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Context and Motivation 
 
The paper, which is still in progress, analyzes the information search data from 
the experiments whose decisions are reported in: 
 
Costa-Gomes and Crawford, “Cognition and Behavior in Two-Person Guessing 
Games: An Experimental Study,” American Economic Review 2006 (“CGC”), 
 
(CGC also use the search data in some of their econometric estimates)  
 
A literature review and discussion of modeling issues are in: 
 
Crawford, “Look-ups as the Windows of the Strategic Soul: Studying Cognition 
via Information Search in Game Experiments,” to appear in Andrew Caplin and 
Andrew Schotter, editors, Perspectives on the Future of Economics: Positive and 
Normative Foundations, Oxford University Press, 2008 
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These papers are part of a larger experimental project studying strategic 
thinking—how people model other people’s decisions in games 
 
First goal is a structural alternative to equilibrium as a model of initial responses 
 
Such a model should explain why equilibrium often predicts initial responses well 
in simple games, establishing the robustness of some equilibrium conclusions 
 
It should also predict systematic deviations from equilibrium in complex games 
 
Needed for comparative statics and mechanism design, which involve “new” 
games; and for applications that now rely on equilibrium in complex games 
without clear precedents  
 
Second goal is better models of learning, distinguishing reinforcement from 
beliefs-based and more sophisticated learning rules and giving insight into the 
kinds of imperfect analogies people can learn from, and how 
 
Needed for better predictions regarding selection among multiple equilibria 

 3



Experiments that study strategic thinking 
 
CGC joins two strands of experimental papers that study strategic thinking 
 
Those I will focus on randomly and anonymously paired subjects to play series of 
different but related games, with no feedback 
 
Suppressing learning from experience and repeated-game effects allows the 
designs to elicit subjects’ initial responses, game by game 
 
This allows subjects to focus on predicting others’ responses, “uncontaminated” 
by adaptive learning (which can make even amoebas converge to equilibrium) 
 
(“Eureka!” learning remains possible, but can be tested for and seems rare) 
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The first strand includes papers that elicit decisions in games alone, as in: 
 
Stahl and Wilson, “Experimental Evidence on Players’ Models of Other Players” 
Journal of Economic Behavior and Organization 1994 (“SW”) 
 
Stahl and Wilson, “On Players’ Models of Other Players: Theory and 
Experimental Evidence,” Games and Economic Behavior 1995 
 
on matrix games, and 
 
Nagel, “Unraveling in Guessing Games: An Experimental Study,” American 
Economic Review 1995 
 
Ho, Camerer, and Weigelt, “Iterated Dominance and Iterated Best Response in 
Experimental ‘p-Beauty Contests’,” American Economic Review 1998 (“HCW”) 
 
on n-person guessing games 
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The second strand includes papers that monitor both decisions in games and 
subjects’ searches for hidden but freely accessible information about payoffs 
 
(Monitoring originated in MouseLab studies of individual decisions as in Payne, 
Bettman, and Johnson, The Adaptive Decision Maker, 1993) 
 
Camerer, Johnson, Rymon, and Sen, “Cognition and Framing in Sequential 
Bargaining for Gains and Losses,” in Kenneth Binmore, Alan Kirman, and Piero 
Tani, editors, Frontiers of Game Theory, 1993 (“CJ”)  

Johnson, Camerer, Sen, and Rymon, “Detecting Failures of Backward Induction: 
Monitoring Information Search in Sequential Bargaining,” Journal of Economic 
Theory 2002 (“CJ”) 

(Subjects played two-person, three-round alternating-offers bargaining games, in 
which the “pie” varies across rounds to simulate discounting at a common rate; 
each game was presented to subjects as a series of searchable pies; goal is to 
test backward-induction and social-preferences explanations of behavior) 
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Camerer and Johnson, “Thinking about Attention in Games: Backward and 
Forward Induction,” in Isabel Brocas and Juan Carrillo (editors), The Psychology 
of Economic Decisions, Volume Two: Reasons and Choices, Oxford, 2004 

(Subjects played simple extensive-form games with independently searchable 
individual payoffs; the goal is to test forward induction (also exposits CJ papers)) 

 

Costa-Gomes, Crawford, and Broseta, “Cognition and Behavior in Normal-Form 
Games: An Experimental Study,” Econometrica 2001 (“CGCB”) 

(Subjects played series of two-person matrix games with independently 
searchable individual payoffs; games had various patterns of iterated dominance 
or unique pure-strategy equilibria without dominance; goal was to test equilibrium 
and iterated dominance against alternatives such as SW’s “level-k” types) 

 
Most of these experiments give support to a particular structural non-equilibrium 
model of initial responses based on level-k types, described below 
 
Level-k models have also been used to resolve empirical puzzles  
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Applications of level-k Models 
 
Crawford, “Lying for Strategic Advantage: Rational and Boundedly Rational 
Misrepresentation of Intentions,” American Economic Review 2003 (D-day as 
data…) 
 
Camerer, Ho, and Chong, “A Cognitive Hierarchy Model of Games,” Quarterly 
Journal of Economics 2004 (see sections on entry games and zero-sum betting) 
 
Crawford and Iriberri, “Fatal Attraction: Salience, Naivete, and Sophistication in 
Experimental ‘Hide-and-Seek’ Games,” American Economic Review in press 
(explains why “Any government wanting to kill an opponent…would not try it at a 
meeting with government officials” is a fallacy only if you’re a game theorist) 
 
Crawford and Iriberri, “Level-k Auctions: Can a Non-Equilibrium Model of 
Strategic Thinking Explain the Winner's Curse and Overbidding in Private-Value 
Auctions?,” manuscript 2006  
 
Crawford, Gneezy, and Rottenstreich, “The Power of Focal Points is Limited: 
Even Minute Payoff Asymmetry May Yield Large Coordination Failures,” 2007 
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CGC’s experimental design 
CGC’s experiments elicit subjects’ initial responses to a series of 16 dominance-
solvable two-person guessing games, relatives of Nagel’s and HCW’s 

In each game, each player has his own lower and upper limit, both strictly 
positive; but players are not required to guess between their limits 

Guesses outside the limits are automatically adjusted up to the lower or down to 
the upper limit as necessary (a trick to enhance separation of types via search). 

