Crawford,

Lk + 1 guesses [(0 + 100)/2] pk+1 = 50pk+1. 
In the other interpretation, a subject does k 
rounds of iterated dominance and then best 
responds to a uniform prior over the aver-
age of others’ remaining strategies, a rule 
we call Dk, which guesses ([0 + 100 pk]/2)p  
= 50pk+1. Theorists often interpret Nagel’s 
(1995), Ho, Camerer, and Weigelt’s (1998), 
and Bosch-Domènech et al.’s (2002) results 
as showing that subjects explicitly performed 
finitely iterated dominance, but the results 
equally well support the interpretation that 
subjects followed level-k rules that only 
implicitly respect it.

In other games, Dk and Lk + 1 respond 
similarly to dominance, both yielding k-ratio-
nalizable strategies (the different indices are 
a quirk of notation). Thus each completes 
k-rationalizability via a specific selection. But 
the distinction matters in some applications. 
Dk and Lk + 1 are weakly separated in Stahl 
and Wilson’s (1994, 1995), Ho, Camerer, 
and Weigelt’s (1998), and Costa-Gomes, 
Crawford, and Broseta’s (2001) experiments. 
They are strongly separated in Costa-Gomes 
and Crawford’s (2006) experiments, and the 
results favor level-k’s iterated best responses 
over iterated dominance.

Nagel’s (1995), Ho, Camerer, and 
Weigelt’s (1998), and Bosch-Domènech et 
al.’s (2002) designs have another weakness 
for our purpose, in that their subjects’ influ-
ences on others’ payoffs were negligible 
ex ante. When the authors think about the 
stock market, we know that “it” isn’t think-
ing about us, and that greatly simplifies our 
thinking. Most games in applications are 
more like Warren Buffet thinking about the 
stock market. Results for n-person guessing 
games give limited insight into the reciprocal 
strategic thinking such games require. We 

and Iriberri 2009) suggests that people have highly corre-
lated models of others. Here we take L0 to model others’ 
 average guess, implicitly assuming perfect correlation as 
the evidence suggests.
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now turn to experiments in which individual 
influences are more important.

3.2 Other Normal-Form Games 

Stahl and Wilson (1994, 1995) report exper-
iments in which each subject played a series of 
ten or twelve different symmetric 3×3 matrix 
games. As in the remaining experiments we 
discuss here, subjects were randomly and 
anonymously paired to play the games without 
feedback, to suppress learning and repeated-
game effects and elicit initial responses game 
by game. “Eureka!” learning was possible, 
but probably rare. The fact that a series of 
responses was elicited for each subject greatly 
increases the power of the design, but the 
small strategy spaces sacrifice some power.

Stahl and Wilson’s (1994) data analysis 
uses a mixture model combining a type they 
called Naïve Nash, our equilibrium plus noise 
(section 2.1) with a uniform random L0 type; 
an L1 as in section 2.4; and an L2 that dif-
fers from section 2.4’s in best responding to a 
noisy L1 (which Stahl and Wilson 1994 moti-
vate as a weighted average of their L1 and 
their uniform random L0). Stahl and Wilson 
(1994) find 35 of 40 subjects for which one 
type had posterior probability at least 0.90: 
18 L2, 9 Naïve Nash, and 8 L1.

Stahl and Wilson (1995) generate a new 
dataset from a design close to Stahl and 
Wilson’s (1994), but analyze it by add-
ing to the mixture a noiseless Equilibrium 
type; a Rational Expectations type that best 
responds to the model’s predicted partners’ 
choice frequencies; and a Worldly type, 
which best responds to an estimated mixture 
of a noisy L1 and their noiseless Equilibrium. 
Stahl and Wilson (1995) find 38 of 40 sub-
jects for which one type had posterior prob-
ability at least 0.90: 17 Worldly, 9 L1, 6 L0, 5 
Naïve Nash, and 1 L2. Thus they found no 
Rational Expectations subjects and almost 
completely rejected L2 in favor of Worldly. 
Stahl and Wilson’s (1994) estimates are more 
consistent than Stahl and Wilson’s (1995) 

estimates with other analyses, earlier and 
later. We suspect that Stahl and Wilson’s 
(1995) richly parameterized Worldly type, 
which implicitly assumes subjects share the 
analysts’ understanding of others’ responses 
via its dependence on parameters estimated 
from the data, overfits the data.

Costa-Gomes, Crawford, and Broseta 
(2001) report experiments in which each 
subject played a series of eighteen different 
asymmetric 2×2, 2×3, and 2×4 matrix games, 
retaining Stahl and Wilson’s (1994, 1995) 
small strategy spaces but further increasing 
the number of observations per subject and 
avoiding symmetric games that might blur 
the cognitive distinction between own and 
other’s decisions. Costa-Gomes, Crawford, 
and Broseta’s (2001) data analysis allows types 
L1, L2, and L3 as defined in section 2.4 (best 
responding to noiseless lower-level types); D1 
and D2 as in section 3.1; an Equilibrium type 
like Stahl and Wilson’s (1994) Naïve Nash; 
and a Sophisticated type that best responds to 
potential partners’ observed choice frequen-
cies (a nonparametric analog of Stahl and 
Wilson’s 1995 Rational Expectations type), 
as a proxy for subjects whose understanding 
of strategic behavior transcends mechanical 
rules such as the other types. Costa-Gomes, 
Crawford, and Broseta’s (2001) estimates of 
the type distribution are quite similar to Stahl 
and Wilson’s (1994). They also resemble Stahl 
and Wilson’s (1995) estimates, except that, 
excluding Worldly, they identify more sub-
jects as L1, L2, or D1.20

3.3 Two-Person Guessing Games

Costa-Gomes and Crawford’s (2006) design 
combines Nagel’s (1995), Ho, Camerer, and 
Weigelt’s (1998), and Bosch-Domènech et 
al.’s (2002) large strategy spaces with Stahl 

20 Sutter, Czermak, and Feri (2010) replicate Costa-
Gomes, Crawford, and Broseta’s (2001) results for individ-
uals and also for three-person teams. Both studies include 
an Altruistic type.
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and Wilson’s (1994, 1995) and Costa-Gomes, 
Crawford, and Broseta’s (2001) series of differ-
ent games, with subjects again randomly and 
anonymously paired without feedback. Costa-
Gomes and Crawford’s (2006) subjects played 
a series of 16 different but related two-person 
guessing games. Each player has his own lower 
and upper limit, both strictly positive, which 
implies that the games are finitely dominance-
solvable. Each player also has his own target, 
and his payoff increases with the closeness of 
his guess to his target times the other player’s 
guess. Importantly, unlike in Nagel’s (1995) 
and Ho, Camerer, and Weigelt’s (1998) guess-
ing games, the targets and limits vary indepen-
dently across players and games. The games are 
mostly asymmetric; and the targets and limits 
are sometimes both less than one, sometimes 
both greater than one, and sometimes “mixed.”

Costa-Gomes and Crawford’s (2006) 
games have essentially unique equilibria, 
whose locations are determined by play-
ers’ lower (upper) limits when the product 
of targets is less (greater) than one.21 Consider 
for instance a game in which the first player’s 
target and limits are 0.7 and [300, 500] and 
the second player’s are 1.5 and [100, 900]. 
The product of targets is 1.05 > 1, and it 
is not hard to show that the equilibrium is 
therefore determined by players’ upper lim-
its. In equilibrium the first player guesses his 
upper limit of 500; but the second guesses 
only 1.5 × 500 = 750 < his upper limit 900. 
No guess is dominated for the first player, but 
any guess outside [450, 750] is  dominated 
for the second. Given this, any guess outside 
[315, 500] is iteratively dominated for the 
first player; and so on until the equilibrium 
at (500, 750) is reached after twenty-two 
rounds of iterated dominance. 

21 The discontinuity of the equilibrium correspondence 
when the product of targets equals one stress-tests equilib-
rium, which responds much more strongly to the product of 
the targets than behaviorally plausible alternative decision 
rules do. In this class of games, the discontinuity also en-
hances the separation of Equilibrium from alternative rules.

The main difficulty in analyzing the data 
from such experiments is identifying sub-
jects’ decision rules within the enormous 
set of logically possible rules. As in previous 
studies, Costa-Gomes and Crawford (2006) 
assume that each subject’s decisions follow 
one of a small set of a priori plausible rules 
up to logit errors, and econometrically esti-
mate which rule best fits his decisions. Their 
specification includes L1, L2, and L3 (section 
2.4); D1 and D2 (section 3.1); Equilibrium; 
and Sophisticated.

Costa-Gomes and Crawford’s (2006) large 
strategy spaces and independent variation of 
targets and limits across games enhance the 
separation of types’ implications to the point 
where many subjects’ types can be directly 
and precisely identified from their guesses, 
without econometrics. Of the 88 subjects in 
Costa-Gomes and Crawford’s (2006) main 
treatments, 43 complied exactly (within 0.5) 
with one type’s guesses in from 7 to 16 games 
(20 L1, 12 L2, 3 L3, and 8 Equilibrium). 
Because the types specify precise, well-sepa-
rated guess sequences in a very large space, 
those subjects’ guesses allow one intuitively 
to “accept” the hypothesis that they followed 
their apparent types. Because the types build 
in risk-neutral, self-interested rationality and 
perfect models of the game, the deviations 
from equilibrium of the 35 whose apparent 
types are Lk can confidently be attributed to 
nonequilibrium beliefs rather than irratio-
nality, risk aversion, altruism, spite, or con-
fusion.22 Finally, because the types build in 

22  By contrast, in designs with small strategy spaces, or 
in which each subject plays a single game, even a perfect 
fit may not distinguish a type from nearby omitted types. 
The subjects in Costa-Gomes and Crawford’s (2006) main 
treatments (Baseline and OB) were trained in and quizzed 
on how their payoffs were determined and how to identify 
their and their partner’s best-responses, but not taught any 
decision rule. Their high rates of exact compliance with 
level-k types reflect their own thinking. Although an ear-
lier version of Sotiris Georganas, Healy, and Weber (2010) 
claims that Costa-Gomes and Crawford’s (2006) subjects 
were trained to use iterated best responses, that is not true.
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a uniform random specification of L0, that 
specification is directly confirmed by the data.

Costa-Gomes and Crawford’s (2006) other 
45 subjects made guesses that follow a type 
less closely. But for 31 of them, violations 
of simple dominance had frequencies less 
than 20 percent (versus 38 percent for ran-
dom guesses), suggesting that their behavior 
was coherent. Econometric type estimates 
for these 45 subjects are concentrated on 
L1, L2, L3, and Equilibrium in roughly the 
same proportions as for the 43 with very high 
compliance with a type’s guesses. But for 
these subjects there is room for doubt about 
whether Costa-Gomes and Crawford’s (2006) 
econometric specification omits relevant 
types and/or overfits via accidental correla-
tions with included types. Costa-Gomes and 
Crawford (2006) address such doubts via a 
semiparametric specification test, described 
in section 3.5, which confirms that L1, L2, 
L3, and perhaps Equilibrium are truly pres-
ent in the population; but that omitted types 
describe only 1–2 percent of the population. 
Thus in this setting, deviations from equilib-
rium other than L1, L2, or L3 have little dis-
cernible structure.

3.4 Lessons for Modeling Strategic 
Thinking

Nagel’s (1995), Ho, Camerer, and 
Weigelt’s (1998), and Bosch-Domènech et 
al.’s (2002) results show that initial responses 
can deviate systematically from equilibrium, 
even when equilibrium reasoning requires 
“only” iterated dominance (though possibly 
for many rounds). The deviations resemble 
neither equilibrium plus noise nor QRE 
for any reasonable distribution. Subjects’ 
thinking is heterogeneous, so no model 
that imposes homogeneity will do justice to 
their behavior.23 Subjects’ thinking falls into 

23  Allowing for heterogeneity of people’s thinking turns 
out to be essential in the applications discussed in sections 
5, 6, 8, and 9.

 discrete classes and may violate rationaliz-
ability, but it respects k–rationalizability for 
low values of k (1, 2, or 3).

Stahl and Wilson’s (1994, 1995), Costa-
Gomes, Crawford, and Broseta’s (2001), 
and Costa-Gomes and Crawford’s (2006) 
analyses confirm and sharpen these lessons. 
Their results suggest that half or more of 
subjects’ decisions in these symmetric-infor-
mation normal-form games are explained by 
a level-k model anchored on a uniform ran-
dom L0, with only the types L1, L2, L3, and 
Equilibrium. Estimates that make adequate 
allowance for errors also suggest that L0 
subjects exist mainly as L1’s model of oth-
ers, L2’s model of L1’s model, and so on.24 
And Costa-Gomes, Crawford, and Broseta’s 
(2001) and Costa-Gomes and Crawford’s 
(2006) analyses suggest that there are few if 
any Sophisticated or Dk subjects.25 Finally, 
Costa-Gomes, and Crawford’s (2006) specifi-
cation test (section 3.5) suggests that at least 
in their games, behavior that doesn’t follow 
L1, L2, L3, or Equilibrium lacks readily dis-
cernible structure, so that it may be reason-
able to treat such behavior as errors. Stahl 
and Wilson’s (1994, 1995), Costa-Gomes, 
Crawford, and Broseta’s (2001), and Costa-
Gomes and Crawford’s (2006) conclusions 
are consistent with most other studies of 

24  Costa-Gomes and Crawford’s (2006) econometric 
model implicitly allows L0s, because any type with zero 
estimated precision mimics uniform randomness. For all 
but 10 of the 88 subjects in their main treatments, the sub-
ject’s estimated type was significantly better than a random 
model of guesses at the 5 percent level. Thus at the most, 
11 percent of the subjects were better described by L0 
than their estimated types. Unconstrained estimates that 
separate L0 from the error structure almost always have 
very low or zero frequencies of L0.

25 Thus to the extent that subjects respect iterated 
dominance, it is not because they explicitly perform it, but 
because they follow level-k rules that respect it. This con-
clusion is reinforced by Costa-Gomes and Crawford’s (2013) 
data on “robot/trained subjects,” where 7 of 19 subjects 
trained and rewarded as D1s and having passed a D1 under-
standing test, “morphed” into L2s, D1’s closest Lk relative.
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 initial responses, just more precise. (We dis-
cuss exceptions in section 3.5.)

3.5 Directions for Future Work

The experiments just reviewed yield 
insights into strategic thinking in a variety of 
symmetric-information normal-form games, 
and give substantial support to level-k mod-
els. But the evidence is from classes of games 
studied in isolation, with most data analyses 
based on particular econometric models 
of decisions alone. More work is needed 
to evaluate the credibility of the models’ 
explanations and to assess their domains of 
applicability, their portability, and the stabil-
ity of their parameter estimates across types 
of games. We now review some of what has 
been done along those lines, outline what 
still needs to be done, and describe the 
research strategies we think are most likely 
to be useful.26

We begin with Costa-Gomes and 
Crawford’s (2006) data analysis, which pro-
vides concrete illustrations of several points. 
Some conclusions can be read directly from 
their estimated model. Although Costa-
Gomes and Crawford’s (2006) model nests 
equilibrium plus noise, only 11 of 88 sub-
jects in their main treatments are estimated 
as Equilibrium (and even they may be fol-
lowing rules that only mimic Equilibrium; 
Costa-Gomes and Crawford 2006, 1753–54). 
Thus the analysis indicates clearly that stra-
tegic thinking is far from homogeneous, and 
that a model that allows heterogeneity has a 
low population frequency of Equilibrium.

Costa-Gomes and Crawford’s (2006) 
econometric model allows logit errors for 
each type, including Equilibrium. Costa-
Gomes and Crawford’s (2006) payoff func-
tion has a convenient certainty-equivalence 
property (1748) that limits differences 

26 We focus here on settings where salience is not 
important, but we revisit some of these issues with salience 
in section 8.

between Equilibrium plus logit noise and 
LQRE, but they are not quite the same 
because the limits create asymmetries in the 
error distributions that they respond to dif-
ferently. Even so, the multiple spikes in the 
subjects population’s observed guess distri-
butions make it clear that the usual popula-
tion-homogeneous specifications of LQRE 
would be similarly rejected.

There is no conflict with k–rationalizabil-
ity, at least for k = 1, because the rules with 
positive estimated frequencies all respect it. 
But the estimated model shows that Costa-
Gomes and Crawford’s (2006) subjects’ 
thinking has a structure that completes k–
rationalizability by making more specific 
predictions.

It would be of interest to discriminate 
between level-k and CH models, but so far 
no study has clearly separated their pre-
dicted decisions.27 But most level-k esti-
mates that make adequate allowance for 
errors assign L0 a much lower frequency 
than CH estimates do, often zero. Thus a 
CH model’s Poisson constraint will often be 
binding, and a level-k model, which imposes 
no such restriction, will fit better (see how-
ever Camerer, Ho, and Chong 2004, section 
II.B; and Chong, Camerer, and Ho 2005).