Each player also has his own target, and his payoff increases with the closeness 
of his adjusted guess to his target times the other’s adjusted guess 

The targets and limits vary independently across players and 16 games, with the 
targets either both less than one, both greater than one, or mixed 

(In previous guessing experiments, the targets and limits were always the same 
for both players, and varied either only across treatments or not at all) 
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The 16 games subjects played are finitely dominance-solvable in 3-52 rounds, 
with essentially (because the only thing about a guess that matters is its adjusted 
guess) unique equilibria determined by the targets and limits in a simple way  
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For example, in game γ4δ3 (#5 in Table 3), player i’s limits and target are [300, 
500] and 1.5 and player j’s are [300, 900] and 1.3 
 
The product of targets 1.5 × 1.3 > 1, so players’ equilibrium adjusted guesses are 
determined (at least indirectly) by their upper limits; i’s equilibrium adjusted guess 
equals his upper limit of 500, but j’s is below his upper limit at 650  
 
The way in which equilibrium is determined here is general in CGC’s games 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

300 450 500

300 390 585 650 900

R (1)

R (1) R (1)

R (2)

R (2) R (3)

Eq. Guess

Eq. GuessPlayer i

Player j

p i = 1.5

p j = 1.3

(Guesses in R(k) are eliminated in round k of iterated dominance.) 

 12



CGC’s design exploits the discontinuity of the equilibrium correspondence by 
including some games that differ mainly in whether the product is slightly greater, 
or slightly less, than 1; equilibrium responds strongly to such differences, but 
empirically plausible non-equilibrium decision rules are largely unmoved by them 
 
The way in which equilibrium is jointly determined by both players’ parameters 
also helps to separate the search implications of equilibrium and other rules 
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Level-k model 
 
CGC’s analysis of decisions follows SW’s, Nagel’s, and CGCB’s in using a 
structural non-equilibrium model of initial responses in which each subject’s 
decisions are determined by one of several decision rules or types 
 
Types will play a central role in linking decisions and search: CGC’s analysis, like 
CGCB’s, takes a procedural view of decision-making in which a subject’s type 
determines his search and his type and search then determine his decision 
 
CGC’s types assume risk-neutrality, with no social preferences; plausible, given 
the design, and mostly justified by data 
 
The empirical strategy was to throw in any type from previous work that had a 
chance of being important, then to test carefully for omitted types and overfitting   
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Types 
 
L0 is an “anchoring type,” here uniform random over the feasible decisions 
 
(L0 usually has 0 estimated frequency (or is confounded with the error structure), 
but its role is crucial, representing L1’s beliefs, L2’s beliefs about L1’s beliefs) 
 
L1 best responds to L0  
 
(L1 understands the rules, but makes no attempt to model others’ decisions) 
 
L2 (L3) best responds to L1 (L2), and so on 
 
(Lk for k > 0 is rational, and k-level rationalizable and so coincides with 
equilibrium in games that are k-dominance solvable; but uses a simplified model 
of others that may make it deviate from equilibrium) 
 
(Previous analyses have considered alternative definitions: e.g. SW’s L2 best 
responds to a noisy L1; and CHC’s L2 best responds to an estimated mixture of 
L1 and L0; CCG discuss the evidence) 
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Equilibrium makes its equilibrium decision 
 
D1 (D2) does one round (two rounds) of deletion of dominated decisions and 
then best responds to a uniform prior over the other’s remaining decisions 
 
(By a quirk of our notation, L2 (not L1) is D1’s cousin, and L3 is D2’s; theorists 
tend instinctively to identify Lk with Dk-1, etc., but they are cognitively very 
different: Lk starts with a naïve prior over the other’s decisions and iterates the 
best-response mapping, while Dk-1 starts with reasoning based on iterated 
knowledge of rationality and closes the process with a naïve prior at the end) 
 
(Lk and Dk-1 decisions are perfectly confounded in Nagel’s games and weakly 
separated in other previous experiments, but CGC strongly separate them and 
show that empirically, Lk is common (for k = 1, 2, maybe 3), Dk-1 doesn’t exist)  
 
Sophisticated best responds to the probabilities of other’s decisions, as 
estimated in CGC from subjects’ observed choice frequencies; included to test 
for subjects whose understanding goes beyond mechanical rules 
 
(CGCB and CGC show that Sophisticated doesn’t exist (in the lab)) 
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CGC’s results for decisions 
 
The large strategy spaces and independent variation of targets and limits in 
CGC’s design enhance separation of types’ implications for decisions, to the 
point where many subjects’ types can be precisely identified from guesses alone 
 

Game ai           bi pi aj bj pj L1 L2 L3 D1 D2 E S
1 100 900 1.5 300 500 0.7 600 525 630 600 611.25 750 630 
2 300 900 1.3 300 500 1.5 520 650 650 617.5 650 650 650 
3 300 900 1.3 300 900 1.3 780 900 900 838.5 900 900 900 
4 300 900 0.7 100 900 1.3 350 546 318.5 451.5 423.15 300 420 
5 100 500 1.5 100 500 0.7 450 315 472.5 337.5 341.25 500 375 
6 100 500 0.7 100 900 0.5 350 105 122.5 122.5 122.5 100 122 
7 100 500 0.7 100 500 1.5 210 315 220.5 227.5 227.5 350 262 
8 300 500 0.7 100 900 1.5 350 420 367.5 420    420 500 420
9 300 500 1.5 300 900 1.3 500 500 500     500 500 500 500

10 300 500 0.7 100 900 0.5 350 300 300     300 300 300 300
11 100 500 1.5 100 900 0.5 500 225 375 262.5 262.5 150 300 
12 300 900 1.3 300 900 1.3 780 900 900 838.5 900 900 900 
13 100 900 1.3 300 900 0.7 780 455 709.8 604.5 604.5 390 695 
14 100 900 0.5 300 500 0.7 200 175 150 200    150 150 162
15 100 900 0.5 100 500 0.7 150 175 100     150 100 100 132
16 100 900 0.5 100 500 1.5 150 250 112.5 162.5 131.25 100 187 
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Of 88 subjects, 43 made guesses that complied exactly (within 0.5) with one 
type’s guesses in 7-16 of the games (20 L1, 12 L2, 3 L3, and 8 Equilibrium) 
 
E.g. CGC’s Figure 2 shows the “fingerprints” of the 12 subjects whose apparent 
types were L2. Of their 192 guesses, 138 (72%) were exact   
 
Given how strongly CGC’s design separates types’ guesses, and that guesses 
could take 200-800 different rounded values, these subjects’ exact compliance 
rates are far higher than could occur by chance 
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Further, because the types specify precise, well-separated guess sequences in a 
very large space of possibilities, their high exact compliance rules out (intuitively 
or econometrically) alternative interpretations of their behavior 
 
In particular, because the types build in risk-neutral, self-interested rationality and 
perfect models of the game, the deviations from equilibrium of the 35 subjects 
whose apparent types are L1, L2, or L3 can be attributed to non-equilibrium 
beliefs rather than irrationality, risk aversion, altruism, spite, or confusion 
 
(In SW’s or CGCB’s matrix games, even a perfect fit does not distinguish a 
subject’s best-fitting type from nearby omitted types; and in Nagel’s and HCW’s 
guessing games, with each subject playing one game, the ambiguity is worse) 
        