The above observations all work within 
Costa-Gomes and Crawford’s (2006) econo-
metric specification, and therefore yield 
little information on whether any subjects’ 
decisions could be better explained by types 
omitted from the specification; or whether 
any subjects’ estimated types are artifacts of 
overfitting, via accidental correlations with 

27 In Costa-Gomes and Crawford’s (2006) analysis, by 
a quirk of design, Camerer, Ho, and Chong’s (2004) CH 
L2 and L3 are both confounded with Costa-Gomes and 
Crawford’s (2006) level-k L2 (Costa-Gomes and Crawford 
2006, footnote 36, page 1763). A CH Lk’s best response to 
a mixture of lower types seems more realistic than a level-k 
Lk’s best response to one lower type, but the issue is not 
which would be the better econometric specification, but 
which better describes the rules people use.
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included types that are in fact irrelevant. 
To address these issues, Costa-Gomes and 
Crawford (2006) conducted a semiparamet-
ric specification test, comparing the likeli-
hoods of subjects’ estimated types with those 
of estimates based on 88 “pseudotypes,” each 
constructed from a single subject’s guesses in 
the 16 games. The logic of the test is that if 
an important type had been omitted from 
the specification, then there would be a cor-
responding cluster of subjects whose deci-
sions are better “explained” by each other’s 
pseudotypes than by any type included in 
the specification. Conversely, if an irrelevant 
type had been included, subjects’ decisions 
would be no better “explained” by it than by 
chance. These tests confirm that there were 
no important types omitted from Costa-
Gomes and Crawford’s (2006) specifica-
tion, and reaffirm most of Costa-Gomes and 
Crawford’s (2006) L1, L2, or Equilibrium 
type estimates for individual subjects. 
However, the tests call into question most 
of the estimates that subjects followed 
other types, and they led Costa-Gomes and 
Crawford (2006) to leave 33 of their 88 sub-
jects unclassified, mostly because those sub-
jects’ decisions had no discernible structure. 

We now discuss leading examples of addi-
tional ways to test a model’s specification and 
evaluate the credibility of its explanation of 
behavior.

One way is to study cognition via measures 
that complement decisions, such as monitor-
ing subjects’ searches for hidden information 
or monitoring their neural activity. 

Costa-Gomes, Crawford, and Broseta 
(2001) and Costa-Gomes and Crawford 
(2006) (see also Crawford’s 2008 survey), 
Brocas et al. (2010), and Wang, Spezio, and 
Camerer (2010) monitored subjects’ searches 
for hidden payoff information in various types 
of games. Noting that level-k and other deci-
sion rules can be viewed as describing how 
people reason, they used algorithmic models 
of how a subject’s rule (equilibrium or not) 

drives his thinking to derive restrictions on 
how the subject searches. They then used 
subjects’ searches, along with their decisions, 
to better estimate what rules they were fol-
lowing. The results generally confirm and 
enrich these authors’ level-k or CH interpre-
tations of subjects’ decisions.28

Bhatt and Camerer (2005), Coricelli and 
Nagel (2009), and Bhatt et al. (2010) study 
strategic thinking via fMRI, again finding 
further support for level-k models.

Another way is to directly elicit subjects’ 
beliefs along with their decisions. Costa-
Gomes and Weizsäcker (2008) report experi-
ments in which subjects made decisions and 
stated beliefs about others’ decisions in 14 
asymmetric two-person 3×3 games. They 
elicit beliefs via a quadratic scoring rule, 
which is incentive compatible when the 
 decisionmaker is a risk-neutral expected-
utility maximizer. Their econometric analysis 
views stated beliefs as another kind of deci-
sion and treats the two as symmetrically as 
possible, with beliefs subject to error as well 
as chosen decisions. Elicited beliefs provide 
a complementary lens through which to 
study subjects’ thinking. Most subjects’ stated 
beliefs are close to L2’s, as if they thought 
 others would behave as L1s; but most of their 
decisions are close to L1’s. This result chal-
lenges the usual view that the setting causes 
beliefs, which then cause decisions. Instead it 
suggests that the decision rule is the funda-
mental, which in conjunction with the setting 
drives both beliefs and decisions. Imposing 
the untested restriction that decisions best 
respond to stated beliefs is risky.29

28  Costa-Gomes and Crawford’s (2006) design separates 
the search implications of level-k and CH L2s and L3, and 
the search data clearly favor the level-k versions. CH Lk 
rules are information hogs, but subjects focus on the more 
limited searches that suffice for level-k Lk rules. 

29 Rey-Biel (2009) partially replicates Costa-Gomes and 
Weizsäcker’s (2008) results; but his results also suggest that 
in constant-sum games, where equilibrium reasoning need 
not depend on strategic thinking, equilibrium may predict 
better than level-k or other theories.
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A third way to study cognition is to moni-
tor subjects’ chats within teams with com-
mon decisions and goals. Burchardi and 
Penczynski (2011; see also Penczynski 
2011) adapt Cooper and Kagel’s (2005) chat 
method, with player roles filled by two-
subject teams with common payoffs whose 
chat deliberations are monitored along with 
their decisions. If team members can agree 
on a decision it is implemented; if not, each 
 submits a proposal, which is implemented 
with probability one-half. Thus a member 
has an incentive both to convey his own 
thinking to his partner, and thus to the 
experimenters, and to propose the deci-
sion he thinks is   optimal. Burchardi and 
Penczynski (2011) and Penczynski (2011) 
elicit responses within subjects to one of 
Nagel’s (1995) games and to Rubinstein’s 
(1999) hide-and-seek game with nonneutral 
framing of locations (section 8; Rubinstein 
1999; Crawford and Iriberri 2007a), also 
adding some structural variety. 

Recall that L0 has usually been taken 
to be uniform random, as a way of captur-
ing players’ strategically naïve assessments 
of others’ likely decisions. Although most 
of the evidence generally supports uniform 
randomness, it does not allow a test of this 
independent of the model’s other assump-
tions.30 Burchardi and Penczynski’s (2011) 
chats do allow such a test. In the chats for 
Nagel’s guessing game, more than half of 
Burchardi and Penczynski’s (2011) subjects 
based their reasoning on some kind of L0, 
a majority with a uniform random L0. Most 
of Burchardi and Penczynski’s (2011) sub-
jects also followed rules that iterated best 
responses to whatever their L0 was (in 

30 We note two exceptions: Ho, Camerer, and Weigelt 
(1998) estimate the mean of a parameterized L0 dis-
tribution, finding in Nagel’s guessing games that it dif-
fers significantly from a uniform distribution. And those 
of Costa-Gomes and Crawford’s (2006) subjects whose 
guesses conformed almost exactly to Lk types defined for 
a uniform L0 provide some support for that assumption.  

level-k, not CH fashion). But Burchardi and 
Penczynski’s (2011) analysis calls into ques-
tion the usual assumption that L0 is homoge-
neous in the population.

Although the estimated population type 
distributions are fairly stable across the dif-
ferent types of games that have been stud-
ied, evidence from classes of games studied 
in isolation allows few firm conclusions about 
the models’ generalizability and portabil-
ity across types of games.31 A fourth way to 
study cognition and to evaluate the cred-
ibility of a model’s explanations is to create 
designs that add structural variety, prefer-
ably within subjects.

Burchardi and Penczynski (2011) find that 
individual subjects’ estimated types are only 
weakly correlated across Nagel’s guessing 
game and Rubinstein’s (1999) hide-and-seek 
game with non-neutral framing of locations 
(section 8).32

Crawford and Iriberri (2007a) check por-
tability across Rubinstein’s (1999) and two 
other hide-and-seek games with non-neutral 
framing, finding some consistency across 
games as explained in section 8.2.   

31 Stahl and Wilson’s (1994, 1995), Nagel’s (1995), 
Costa-Gomes, Crawford, and Broseta’s (2001), Costa-
Gomes and Crawford’s (2006), and Costa-Gomes and 
Weizsäcker’s (2008) designs have some structural variety, 
limited to particular classes of games.

32 We have some reservations about Burchardi and 
Penczynski’s (2011) econometric specification, which 
allows a heterogeneous L0 with bounded normal errors, 
but as in some CH estimations, no errors in higher types’ 
decisions, which are constrained to be exact best responses 
to the hypothesized beliefs. Making L0 serve both as 
anchor and error structure greatly increases the risk of 
misspecification. Even without assuming a Poisson type 
distribution, Burchardi and Penczynski (2011) estimate an 
L0 frequency of 22–37 percent, far higher than estimates 
with unconstrained distributions. We are also concerned 
that Burchardi and Penczynski’s (2011) n-person guessing 
game raises issues about strategic thinking like the extent 
to which subjects’ models of others are correlated, which 
are far from the issues raised by salience in Rubinstein’s 
(1999) games. Games with different structures but that 
raise similar strategic issues might have been more suitable 
for a first study.   
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Adding structural variety in a different 
way, Georganas, Healy, and Weber (2010) 
elicit subjects’ decisions in some of Costa-
Gomes and Crawford’s (2006) guessing 
games and some new “undercutting” games. 
They also consider alternative definitions of 
L0. They find further support for level-k and 
CH models within each class of game, but 
only moderate correlation of subjects’ esti-
mated types across games.33

In judging these and other results on the 
portability of models across different kinds of 
games, the notion of a “general” theory may 
require some adjustment: Allowing behav-
ioral parameters an influence opens the pos-
sibility that they may vary with the setting. 
This, we believe, should not disqualify the-
ories with parameters, but it highlights the 
need for exploratory work with specifications 
flexible enough to allow credible identifica-
tion of the kinds of model that may be useful. 
We may eventually be able to predict how 
the parameters will vary with the environ-
ment; but even if not, the estimated models 
capture useful empirical regularities.

Another route to progress uses models of 
strategic thinking to interpret evidence from 
observational data, whenever the field set-
ting has a structure clear enough to make it 
possible to use such models to do that. We 
discuss field applications below whenever 
possible. 

The experimental papers discussed here 
reflect an encouraging trend toward using 
the power and flexibility of experimental 
design to assess the generalizability, portabil-
ity, and scope of models of strategic thinking. 
Turning to what still needs to be done and the 

33  They also find some positive correlation of subjects’ 
types with measures of their cognitive ability. We suspect 
that the relatively low correlation of types across games is 
due in part to Georganas, Healy, and Weber’s (2010) sim-
plification of Costa-Gomes and Crawford’s (2006) instruc-
tions and omission of Costa-Gomes and Crawford’s (2006) 
understanding test, which we believe is crucial for results 
that are representative of cognition in the field.  

research strategies we think are most likely 
to be useful, we believe further progress 
will best be served by taking full advantage 
of the methods now available to supplement 
the analysis of decisions with other measures 
of cognition; and expanding the variety of 
structures for which we have reliable evi-
dence on thinking, with a particular focus 
on integrative work evaluating model per-
formance across classes of games rather than 
in isolation. Such work should use detailed, 
individual-level data analyses that exploit the 
power of experimental design to reveal sub-
jects’ thinking as directly as possible, not shy-
ing away from econometrics to supplement 
design but substituting the power of design 
for sophisticated econometrics as much as 
possible, and avoiding untestable structural 
assumptions that risk bias.34 The main goals 
should be learning about the ranges of appli-
cability of existing models and the variation 
of behavioral parameters across settings 
and populations, and identifying the need 
for adaptations or new models—all with the 
view of bringing us closer to a truly general 
model of strategic thinking.

4. M. M. Kaye’s Far Pavilions: Payoff 
Asymmetries in Outguessing Games

. . . ride hard for the north, since they will 
be sure you will go southward where the cli-
mate is kinder. . . .

—Koda Dad, in M. M. Kaye (1978, p. 97)

This section illustrates the application of 
level-k models by analyzing the symmetric-
information “outguessing” game suggested 
by the above quotation. As will be seen, the 
heterogeneity of level-k players’ thinking 

34 The common practice of using progressively more 
sophisticated econometrics to reanalyze existing datasets, 
some with only one observation per subject, seems particu-
larly unlikely to yield useful information. 
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gives a coherent account of strategic uncer-
tainty in outguessing games, while avoiding 
equilibrium’s unrealistic comparative stat-
ics implications in such games. The think-
ing reflected by the quotation also motivates 
the uniform random specification of L0 used 
here and in the applications in sections 5 to 7. 

Early in Kaye’s novel The Far Pavilions, 
the main male character, Ash/Ashok, is try-
ing to escape from his pursuers along a 
north–south road. Both Ash and his pursu-
ers must choose, in effect simultaneously, 
between north and south. South is warm, but 
north are the Himalayas, with winter com-
ing. Ash’s mentor, Koda Dad, nonetheless 
advises Ash to ride north. Ash follows Koda 
Dad’s advice, the pursuers go south, and Ash 
escapes.

Imagine that if the pursuers catch Ash, 
they gain two units of payoff and Ash loses 
two; and that they both gain one extra unit for 
choosing south, whether or not Ash is caught. 
This yields the payoff matrix in figure 2. The 
main strategic issue the game poses is how 
best to respond to the payoff asymmetry. Its 
unique mixed-strategy equilibrium gives one 
answer, which we will now contrast with the 
answer suggested by a level-k model. 

Examples like this are as common in 
experimental game theory as in fiction, but 
fiction sometimes more clearly reveals the 
thinking behind a decision. In the quota-
tion, Koda Dad is advising Ash to choose 

the L3 response to a uniform random L0.35 
To see this, note that if the pursuers expect 
Ash to go south because it’s “kinder,” they 
must be modeling Ash as an L1 responding 
to a uniform random L0; for south’s payoff 
advantage is decisive only if there is no dif-
ference in the probability of being caught.36 
Moreover, because Koda Dad says the pur-
suers will be sure Ash will go south, he must 
be modeling them as L2 and advising Ash 
to choose the L3 response to a uniform ran-
dom L0. The level-k model implies deci-
sions as in Table 1. It predicts the outcome 
in the novel exactly, provided that Ash is L3 
and the Pursuers are L2.

How does this level-k prediction compare 
with an equilibrium model? Far Pavilions 
Escape has a unique equilibrium in mixed 
strategies, in which Ash’s Pr{South} p* = 1/4, 
and the Pursuers’ Pr{South} q* = 3/4. Thus 
in equilibrium the novel’s observed outcome 
{Ash North, Pursuers South} has probability 

35 Until recently, we were aware of no level higher 
than L3 anywhere in literature or folk game theory; but 
Johanna Thoma has now identified a plausible L4 in Boyd 
(2006,  250–51): a spy novel, perhaps not coincidentally. 
We remain unaware of examples of  fixed-point reasoning.

36  There is a plausible alternative interpretation in 
which the pursuers’ model of Ash ignores strategic con-
siderations, and given this, uses the principle of insuffi-
cient reason. A uniform random L0 can also be viewed as 
approximating random sampling of a player’s payoffs for 
alternative strategy combinations, unstratified by other 
players’ strategy choices.

Figure 2. Far Pavilions Escape
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(1 – p*)q* = 9/16: less than 1, but much bet-
ter than a random 1/4. 

This comparison is unfair because the 
level-k model has been allowed an omniscient 
narrator telling us how players think while 
equilibrium does not use such information. 
But in applications where such information 
is unavailable, as in most applications, we can 
derive the level-k model’s implications as in 
table 1, and estimate or calibrate the popula-
tion type frequencies. Suppose for example 
that each player role is filled from a 50–30–
20 mixture of L1s, L2s, and L3s and there 
are no errors. Then Ash goes north with 
probability 1/2 and pursuers go south with 
probability 4/5. Assuming independence, 
the observed outcome {Ash North, Pursuers 
South} then has probability 2/5: less than the 
equilibrium frequency 9/16, but still better 
than a random 1/4. 

More importantly, the heterogeneity of 
level-k players’ thinking gives a coherent 
account of the uncertainty in outguessing 
games, while avoiding an unrealistic com-
parative statics implication of the mixed-
strategy equilibrium. In games like Far 
Pavilions Escape, the equilibrium responds 
to the payoff asymmetry of south and north 
in a decision-theoretically intuitive way 
for pursuers (q* = 3/4 > 1/2, their equi-
librium probability with no north–south 

 asymmetry); but in a counterintuitive way for 
Ash ( p* = 1/4 < 1/2). Yet in initial responses 
to games like this, subjects’ choices tend to 
follow decision-theoretic intuition in both 
roles.37 McKelvey and Palfrey (1995) and 
Goeree, Holt, and Palfrey (2005) discuss 
experiments with 2×2 Matching Pennies 
games with payoff perturbations in only one 
player role. These yield initial aggregate 
choices that reflect decision-theoretic intu-
ition in the role with perturbed payoffs; but 
in the other role, for which the intuition is 
neutral, choices deviate from equilibrium in 
the direction that increases expected payoff, 
given the response in the first role. McKelvey 
and Palfrey (1995) (figures 6 and 7) and 
Goeree, Holt, and Palfrey (2005) show that 
LQRE with fitted precisions tracks these 
qualitative patterns, although it sometimes 
underpredicts the magnitudes of deviations 
from equilibrium, especially for the player 
whose payoff is perturbed. A level-k or CH 
model, either calibrated or estimated from 
the data, also tracks those patterns.

37  Ash’s counterintuitive choice would not contradict 
this pattern if he were a subject because his revealed type 
is in the minority. Crawford and Smallwood (1984) discuss 
the comparative statics of mixed-strategy equilibria in per-
turbed Matching Pennies games, showing that this role-
asymmetric intuitiveness is general when both players’ 
payoffs are perturbed.