CGC's other 45 subjects’ types are less apparent from their guesses; but 
econometric estimates and specification analysis still turns up only L1, L2, L3, 
and Equilibrium in significant numbers 
 
Dk and other types, including Sophisticated, which is clearly separated from 
Equilbrium here, don't exist, at least in these games
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Puzzles left unresolved by CGC’s analysis of decisions 
To go further, it is necessary to distinguish CGC’s three treatments 

In the Baseline treatment, subjects played the games with other subjects, looking 
up the targets and limits through a MouseLab interface as explained below 

The Open Boxes (“OB”) treatment was identical to the Baseline, except subjects 
did not need to look up their targets and limits; they were continually displayed 

The analysis of decisions described so far pools the decision data from the 
Baseline and OB treatments, which did not differ significantly 

 

CGC also ran six different Robot/Trained Subjects (“R/TS”) treatments, one each 
for types L1, L2, L3, D1, D2, and Equilibrium 

R/TS treatments were identical to the Baseline, except subjects played against a 
“robot” (described as “the computer”) and the computer played according to a 
pre-specified, announced type; subjects were trained to identify the computer’s 
type’s guesses; and subjects were paid for their payoffs against the computer 
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Puzzle A. What are Those Baseline “Equilibrium” Subjects Really Doing? 
 
Consider the eight Baseline subjects with near-Equilibrium fingerprints 
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Ordering the games by strategic structure as in Figure 4, with the 8 games with 
mixed targets (Table 3) on the right, shows that these subjects’ deviations from 
equilibrium almost always occur with mixed targets 
 
Thus these subjects, whose exact compliance with Equilibrium guesses is off the 
scale by any normal standard, are actually following a rule that only mimics 
Equilibrium, and that only in games without mixed targets  
 
Yet all the ways we teach people to identify equilibria (best-response dynamics, 
equilibrium checking, iterated dominance) work just as well with mixed targets 
 
Whatever these subjects are doing, it’s something we haven’t thought of yet 
 
And whatever it is, it has a structure: All 44 of these subjects’ deviations from 
Equilibrium (solid line) when it is separated from L3 (dotted line) are in the 
direction of (and sometimes beyond) L3 guesses; but this could reflect no more 
than the fact that Equilibrium guesses are more extreme than other types’ 
 
Equilibrium R/TS subjects’ compliance is equally high with and without mixed 
targets, so training eliminates whatever the Baseline subjects are doing 
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Fingerprints of 10 UCSD Equilibrium R/TS Subjects

(only deviations from Eq.'s guesses are shown)
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Fingerprints of 18 York Equilibrium R/TS Subjects 

(only deviations from Eq.'s guesses are shown)
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Subjects with 16 exact guesses: 1205, 1404, 1405, 1406, 2002
0
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Game Numbers
Eq. L3
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Puzzle B. Why are Lk the only non-Equilibrium types that exist? 
 
A careful analysis of CGC’s decision data, including specification tests not 
described here, reveals many subjects of types L1, L2, Equilibrium, or hybrids of 
L3 and/or Equilibrium, but no other types that do better than a completely random 
model of guesses for more than one of their 88 Baseline and OB subjects 
 
Why, out of the enormous number of possibilities do these rules predominate? 
  
Why, for instance, don't we get Dk rules, which are closer to what we teach?  
 
Answering this question may be the key to a deeper theory of bounded rationality  

 
 
 
I suggest possible ways to resolve both puzzles after discussing search analysis  
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CGC’s analysis of information search  
 
In CGC’s design, within a publicly announced structure, each game was 
presented via MouseLab, which normally concealed the targets and limits but 
allowed subjects to look them up as often as desired, one at a time 
 
(Click option, versus rollover option used by CJ; opening and closing boxes 
conscious decisions, though they are quickly subordinated to their purposes) 
 
With search costs as low as subjects’ searches make them seem, free access 
made the entire structure effectively public knowledge, so the results can be 
used to test theories of behavior in complete-information versions of the games  
 
These designs also maintain tight control over subjects’ motives for search by 
making information from previous plays completely irrelevant to current payoffs 
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Design desiderata for studying cognition via search 
 
CGC’s design combines the strengths of CJ’s and CGCB’s designs  
 
CJ’s design allows subjects to search for a small number of hidden parameters 
(pies) within a simple, publicly announced structure, but makes their search 
patterns essentially one-dimensional, and so less informative than they could be 
 
CGCB’s design makes search roughly three-dimensional (up-down in own 
payoffs, left-right in other’s payoffs, transitions from own to other’s payoffs) and 
independently separates the implications of leading types for search and 
decisions 
 
But search is complex (8-16 payoffs in games with no common structure beyond 
being matrix games)   
 
CGC’s design has a simple parametric structure like CJ’s, but makes subjects’ 
search patterns high-dimensional, with leading types’ search implications 
(almost) independent of the game 

 29



Search data for representative R/TS and Baseline subjects 
 
Start by comparing the search data for representative R/TS and Baseline 
subjects whose guesses conform closely to their assigned or estimated type with 
the implications of CGC’s theory of cognition and search 
 
(CGC’s theory is close to CGCB’s, and was therefore almost completely 
specified before these data were generated)    
 
Eyeballing compliance with types’ search implications will suggest that there 
some usable structure in the data, and then we can figure out how to model it 
 
 
But first…. 
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SPEAK RODENT LIKE A NATIVE IN ONE EASY LESSON! 
 

    
 
 

  a p  B
You (i) 1   2 3
S/he (j) 4   5 6

 
MouseLab Box Numbers 
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Selected R/TS Subjects’ Information Searches and Assigned Types’ Search Implications
        

 
  Types' Search Implications 

  MouseLab box numbers L1 {[4,6],2} 
   a p b L2 {([1,3],5),4,6,2}
  You (i) 1  2 3 L3 {([4,6],2),1,3,5}
  S/he (j) 4   5 6 D1 {(4,[5,1], (6,[5,3]),2}   
     D2 {(1,[2,4]),(3,[2,6]),(4,[5,1],(6,[5,3]),5,2}
      Eq {[2,5],4} if pr. tar.<1,{[2,5],6} if > 1   
      

Subject                 904 1716 1807 1607 1811 2008 1001 1412 805 1601 804 1110 1202 704 1205 1408 2002
Type(#rt.) L1 (16) 

 
L1 (16) 

 
L1 (16) 

 
L2 (16)

 
L2 (16)

 
L2 (16)

 
L3 (16)

 
L3 (16) D1 (16)

  
D1 (16) 

 
D1 (3) D2 (14)

16)
D2 (15)

  
Eq (16)

 
Eq (16)

 
Eq (15)

 
Eq (16) 

 Alt.(#rt.) L2 (
Est. style late often early often early early

Game
1 123456 146462 462513 135462 134446 111313 462135 146231 154356 254514 154346 135464 246466 123456 123456 123123 142536