TABLE 1 
Lk types’ Decisions in Far PaviLions Escape

Type Ash Pursuers

L0 Uniform random Uniform random
L1 South South
L2 North South
L3 North North
L4 South North
L5 South South
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5. Groucho’s Curse: Zero-Sum Betting and 
Auctions with Asymmetric Information

I sent the club a wire stating, “Please accept 
my resignation. I don’t want to belong to 
any club that will accept people like me as 
a member.”

—Groucho Marx (1959, p. 321), Telegram 
to the Beverly Hills Friar’s Club 

“Son,” the old guy says, “No matter how far 
you travel, or how smart you get, always 
remember this: Someday, somewhere,” he 
says, “a guy is going to come to you and 
show you a nice brand-new deck of cards on 
which the seal is never broken, and this guy 
is going to offer to bet you that the jack of 
spades will jump out of this deck and squirt 
cider in your ear. But, son,” the old guy says, 
“do not bet him, for as sure as you do you are 
going to get an ear full of cider.”
—Obadiah (“The Sky”) Masterson, quoting 

his father in Damon Runyon (1932)

This section shows how to extend level-k 
models to allow the informational asymme-
tries commonly found in field applications, 
and uses them to discuss laboratory and field 
evidence. It shows that a model with the 
uniform random L0 used in most applica-
tions with symmetric information, but now 
assumed to be independent of the realizations 
of others’ private information, gives a simple 
account of the results of experiments on zero-
sum betting (Camerer, Ho, and Chong 2004; 
Brocas et al. 2010) and auctions with private 
information (Crawford and Iriberri 2007b). 
This account allows a unified treatment of 
informational naïveté—people’s failure to 
take into account that others’ responses will 
depend on their own private information, as 
in the winner’s curse—and other observed 
aspects of nonequilibrium strategic think-
ing in games with asymmetric information. 
The section next discusses CH analyses of 
field data from settings with asymmetric 

 information (Brown, Camerer, and Lovallo 
2012; Östling et al. 2011). It concludes by 
discussing theoretical applications of level-
k models to the design of optimal auctions 
(Crawford et al. 2009) and efficient mecha-
nisms for bilateral trading (Crawford 2013).

5.1 Zero-Sum Betting

Experiments on zero-sum betting build on 
Milgrom and Stokey’s (1982) no-trade theo-
rem: Suppose traders are weakly risk-averse 
and have concordant beliefs, and the initial 
allocation is Pareto-efficient relative to the 
information available at the time. Then even 
if traders receive new private information, no 
weakly mutually beneficial trade is possible; 
and if traders are strictly risk-averse, no 
trade at all is possible. Any such trade would 
make it common knowledge that all had ben-
efited, contradicting the Pareto-efficiency of 
the original allocation. With reference to our 
first quotation, this result has been called the 
Groucho Marx theorem.

The fact that speculative zero-sum trades 
are common in real markets has a number of 
possible explanations, one of which is non-
equilibrium thinking. Brocas et al.’s (2010) 
experiments on zero-sum betting have the 
control required to distinguish between 
alternative models of strategic thinking and 
models based on other factors such as hedg-
ing or the joy of gambling (see also Camerer, 
Ho, and Chong 2004, section VI; Rogers, 
Palfrey, and Camerer 2009; and the earlier 
papers they cite).

Brocas et al.’s design used simple three-
state betting games in the spirit of Milgrom 
and Stokey’s market model, including the one 
in figure 3. The rules and the information 
structure were publicly announced, so that 
the design could be used to test theories that 
assume common knowledge. Each of the two 
players, 1 and 2, is given information about 
which of three ex ante equally likely states 
has occurred, A, B, or C. As indicated by the 
 borders in figure 3, player 1 learns either that 
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the state is {A or B} or that it is C; while player 
2 learns either that the state is A, or that it is 
{B or C}. Once informed, the players choose 
simultaneously between two decisions: Bet or 
Pass. A player who chooses Pass earns 10 no 
matter what the state. If one player chooses 
Bet while the other chooses Pass, they both 
earn 10 no matter what the state. If both 
choose Bet, they get the payoffs in figure 3, 
depending on which state has occurred. 

This game has a unique trembling-hand 
perfect Bayesian equilibrium.38 In this equi-
librium, player 1 told C will Bet because 
20 > 10, and player 2 told A will Pass because 
0 < 10. Given that, player 1 told {A or B} will 
Pass, because player 2 will Pass if told A, so 
betting given {A or B} yields player 1 at most 
5 < 10. Given that, player 2 will Pass if told 
{B or C}, because player 1 will Pass if told 
{A or B}, so betting given {B or C} yields 
player 2 at most 5 < 10. This covers all contin-
gencies and completes the characterization of 
equilibrium, showing that the game is weakly 
dominance-solvable in three rounds. In equi-
librium no betting takes place in any state.

Despite this clear conclusion, in Brocas et 
al.’s (2010) and previous experiments, sub-
jects bet approximately half the time, with 
strong regularities in betting patterns across 
roles and states.  To explain these results, 
Brocas et al. proposed a level-k model in 
which,  following Camerer, Ho, and Chong 

38  Trivial equilibria also exist, in which players do 
not bet because their partners do not bet, though this is 
weakly dominated.

(2004, section VI), L0 bids uniformly ran-
domly, independent of its private informa-
tion. Recall that L0 is a player’s strategically 
naïve model of others’ responses—oth-
ers whose private information he does not 
observe. One could still imagine L0s that 
reflect an influence of others’ information on 
their responses via contingent reasoning, e.g., 
by assuming others never bid above their true 
values. But such reasoning is seldom consis-
tent with results from other settings, and 
Camerer, Ho, and Chong’s (2004) specifica-
tion greatly enhances the model’s explanatory 
power, as will be seen. As in previous analy-
ses, Brocas et al. took L1 to best respond to 
L0, and L2 to best respond to L1. Following 
Crawford and Iriberri (2007b), we call an L1 
that best responds to a random L0 a “random 
L1” even though it need not itself be random; 
and we call an L2 that best responds to a ran-
dom L1 a “random L2.”39

Given this specification, random L1 
player 1s will Bet if told {C} because it yields 
20 > 10 if player 2 Bets. Unlike in equi-
librium, random L1 player 1s will also Bet 
if told {A or B} because it yields 25 in state 
{A} and 5 in state {B}; random L0 player 2s 
will Bet with probability one-half in {A} or 
{B}; and the two states are equally likely, so 

39 Compare Milgrom and Stokey’s (1982, 23) Case A 
“Naïve Behavior,” in which a player simply best responds to 
his prior. This refusal to draw contingent inferences from 
others’ willingness to bet is implied by random L1’s ran-
dom model of others. Milgrom and Stokey’s Case B “First-
Order Sophistication” is then equivalent to Crawford and 
Iriberri’s random L2.

Player/state A B C

1 25 5 20

2 0 30 5

Figure 3. Zero-Sum Betting
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Betting yields expected payoff (25 + 5)/2 
= 15 > 10. Random L1 player 2s will Pass if 
told {A}, because it yields 0 < 10. Unlike in 
equilibrium, random L1 player 2s will Bet if 
told {B or C}, because it yields 30 in state 
{B} and 5 in state {C}; random L0 player 1s 
will Bet with probability one-half in {B} or 
{C}; and the two states are equally likely, so 
Betting yields expected payoff (30 + 5)/2 
= 17.5 > 10. Similarly, Random L2 or L3 
player 1s will Pass if told {A or B} but Bet 
if told {C}; Random L2 player 2s will Pass if 
told {A} but Bet if told {B or C}; and Random 
L3 player 2s will Pass in any state.

Brocas et al.’s data analysis finds clusters of 
subjects corresponding to L1s, L2s, and L3s, 
and a fourth cluster of apparently irrational 
subjects. Their mixture of level-k types tracks 
the patterns of subjects’ decisions much bet-
ter than any alternative model, including 
equilibrium plus noise.40

In related work, Camerer (2003, chap-
ter 6) and Strzalecki (2010) conduct level-k 
analyses of Rubinstein’s (1989) electronic 
mail game, showing that the models’ 
bounded depths of reasoning make plausible 
predictions that are independent of the tail 
assumptions on higher-order beliefs that 
lead to Rubinstein’s behaviorally unrealistic 
equilibrium-based predictions for that game. 
Rogers, Palfrey, and Camerer (2009) con-
duct a horse race between LQRE and CH 
for similar betting games, in which a flexible 
“truncated heterogeneous LQRE” model fits 
better than CH or LQRE.

Carrillo and Palfrey (2009) analyze two-
person games where players with privately 
known strengths can decide whether to 
fight or compromise. In equilibrium, players 
always fight because as in zero-sum betting, 
they have opposing interests about when 

40  L3s in this 3-dominance-solvable game correspond to 
Equilibrium players. Brocas et al.’s analysis of their lookup 
data reinforces their level-k interpretation of their decision 
data, and is evidence against LQRE or even CH.

to compromise. But subjects compromise 
50–70 percent of the time; and more often, 
the higher the compromise payoff. Finally, in 
a horse race among LQRE, CH, and “cursed 
equilibrium” (Eyster and Rabin 2005, sec-
tion 5.2), the results favor a blend of LQRE 
and cursed equilibrium.

5.2 Auction Experiments

There is a rich literature on sealed-bid 
asymmetric-information auction experi-
ments, which developed independently of 
the literature on game experiments, despite 
similar goals. In auction experiments sub-
jects’ initial responses tend to exhibit over-
bidding relative to the risk-neutral Bayesian 
Nash equilibrium, whether the auction is 
first- or second-price, independent-private-
value or common-value (e.g., Kagel and 
Levin 1986; Goeree, Holt, and Palfrey 2002). 
The literature proposes to explain overbid-
ding by “joy of winning” or risk-aversion in 
independent-private-value auctions, or by 
the winner’s curse in common-value auc-
tions. Those explanations are only loosely 
related to those proposed for deviations from 
equilibrium in other games, and it would 
plainly be useful to unify the explanations of 
nonequilibrium behavior in common-value 
auctions and other asymmetric-information 
games where informational inferences are 
relevant; and also to unify the explanations 
for common-value and independent-private-
value auctions. 

Kagel and Levin (1986) and Eyster and 
Rabin (2005) took a first step, formalizing the 
intuition behind the winner’s curse in models 
in which “naïve” bidders do not adjust their 
value estimates for the information revealed 
by winning, but otherwise follow Bayesian 
equilibrium. Eyster and Rabin’s (2005) 
notion of cursed equilibrium, in which peo-
ple do not fully take into account the corre-
lation between others’ decisions and private 
information but otherwise follow equilibrium 
logic, generalizes Kagel and Levin’s (1986) 
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model to allow levels of value  adjustment 
from equilibrium with full adjustment to 
“fully-cursed” equilibrium with no adjust-
ment; and from auctions to other kinds of 
asymmetric-information games.41 Kagel and 
Levin’s (1986) and Eyster and Rabin’s (2005) 
models allow players to deviate from equilib-
rium only in their informational inferences, 
and reduce to equilibrium in independent-
private-value auctions or symmetric-infor-
mation games.

Crawford and Iriberri (2007b) propose 
a level-k analysis to unify the explanations 
of deviations from equilibrium in initial 
responses to independent-private-value or 
common-value auctions or to other kinds of 
games, without invoking joy of winning, risk-
aversion, or cognitive biases.

The main issue is how to specify L0. In 
auctions there are two leading possibilities: 
Random L0, as in the above analysis of zero-
sum betting, bids uniformly between the 
lowest and highest possible values, indepen-
dent of its own value. Truthful L0 bids its 
expected value conditional on its own signal, 
which is meaningful in auctions. Crawford 
and Iriberri build separate type hierarchies 
on these L0s, stopping for simplicity at L2: 
Random (Truthful) Lk is defined by iterating 
best responses from Random (Truthful) L0. 
Crawford and Iriberri allow each subject to 
be one of the types, from either hierarchy.

Crawford and Iriberri (2007b) show 
that most conclusions of equilibrium auc-
tion theory are robust to deviations from 
equilibrium structured by a level-k model. 
An Lk type’s optimal bid must take into 
account value adjustment for the infor-
mation revealed by winning in common-
value auctions, and the bidding trade-off 
between the higher price paid if the bid-
der wins and the probability of winning in 

41  Eyster and Rabin (2005) also show that cursed equi-
librium can explain zero-sum betting with a probability 
that is positive but less than one.

 first-price  auctions. The level-k model allows 
a  tractable  characterization of those issues, 
which closely parallels Milgrom and Weber’s 
(1982) equilibrium-based characterization. 

With regard to value adjustment, Random 
L1 does not update on winning because its 
Random L0 model of others bids indepen-
dently of their values, and so Random L1 
is fully cursed in Eyster and Rabin’s (2005) 
sense. Thus the random type hierarchy uni-
fies an explanation of informational naïveté 
with explanations of nonequilibrium strate-
gic thinking that have had success in other 
settings. Other types condition on winning 
in various ways. This conditioning tends to 
make bidders’ bids strategic substitutes, in 
that if it’s bad news that you beat equilibrium 
bidders, it’s even worse to have beaten over-
bidders; thus the higher are others’ bids, the 
greater the value adjustment. The bidding 
tradeoff, by contrast, can go either way, just 
as in an equilibrium analysis.

Most equilibrium results survive, quali-
tatively, in the level-k analysis. The main 
exceptions are those that rely on bidders’ 
ex ante symmetry. They are altered, even 
though players are objectively symmetric, 
because level-k players have simpler models 
of others than of themselves.

Crawford and Iriberri (2007b) ask whether 
an estimated mixture of level-k types fits the 
initial response data from classic auction 
experiments better, taking the numbers of 
parameters into account, than equilibrium 
plus noise; cursed equilibrium; or for private-
value auctions, LQRE. In three of four lead-
ing cases, a level-k model does better than 
the alternatives. In the fourth case, Kagel and 
Levin’s (1986) first-price auction, the most 
flexible cursed-equilibrium specification 
has a small advantage; but that disappears 
when the cursed-equilibrium specification’s 
number of parameters is made comparable 
to that of the level-k model. Except in Kagel 
and Levin’s (1986) second-price auctions, 
where many subjects seem to have been 
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confused, the estimated type frequencies are 
similar to those estimated for non-auction 
experiments, with results generally favoring 
the random over the truthful type hierarchy.

5.3 Acquiring a Company and the 
Winner’s Curse 

Charness and Levin (2009) report experi-
ments that seek to test whether the winner’s 
curse is due to nonequilibrium strategic 
thinking or cognitive failures of individual 
optimization when it requires complex 
inferences. Charness and Levin’s (2009) 
experiments are based on Samuelson and 
Bazerman’s (1985) “Acquiring a Company” 
game, a game-theoretic analog of a “lemons” 
market. There are two risk-neutral players, 
a bidder and a responder. The responder 
owns an indivisible object and the bidder 
makes a single bid for it. If the responder 
accepts the bid, the object is transferred at 
the bid price; if not, there is no deal. The 
value of the company to the responder is an 
integer between 0 and 100 inclusive, with 
each of these values equally likely. Only 
the responder observes his value, before 
he must decide whether to accept; but the 
bidder knows that, whatever the value, it 
is 50 percent larger for him than for the 
responder; and this fact and the value dis-
tribution are common knowledge.

This game has an essentially unique per-
fect Bayesian equilibrium, in which the bid-
der bids zero and the responder rejects that 
bid, but would accept any offer greater than 
his value. In equilibrium the bidder draws a 
contingent inference from the responder’s 
willingness to accept, like those required to 
overcome the winner’s curse or avoid losing a 
zero-sum bet. If the bidder offers x > 0, the 
responder will accept only if his value is less 
than x, so conditional on acceptance, given 
the uniform distribution, the responder’s 
expected value is x/2 and the bidder’s is 3x/4. 
Thus accepting loses the bidder x/4 on aver-
age, his optimal bid is 0, and no transfer will 

occur, even though it is common knowledge 
that a transfer is mutually beneficial at some 
prices.

Despite this clear equilibrium prediction, 
experimental subjects often trade, at prices 
that seem to split the expected gains from 
trade from an ex ante point of view, even 
though the responder observes his value 
before the game is played. Charness and 
Levin’s (2009) design uses “robot” treat-
ments in which a bidder’s decisions deter-
mine his payoffs the same way a rational 
responder’s decisions determine his pay-
offs in Acquiring a Company, but the robot 
responder is framed not as another player 
but as part of the game. (Carroll, Bazerman, 
and Maury 1988 ran the same treatment, 
their “beastie run,” with similar results.) 
But because the robot problem involves 
no decisions by others, cursed equilibrium 
or level-k players, taken literally, should 
get its informational inferences right. But 
Charness and Levin’s (2009) subjects in 
the robot treatment do not get it right, 
overbidding as much as in a normal (non-
robot) treatment. On that basis Charness 
and Levin (2009) argue that cursed equilib-
rium or level-k models do not explain the 
overbidding commonly observed in normal 
Acquiring a Company treatments.

In our view, Carroll, Bazerman, and 
Maury’s (1988) and Charness and Levin’s 
(2009) results do not undermine the sup-
port for level-k or cursed-equilibrium mod-
els from more conventional experiments. 
Those models were originally formulated for 
settings in which the main difficulty is pre-
dicting and responding to others’ decisions, 
simplifying other aspects of the problem to 
explore their implications as transparently 
as possible. There is no reason to expect 
such formulations to translate unmodi-
fied to settings in which the complexity has 
been shifted from the “other people” part 
of the problem to the “own decisions” part. 
Charness and Levin’s (2009) failure to find 
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significant differences across normal and 
robot treatments would not be evidence 
against the most obvious generalizations 
of level-k or cursed-equilibrium models.42 
Charness and Levin’s (2009) results simply 
highlight the need for more general models 
that address both the cognitive difficulty of 
predicting others’ responses to a game and 
drawing inferences from them, and the dif-
ficulty of drawing analogous inferences in 
decision problems. Future work should 
further map the domains of applicability of 
existing models and identify specific models 
that explain why people do not always make 
rational or equilibrium responses, inte-
grating what cursed- equilibrium or level-k 
models get right with better models of the 
aspects of cognition they do not adequately 
address, such as reasoning contingent on 
future events.

Ivanov, Levin, and Niederle (2010) con-
tinue Charness and Levin’s (2009) inves-
tigation. Their design is based on Bulow 
and Klemperer’s (2002) Maximum Game, 
a second-price common-value auction in 
which both bidders’ values equal the maxi-
mum of their independent and identically 
distributed value signals. The Maximum 
Game is weakly dominance-solvable in two 
steps, with truthful bidding its unique equi-
librium. Ivanov, Levin, and Niederle (2010) 
run three treatments, each with two parts. 
In part 1, subjects are randomly paired to 
play the game with value signals sampled 
without replacement, enough times that a 
subject’s bids generate a function mapping 
each possible value into a bid. In part 2, 
subjects play the game with the same possi-
ble value signals in a different, randomized 
order, but now against a computer “robot” 

42  However, we doubt that such mechanical generaliza-
tions would be empirically very useful, because we suspect 
people use different cognitive routines in games against 
real other players than in decision problems based on theo-
retical other players.

that uses the subject’s own bidding function 
from part 1. Ivanov, Levin, and Niederle 
(2010) argue that, if overbidding in part 1 
is due to nonequilibrium beliefs, subjects 
who overbid in part 1 should overbid less in 
part 2 because the best-responses to their 
part 1 bids are then lower than their part 1 
bids. Most of Ivanov, Levin, and Niederle’s 
(2010) subjects overbid for at least one 
value signal in part 1. Ivanov, Levin, and 
Niederle (2010) used criteria based on the 
data to select the subset of their subjects 
whose data they analyzed. For those sub-
jects much of the part 1 overbidding per-
sists in part 2, and there was no significant 
difference in the median response for any 
signal. Ivanov, Levin, and Niederle (2010) 
conclude from this failure to find significant 
differences that beliefs-based theories can-
not explain their results.

Costa-Gomes and Shimoji (2011) critique 
Ivanov, Levin, and Niederle’s (2010) criteria 
for selecting subjects and reanalyze Ivanov, 
Levin, and Niederle’s (2010) data without 
excluding any subjects. They show that 
Ivanov, Levin, and Niederle’s (2010) predic-
tion of less overbidding in part 2 can only 
be applied to the overbidding of one-third 
of their subjects, and that half of such data 
actually conforms to the prediction, under-
mining Ivanov, Levin, and Niederle’s (2010) 
rejection of beliefs-based theories. Costa-
Gomes and Shimoji also show that Ivanov, 
Levin, and Niederle’s (2010) theoretical 
comparative-statics argument is incomplete 
for at least one beliefs-based model, in that 
their predictions are based solely on ran-
dom L1, but as in Crawford and Iriberri’s 
(2007b) analysis of auctions, random L2 can 
deviate from equilibrium in the opposite 
direction, reversing the comparative statics.

Camerer, Nunnari, and Palfrey (2011) 
also reanalyze Ivanov, Levin, and Niederle’s 
(2010) data without excluding subjects. 
Noting that Ivanov, Levin, and Niederle’s 
(2010) design very weakly separates 
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 alternative theories, they show that if one 
allows decision noise, Ivanov, Levin, and 
Niederle’s (2010) results are fully consistent 
with a wide range of beliefs-based models, 
including cursed equilibrium, CH, QRE, or 
hybrids of CH and QRE.

We also note that Ivanov, Levin, and 
Niederle’s (2010) inferences are based 
entirely on their failure to find significant 
differences in the direction they argue is 
predicted by beliefs-based models. Yet the 
Maximum Game requires very subtle infer-
ences. As Bulow and Klemperer said of its 
equilibrium predictions, “ . . . the Maximum 
Game, provides a good illustration of how 
a different choice of value function . . . can 
make it easy to obtain extreme ‘perverse’ 
results.” Ivanov, Levin, and Niederle’s 
(2010) data are extremely noisy, with 25 per-
cent of subjects’ bids 10 or more (in many 
cases, thousands) times higher than the larg-
est possible value.43 With such a low signal-
to-noise ratio, negative inferences based 
on a failure to find significant differences 
across treatments could be used to reject 
any theory. Ivanov, Levin, and Niederle’s 
(2010) paper makes clear the importance 
of experimental analyses that, like most of 
those discussed in section 3, compare spe-
cific positive predictions based on complete 
models of behavior, evaluated via individual-
level analyses of datasets from designs that 
generate coherent results.

5.4 Field Studies: Movie Opening and 
Lowest Unique Positive Integer Games 

Brown, Camerer, and Lovallo (2012) use 
field data to study an asymmetric-informa-
tion signaling game with verifiable signals. 
Film distributors face a choice between “cold 
opening” a movie and prereleasing them to 

43  This exposed subjects to large negative payoffs for 
which they could not be held liable, thus losing control of 
preferences.

critics in the hope that favorable reviews will 
increase profits. In perfect Bayesian equilib-
rium, cold-opening should not be profitable, 
because moviegoers will infer low quality for 
cold-opened movies; as a result there should 
be no cold opening, except possibly by the 
worst movie type. Yet distributors sometimes 
cold-open movies, and in a set of 1,303 widely 
released movies, cold opening increased 
domestic box office revenue (though not 
foreign or for DVD sales) by 10–30 per-
cent over movies of similar quality that were 
reviewed before release. Further, ex post 
fan ratings on the Internet Movie Database 
were lower for cold-opened movies. Brown, 
Camerer, and Lovallo (2012) use a CH model 
to explain these results. Both features sug-
gest that moviegoers had unrealistically high 
expectations for cold-opened movies, which 
is hard to explain using theories other than 
CH or level-k. However, movie distributors 
do not appear to take advantage of moviego-
ers’ lack of sophistication, since only 7 per-
cent of movies were opened cold despite the 
expected-profit advantage. 

Östling et al. (2011) study a novel set of 
field data from a Swedish gambling company, 
which ran a competition for a short period 
of time involving a “lowest unique positive 
integer” or LUPI game. (They also studied 
experimental data from parallel treatments.) 
In the LUPI game, players strategically 
simultaneously pick positive integers and the 
player who chose the lowest unique (that is, 
not chosen by anyone else) number wins a 
prize. Except for the uniqueness require-
ment, the game is like a first-price auction 
with the lowest bid winning.

The game would have symmetric infor-
mation except that participants had no way 
to know how many others would enter on a 
given day. The authors deal with this by adapt-
ing Myerson’s (2000) Poisson games model, 
in which fully rational players face Poisson-
distributed uncertainty about the number 
of players. They  characterize the LUPI 
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game’s unique symmetric Poisson–Nash 
 equilibrium, and compare it to the predic-
tions of versions of QRE and CH models, 
using both the field data and data from 
experiments using a scaled-down version of 
the LUPI game. 

In both the field and the laboratory, par-
ticipants choose very low and very high num-
bers too often relative to the Poisson–Nash 
equilibrium, and avoid round and salient 
numbers.44 However, initial responses are 
surprisingly close to the equilibrium, even 
though the setting surely prevents partici-
pants from computing it. Learning brings 
them even closer to equilibrium in later 
periods.

In comparing the data to the predictions 
of versions of QRE and CH, Östling et al. 
assume that both have power rather than the 
usual logit error distributions, and they allow 
the CH types to best respond to the noise in 
others’ decisions.45 They find that relative to 
the Poisson–Nash equilibrium, power QRE 
predicts too few low-number choices, deviat-
ing from equilibrium in the wrong direction, 
while CH predicts the pattern observed in 
the field data. 

5.5 Level-k Mechanism Design

A number of recent papers reconsider 
mechanism design taking a “behavioral” view 
of individual decisions or probabilistic judg-
ment, but there are few analyses of design 
outside the equilibrium paradigm. Replacing 
equilibrium with a model that better describes 
responses to novel games should allow us to 

44 Salience plays a similar role in Crawford and Iriberri’s 
(2007a) analysis of hide-and-seek games (Section 8.1).

45 A standard CH model would not fit the LUPI data 
well: L1 would choose 1, L2 2, L3 3 or less, and Lk k or less. 
But best responding to power errors sometimes makes 
L2’s modal choice higher than 5 (Östling et al., figure A6). 
This is not a criticism of Östling et al.’s CH analysis, but a 
general limitation of the structural features of models like 
level-k or CH.

design more effective  mechanisms. It also 
suggests an evidence-based way to assess the 
robustness of mechanisms, something previ-
ously left to intuition.46

Crawford et al. (2009) relax the equilibrium 
assumption in mechanism design, maintain-
ing standard rationality assumptions regard-
ing decisions and probabilistic judgment. 
They conduct a level-k analysis of optimal 
sealed-bid auctions with symmetric bid-
ders who have independent private values, 
for which Myerson (1981) gives a complete 
equilibrium-based analysis. Their model fol-
lows Crawford and Iriberri’s (2007b) level-k 
analysis of behavior in auction experiments, 
with either a random L0 that bids uniformly 
over the range of possible bids or a truthful 
L0 that bids its private value. Bidders are 
drawn from a given population of level-k 
types, known to the designer. 

With independent private values, revenue- 
equivalence fails because level-k types 
respect simple dominance, hence a sec-
ond-price auction reproduces the expected 
revenue of equilibrium bidders, while a first-
price auction may do better, because types 
like Random L1 tend to overbid.

The optimal reserve price may be large 
with equilibrium bidders but small with 
level-k bidders, or vice versa. In theory, a 
designer can use exotic auction forms to 
exploit level-k bidders’ nonequilibrium 
beliefs to obtain very large expected rev-
enues. But as Crawford et al. (2009) note, a 
general formulation of the design problem 
must take a position on how the design influ-
ences the rules that describe bidders’ behav-
ior, and develop methods to deal with that 
influence. 

46 A mechanism that implements the desired outcome 
in dominant strategies or after a small number of rounds of 
iterated dominance will evoke the desired response from 
most level-k types that are likely to be observed. It may 
therefore perform better in practice than a mechanism 
that can theoretically implement better outcomes, but only 
in equilibrium.
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Crawford (2013) relaxes the equilibrium 
assumption in favor of a similar level-k 
model in Myerson and Satterthwaite’s (1983) 
analysis of efficient bilateral trading mecha-
nisms with independent private values. In 
the leading case of uniform value distribu-
tions, when attention is restricted to incen-
tive-compatible mechanisms (defined for 
level-k rather than equilibrium traders), the 
double auction Myerson and Satterthwaite 
showed to be equilibrium-incentive-effi-
cient in that case remains efficient in the set  
of level-k incentive-compatible mechanisms 
for a wide class of level-k models. But the 
revelation principle fails with level-k traders. 
Just as incentive-compatible mechanisms 
may counteract the excessive aggressive-
ness of L1 traders in the double auction, 
non-incentive-compatible direct mecha-
nisms may increase the efficiency of trading 
above the Myerson–Satterthwaite bound for 
incentive-compatible mechanisms by tacitly 
exploiting traders’ nonequilibrium beliefs to 
make them bargain less aggressively.      

6. Kahneman’s Entry Magic: Coordination 
via Symmetry-Breaking

 . . . to a psychologist, it looks like magic.
—Kahneman (1988), quoted in Camerer, 

Ho, and Chong (2004)

This section discusses level-k models of 
symmetric-information market entry games, 
in which n subjects choose simultaneously 
between entering (“In”) or staying out 
(“Out”) of a market with given capacity. In 
yields a given positive profit if the number 
of entrants is at most a given market capac-
ity; but a negative profit if too many enter. 
Out yields profit of 0, no matter how many 
enter. In these games efficient coordination 
requires breaking the symmetry of players’ 
roles, so that the capacity will be exactly 
filled. Because subjects cannot distinguish 

one another, it is not sensible to predict sys-
tematic differences in their behavior, and the 
natural equilibrium benchmark is therefore 
the unique, symmetric mixed-strategy equi-
librium, in which each player enters with 
a given probability that makes all players 
indifferent between In and Out. That equi-
librium is inefficient, yielding an expected 
number of entrants approximately equal to 
market capacity, but with a positive probabil-
ity that either too many or too few enter. The 
“magic” to which Kahneman (1988) refers 
is that even in their initial responses to the 
game, subjects’ independent decisions came 
surprisingly close to the aggregate choice 
frequencies of the symmetric equilibrium. 
Perhaps more surprisingly, their ex post 
coordination was systematically better (num-
ber of entrants stochastically closer to mar-
ket capacity) than in the equilibrium.

The section begins, following Camerer, 
Ho, and Chong’s (2004) (section III.C) 
CH analysis, by using a level-k model to 
analyze Battle of the Sexes, which is like a 
two-person entry game with capacity one. 

A level-k model resolves both puzzles by 
showing that the heterogeneity of strategic 
thinking approximately mimics the mixed-
strategy equilibrium’s decision frequencies 
and allows some players to mentally simulate 
others’ decisions and accommodate them, 
which in these games yields better coordina-
tion than in the mixed-strategy equilibrium. 
The model suggests a behaviorally plausible 
alternative to the traditional view of coordi-
nation, which has important implications in 
other applications. The section concludes by 
discussing Goldfarb and Yang’s (2009) and 
Goldfarb and Xiao’s (2011) CH empirical 
analyses of market entry with asymmetric 
information in the field.

6.1 A Level-k Analysis of Two-Person 
Entry/Battle of the Sexes Games 

Consider a two-person Battle of the Sexes 
game with a > 1, as in figure 4. The unique 
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symmetric equilibrium is in mixed strategies, 
with p ≡ Pr{In} = a/(1 + a) for both players. 
The mixed-strategy equilibrium expected 
coordination rate is 2p(1 − p) = 2a/(1 + a)2, 
and players’ equilibrium expected payoffs 
are a/(1 + a). This expected coordination 
rate is maximized when a = 1, where it takes 
the value 1/2. With a > 1 the expected pay-
offs are a/(1 + a) < 1: worse for each player 
than his worst pure-strategy equilibrium. As 
a → ∞, 2a/(1 + a)2 → 0 like 1/a.

Now consider a level-k model in which 
each player follows one of four types, L1, L2, 
L3, or L4, with each role filled by a draw from 
the same distribution. For simplicity assume 
the frequency of L0 is 0, and that L0 is uni-
form random, with Pr{In} = Pr{Out} = 1/2.

L1s mentally simulate L0s’ random deci-
sions and best respond, thus, with a > 1, 
choosing In; L2s choose Out; L3s choose In; 
and L4s choose Out. The predicted outcome 
distribution is determined by the outcomes 
of the possible type pairings (table 2) and the 
type frequencies. If both roles are filled from 
the same distribution, players have equal ex 
ante payoffs, proportional to the expected 
coordination rate. L3 behaves like L1, and 
L4 like L2. Lumping L1 and L3 together and 
letting v denote their total probability, and 
lumping L2 and L4 together, the expected 
coordination rate is 2v(1 − v), maximized at 
v = 1/2 where it takes the value 1/2. Thus for 
v near 1/2, which is behaviorally plausible, 
the coordination rate is near 1/2. For more 
extreme values the rate is worse, converging 

to 0 as v → 0 or 1. But because the equilib-
rium rate of 2a/(1 + a)2 → 0 like 1/a, even 
for moderate values of a, the level-k coordi-
nation rate is higher.47

The level-k analysis suggests a view of tacit 
coordination quite different from the tradi-
tional view, and illustrates the importance of 
the heterogeneity of strategic thinking the 
model allows. With level-k thinking, equi-
librium and refinements like risk- or payoff-
dominance play no role in players’ thinking. 
Coordination, when it occurs, is an accidental 
(though statistically predictable) by-product 
of the use of nonequilibrium decision rules. 
Even though players’ decisions are simulta-
neous and independent, the heterogeneity of 
strategic thinking allows more sophisticated 

47 This analysis highlights a drawback of level-k models, 
in that without payoff-sensitive errors, their predictions are 
independent of a as long as a > 1, while behavior is often 
sensitive to such parameter variations. Adding payoff-sen-
sitive errors would help to remedy this, but probably not 
enough to make the models fully descriptive of observed 
behavior. Camerer, Ho, and Chong (2004, section III.C) 
and Chong, Camerer, and Ho (2005, section 2.1) argue that 
in this context, CH models fit better than level-k models 
because they yield smooth monotonicity of entry rates as 
market capacity increases, while a level-k model implies a 
step function. However in most of the datasets Camerer, 
Ho, and Chong (2004) consider, unlike in their CH model, 
there are congestion effects that allow payoff-sensitive 
logit errors like those in a typical level-k analysis to smooth 
entry as well. As Camerer, Ho, and Chong (2004) show, 
their CH model can produce entry which is monotonic in 
market capacity and approximates the mixed-strategy equi-
librium; but it can also explain the facts that subjects tend 
to over-enter at low market capacities and under-enter at 
high capacities, which equilibrium cannot.