4623 134646 1313 5213*4 131313 21364* 564623 423213 36231 5213 2646*1 135464 363256 424652 456445 125365
23 6 5423 246231 1 2642 313 641321 565365 562525 632132 253616

52 342462 626365 6352*4 11 361454
422646 652651 65 613451
124625 452262 213452
5*1224 6526 63
654646

2 123456 462462 462132 135461 134653 131313 462135 462462 514535 514653 515135 135134 123645 123456 123456 123456 143625
4231 13 25 354621 125642 566622 642562 546231 615364 6213 365462 642163 132462 525123 244565 456123 361425

3 313562 333 223146 546231 23 3 451463 426262 652625 565263 643524 142523
52 2562*6 211136 241356 635256 212554 1 625656

2 414262 462*13 262365 146662 3
135362 524242 456 654251
*14654 466135 44526*

6 6462 31
The subjects' frequencies of making their assigned types' (and when relevant, alternate types') exact guesses are in parentheses after the assigned type. 
ct's look-up sequence means that the subject entered a guess there without immediately confirming it. 
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Selected Baseline Subjects’ Information Searches and Estimated Types’ Search Implications 
    Types’ Search Implications

MouseLab box numbers L1 {[4,6],2}
a p b L2 {([1,3],5),4,6,2}

You (i) 1 2 3 L3 {([4,6],2),1,3,5}
  S/he (j) 4 5 6 D1 {(4,[5,1], (6,[5,3]),2}

D2 {(1,[2,4]),(3,[2,6]),(4,[5,1],(6,[5,3]),5,2}
    Eq {[2,5],4} if pr. tar.<1,{[2,5],6} if > 1

Subject 101 118 413 108 206 309 405 210 302 318 417 404 202 310 315
Type(#rt.) L1 (15) L1 (15) L1 (14) L2 (13) L2 (15) L2 (16) L2 (16) L3 (9) L3 (7) L1 (7) Eq (8) Eq (9) Eq (8) Eq (11) Eq (11)
Alt.(#rt.) Eq (9) Eq (7) D1 (5) L3 (7) L2 (6) D2 (7)
Alt.(#rt.) D2 (8) L2 (5) L3 (7)
Est. styleearly/late early late early early ate early early early early early early early early/late early

Game
1 146246 

 
246134 123456 135642

 
533146 1352 144652 123456 221135 132456 252531 462135 123456 123126 213465

 213
 

626241 545612 213 313312 123456 465645 465252 464656 464655 254613 544121 624163
 32*135

 
 3463*

 
 

 
   
    
    
    
    

  
   
    
   

   
    
    

    

546232 213456 213213 13242* 446531 645515 621342 565421 564121
 12512 254213 45456* 1462

 
641252 21354* *525 254362 325466

 654 541 462121 135462 *21545
 3 426256 4*

 356234
 131354
 645

2 46213 
 

246262 123564 135642
 

531462 135263 132456 123456 213546 132465 255236 462461 123456 123546 134652
 2131 62213*

 
3 31 1526*2 253156 465562 566213 132*46 62*365 352524 445613 216326 124653

 *3 456545 231654 545463 2
 

243563 261315 255462 231456 656121
 463123 456*2 21*266 463562 513565 *62 3
 156562 54123

 
23

 62
3 462*46 

 
246242 264231 

  
135642 535164 135263 312456 123455 265413 134652 521363 462135 123456 123655 132465

 466413 53 2231 5231*1 645612 232145 1323*4
 

641526 215634 123562 463213 544163
 *426 236545 3 563214 5263*6 *52 3 *3625
 5233** 563214 52
 513 523*65
 4123
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These data suggest the following conclusions:  
 
(i) Search is so heterogeneous and noisy that should study it at individual level 
  
(ii) There is little difference between the look-up sequences of R/TS and Baseline 
subjects of a given type (assigned for R/TS, apparent for Baseline); perhaps 
unsurprising, because R/TS subjects were not trained in search strategies 
 
(iii) A subject’s type’s predicted sequence is unusually dense in his searches, at 
least for L1 and L2, and can quickly learn to read the algorithms many subjects 
are using in the data (CGC’s econometric analysis measures search compliance 
as the density of a type’s relevant sequences in the subject’s sequence; Table 7 
shows that many subjects’ types can be reliably identified from search alone) 
 
(iv) For some subjects search is an important check on decisions; e.g. Baseline 
subject 309, with 16 exact L2 guesses, misses some of L2’s relevant look-ups, 
avoiding deviations from L2 only by luck (s/he has a Eureka! moment between 
games 5 and 6, and from then on complies perfectly); reminiscent of CJ’s finding 
that in their alternating-offers bargaining games, 10% of the subjects never 
looked at the last-round pie and 19% never looked at the second-round pie 
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(Simple theories of cognition more readily suggest roles for which look-ups 
subjects make, and in which orders, than for durations; no claim is intended that 
durations are irrelevant—CGCB (Table IV) present some results on durations—
just that they don’t deserve the priority they have been given) 

How does cognition show up in search? 
 
CJ gave roughly equal weight to look-up durations and to the numbers of look-
ups of each pie (“acquisitions”) and the transitions between pies 
 
Rubinstein, “Instinctive and Cognitive Reasoning: A Study of Response Times,” 
EJ 2007, which considers some matrix games, considered only durations 

 
Gabaix, Laibson, Moloche, and Weinberg, “Costly Information Acquisition: 
Experimental Analysis of a Boundedly Rational Model,” American Economic 
Review 2006, focused on acquisitions and considered some aspects of order too 
 
The analyses were at a high level of aggregation, across subjects and over time 
 
CGCB and CGC presume which look-ups subjects make, in which order, reveals 
as much information about cognition as durations or transition frequencies 
 



Types as models of cognition and search 
 
CGC’s and CGCB’s models of cognition, search, and decisions are based on an 
individual-level, procedural view of decision-making, in which a subject’s type 
determines his search, and his type and search then determine his decision 
 
Each type is naturally associated with algorithms that process payoff information 
into decisions 
 
The analysis uses the algorithms as models of cognition, deriving a type’s search 
implications under simple assumptions about how cognition determines search 
 
(Because a type’s search implications depend not only on what decisions it 
specifies, but why, something like a types-based model seems necessary here) 
 
With their derived search implications, the types then provide a kind of basis for 
the enormous space of possible decision and search sequences, imposing 
enough structure to describe subjects’ behavior in a comprehensible way, and to 
make it meaningful to ask how subjects’ decisions and searches are related 
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Without further assumptions, nothing precludes a subject’s scanning and 
memorizing the information and “going into his brain” to figure out what to do, in 
which case his searches will reveal nothing about cognition 
 
But subjects’ actual searches appear to contain a lot of information 
 
We need enough additional assumptions to extract the signal from the noise in 
subjects’ searches, but not so many that they distort the meaning of the signal 
 
CGC’s (like CGCB’s) assumptions are conservative in that they rest on types’ 
minimal search implications and add as little structure to these as possible   
 
Types’ minimal search implications in CGC’s games can be derived from their 
ideal guesses, those they would make if they had no limits; with automatic 
adjustment of guesses and quasiconcave payoffs, a subject’s ideal guess is all 
he needs to know to ensure his adjusted guess is optimal 
 
The left side of Table 4 lists formulas for types’ ideal guesses in CGC’s games. 
 