In Out

In 0
0

1
a

Out a
1

0
0

Figure 4. Battle of the Sexes
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players such as L2s to mentally simulate 
the decisions of less sophisticated players 
such as L1s and accommodate them, just as 
Stackelberg followers would do. Mental sim-
ulation doesn’t work perfectly, because an L2 
is approximately as likely to be paired with 
another L2 as an L1. Neither would it work 
if strategic thinking were homogeneous. But 
it’s very surprising that it works at all.

6.2 Field Studies: CH Analyses of Entry 
Games 

The same issues arise in Goldfarb and 
Yang’s (2009) and Goldfarb and Xiao’s (2011) 
field studies of asymmetric-information entry 
games. These studies are of particular inter-
est because they are among the first studies 
of nonequilibrium models of strategic think-
ing using field data.

Goldfarb and Yang (2009) apply an asym-
metric-information CH model to explain 
choices by managers at 2,233 Internet 
Service Providers (ISP) in 1997 whether or 
not to offer their customers access through 
56K modems versus the standard then, 33K 
modems. There were two possible 56K tech-
nologies, one by Rockwell Semiconductor 
and one by US Robotics. Thus an ISP man-
ager had four alternatives: (i) adopt neither 
technology, (ii) adopt Rockwell’s, (iii) adopt 
US Robotics’s, or (iv) adopt both. Controlling 
for market and ISP-specific characteristic, 
Goldfarb and Yang (2009) adapt the CH 

model to describe the heterogeneity in abil-
ity or strategic sophistication among the ISP 
managers in these decisions. They assume 
(departing from the usual L0 specification) 
that an L0 manager maximizes profits on 
the assumption that he will be a monopolist; 
an L1 manager on the assumption that his 
competitors will be L0s; an L2 manager on 
the assumption that his competitors will be 
an estimated mixture of L0s and L1s, and 
so on. They find significant heterogeneity 
of sophistication among managers, with an 
estimated τ, the average k in a CH model, of 
2.67—seemingly higher than most previous 
estimates. 

Goldfarb and Yang’s (2009) CH model 
fits no better than a Bayesian equilibrium 
plus noise model, but their CH estimates 
have interesting and plausible implications. 
Interestingly, they suggest that relative 
to equilibrium, heterogeneity of strategic 
thinking slowed the diffusion of the new 56K 
technology, with more sophisticated man-
agers less likely to adopt, anticipating more 
competition. Managers behaved more stra-
tegically, in the sense of higher estimated ks, 
if they competed in larger cities, with more 
firms, or in markets with more educated 
populations. Finally, those managers esti-
mated as more strategic in 1997 were more 
likely to survive through April 2007. We note 
however that in a CH model, though not 
a level-k model, a higher k implies a more 

TABLE 2 
Outcomes in Battle of the Sexes

Type pairings L1 L2 L3 L4

L1 In, In In, Out In, In In, Out
L2 Out, In Out, Out Out, In Out, Out
L3 In, In In, Out In, In In, Out
L4 Out, In Out, Out Out,In Out, Out
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accurate model of others’ fitted decisions, 
and hence higher predicted expected prof-
its against the heterogeneous population of 
players it faces. Thus, in a CH model a firm 
that does well in the market must have had a 
higher k. Only a model that allows the possi-
bility that a firm might err by perceiving oth-
ers as being of a higher level than they are 
allows independent inferences about a firm’s 
level of sophistication and its beliefs about 
others’ sophistication. 

Goldfarb and Xiao (2011) apply a simi-
lar CH model to explain managers’ choices 
whether to enter local U. S. telecommunica-
tions markets after the Telecommunications 
Act of 1996, which allowed free competition. 
Using Goldfarb and Yang’s (2009) L0 speci-
fication, they find that more experienced or 
better educated managers did better, enter-
ing markets with fewer competitors, on aver-
age; having better survival rates; and having 
higher revenues conditional on survival. 
Estimated sophistication rises from 1998 to 
2002. The CH model fits much better than 
an equilibrium plus noise model in 1998, but 
only slightly better in 2002, in keeping with 
the view that models like CH are best suited 
to initial responses to novel situations.

7. Bank Runs: Coordination via Assurance

A crude but simple game, related to Douglas 
Diamond and Philip Dybvig’s (1983) cel-
ebrated analysis of bank runs, illustrates 
some of the issues involved here. Imagine that 
everyone who has invested $10 with me can 
expect to earn $1, assuming that I stay sol-
vent. Suppose that if I go bankrupt, investors 
who remain lose their whole $10 investment, 
but that an investor who withdraws today 
neither gains nor loses. What would you do? 
Each individual judgment would presumably 
depend on one’s assessment of my prospects, 
but this in turn depends on the collective 
judgment of all of the investors.

Suppose, first, that my foreign reserves, 
ability to mobilize resources, and economic 
strength are so limited that if any inves-
tor withdraws I will go bankrupt. It would 
be a Nash equilibrium (indeed, a Pareto-
dominant one) for everyone to remain, but 
(I expect) not an attainable one. Someone 
would reason that someone else would 
decide to be cautious and withdraw, or at 
least that someone would reason that some-
one would reason that someone would with-
draw, and so forth. This . . . would likely 
lead to large-scale withdrawals, and I would 
go bankrupt. It would not be a close-run 
thing. . . . Keynes’s beauty contest captures 
a similar idea.

Now suppose that my fundamental situa-
tion were such that everyone would be paid 
off as long as no more than one-third of the 
investors chose to withdraw. What would 
you do then? Again, there are multiple equi-
libria: everyone should stay if everyone else 
does, and everyone should pull out if every-
one else does, but the more favorable equi-
libria [sic] seems much more robust.

—Lawrence H. Summers (2000)

Summers (2000) views bank runs as an 
n-person coordination game with Pareto-
ranked equilibria, a kind of generalized Stag 
Hunt game as in Diamond and Dybvig’s 
(1983) model. This section uses level-k mod-
els to study coordination in such games. 

Summers’s game can be represented by 
a payoff table as in figure 5. The summary 
statistic measures whether the required 
number of investors stays In. In Summers’s 
first example, all investors must stay In to 
prevent collapse, so the summary statistic 
equals In if and only if all but the represen-
tative player stay In. In his second example 
two-thirds of the investors must stay In, so 
the summary statistic equals In if and only 
if this is the case, including the player him-
self.  Each example has two pure-strategy 
equilibria: “all-In” and “all-Out.” All-In is 
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 Pareto-superior to all-Out, but it is also more 
fragile, with payoffs more vulnerable to devi-
ations by others.

Summers’s discussion presumes that some 
equilibrium will govern play. To capture his 
intuitions in a model it is necessary to com-
plete equilibrium by adding a refinement 
that selects a unique equilibrium in these 
games, such as Harsanyi and Selten’s (1988) 
notions of payoff-dominance or risk-dom-
inance. Payoff-dominance selects an equi-
librium that is not Pareto-dominated by any 
other equilibrium, in this case all-In, for any 
population size n.

Risk-dominance selects the equilibrium 
with the largest “basin of attraction”—the 
set of initial beliefs that yield convergence 
of best responses to that equilibrium, assum-
ing players’ beliefs are independent. In 
 two-person games like Summers’s examples, 
risk-dominance therefore selects the equilib-
rium that results if each player best responds 
to a uniform prior over others’ strategies. 
For Summers’s payoffs, whether all investors 
or only two-thirds must stay In to prevent 
collapse, risk-dominance selects the all-Out 
equilibrium for any n. Even with much less 
extreme payoffs, say with −1.5 replacing −10, 
and with only two-thirds In needed to prevent 
collapse, risk-dominance selects the all-Out 
equilibrium for any n, because no n makes the 
probability at least 0.6 that at least two-thirds 
of n − 1 independent Bernoulli trials yield In.

As Summers suggests, coordination on the 
all-In equilibrium is behaviorally implausible 

in his examples, even for small n. Neither 
does risk-dominance fully reflect his (or 
our) intuition, because all-In is “much more 
robust” in the second example, but all-Out 
remains risk-dominant. 

Many people are skeptical of risk-dom-
inance as a model of strategic thinking. 
Many of them, possibly including Summers 
(7, footnote 9) are reassured by the fact that 
equilibrium selection in bank-runs games 
can be predicted via a “global games” analy-
sis as in Morris and Shin (1998) or Frankel, 
Morris, and Pauzner (2003), which has 
become the standard model of equilibrium 
selection in bank-runs games. Global games 
replaces the original symmetric-informa-
tion game with a version with privately 
observed payoff perturbations that satisfy 
certain distributional assumptions. In bank-
runs games and some other games, the per-
turbed version is dominance-solvable with a 
unique equilibrium. Thus the global games 
analysis implies unique equilibrium selec-
tion without recourse to a refinement. But 
in the simplest bank-runs games, including 
Summers’s examples, global games again 
selects the original game’s risk-dominant 
equilibrium.

We now argue that a level-k analysis has 
stronger behavioral foundations than the 
global games approach. The two approaches 
yield similar conclusions in the simplest 
bank-runs games; but a level-k analysis yields 
conclusions that differ in important ways in 
other games.

Summary statistic

In Out

Representative player
In 1 –10

Out 0 0

Figure 5. Bank Runs
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Consider a level-k analysis of the game in 
figure 5. L1 best responds to the distribu-
tion of others’ decisions from independent 
draws from a uniform random L0. Given the 
symmetry of the game, L1 players all have 
the same response, as do L2 players, and so 
on. Thus any level-k model in which the fre-
quency of L0 is 0 selects the risk-dominant 
equilibrium with probability 1, as in the 
global-games analysis (see, e.g., Camerer, 
Ho, and Chong 2004, section III.B).

This result can be viewed as establishing the 
robustness of a global-games analysis, work-
ing with the originally specified game rather 
than an artificial perturbed game, and avoid-
ing the need to assume more iterated domi-
nance than most people’s thinking respects.

But in more complex games a level-k model 
may yield conclusions that differ from global 
games. More importantly, L0 makes it easy to 
combine realistic models of strategic thinking 
with more nuanced views of market psychol-
ogy, such as how players model the correla-
tion of others’ decisions, an issue on which 
evidence raises doubts about the standard 
view (Ho, Camerer, and Weigelt 1998; Costa-
Gomes, Crawford, and Iriberri 2009) but 
which global games analyses have ignored.48

As in the market-entry games in section 6, 
level-k models suggest a view of coordination 
that seems behaviorally more plausible than 
the traditional refinement-based approach. 
Level-k players use the same rules to choose 
their strategies with or without multiple 
equilibria, and coordination when it occurs is 
a statistically predictable by-product of how 
empirically grounded rules of thumb interact 

48 The correlation of players’ models of others is irrel-
evant in defining payoff-dominance. Risk-dominance is 
traditionally defined assuming independence, but its defi-
nition is easily modified to allow such correlation. Perfect 
correlation makes level-k players perceive examples like 
Summers’s as quasi-two-person games. Depending on the 
payoffs and the fragility of the all-In equilibrium, this can 
make all-In more or less likely to prevail than when players’ 
models of others are independent.

with the game—though this time the effects 
are less striking because no symmetry-break-
ing is required. Further, a level-k model also 
predicts the likelihood of coordination fail-
ure and the forms it may take. 

8. Salient Labels in Outguessing and 
Coordination Games

Because the labeling of players and strate-
gies does not affect payoffs, it is traditionally 
excluded from consideration in equilibrium 
analysis; but it would be surprising if behav-
ior did not respond to salient labels. Salience 
strongly influenced behavior in Schelling’s 
(1960) classic experiments with coordina-
tion games, and in Crawford, Gneezy, and 
Rottenstreich’s (2008) and Bardsley et al.’s 
(2010) replications. And in Rubinstein’s 
(1999) experiments on zero-sum two-person 
hide-and-seek games played on non-neutral 
“landscapes” of salient location labels, sub-
jects deviated systematically from the unique 
mixed-strategy equilibrium in patterns that 
responded to the labeling, even though the 
essential uniqueness of equilibrium seems 
to preclude any such influence. Salience also 
plays a prominent role in folk game theory.

This section discusses level-k and team 
reasoning models of salience’s effects in 
outguessing and coordination games. It 
concludes with a discussion of directions 
for future work to identify the ranges of 
applicability of the models and explore the 
foundations of level-k models with salience.

8.1 Hide and Seek Games with 
Salient Labels 

Any government wanting to kill an oppo-
nent . . . would not try it at a meeting with 
government officials.
 —comment, quoted in Chivers 

(2004), on the poisoning of Ukrainian 
presidential candidate—now ex-president—

Viktor Yushchenko
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. . . in Lake Wobegon, the correct answer is 
usually “c.”

—Garrison Keillor (1997) on multiple-
choice tests (quoted in Attali and  

Bar-Hillel (2003)

The Yushchenko and Lake Wobegon quo-
tations refer to simultaneous-move zero-sum 
two-person games with unique mixed-strat-
egy equilibria. In the first, the players are 
an assassin choosing one of several dinners 
at which to try to poison Yuschenko, one 
of which is with officials of the government 
suspected of wanting to poison him; and an 
investigator who can check only one of the 
dinners. In the second the players are a test 
designer deciding where to hide the cor-
rect answer and a clueless test-taker trying 
to guess where it is hidden. In each case, 
the key issue is how to react to a pattern of 
salience in the labeling of strategies that does 
not affect payoffs. The thinking in the quota-
tions is plainly strategic, but equilibrium in 
zero-sum two-person games leaves no room 
for reactions to the labels. Further, the think-
ing is plainly not equilibrium: A game theo-
rist would respond to the first quotation, “If 
that’s what people think, a meeting with gov-
ernment officials is exactly where the gov-
ernment would try to poison him.”

Rubinstein (1999) conducts experiments 
with zero-sum, two-person “hide-and-seek” 
games with patterns of salience that closely 
resemble those in the Yushchenko and Lake 
Wobegon quotations. A typical seeker’s 
instructions (Rubinstein 1999) were: “Your 
opponent has hidden a prize in one of four 
boxes arranged in a row. The boxes are 
marked as shown below: A, B, A, A. Your 
goal is, of course, to find the prize. His goal 
is that you will not find it. You are allowed 
to open only one box. Which box are you 
going to open?” A hider’s instructions were 
analogous. Rubinstein’s (1999) design is an 
abstract model of a game played on a non-
neutral cultural or geographic landscape. 

The frame has no payoff consequences, but 
it is non-neutral in that the “B” location is 
distinguished by its label and the two “end A” 
locations may be inherently salient as well.49

Rubinstein’s (1999) hide-and-seek game 
has a unique equilibrium prediction, whose 
logic is transparent and which leaves no room 
for framing to influence the outcome. Even 
so, framing had a strong and systematic effect 
in Rubinstein’s (1999) experiments, qualita-
tively the same in six experiments around the 
world where labeling created salience with-
out positive or negative connotations, with 
Central A (or its analogs in other treatments) 
most prevalent for hiders (37 percent in the 
aggregate) and Central A even more preva-
lent for seekers (46 percent).50 These results 
pose two puzzles. On average hiders are as 
smart as seekers, so hiders tempted to hide in 
central A should realize that seekers will be 
just as tempted to look there. Why then do 
hiders allow seekers to find them 32 percent 
of the time when they could hold it down to 
25 percent by using the equilibrium mixed 
strategy? And why are the results role-asym-
metric, with seekers choosing central A more 
often (46 percent) than hiders (37 percent)? 

Rubinstein (1999) takes the nonequilib-
rium patterns in the data as evidence that 
subjects did not think strategically (Crawford 
and Iriberri 2007a, 1733, footnote 3). But 
it would be surprising if responses to such 
simple games were completely  nonstrategic, 
and the fact that subjects’ behavior patterns 

49  This gives the “central A” location its own brand of 
uniqueness as the “least salient” location. Mathematically 
this uniqueness is no different from the uniqueness of “B”, 
but Crawford and Iriberri’s (2007a) analysis suggests that 
its psychological effects are quite different.

50 This statement depends on identifying analogies 
among Rubinstein’s (1999) treatments as explained in 
Crawford and Iriberri (2007a, section 1). One might argue 
that because any strategy, pure or mixed, is a best response 
to equilibrium beliefs, deviations do not violate the theory. 
But systematic deviations from equilibrium choice frequen-
cies must (with high probability) have a cause that is partly 
common across players. They are therefore symptomatic of 
systematic deviations from equilibrium probabilities.
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were qualitatively the same in six indepen-
dent treatments suggests that they have a 
common structure.

What kind of model can explain the role-
asymmetric patterns in Rubinstein’s (1999) 
data? Rubinstein’s (1999) game and the role-
asymmetric responses it evoked are an inter-
esting test case, because although its payoff 
structure is asymmetric, models like equilib-
rium and QRE, which in this game coincides 
with equilibrium for any distribution and 
precision, imply role-symmetric responses. 
Even a level-k model with a uniform random 
L0 coincides with equilibrium. 

Crawford and Iriberri (2007a) uses 
Rubinstein’s (1999) data to compare adap-
tations of equilibrium, LQRE, and level-k 
models that allow salience an effect. They 
use Rubinstein’s (1999) six treatments in 
which decision labels had neutral connota-
tions, which presumably influenced behavior 
only via salience, to avoid confounding sub-
jects’ strategic thinking with their responses 
to positive or negative connotations. 