The right side lists types’ search implications in our model, first in terms of our 
notation, then in terms of the box numbers in which MouseLab records the data 
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p is a target; a (b) is a lower (upper) limit; i and j are the player and his partner; 
and R( ) is the automatic adjustment function. 
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Derivation of types’ search implications 
 
Evaluating a formula for a type’s ideal guess requires a series of operations, 
some of which are basic in that they logically precede any other operation 
 
E.g. [aj + bj] is the only basic operation for L1’s ideal guess, pi [aj + bj]/2 
 
The search implications in Table 4 assume that subjects perform basic 
operations one at a time via adjacent look-ups, remember their results, and 
otherwise rely on repeated look-ups rather than memory 
 
Basic operations will then be represented by adjacent look-up pairs that can 
appear in either order, but cannot be separated by other look-ups   
 
Such pairs are grouped within square brackets, as in {[aj, bj], pi} for L1 
  
Other operations can appear in any order and their look-ups can be separated 
 
They are represented by look-ups grouped within curly brackets or parentheses  
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L1, L2, L3, D1, D2 search implications are easy to derive directly from 
Table 4’s formulas 

Equilibrium is more interesting 

It can use any workable method to find its ideal guess; we allow any 
method, and seek the one with minimal search requirements 

Equilibrium-checking (conjecturing guesses and checking them for 
consistency with equilibrium) is less demanding than other methods, but 
requires more luck than almost all of our subjects appeared to have 

Accordingly, we allow Equilibrium to use both targets to determine whether 
the equilibrium is High or Low, and then to enter its own target times its 
partner’s lower (upper) limit when the product of targets is < (>) 1, which 
CGC’s Observation 1 shows ensures its adjusted guess is in equilibrium 

This has the same search requirements as equilibrium-checking except that 
it requires the targets to be adjacent; and thereby avoids the need for luck   

(Unlike in CGCB’s and CJ’s designs, Equilibrium’s search implications are 
just as simple as L1’s, and simpler than other boundedly rational types’!) 
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Aside: Background evidence on cognition and search  
(i) CJ’s Robot/Trained Subjects’ searches, which led them to characterize 
subgame-perfect equilibrium via backward induction search in terms of 
transitions between the second- and third-round pies 
 
(ii) CGCB’s Trained Subjects’ searches, which suggest a similar view of 
Equilibrium search in matrix games 
 
(iii) CGC’s R/TS and Baseline subjects with high compliance with their types’ 
guesses, whose searches suggest a similar view of L1 and L2 search 
(CGC’s specification analysis turned up only one clear violation of the proposed 
characterization of types’ search implications: Baseline subject 415, whose 
apparent type was L1 with 9 exact guesses, had 0 L1 search compliance in 9 of 
the 16 games because s/he had no adjacent [aj,bj] pairs as we required for L1. 
Her/his look-up sequences were unusually rich in (aj,pi,bj) and (bj,pi,aj) triples, in 
those orders. Because the sequences were not rich in such triples with other 
superscripts, this is clear evidence that 415 was an L1 who happened to be more 
comfortable with several numbers in working memory than our characterization 
of search assumes, or than our other subjects were. But because this violated 
our assumptions on search, this subject was “officially” estimated to be D1.) 
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CGC’s econometric analysis of guesses and search 
 
In the econometric analysis we summarize a subject’s compliance with a type’s 
search implications in a game by the density of the type’s look-up sequence in 
the subject’s observed look-up sequence, with some refinements 
 
We extend CGCB’s and CGC’s maximum likelihood error-rate models of 
decisions to explain search compliance as well as decisions  
 
Most guesses-and-search type estimates reaffirm guesses-only estimates 
 
For some subjects the guesses-and-search estimate resolves a tension between 
guesses-only and search-only estimates in favor of a type other than the 
guesses-only estimate 
 
In more extreme cases, a subject’s guesses-only type estimate is excluded 
because it has 0 search compliance in 8 or more games, like subject 415 
 
Search refines and sharpens conclusions and confirms the absence of significant 
numbers of types other than L1, L2, Equilibrium, or hybrids of L3 or Equilibrium 
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Aside on Searchmetrics: 
 
Our econometric analysis focuses on the order of look-ups and ignores 
duration, following CJ and CGCB  
 
We view search for hidden payoff information as just another kind of decision—
not the kind conventionally studied, but potentially also useful in helping to 
identify the decision rules that best describe subjects’ behavior 
 
Combine guessmetrics with a maximum-likelihood error-rate model of search 
as in CGCB (but subject-by-subject, not mixture model) 
 
The main econometric problem is extracting signals from subjects’ highly 
idiosyncratic, noisy look-up sequences, without a well-tested model that implies 
strong restrictions on how cognition drives search  

Subjects vary in the location of look-ups relevant to their types in their 
sequences. Filter this out via subject-specific nuisance parameter called style 
(“early” or “late”), assumed constant across games for each subject. (58 of 71 
Baseline subjects’ estimated styles are “early,” 10 are “late,” and 3 are tied.) 
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Quantify compliance with a type’s search implications as the density of the 
type's relevant look-up sequence in the subject's look-up sequence. If style is 
early, start at the beginning of the sequence and continue until the type’s 
relevant sequence is first completed. Compliance is the length of the relevant 
sequence divided by the length of the sequence that first completes it. This 
definition makes compliance meaningfully comparable across games, styles. 
 
We assume that a subject’s type and style determine his search and guess in a 
given game, each with error; and we further assume that, given type and style, 
errors in search and guesses are independent of each other and across 
games. This strong but useful simplifying assumption makes the log-likelihood 
separable across guesses and search, avoiding some complications in CGCB. 
 
To avoid stronger distributional assumptions, we discretize compliance into 
three categories: CH ≡ [0.67, 1.00], CM ≡ [0.33, 0.67], and CL ≡ [0, 0.33]. 
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Subject i’s guesses-and-search log-likelihood is: 
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where is the number of games for which subject i has type-k style-s  
compliance c. (The search term is convex in the isk , and therefore favors 
types for which compliance varies less across games, because such types 
"explain" search behavior better. See CGCB, Section 4.D.) 

isk
cm

cm

The maximum-likelihood estimates of ε  and cζ , given k and s, are /G and 
Gmisk , the sample frequencies with which subject i's adjusted guesses are 

non-exact for that k and i has compliance c for that k and s. The maximum 
likelihood estimate of λ is the standard logit precision. 

ikn

c /

 
The maximum likelihood estimate of subject i’s type k maximizes the above 
log-likelihood over k and s, given the estimated ε and λ. 
 

 46



The model favors such types without regard to whether compliance is high or 
low. This seems appropriate because compliance is neither meaningfully 
comparable across types nor guaranteed to be high for the “true” type (which 
could be cognitively very difficult). But it means we need to rule out estimates 
where a type wins simply because its compliance is very low in all games.   
 
A few subjects’ type estimates change (Table 1) when search is included: 
 
For some subjects a tension between guesses-only and search-only type 
estimates is resolved in favor of the search estimates. (The search part of the 
likelihood has weight only about 1/6 of the guesses part, because our theory of 
search makes much less precise predictions than our theory of guesses—a 
necessary evil, given the noisiness and idiosyncrasy of search behavior.) 
 
For other subjects the guesses-only type estimate has 0 search compliance in 
8 or more games, and so we rule it out a priori. 
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Possible answers to unresolved puzzle A. What are Those Baseline 
“Equilibrium” Subjects Really Doing? 
 
(i) Can we tell how Baseline Equilibrium subjects find equilibrium in games 
without mixed targets: best-response dynamics, equilibrium checking, iterated 
dominance, or something else that doesn’t “work” with mixed targets? Can check 
by refining characterization of Equilibrium search and redoing searchmetrics 
 
Aside: Refined characterization of Equilibrium search 
Equilibrium's ideal guess can be identified by (1) evaluating a formula, (2) 
equilibrium-checking, (3) iterated dominance, or (4) best-response dynamics 
 
(1) Two ways to evaluate a formula: using Equilibrium’s ideal guess, or using  
Observation 1’s proxy for Equilibrium’s ideal guess 
 
Because they are logically related, our theory cannot distinguish them 
 
The latter is less stringent, and yields requirements 
 
(1) {[pi,pj],aj} ≡ {[2, 5], 4} if pipj < 1 or {[pi,pj],bj} ≡ {[2, 5], 6} if pipj > 1 
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(2) Equilibrium-checking’s requirements are almost the same, usually requiring 
both of the partner’s limits but excluding one in some cases, depending on luck 
 
I omit the requirements here, noting only that this method also requires [pi,pj] 
 
(3) Iterated dominance we assume requires one or more complete rounds, 
stopping when there is a clear up-or-down direction in which dominance 
eliminates guesses, enough to guess whether the equilibrium is High or Low 
 
Once the required rounds are completed, the player can use Observation 1’s 
proxy for Equilibrium’s ideal guess; this adds a pi times either aj (Low equilibrium) 
or bj (High) to his sequence 
 
As it happens, the search requirements for k rounds are independent of k; thus, 
the search requirements for iterated dominance are like CGC’s characterization 
for D2 (D2, not D1, because unlike D1, a k-round iterated-dominance player must 
delete k rounds of dominated guesses for himself too) 
 
(3)    {(ai, [pi, aj]), (bi, [pi, bj]), (aj, [pj, ai]), (bj, [pj, bi]), pj, pi}  

≡ {(1, [2, 4]), (3, [2, 6]), (4, [5, 1]), (6, [5, 3]), 5, 2} 
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(4) For best-response dynamics we assume the subject does only one 
complete round: that is, starting with a trial guess for one player, best-
responding for the other, and then best-responding back for the first player 
 
We also assume the subject can infer from whether the iterated best 
response goes up or down (if it changes) whether equilibrium is High or Low 
 
(4) {([ai,pj] or [bi,pj] or [(aj,pi] or [(bj,pi]), pi,pj,(all but at most one of ai,bi,aj, and bj)} 
 
 
The main difference among Equilibrium methods is that methods 1 and 2 have a 
[pi, pj] requirement and methods 3 and 4 do not 
 
We know from the absence of Baseline Dk subjects in CGC’s guesses-and-
search estimates that method 3’s requirements don’t fit the data well 
 
Its also seems, from the data, that [pi, pj] are comparatively rare for Baseline 
apparent Equilibrium subjects, and even for R/TS Equilibrium subjects 
 
Thus searchmetrics may favor best-response dynamics, truncated 1-2 rounds 
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(ii) Is there any difference in Baseline Equilibrium subjects’ search patterns in 
games with and without mixed targets? If so, how does the difference compare to 
the differences for L1, L2, or L3 subjects? 
 
(Our 20 Baseline L1 subjects’ compliance with L1 guesses is almost the same 
with and without mixed targets (Figure 1); unsurprising, distinction is irrelevant to 
L1. But 12 L2 and 3 L3 (Figures 2-3) subjects’ compliance with types’ guesses is 
lower with mixed targets. This is curious, because for L2 and L3, unlike for 
Equilibrium, games with mixed targets require no deeper understanding.)  
 
(iii) Can we tell how R/TS Equilibrium subjects with high compliance manage to 
find their Equilibrium guesses even with mixed targets? How does their search in 
those games differ from Baseline Equilibrium subjects’ search? 
 
(CGC strove to make the R/TS Equilibrium training as neutral as possible, but 
something must come first. R/TS subjects were taught equilibrium-checking first, 
then best-response dynamics, then iterated dominance. To the extent that they 
used one of those methods, it explains why they have equal compliance with and 
without mixed targets. If they used something else that deviates from equilibrium 
with mixed targets, it might be a clue to what Baseline Equilibrium subjects did.) 
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(Note that CGC’s Baseline subjects with high compliance for some type are like robot 
untrained subjects. These don’t usually exist because you can’t tell robot subjects how 
they will be paid without teaching them how the robot works. Thus CGC’s design provides 
an unusual opportunity to separate the effects of training and strategic uncertainty, by 
comparing Baseline and R/TS subjects: Either Equilibrium is natural with mixed targets, 
but subjects don’t see it without training; or Equilibrium is unnatural, and/or subjects don’t 
believe that others, even with training, will make Equilibrium guesses with mixed targets.) 
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Possible answers to unresolved puzzle B. Why Are Lk the Only 
Types other than Equilibrium with Nonnegligible Frequencies? 
 
(i) Most R/TS subjects could reliably identify their type’s guesses, even 
Equilibrium or D2. (These average rates are for exact compliance, and so are 
quite high. Individual subjects’ compliance was usually bimodal within type, on 
very high and very low.)  
 

 R/TS Subjects’ Exact Compliance with Assigned Type’s Guesses 
      L1 L2 L3 D1 D2 Eq. 