Crawford and Iriberri (2007a) adapt equi-
librium or LQRE to this setting by adding 
payoff perturbation parameters that reflect 
plausible instinctive reactions to salience: a 
payoff gain for choosing a salient location for 
seekers, or a payoff loss for hiders.

Depending on the flexibility of the speci-
fication, LQRE gets the role-asymmetry in 
the data qualitatively wrong, or estimates an 
infinite precision and so turns itself back into 
an equilibrium with perturbations model, 
which also misses the role-asymmetry, in a 
less extreme way.

Crawford and Iriberri (2007a) adapt the 
level-k model to settings where salience is 
important by assuming that L0’s strategi-
cally naïve initial assessment of others’ likely 
responses to the game deviates from uniform 
randomness by favoring salient locations, 
either B or one of the end As, with no other 
changes. Crawford and Iriberri (2007a) take 
L0 to be determined by the same general 

principles in each player role, which in this 
setting means that L0 is the same in each 
role, although its implications for L1 differ 
across roles due to hiders’ and seekers’ dif-
ferent payoffs. Crawford and Iriberri (2007a) 
make no assumption about whether B or the 
end As are more salient. But the facts that L0 
is the same in each role and that all that mat-
ters about it are the best responses it yields 
for hiders’ and seekers’ L1s imply that esti-
mating B’s and the end A’s relative salience 
adds one binary parameter (Crawford and 
Iriberri 2007a, figure 3): the minimum pos-
sible flexibility that allows salience to have 
an influence. Finally, the idea that level-k 
rules are meant to generalize across games 
suggests that they should generalize across 
player roles within this game, which sug-
gests the restriction that the population dis-
tribution of rules is the same for hiders and 
seekers. That and the assumption that L0 is 
determined by the same general principles 
in each role requires the model to explain the 
role-asymmetric patterns in the data endog-
enously, rather than via unexplained param-
eter variation across hiders and seekers.

Unrestricted estimates of the level-k rule 
distribution are almost hump-shaped (0 per-
cent L0, 19 percent L1, 32 percent L2, 24 
percent L3, 25 percent L4), as is plausible 
for a homogeneous population. Counter to 
our intuition, the end locations are estimated 
to be more salient than the B location. This 
L0 and rule distribution tracks the observed 
prevalence of central A for hiders, its even 
greater prevalence for seekers, and the other 
main patterns in Rubinstein’s (1999) data.51 

51  L1 hiders then choose central A to avoid L0 seekers 
and L1 seekers avoid central A. L2 hiders choose central 
A with probability between 0 and 1, breaking payoff ties 
randomly; and L2 seekers choose it with probability 1. L3 
hiders avoid central A and L3 seekers choose it with prob-
ability between zero and one. L4 hiders and seekers avoid 
central A. The heterogeneity of L1, L2, and L3 yields a 
role-asymmetric aggregate pattern that reconciles the 
prevalence of central A for hiders with its greater preva-
lence for seekers. 
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Despite Rubinstein’s (1999) intuition, the 
analysis suggests that their subjects were 
unusually sophisticated, with an average k a 
level higher than usual; they just didn’t fol-
low the fixed-point logic of equilibrium. (The 
Yushchenko quotation, by contrast, reflects 
only the reasoning of an L2 investigator rea-
soning about an L1 poisoner.)

The level-k model with L0 adapted to 
respond to salience is the only one of which 
we are aware that responds to the hide and 
seek game’s asymmetric payoff structure in 
a way that can explain the robust role-asym-
metric patterns in Rubinstein’s (1999) data. 
Crawford and Iriberri’s (2007a) model has 
been criticized for having too much flexibil-
ity for its explanation to be credible. But all 
that matters about its L0 is the best responses 
it yields for L1s, so the adaptation adds one 
binary parameter: the minimum flexibility 
that allows salience an influence, less than 
the adapted equilibrium or LQRE model. 

8.2 Portability to Other Outguessing Games

To address the criticism that adapting 
L0 to respond to salience gives the level-k 
model too much flexibility, Crawford and 
Iriberri (2007a) compare the equilibrium 
with payoff perturbations and adapted 
level-k models’ portability, the extent to 
which a model estimated for one game can 
describe responses to other games.52 They 
port the models to the two closest relatives 
of Rubinstein’s (1999) games that have been 
studied experimentally: O’Neill’s (1987) 
card-matching game and Rapoport and 
Boebel’s (1992) closely related outguessing 
game. Both games raise the same strategic 
issues as Rubinstein’s (1999) games, but with 
more complex patterns of wins and losses, 

52 Crawford and Iriberri (2007a) also test the models for 
overfitting by using them to compute estimates separately 
for each of Rubinstein’s (1999) six treatments and using the 
estimated models to “predict” the results of the other five. 
The results moderately favor the level-k model. 

different framing, and in the latter case five 
locations.

Here we discuss only the results for 
O’Neill’s (1987) game. In it, players simul-
taneously choose one of four cards: A, 2, 3, 
J. One player wins if there is a match on J 
or a mismatch on A, 2, or 3; otherwise the 
other wins. The game is like hide and seek, 
but with each player a hider for some loca-
tions and a seeker for others. Without payoff 
perturbations it has a unique equilibrium, 
in which each player plays A, 2, and 3 with 
probability 0.2 and J with probability 0.4.

Crawford and Iriberri (2007a) define 
salience-sensitive versions of equilibrium 
for O’Neill’s (1987) game by introducing 
payoff perturbations as for Rubinstein’s 
(1999) game: a player gains (loses) payoff 
for a salient location in which he is a seeker 
(hider). They then use O’Neill’s (1987) 
data to estimate the perturbations.53 Even 
with these estimates, equilibrium with per-
turbations cannot explain subjects’ initial 
responses better than equilibrium without 
perturbations, which explains them poorly.

Crawford and Iriberri (2007a) adapt the 
level-k model to O’Neill’s (1987) game by 
defining a nonstrategic L0 that favors A and 
J, which (as both face cards and end loca-
tions) are intuitively more salient than 2 and 
3. With no assumption about which is more 
salient, the adaptation again adds a single 
binary parameter. Crawford and Iriberri 
(2007a) use O’Neill’s (1987) data to estimate 
that parameter, but instead of reestimating 
the rule distribution they reused the distri-
bution estimated for Rubinstein’s (1999) 
data.   

Discussions of O’Neill’s (1987) data (e.g., 
McKelvey and Palfrey 1995) have been 
dominated by an “Ace effect,” whereby sub-
jects in both player roles, aggregated over 

53 Because O’Neill’s (1987) experiment had only 25 sub-
jects per role, Crawford and Iriberri (2007a) treat a sub-
ject’s first five periods of play as initial responses.
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all 105 periods, played Ace with more than 
the equilibrium probability 0.2. O’Neill 
(1987) and others have speculated that this 
was a reaction to the Ace’s salience. If this 
Ace effect extended to the initial periods 
of O’Neill’s data, no behaviorally plausible 
level-k model could explain it, because no 
such model can make the players who win 
by matching on Joker play Ace with more 
than the equilibrium probability 0.2.54 
However, for the initial periods the Ace 
was in fact played with probability far less 
than 0.2. Taking up the slack was a hitherto 
unremarked positive Joker effect, an order 
of magnitude larger than the Ace effect. 
Crawford and Iriberri’s (2007a) adapted 
level-k model readily explains this Joker 
effect and the other patterns in the initial-
period data, using Rubinstein’s (1999) rule 
frequencies and an L0 that favors the A and 
J cards.55

Crawford and Iriberri’s (2007a) analysis 
traces the portability of the level-k model from 
Rubinstein’s (1999) to O’Neill’s (1987) and 
Rapoport and Boebel’s (1992) games to the 
fact that the model compartmentalizes stra-
tegic thinking into an iterated best response 
component that is reasonably stable across 
those games and an L0 based on portable 
nonstrategic intuitions about salience. If L0 
were strategic it would interact with each new 
game’s structure in a new, high-dimensional 
way, and one could seldom extrapolate an L0 
specification across games. Here the defini-
tion of L0 as a strategically naïve response is 
more than a convenient categorization: It is 
important for the model’s portability.

54 A look at the payoff matrix shows that that would 
require either L0 playing 2 and 3 more than A, or more 
than 60 percent L3s or L4s.

55 Because Crawford and Iriberri’s (2007a) analysis is 
static and the Ace effect is negative for the first five peri-
ods, the Ace effect in the data aggregated over all 105 peri-
ods was almost surely a by-product of learning rather than 
the salience of the Ace.

8.3 Coordination with Payoff Asymmetries 
and Salient Labels

Crawford, Gneezy, and Rottenstreich 
(2008) and Bardsley et al. (2010) report 
experiments on coordination via salient 
labels, revisiting Schelling’s (1960) clas-
sic experiments. Crawford, Gneezy, and 
Rottenstreich (2008) randomly pair subjects 
to play payoff-asymmetric games like Battle 
of the Sexes and similar payoff-symmetric 
games. Unpaid pilots use naturally occurring 
labels like Schelling’s, in this case the world-
famous Sears Tower (now less famous as the 
“Willis Tower”) and the little-known AT&T 
Building across the street. The salience of 
Sears Tower makes it obvious to coordinate 
on the “both-Sears” equilibrium (especially 
in Chicago where the experiments were 
run). In the symmetric version of the game, 
as in Schelling’s experiments, most subjects 
did so (figure 6).

Most researchers have assumed that this 
result is robust to slight payoff asymmetries, 
but games like the second and third games 
in figure 6 pose a harder problem because 
both-Sears is one player’s best way to coor-
dinate but the other’s worst way. Using 
Crawford, Gneezy, and Rottenstreich’s 
(2008) terms, there is a tension between 
the “label salience” of Sears and the “payoff 
salience” of a player’s best way to coordinate: 
Payoff salience reinforces label salience for 
P2s but opposes it for P1s. In Crawford, 
Gneezy, and Rottenstreich’s (2008) pilots, 
the coordination rate crashes in the second 
and third games.

To investigate this phenomenon further, 
Crawford, Gneezy, and Rottenstreich (2008) 
run paid treatments using abstract decision 
labels X and Y, with X presumed and shown 
to be more salient than Y; and with the same 
tension between label and payoff salience 
as in Chicago Skyscrapers (figure 7). The 
expected coordination rate again crashes 
with only slight payoff differences. But 



Journal of Economic Literature, Vol. LI (March 2013)46

unlike in Chicago Skyscrapers, the cause of 
miscoordination changes as the payoff dif-
ferences grow: With slight differences, most 
subjects in both roles favor their partners’ 
payoff-salient decisions; but with moderate 
or large differences they favor their own pay-
off-salient decisions.

Crawford, Gneezy, and Rottenstreich’s 
(2008) games can be viewed as tests of 
notions like Bardsley et al.’s (2010, 40) team 
reasoning, whereby “each player chooses the 
decision rule which, if used by all players, 
would be optimal for each of them.” Subjects 
who used team reasoning would note that 
only label salience provides a basis for coor-
dination, and that at least with slight payoff 
differences, any increase in the probability 
of coordination swamps the payoff differ-
ence between ways to coordinate. Thus they 
would ignore payoff salience and use label 

salience to coordinate with high frequency. 
From this point of view, Crawford, Gneezy, 
and Rottenstreich’s (2008) results for the 
asymmetric games pose two puzzles: Why 
don’t subjects ignore payoff and use label 
salience to coordinate? And why does the 
cause of miscoordination change as the pay-
off differences grew in the X–Y treatments?

To resolve these puzzles, Crawford, 
Gneezy, and Rottenstreich (2008) propose 
a level-k model in which L0 is nonstrategic 
and the same in both roles but responds to 
both kinds of salience, with a “payoffs bias” 
that favors payoff over label salience.56 For 

56 The payoffs bias is neutral in Rubinstein’s (1999) and 
O’Neill’s (1987) games, as it is in pure coordination games. 
Thus this assumption about L0 is consistent with Crawford 
and Iriberri’s (2007a) assumptions. Notions like equilib-
rium and QRE ignore labeling, and so do not address these 
questions.

P2 (90% Sears)

Sears AT&T

P1 (90% Sears)
Sears 100,100 0,0

AT&T 0,0 100,100

Symmetric

P2 (58% Sears)

Sears AT&T

P1 (61% Sears)
Sears 100,101 0,0

AT&T 0,0 101,100

Slight asymmetry

P2 (47% Sears)

Sears AT&T

P1 (50% Sears)
Sears 100,110 0,0

AT&T 0,0 110,100

Moderate asymmetry

Figure 6. Chicago Skyscrapers
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intermediate bias strengths, with slight pay-
off differences players choose the strategy 
that maximizes the probability of coordina-
tion, but with larger differences they gamble 
on choices with lower probability of coor-
dination but higher potential payoffs. This 
allows the model to track the reversal of 
the cause of miscoordination as the payoff 
differences grew in the X–Y treatments, and 
the other main patterns in the data.

Although this analysis suggests that a 
comprehensive model of coordination with 

payoff asymmetries and salient labels will 
include some level-k features, it is far from 
the end of the story. Both Crawford, Gneezy, 
and Rottenstreich (2008) and Bardsley et al. 
(2010) find some evidence of team reasoning 
in other treatments, in each case mixed with 
additional evidence for level-k thinking. 

8.4 Directions for Future Work

One direction for future work involves fur-
ther experiments to delineate the ranges of 
applicability of team reasoning and  level-k 

P2 (76% X)

X Y

P1 (76% X)
X 5,5 0,0

Y 0,0 5,5

Symmetric

P2 (28% X)

X Y

P1 (78% X)
X 5,5.1 0,0

Y 0,0 5.1,5

Slight asymmetry

P2 (61% X)

X Y

P1 (33% X)
X 5,6 0,0

Y 0,0 6,5

Moderate asymmetry

P2 (60% X)

X Y

P1 (36% X)
X 5,10 0,0

Y 0,0 10,5

Large asymmetry

Figure 7. X–Y Treatments
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thinking. The notion of team reasoning as 
defined by Bardsley et al. (2010) is readily 
accessible to strategic thinking in pure coordi-
nation games or games with negligible payoff 
differences; and despite Crawford, Gneezy, 
and Rottenstreich’s (2008) results for slight 
payoff differences, its empirical importance 
in such games is generally well established. 
But as defined it is limited to games with neg-
ligible payoff differences, because otherwise 
there is rarely a rule that would be optimal 
for all if used by all. (That lack of generaliz-
ability is why we don’t treat team reasoning as 
a theory in section 2.) The only similar notion 
of which we are aware that applies to more 
general games is Harsanyi and Selten’s (1988) 
equilibrium refinement “payoff-dominance,” 
whereby players play some equilibrium that 
is not Pareto-dominated by any other equi-
librium. But unlike team reasoning in pure 
coordination games, which solves a nonstra-
tegic optimization problem, payoff-domi-
nance depends essentially on equilibrium 
fixed-point reasoning, and the mathematical 
devices Harsanyi and Selten (1988) use to 
make it well-defined for general games take 
it further from behavioral plausibility as a 
model of initial responses. Further experi-
ments might explore whether team reasoning 
influences behavior in coordination games 
with non-negligible payoff differences and 
if so, how it coexists with other modes of 
thinking. 

A second direction involves deeper inves-
tigation of the foundations of level-k and 
related models of people’s responses to 
salient labels. Crawford and Iriberri (2007a) 
and Crawford, Gneezy, and Rottenstreich 
(2008) impose psychologically plausible 
but largely untested restrictions on L0 and 
the symmetry of rule distributions across 
player roles and then jointly econometrically 
estimate the distributions and L0’s param-
eters from decision data. Two alternative 
approaches may add to our understanding of 
such models.      

Bardsley et al. used a design with three 
treatments, each with the same set of natu-
rally occurring decision labels, most with 
non-neutral connotations, as in Crawford, 
Gneezy, and Rottenstreich’s (2008) Chicago 
Skyscrapers treatments. Those treatments 
were run within subjects, without feed-
back until the end. In the “picking” treat-
ment, subjects were asked to pick one of 
the labels and rewarded without regard to 
their choice. In the “guessing” treatment, 
each subject was paired with a picker, asked 
to guess the picker’s choice, and rewarded 
for correct guesses. And in the “coordina-
tion” treatment subjects were paired to play 
a pure coordination game as in Schelling’s 
experiments.

Bardsley et al. (2010, 45) argue that 
because picking elicits a subject’s nonstra-
tegic response to the labels in a given deci-
sion problem, it directly reveals the L0 that 
is appropriate for a CH or level-k model 
of that subject’s response to the coordina-
tion game with the same labels. Given their 
conclusion for L0, they argue that guessing 
directly reveals the appropriate L1. They 
then use those restrictions to conduct a data 
analysis that yields some support for team 
reasoning and some for a CH model, which 
for their games is essentially equivalent to a 
level-k model.

Although Bardsley et al.’s (2010) approach 
is appealing, it is questionable whether pick-
ing and guessing directly reveal the L0 and 
L1 that are appropriate for the coordina-
tion treatment. Even though an L1 player 
thinks strategically naively about how others’ 
responses to a coordination game influence 
his decisions’ expected payoffs, he can distin-
guish a game with a given set of labels from 
the picking task with the same labels; other-
wise he would lack the information to evalu-
ate his expected payoffs in the game. Given 
that, there is no compelling reason that 
such a player’s prediction of pickers’ likely 
responses in the guessing task should be the 
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same as his beliefs in the game with the same 
labels. Most of Bardsley et al.’s (2010) tasks 
confound salience with personal preference 
over labels with non-neutral connotations, 
and it seems unlikely that those factors have 
exactly the same relative influence in pick-
ing, guessing, and coordination tasks.57 

We believe, nonetheless, that there is 
much to be learned from designs of this type. 
But we would favor an initial focus on labels 
whose patterns have implications for salience 
but neutral connotations (as, for example, 
in those of Rubinstein’s (1999) hide-and-
seek treatments that Crawford and Iriberri 
(2007a) selected for analysis). We also favor 
much more within-subjects variation in the 
structures of the games played, with the goal 
of making it possible to infer the rules sub-
jects are following more precisely and better 
assessing their ranges of applicability. This 
variation might well extend to coordination 
games that raise different issues, such as 
symmetry-breaking or assurance; and games 
that raise issues other than coordination, 
such as outguessing games.   

Another promising alternative is proposed 
by Penczynski (2011), who reports new data 
on Rubinstein’s (1999) games, including 
chats as in Burchardi and Penczynski (2011; 
section 3.5). In a sample of 47 (less than a 
tenth of the sample from Rubinstein’s (1999) 
treatments Crawford and Iriberri (2007a) 
analyze, after pooling), Penczynski (2011) 
finds substantial but statistically insignificant 
differences in decisions from Rubinstein’s 
(1999) results for hiders. He finds support 
for a level-k model in both decisions and 
chats, but one with a role-asymmetric L0 in 
which thinking for both hiders and seekers 

57  Bardsley et al. (2010) stress that their subjects were 
told in picking tasks simply to pick one of the labels. But 
they (48) treat the paraphrases of their instructions “choose 
a label as if you were just picking” and “choose the label 
with the greatest immediate appeal to you” as synonymous. 
It seems likely that their subjects also blurred the distinc-
tion between salience and preference.

starts with the initial responses of seekers, 
B is far more salient than the end locations, 
and seekers have higher levels on average 
than hiders.58

Some of these inferences are clear from 
the chat data, and the conclusion that B is 
more salient than the end locations seems 
more plausible than Crawford and Iriberri’s 
(2007a) estimate to the contrary. However, 
some of the inferences are ambiguous 
enough to make it worth investigating the 
extent of their consistency with Crawford 
and Iriberri’s (2007a) assumptions that the 
type distributions and the principles by 
which L0 is determined are the same for hid-
ers and seekers, which to some extent func-
tion as accounting conventions. In future 
chat designs, we would also favor more varia-
tion within subjects in the structures of the 
games, with the goal of identifying subjects’ 
rules as much as possible via decision data 
alone, and then using that identification to 
tighten the inferences from the chat data. 

9. Communication in Outguessing and 
Coordination Games

This section considers level-k models of 
strategic communication via natural lan-
guage (“cheap talk”) in outguessing, coor-
dination, and other games. Equilibrium 
analysis misses some important aspects of 
how such communication functions in prac-
tice. The fact that the receiver must have 
rational expectations, for instance, implies 
that in two-person games of pure conflict 
with known preferences, cheap talk mes-
sages must be uninformative, and must be 
ignored, so that deception cannot occur. And 

58  By contrast, in Crawford and Iriberri’s (2007a) analy-
sis allowing such asymmetry yields only a modest likeli-
hood advantage. And Rubinstein (1999) (see Crawford 
and Iriberri, 1736) tests for role-asymmetric behavior via 
“mine” treatments, and finds no significant evidence for it.   



Journal of Economic Literature, Vol. LI (March 2013)50

the fact that messages do not directly affect 
payoffs precludes any role for their literal 
meanings. Yet in practice, deceptive mes-
sages are common and sometimes success-
ful even in games of pure conflict, and literal 
meanings play a prominent role in how 
messages are interpreted. A level-k analysis 
yields a systematic way to think about these 
and related phenomena, and brings us closer 
to how communication appears to work in 
reality.

We illustrate these possibilities in several 
settings, including Crawford’s (2003) level-
k model of preplay communication in two-
person games of pure conflict; Ellingsen 
and Östling’s (2010) and Crawford’s (2007) 
level-k analyses of communication of inten-
tions in coordination and other games; and 
Wang, Spezio, and Camerer’s (2010) experi-
mental analysis of communication of private 
information in sender–receiver games. We 
also discuss Malmendier and Shanthikumar’s 
(2007, 2009) CH empirical analyses of the 
interaction between stock analysts and 
traders.

9.1 Communication of Intentions in 
Outguessing Games

Have you forgotten the tactic of “letting 
weak points look weak and strong points 
look strong”?
— General Kongming, in Luo Guanzhong’s 

(1991) historical novel, Three Kingdoms. 

Don’t you know what the military texts say? 
“A show of force is best where you are weak. 
Where strong, feign weakness.”

— General Cao Cao, in Three Kingdoms. 

In the Huarongdao story, set around 
200 A.D., fleeing General Cao Cao, try-
ing to avoid capture by pursuing General 
Kongming, chose between two escape routes, 
the easy Main Road and the rough Huarong 
Road. The game is like Far Pavilions Escape 
(section 4), but with communication, in that 

before Cao Cao’s choice Kongming had an 
opportunity to send a message by lighting 
campfires along one of the roads. This mes-
sage had an obvious literal meaning, but 
it was scarcely more costly to send a false 
message than a true one, so the message 
was approximately cheap talk. Kongming 
then chose which road on which to wait in 
ambush. In the story, Kongming lit camp-
fires along the Huarong Road and waited in 
ambush there, sending a deceptively truthful 
message. Cao Cao, misjudging Kongming’s 
deviousness, inverted the message, took the 
Huarong Road, and was captured.

Huarongdao also resembles the organizing 
example in Crawford’s (2003) level-k analy-
sis of deceptive communication of inten-
tions, Operation Fortitude South, the Allies’ 
attempt to deceive the Germans regarding 
where they planned to invade Europe on 
D-Day (6 June 1944). The Allies’ message 
is approximately cheap talk and the under-
lying game is an outguessing game with 
conflicting interests, made zero-sum in the 
analysis to sharpen the point.59 There are two 
possible attack or defense locations, Calais 
and Normandy. The greater ease of Calais is 
reflected in payoffs that imply that attacking 
an undefended Calais is better for the Allies 
than attacking an undefended Normandy, 
hence better for the Allies if the Germans 
are equally likely to defend each place; and 
defending an unattacked Normandy is worse 
for the Germans than defending an unat-
tacked Calais, hence worse for the Germans 
if the Allies are equally likely to attack each 
place.

59 Operation Fortitude South differs from Huarongdao 
in the relation between payoffs and labeling, in that both 
Cao Cao and Kongming prefer the Main Road, holding the 
probability of being outguessed equal; while the Allies and 
the Germans have opposing preferences about the loca-
tion of the invasion, other things equal. But in Crawford’s 
level-k analysis this difference is inessential, because with 
L0 anchored in truthfulness, players’ responses to mes-
sages override any effects of labeling.
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In the event the Allies faked preparations 
for invasion at Calais, sending a deceptively 
deceptive message. The Germans, misjudg-
ing the Allies’ deviousness, defended Calais 
and left Normandy lightly defended; and the 
Allies then invaded Normandy.

In each case, the key strategic issue is 
how the sender—Kongming or the Allies—
should choose his message and how the 
receiver—Cao Cao or the Germans—
should interpret it, knowing that the sender 
is thinking about the message from the 
same point of view. 

Moreover, in each case essentially the 
same thing happened: In D-Day the mes-
sage was literally deceptive but the Germans 
were fooled because they “believed” it—
either because they were credulous or, more 
likely, because they inverted the message 
one too many times. Kongming’s message 
was literally truthful but Cao Cao was fooled 
because he inverted it. Although the sender’s 
and receiver’s message strategies and beliefs 
were different, the outcome in the under-
lying game was the same: The sender won, 
but in the less beneficial of the two possible 
ways. Why did the receiver allow himself to 
be fooled by a costless (hence easily faked) 
message from an enemy? And if the sender 
expected his message to fool the receiver, 
why didn’t he reverse it and fool the receiver 
in the way that allows him to win in the more 
beneficial way?

Traditional equilibrium analysis can-
not explain these puzzles. Not only does it 
preclude a role for the literal meanings of 
messages, with conflicting interests there 
is no equilibrium in which cheap talk mes-
sages conveys information or the receiver 
responds to them.60 In such an equilibrium, 
if the receiver found it optimal to respond 
to the message the response would help the 

60 But see Farrell (1993), whose notion of neologism-
proofness sometimes allows literal meanings influence, but 
not here.

receiver and therefore hurt the sender, who 
would then prefer to send an  uninformative 
message (Crawford and Sobel 1982). 
Communication is therefore irrelevant, and 
the underlying game must be played accord-
ing to its unique mixed-strategy equilibrium. 
Yet in real interactions, a receiver’s thinking 
often assigns a prominent role to the literal 
meanings of messages, without necessarily 
taking them at face value; a sender’s message 
and action are part of an integrated strategy; 
and players’ actions may differ from the ones 
chosen without communication. 

These puzzles can be plausibly explained 
via a level-k analysis. In games with com-
munication, it would be behaviorally odd if 
a player’s strategically naïve assessment of a 
message, even from an enemy, did not initially 
favor its literal interpretation, even if he ends 
up not taking it at face value. Accordingly, 
Crawford (2003, table 1) assumes that the 
L0 that pertains to senders is truthful and the 
L0 that pertains to receivers is credulous.61 
Given this, the types are defined by iterat-
ing best responses as in other level-k models: 
an L1 receiver believes what he is told; an 
L1 sender lies; an L2 receiver inverts what 
he is told; an L2 sender lies; an L3 receiver 
inverts; an L3 sender tells the truth (antici-
pating an L2 receiver’s inversion); and so on. 
In this categorization, Cao Cao was L2, while 
Kongming was L3.62 Similarly, it appears 

61 The literature has not converged on how types 
should be numbered, or on whether L0 receivers should 
be defined as credulous or as uniform random—com-
pare Ellingsen and Östling (2010)—but the issue is partly 
semantic because truthful L0 senders imply credulous L1 
receivers. Here we rename the types to conform to later 
usage; taking L0 receivers to be credulous; and given that, 
defining Lk in either role as the type that iterates best 
responses k times. Note that the definition of L0 resolves 
the indeterminacy of the meaning of messages, which is 
not determined by equilibrium in cheap-talk analyses.

62 Evidently Cao Cao had bought used, out-of-date 
editions of the texts. As the last possibility illustrates, in a 
level-k model, unlike a CH model, it can be just as costly 
to be too clever as to be not clever enough, which we view 
as a realistic feature.  
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that the Allies were L2, while the Germans 
were L1, or perhaps (inverting one too many 
times) L4.

It is instructive to analyze a more gen-
eral model, in which some players in each 
role understand both equilibrium analysis 
and the likelihood that their partners’ stra-
tegic thinking may be simpler than that. 
Accordingly, Crawford (2003) assumes 
that with positive probability, each player 
role is filled either by one of the possible 
level-k types, for which his generic term 
is Mortal; or by a Sophisticated type. He 
assumes that the frequencies of L0 senders 
and receivers are zero. Higher-level Mortal 
types are defined as above, avoiding fixed-
point reasoning. Sophisticated types, by 
contrast, know everything about the game, 
including the distribution of Mortal types. 
They and their possibly Sophisticated 
partners play a (Bayesian) equilibrium 
in a “reduced game” between possible 
Sophisticated senders and receivers, 
obtained by plugging in the mechanically 
determined distributions of Mortal play-
ers’ strategies.63 Sophisticated subjects are 
rare in experiments, but presumably 
more common in field settings. Even 
though level-k types trivially allow for the 

63  Serrano-Padial (2012) takes a similar approach to 
analyze the interaction between naïve and sophisticated 
traders in speculative markets. Naïve traders include any 
whose trading decisions can be expressed as functions of 
their information, without solving a fixed-point problem. 
Sophisticated traders play their part in a market equi-
librium, but unlike equilibrium traders they take the 
frequency and behavior of naïve traders rationally into 
account. When there are enough sophisticated agents to 
counteract naïve agents’ deviations from equilibrium, the 
usual rational-expectations equilibrium ensues, even with 
a nonnegligible frequency of naïve traders. With an inter-
mediate frequency of sophisticated traders, the market 
segments into intervals of the space of possible valuations 
in which sophisticated traders never bid; and disjoint inter-
vals in which both naïve and sophisticated traders bid. In 
the “naïve” intervals, naïve traders have the pivotal influ-
ence on pricing, which deviates systematically from equi-
librium. In the “sophisticated” intervals, pricing is just as 
predicted in the standard model.

 possibility of deception, it is far from 
clear whether deception is possible with 
Sophisticated players, or how it would 
work.

The possibility of Mortal players com-
pletely changes the character of the game 
between Sophisticated players: Because 
their expected payoffs are influenced by 
Mortals’ decisions, the reduced game is 
no longer zero-sum and its messages are 
no longer cheap talk. Further, it no longer 
has symmetric information: In the reduced 
game a sender’s message, ostensibly about 
his intentions, is read by a Sophisticated 
receiver as a signal of the sender’s privately 
known type. 

A non-L0 Mortal sender’s models of  others 
always make it expect to fool  receivers, 
which it does either by lying or telling the 
truth depending on whether it expects its 
message to be believed or inverted. Any 
given Mortal sender type therefore sends 
the message that maximizes its expected 
gain from fooling receivers—in D-Day, the 
one it expects to make the Germans think 
it will attack Normandy—and then chooses 
the strategy that successful deception makes 
optimal in the underlying game—always 
attacking Calais, in D-Day.

Given this, the equilibria of the reduced 
game are determined by the relative fre-
quencies of Mortal and Sophisticated 
players. When Sophisticated players are 
common in both roles, the reduced game 
has a mixed-strategy equilibrium whose 
outcome mimics that of the game with-
out communication. In that equilibrium 
Sophisticated players’ mixed strategies off-
set Mortal players’ deviations from equi-
librium, eliminating Sophisticated senders’ 
gains from fooling Mortal receivers, so 
Sophisticated and Mortal players in each 
role have equal expected payoffs. 

When Sophisticated senders and receiv-
ers are rare—perhaps the more plausible 
case—the reduced game has an essentially 
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unique equilibrium, in pure strategies.64 
Sophisticated Germans, for instance, always 
defend Calais because they know that Mortal 
Allies, who predominate when Sophisticated 
Allies are rare, will all attack Calais. 
Sophisticated Allies, knowing that they can-
not influence Sophisticated Germans, send 
the message that fools the most common 
type of Mortal German (feinting at Calais or 
Normandy depending on whether more of 
them believe than invert messages) and then 
always attack Normandy. In this equilibrium, 
Sophisticated Germans allow themselves 
to be “fooled” by cheap talk messages from 
Sophisticated Allies because it is an unavoid-
able cost of exploiting the mistakes of far 
more common Mortal Allies.

It is surprising that when Sophisticated 
senders and receivers are rare there is a 
pure-strategy equilibrium, and perhaps 
more surprising that it has no pure-strategy 
counterpart in which Sophisticated Allies 
feint at Normandy and then attack Calais. 
In such an equilibrium, any deviation from 
Sophisticated Allies’ equilibrium message 
would make Sophisticated Germans infer 
that the Allies were Mortal, making it opti-
mal for them to defend Calais and subopti-
mal for Sophisticated Allies to attack there. 
If Sophisticated Allies feinted at Normandy 
and attacked Calais, their message would 
fool only the most common kind of Mortal 
German—in a pure-strategy equilibrium 
Sophisticated Germans can never be fooled, 
and a given message cannot fool both believ-
ers and inverters—with expected payoff gain 
equal to the frequency of the most com-
mon Mortal German type times the payoff 
of attacking an undefended Normandy. But 
such Sophisticated Allies could reverse their 
message and attack location, again fooling 
the most common Mortal German type, 

64  The game can then be solved via at most three steps 
of iterated conditional dominance, without fixed point 
reasoning. 

but now with expected payoff gain equal to 
the frequency of that type times the payoff 
of attacking an undefended Calais, which 
is higher than the payoff of attacking an 
undefended Normandy. This contradiction 
shows that in any pure-strategy equilibrium, 
Sophisticated Allies must feint at Calais and 
then attack Normandy.

Thus, the model explains the puzzling fea-
ture of our examples that the sender won, 
but in the less beneficial of the two possible 
ways. It also makes the sender’s message and 
action part of an integrated strategy; and 
gives the possibility of communication a gen-
uine influence on the outcome. 

Sophisticated players derive an advan-
tage from their ability to avoid being fooled 
and/or to choose which Mortal type(s) to 
fool. This suggests that in an “evolutionary” 
analysis, the frequencies of Sophisticated 
types will grow. In this model, however, such 
growth will continue only until the type fre-
quencies enter the region of mixed-strategy 
equilibria, where types’ expected payoffs are 
equal. Thus, Sophisticated and Mortal types 
can coexist in the long run.