Number of subjects 25      27 18 30 19 29
% Compliance|Passed UT2

 
80.0      

 
91.0 84.7 62.1 56.6

 
70.3

% Failed UT2 0.0 0.0 0.0 3.2 5.0 19.4
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(ii) But there are noticeable signs of differences in difficulty across types: 
 
(a) No one ever failed an Lk Understanding Test, while some failed the Dk and 
many failed the Equilibrium Understanding Test. 
 
(b) For those who passed, compliance was highest for Lk types, then Equilibrium, 
then Dk types. This suggests that Dk is even harder than Equilibrium, but could 
just be an artifact of the more stringent screening of the Equilibrium Test.   
 
(c) Among Lk and Dk types, compliance was higher for lower k as expected, 
except L1 was lower than L2 or L3 compliance. (We suspect that this is because 
L1 best responds to a random L0 robot, which some subjects think they can 
outguess; while L2 and L3 best respond to a deterministic L1 or L2 robot.) 
 
(d) Remarkably, 7 of 19 R/TS D1 subjects passed the D1 Understanding Test, in 
which L2 answers are wrong; and then “morphed” into L2s when making their 
guesses, significantly reducing their earnings. E.g. R/TS D1 subject 804 made 16 
exact L2 (and so only 3 exact D1) guesses. (Recall that it is L2 that is D1’s 
cousin.) This kind of morphing, in this direction, is the only kind that occurred. We 
view this as pretty compelling evidence that Dk types are unnatural. 
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Fingerprints of 7 R/TS Subjects who morphed  from D1 to L2
(only deviations from D1's guesses are shown)
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Appendix 1: A “Theory” of Optimal Search for Hidden Payoff Information   
 
I now sketch a simple model of optimal search with costs of storing numbers in working 
memory, which rationalizes the stylized facts of search behavior in these experiments. 
 
The model views search for hidden payoff information as just another decision, and takes 
the formula that relates a type's desired decisions to the hidden parameters as given. 
Thus a subject's type determines both an optimal search pattern and an optimal decision. 
 
Occurrence 
 
The usual rationality assumption implies that a player will look up all costlessly available 
information that might affect his beliefs and best respond to his beliefs.  
 
When, as here, observing a parameter will normally cause a nonnegligible change in 
beliefs and the optimal decision, this conclusion extends to all relevant information that is 
available at a sufficiently small but non-0 cost. (There is a lot of evidence that subjects 
perceive the cost of a look-up as close to negligible.) 
 
Thus, if a type’s decision depends on a hidden parameter, then that parameter must 
appear in the type’s look-up sequence. But so far any order will do. 

 57



Adjacency  
 
Assume that there is a cost of keeping numbers in working memory, which starts out 
small, but is much larger, even for one number, than the cost of a look-up; and that this 
cost increases with the number of stored numbers and is proportional to storage time. 
(Thus a player’s “lifetime” total memory cost is the time integral of an increasing function 
of the number of stored numbers.) (There is some evidence for these assumptions too.) 
 
Given these assumptions, a player minimizes his total memory plus look-up cost for 
evaluating an expression like L1's ideal guess, pi [aj+bj]/2, containing a basic operation like 
[aj+bj], by processing [aj+bj] separately, storing the result (in the meanwhile “forgetting” aj 

and bj), and combining the result with pi.  
 
(The alternative, processing pi aj separately, storing the result, then processing pi bj 

separately and combining it with pi aj, requires leaving more numbers in working memory 
longer: The sequence of numbers in memory for the method in the previous paragraph is 
1, 2, 1, 2, 1; the sequence for the method in this paragraph is 1, 2, 1, 2, 3, 2, 1. The 
previous method also saves by eliminating the repeated look-up of pi, but this is of 
second-order importance.) 
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I have only illustrated the cost savings from giving priority to basic operations, but I 
conjecture that the argument is general. If so, it justifies assuming that subjects perform 
basic operations one at a time via adjacent look-ups, remembering the results, and 
otherwise relying on repeated look-ups rather than memory. 
 
The argument also seems likely to extend to CJ’s extensive-form games, justifying their 
focus on transitions between pies from adjacent rounds. 
 
The theory implies more than this, regarding both the order of operations (basic ones 
should come first) and how non-basic operations are executed. I defer such implications in 
favor of mentioning an issue regarding CGC’s search data: 
 
Many Baseline subjects usually look first at their apparent type’s relevant sequence and 
then make irrelevant look-ups or stop (e.g. 108, 118, and 206, labeled “early” in the above 
look-up data). Others make irrelevant look-ups first, and look at the relevant sequence 
only near the end (e.g. 413, labeled “late”). Others repeat the relevant sequence many 
times (e.g. 101, labeled “early/late”). The theory is actually consistent with this kind of 
heterogeneity when look-up costs are negligible (but storage costs are not). Because 
MouseLab allows a subject to enter a tentative guess without confirming it (the *s in the 
look-up data), this kind of storage has zero cost in CGC’s and CGCB’s designs; and so 
subjects can satisfy their curiosity (early or late) without running up storage costs.  
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Appendix 2: Costa-Gomes, Crawford, and Broseta’s Matrix-Game 
Experiments 
 
CGCB adapted CJ’s methods to study cognition via search for hidden payoffs in matrix 
games, eliciting initial responses to 18 games with various patterns of iterated dominance 
or unique pure-strategy equilibria without dominance (CGCB, Figure 2). 
 
CGCB’s design strongly separates leading types’ implications for decisions. 
 
Previous experiments (e.g. SW) found systematic deviations from the equilibrium 
decisions when players have pecuniary preferences (in games that probably disable social 
preferences). 
 
CGCB’s results for decisions replicated most patterns in previous experiments, with high 
equilibrium compliance with in games solvable by one or two rounds of iterated 
dominance but lower compliance in games solvable by three rounds or by the circular 
logic of equilibrium without dominance (CGCB, Table II). 
 
CGCB’s design replicated previous results in a way that allowed a more precise 
assessment of subjects’ cognition, which confirms the view of subjects’ behavior 
suggested by analyses of decisions alone, with some differences. 
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Monitoring Search via MouseLab in Matrix Games 
 
Within a publicly announced structure, CGCB presented each game to subjects as a 
matrix via MouseLab, which normally concealed payoffs but allowed subjects to look up 
their own and their partner’s payoffs for each decision combination as often as desired, 
one at a time (click option in MouseLab). 
 
Row and Column players’ payoffs were spatially separated to ease cognition and make 
search more informative. 
 
(Subjects were always framed as Row players, although each played each of our games 
once as Row and once as Column player, in a sequence that disguised those 
relationships and randomized away effects of patterns in their structures.) 
 