9.2 Communication of Intentions in 
Coordination Games

“After you, Alphonse.” “No, you first, my 
dear Gaston!”

—Frederick B. Opper’s comic strip, 
Alphonse and Gaston

(http://en.wikipedia.org/wiki/Alphonse_
and_Gaston)

If level-k models allow preplay communi-
cation of intentions to affect the outcomes 
of zero-sum two-person games, it is no 
surprise that they also allow effective com-
munication in coordination games. Here 
the stylized experimental facts (Crawford 
1998) are that when coordination requires 
symmetry-breaking (section 6), one-sided 
communication is more effective; that when 

http://en.wikipedia.org/wiki/Alphonse_and_Gaston
http://en.wikipedia.org/wiki/Alphonse_and_Gaston
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coordination requires assurance (section 7), 
two-sided communication is more effec-
tive; and that when coordination requires 
symmetry-breaking and communication is 
two-sided, more communication is better 
than less. These patterns have long resisted 
equilibrium explanations. Ellingsen and 
Östling (2010) and Crawford (2007) use sim-
ilar level-k models to elucidate long-standing 
puzzles about how the effectiveness of com-
munication varies with its structure and with 
the payoff structure in experiments and pre-
sumably in the field. In each case the power 
of the analysis stems from the use of a model 
that relaxes equilibrium in favor of a model 
that imposes realistic structure less agnostic 
than rationalizability or k-rationalizability.

9.2.1 Coordination via One Round  
 of Communication 

Ellingsen and Östling (2010) adapt 
Crawford’s (2003) level-k analysis to study 
the effectiveness of one round of one- or 
two-sided communication in games where 
communication of intentions plays vari-
ous roles. Here the central puzzle turns 
on Farrell and Rabin’s (1996) distinction 
between messages that are self-committing 
in the sense that if the message convinces the 
receiver, it’s a best response for the sender 
to do as he said he would do; and those that 
are self-signaling, in that they are sent when 
and only when the sender intends to do as 
he said. In a two-person Stag Hunt game, 
each player does (weakly) better if his part-
ner chooses high effort, without regard to 
his own intentions; “I intend to play High 
Effort” is self-committing but not self-signal-
ing. Aumann (1990) argues on this basis that 
such messages are not credible. But Charness 
(2000) and others have shown experimen-
tally that messages that are self-committing 
but not self-signaling are effective in practice 
(but see Clark, Kay, and Sefton 2001).

Ellingsen and Östling (2010) take a first 
step explaining the patterns of  effectiveness of 

communication. They depart from Crawford 
(2003) by assuming that L0 receivers are uni-
form random rather than credulous and that 
all types have a preference for honesty when 
they are otherwise indifferent about which 
message to send. In their model, one-sided 
communication solves the coordination prob-
lem in games where it requires symmetry-
breaking, and is therefore more effective than 
two-sided communication, as is usually found 
in experiments. Their model can also explain 
why two-sided communication is more effec-
tive than one-sided communication in games 
where coordination requires assurance, as is 
also found in experiments. More generally, 
they show that in common interest games 
when both players are L2 or higher, one- or 
two-way communication assures efficient 
coordination. But this tendency is not univer-
sal: In some games players have incentives to 
misrepresent that erode coordination. 

9.2.2 Coordination via Multiple Rounds 
 of Communication

Farrell (1987) and Rabin (1994) analyze 
the effectiveness of one or more rounds of 
simultaneous, two-sided communication 
about players’ intentions. Their analyses 
assume equilibrium, sometimes weakened 
to rationalizability; and they further restrict 
attention to outcomes that satisfy plausible 
behavioral restrictions defining which com-
binations of messages create agreements, 
and whether and how agreements can be 
changed. They address two conjectures 
regarding symmetric-information games: 
that preplay communication will yield an 
effective agreement to play an equilibrium 
in the underlying game; and that the agreed-
upon equilibrium will be Pareto-efficient 
within that game’s set of equilibria (hence-
forth “efficient”). They show that rational-
izable preplay communication need not 
assure equilibrium; and that, although com-
munication enhances coordination, even 
 equilibrium with “abundant” (Rabin’s term 
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for “unlimited”) communication does not 
assure that the outcome will be efficient.

Equilibrium and rationalizability are natu-
ral places to start in analyses like Farrell’s and 
Rabin’s, but it seems worthwhile to reconsider 
their questions using a level-k model. Such a 
model relaxes equilibrium while counteract-
ing the agnosticism of rationalizability in an 
evidence-based way. Crawford (2007) uses a 
level-k model anchored in truthfulness like 
Crawford’s (2003) model to study the effec-
tiveness of multiple rounds of simultaneous 
two-sided cheap-talk messages, focusing 
on Farrell’s analysis of Battle of the Sexes. 
The level-k analysis provides a way to assess 
Farrell’s and Rabin’s assumptions about how 
players use language, and supports most but 
not all of them. The level-k analysis also gives 
a different take on how coordination rates 
relate to the game. In Farrell’s equilibrium 
analysis of Battle of the Sexes, coordination 
rates are highly sensitive to the difference in 
players’ preferences; but Crawford’s analy-
sis suggests that coordination rates will be 
largely independent of it. With one round 
of communication the level-k coordination 
rate is well above the rate without commu-
nication, and usually higher than the equi-
librium rate. With abundant communication 
the level-k coordination rate is higher than 
the equilibrium rate unless preferences are 
fairly close. The level-k model’s predictions 
with abundant communication are consis-
tent with Rabin’s results, but yield further 
insight into the causes and consequences of 
breakdowns in negotiations.

9.3 Communication of Private Information 
in Outguessing Games

. . . The news that day was the so-called 
“October Surprise” broadcast by bin Laden. 
He hadn’t shown himself in nearly a year, but 
now, four days before the [2004 presidential] 
election, his spectral presence echoed into 
every American home. It was a  surprisingly 

complete statement by the al Qaeda leader 
about his motivations, his actions, and his 
view of the current American landscape. He 
praised Allah and, through most of the eigh-
teen minutes, attacked Bush, . . . At the end, 
he managed to be dismissive of Kerry, but it 
was an afterthought in his ‘anyone but Bush’ 
treatise. . . .

Inside the CIA . . . the analysis moved 
on a different [than the presidential candi-
dates’ public] track. They had spent years, 
as had a similar bin Laden unit at FBI, pars-
ing each expressed word of the al Qaeda 
leader. . . . What they’d learned over nearly 
a decade is that bin Laden speaks only for 
strategic reasons. . . . Today’s conclusion: 
bin Laden’s message was clearly designed to 
help the President’s reelection.

—Suskind (2006, 335–36) (quoted in 
Jazayerli 2008) 

9.3.1 October Surprise

The situation described in the quotation 
can be modeled as a zero-sum two-person 
game of asymmetric information between 
bin Laden and a representative American 
voter. The American knows that he wants 
whichever candidate bin Laden doesn’t 
want, but only bin Laden knows which 
candidate he wants. Bin Laden can send a 
cheap-talk message about what he wants. 
The key strategic issues are how bin Laden 
should relate his message to what he wants 
and how the American should interpret the 
message, knowing that bin Laden is choosing 
it strategically.

Once again, the literal meanings of mes-
sages are likely to play a prominent role 
in applications, but equilibrium analysis 
precludes such a role. There is again no 
equilibrium in which cheap talk conveys 
information or the receiver responds to 
the sender’s  message. However, Crawford’s 
(2003) analysis is easily adapted (see also 
Kartik, Ottaviano, and Squintani 2007) to 
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model the CIA’s conclusion that bin Laden’s 
attack on Bush was intended to aid Bush’s 
reelection. Let L0 again be anchored on 
truthfulness for the sender (bin Laden) 
and credulity for the receiver (American). 
An L0 or L1 American believes bin Laden’s 
message, and therefore votes for which-
ever candidate bin Laden attacks. An L0 
bin Laden who wants Bush to win attacks 
Kerry, but an L1 (L2) bin Laden who wants 
Bush to win attacks Bush to induce L0 (L1) 
Americans to vote for him via “reverse psy-
chology.” Given bin Laden’s attack on Bush, 
an L0 or L1 American ends up voting for 
Bush, and an L2 American ends up voting 
for Kerry. A Sophisticated bin Laden, rec-
ognizing that he cannot fool Sophisticated 
Americans, would choose his message to 
fool the most prevalent kind of Mortal 
American—believer or inverter—as in 
Crawford (2003).

9.3.2 Experiments on Communication 
 of Private Information

Wang, Spezio, and Camerer (2010), 
building on the experiments of Cai and 
Wang (2006), study communication of 
private information via cheap talk in dis-
cretized versions of Crawford and Sobel’s 
(1982) sender–receiver games. In Wang, 
Spezio, and Camerer’s (2010) design, the 
sender observes a state, S = 1, 2, 3, 4, or 5; 
and sends a message, M = 1, 2, 3, 4, or 5. 
The receiver then observes the message and 
chooses an action, A = 1, 2, 3, 4, or 5. The 
receiver’s choice of A determines the wel-
fare of both: The receiver’s ideal outcome is 
A = S and his von Neumann–Morgenstern 
utility function is 110 − 20 | S − A |1.4; and 
the sender’s ideal outcome is A = S + b 
and his von Neumann–Morgenstern util-
ity function is 110 − 20 | S + b − A |1.4. 
Wang, Spezio, and Camerer (2010) vary 
the parameter representing the difference 
in preferences across treatments: b = 0, 1, 
or 2.

The key issue is how much information 
can be transmitted in equilibrium, and how 
the amount is influenced by the difference 
between sender’s and receiver’s preferences. 
Crawford and Sobel characterized the pos-
sible equilibrium relationships between 
sender’s observed S and receiver’s choice 
of A, which determine the informativeness 
of communication. They show, for a class 
of models that generalizes Wang, Spezio, 
and Camerer’s (2010) (except for its dis-
creteness), that all equilibria are “partition 
equilibria,” in which the sender partitions 
the set of states into contiguous groups and 
tells the receiver, in effect, only which group 
his observation lies in. Crawford and Sobel 
(1982) also show that for any given differ-
ence in sender’s and receiver’s preferences 
(b), there is a range of equilibria, from a 
“babbling” equilibrium with one partition 
element to equilibria with finer partitions 
that exist when b is small enough. Under 
reasonable assumptions there is a most 
informative equilibrium, which has the most 
partition elements and gives the receiver the 
highest ex ante (before the sender observes 
the state) expected payoff. As the preference 
difference decreases, the amount of infor-
mation transmitted in the most informative 
equilibrium increases.

In equilibrium, the receiver’s beliefs on 
hearing the sender’s message M are an unbi-
ased—though noisy—estimate of S: Thus 
Crawford and Sobel’s (1982) analysis of stra-
tegic communication has the puzzling fea-
ture that it cannot explain lying or deception, 
only intentional vagueness. Further, previous 
experiments (see Crawford 1998) with this 
model have consistently revealed systematic 
deviations from equilibrium, in the direction 
of excessive truthfulness (from the point of 
view of the equilibrium in a model where 
there are no lying costs!) and excessive cre-
dulity. But despite these deviations from 
equilibrium, experiments have consistently 
confirmed the comparative statics result that 
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closer preferences allow more informative 
communication. It is a natural conjecture 
that the comparative statics result continues 
to hold even when equilibrium fails because 
it holds for a class of models that describe 
subjects’ deviations from equilibrium.

As Wang, Spezio, and Camerer’s (2010) 
figures 1–3 show, unless sender’s and receiv-
er’s preferences are identical (b = 0), most 
senders exaggerate the truth, in the direc-
tion that would, if believed, move receivers 
toward senders’ ideal action. Despite send-
ers’ exaggeration, their messages contain 
some information, measured by the corre-
lation between S and A; and most receivers 
are credulous, responding to the sender’s 
message more than they should. Despite 
the widespread deviations from equilibrium, 
the results reaffirm Crawford and Sobel’s 
equilibrium-based comparative-statics pre-
diction, with the amount of information 
transmitted increasing as the preference 
difference decreases from b = 2 to b = 1 to 
b = 0. Wang, Spezio, and Camerer (2010) 
go beyond previous work by showing in a 
detailed data analysis, including eye-tracking 
measures of information search as well as 
conventional decisions, that their results are 
well explained by a level-k model anchored 
in truthfulness, following Crawford’s (2003) 
analysis. In Wang, Spezio, and Camerer’s 
(2010) analysis, the preference difference 
and a sender’s level determine how much 
he inflates his message (in the direction in 
which he would like to move the receiver), 
and a receiver’s level determines how 
much he discounts the sender’s message. 
Econometric type estimates are broadly con-
sistent with earlier results.65 The model gives 
a unified explanation of subjects’ excessive 

65 See also Kartik, Ottaviani, and Squintani (2007). 
Wang, Spezio, and Camerer (2010) focus on sender sub-
jects because they, but not receiver subjects, were eye-
tracked. For comparison, Hongbin Cai and Wang (2006) in 
a closely related non-eye-tracking design classified 6 per-
cent of senders and 9 percent of receivers as L0, 25 percent

 truthfulness and credulity, and of the affir-
mation of predictions based on the equilib-
rium-based comparative statics result.

9.3.3 Field Studies

Malmendier and Shanthikumar (2007, 
2009) discuss the interaction between stock 
analysts and traders. Analysts issue recom-
mendations on individual stocks that range 
from “strong sell” and “sell” to “hold,” “buy,” 
and “strong buy”; and they also issue earn-
ings forecast. In managing their portfolios, 
traders are presumed to use all the informa-
tion available on the market, of which ana-
lysts’ recommendations are a major source.

An analyst’s recommendation or forecast 
is like a message in a sender–receiver game. 
Particularly when an analyst is affiliated with 
the underwriter of a particular stock, he 
has an incentive to distort such messages. 
Malmendier and Shanthikumar (2007) find 
that analysts tend to bias their stock rec-
ommendations upward, the more so when 
they are affiliated with the underwriter of 
the stock. They also find two main patterns 
of responses to recommendations among 
receivers: Large investors tend to buy fol-
lowing “strong buy” recommendations, but 
not to sell following “hold” recommenda-
tions, thus discounting recommendations 
somewhat. Small traders, by contrast, are 
credulous enough to follow recommen-
dations almost literally. Malmendier and 
Shanthikumar (2009) find somewhat differ-
ent patterns of responses to earnings fore-
casts. Large investors tend to react strongly 
and in the direction suggested by forecast 
updates, without regard to whether the fore-
cast came from an affiliated analyst. Small 
investors, by contrast, react insignificantly to 

of senders and 9 percent of receivers as L1, 31 percent of 
senders and 34 percent of receivers as L2 or Equilibrium, 
and 13 percent of senders and 28 percent of receivers as 
Sophisticated. They also state that an agent LQRE model 
fits their data well.
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the forecasts of unaffiliated analysts and sig-
nificantly negatively to the forecasts of affili-
ated analysts.

Malmendier and Shanthikumar (2007, 
2009) use these and other patterns in the 
data to distinguish between explanations 
of the bias in recommendations based on 
optimism-driven selection effects and those 
based on strategic distortion. They conclude 
that strategic distortion is the more impor-
tant factor. Their analyses, which rest mainly 
on qualitative patterns in the data, might be 
sharpened and refined by an explicit model 
of strategic distortion and its effects along 
the lines of a multidimensional generaliza-
tion of the level-k analyses discussed in this 
section.

10. Conclusion

This paper has surveyed theoretical, 
experimental, and empirical work on models 
of strategic thinking and their applications in 
economics. Better models of strategic think-
ing are plainly important in applications to 
games without clear precedents. But such 
models can also help by making more precise 
predictions of equilibrium selection when it 
is plausible that learning has converged to 
equilibrium, or when initial responses are 
important for their own sake.

Although Nash equilibrium can be and has 
been viewed as a model of strategic thinking, 
experimental research shows with increas-
ing clarity that subjects’ initial responses 
to games often deviate systematically from 
equilibrium, and that the deviations have a 
large structural component that can be mod-
eled in a simple way. Subjects’ thinking tends 
to avoid the fixed-point reasoning or indefi-
nitely iterated dominance reasoning that 
equilibrium sometimes requires, in favor of 
level-k rules of thumb that anchor beliefs in 
an instinctive reaction to the game and then 
adjust them via a small number of iterated 
best responses. The resulting level-k or CH 

models share the generality and much of the 
tractability of equilibrium analysis, but can 
in many settings systematically out-predict 
equilibrium. Importantly, level-k models not 
only predict that deviations will sometimes 
occur; they also predict which settings will 
evoke them; the forms they will take; and, 
given estimates of the type frequencies, their 
likely frequencies.

In simple games where the low-level types 
that describe most people’s behavior often 
mimic equilibrium decisions, a level-k analy-
sis may establish the robustness of equilib-
rium predictions. In more complex games 
where level-k types deviate from equilib-
rium, a level-k analysis can resolve empiri-
cal puzzles by explaining the systematic part 
of the deviations. We have illustrated those 
possibilities in applications ranging from 
zero-sum betting and auctions with private 
information; to coordination via symmetry-
breaking or assurance; outguessing and 
coordination games played on non-neutral 
salience landscapes; and strategic commu-
nication in outguessing and coordination 
games. We hope that this survey has shown 
that structural nonequilibrium models of 
strategic thinking deserve a place in the ana-
lyst’s toolkit.
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