(Subjects were not allowed to write down the payoffs, and the frequencies with which they 
looked them up made clear that they did not memorize them.) 
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CGCB’s Figure 1. MouseLab Screen Display (for a 2×2 game) 
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Separation of Types’ Implications for Decisions in CGCB’s Design: Figure 2 
 

2A (1,2) A,P,N      
     

D12,L2,E,S 2B (1,2) A,P,N D12,L2,E,S
A 72,93 31,46 D 94,23 38,57
D 84,52     55,79 A 45,89 14,18

 
3A (2,1) D      

     
A 3B (2,1) D A

D12,L2,E,S 75,51 42,27 A,P,N 21,92 87,43
A,P,N 48,80     89,68 D12,L2,E,S 55,36 16,12

 
4A (2,1)  D      

      
A 4B (2,1) A D

A,P,N 59,58 46,83 85,61 D12,L2,E,S 31,32 68,46
D12,L2,E,S 38,29      70,52 37,23 P 72,43 47,61

       A,N 91,65 43,84
 

4C (1,2) D12,L2,E,S       
    

A,P,N 4D (1,2) D12,L2,E,S
 

P A,N
28,37 57,58 D 42,64 57,43 80,39

A 22,36    60,84 A 28,27 39,68 61,87
D 51,69      82,45  

 
5A (3,2) A,P,N      

     
D12,L2,E,S 5B (3,2) A,P,N D12,L2,E,S

A 53,86 24,19 A 76,93 25,12
P,N,D1,L2,S 79,57     42,73 D2,E 43,40 74,62

D2,E 28,23    71,50  P,N,D1,L2,S 94,16 59,37
 

6A (2,3) A     
  

D2,E,S P,N,D1,L2 6B (2,3) D2,E A P,N,D1,L2,S
D12,L2,E,S 21,26 52,73 75,44 A,P,N 42,45 95,78 18,96 

A,P,N 88,55 25,30 59,81  D12,L2,E,S 64,76 14,27 39,61 
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7A (∞,∞) N,D12,L2,S

 
       

 
A,P E 7B (∞,∞) N,D12,L2,S

 
A,P E

L2,E,S 87,32 18,37 63,76 A,P,N,D12 67,91 95,64 31,35
A,P,N,D12 65,89   96,63 24,30 L2,E,S 89,49 23,53 56,78

 
8A (∞,∞) L2,E,S     

     
A,P,N,D12 8B (∞,∞) L2,E,S A,P,N,D12

E 72,59 26,20 A,P 46,16 57,88
A,P 33,14     59,92 E 71,49 28,24

N,D12,L2,S 28,83     85,61 N,D12,L2,S 42,82 84,60
 

9A (1,2) D12,L2,E,S        
    

A,P,N 9B (2,1) A D
22,14 57,55 A,P,N 56,58 38,29 89,62 32,86

   30,42 28,37  D12,L2,E,S 15,23 43,31 61,16 67,46
A 15,60       61,88  
D 45,66        82,31

 
 
(A = Altruistic, P = Pessimistic (minimax), N = Naïve (CGCB’s name for L1) and Optimistic 
(maximax, decisions not separated from Naïve’s), E = Equilibrium, S = Sophisticated, D12 
= D1 and D2, D = dominant decision = all types but A.) 

 64



Separation of Types’ Implications for Search in CGCB’s Design 
 
CGCB’s design also makes it possible to test and compare types via search 
 
They make two assumptions about how cognition affects search, Occurrence and 
Adjacency that are close to CGC’s characterization of cognition and search  
 
In CGCB’s display, a subject’s searches can vary in three main dimensions: 
 
(i) the extent to which his transitions are up-down in his own payoffs, which under  
Occurrence and Adjacency is (for a Row player) naturally associated with rationality in the 
decision-theoretic sense 
 
(ii) the extent to which his transitions are left-right in other’s payoffs, which under  
Occurrence and Adjacency is associated with thinking about other's incentives  
 
(iii) the extent to which he makes transitions from own to other’s payoffs and back for the 
same decision combination, which under Occurrence and Adjacency is associated with 
interpersonal fairness or competitiveness comparisons 
 
This variation allows strong separation of types’ implications for search 
 

 65



The independent separation of types’ implications for decisions and search is an important 
strength of the design: Searches and decisions together, and their relationships, yield a 
much clearer view of a subject’s type than decisions alone 
 
Some types’ implications under Occurrence and Adjacency in game 3A (Column has 
dominant decision, “nonstrategic” Rows pick B and “strategic” Rows pick T) 
 
 

 S/He: L S/He: R S/He: L S/He: R 
You: T      75 42 51 27
You: B      48 89 80 68

 Your   Points Her/His Points
 You: T  You: B  

 

Naïve (L1) compares expected payoffs of own decisions given a uniform prior over 
other’s, via either up-down or left-right own payoff comparisons. Occurrence requires look-
ups 75, 48, 42, and 89. Adjacency requires either the set of comparisons {(75,42), (48,89)} 
or the set of comparisons {(75,48), (42,89)}. 
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 S/He: L S/He: R S/He: L S/He: R 

You: T      75 42 51 27
You: B      48 89 80 68

 Your   Points Her/His Points
 You: T  You: B  

 
L2 needs to identify other’s Naïve decision and L2's best response to it; Occurrence 
requires all other’s look-ups plus 75 and 48, the own look-ups for other’s Naïve decision. 
Adjacency requires either the set of comparisons {(51,27), (80,68)} or the set of 
comparisons {(51,80), (27,68)} to identify other's Naïve decision, plus the comparison 
(75,48) to identify L2’s best response.  

If Equilibrium has a dominant decision it needs only to identify it. If not, it can use iterated 
dominance or equilibrium-checking, decision combination by combination or via “best-
response dynamics.” Occurrence requires look-ups 51, 27, 80, 68, 75, and 48. Adjacency 
requires comparisons (51,27), (80,68), and (75,48). 
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CGCB’s Results 
 
The most frequent estimated types are Naïve (L1) and L2, each nearly half of the 
population 
 
Incorporating search compliance into the econometric analysis shifts the estimated type 
distribution toward Naïve, at the expense of Optimistic and D1 
 
Part of this shift occurs because Naïve’s search implications explain more of the variation 
in subjects’ searches and decisions than Optimistic’s, which are too unrestrictive to be 
useful in the sample; another part occurs because Naïve’s search implications explain 
more of the variation in subjects’ searches and decisions than D1’s, which are more 
restrictive, but too weakly correlated with subjects’ decisions  
 
D1 also loses some frequency to L2, even though their decisions are weakly separated in 
CGCB’s design, because L2’s search implications explain much more of the variation in 
subjects’ searches and decisions 
 
Overall, CGCB’s analysis of decisions and search yields a significantly different 
interpretation of behavior than their analysis of decisions alone. The analysis suggests a 
strikingly simple view of behavior, with Naïve and L2 65-90% of the population and D1 0-
20%, depending on confidence in their model of search 
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