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Strategic Thinking 

 
Strategic thinking pervades human interaction. 
 
 
As soon as children develop enough “theory of mind” to model other 
people as independent decision makers, they must be taught to look 
both ways before crossing one-way streets—suggesting that they 
instinctively rely on rationality assumptions to predict others’ decisions. 
 
 
Adult attempts to predict others’ responses to incentives are shaped by 
similar—though usually more subtle—rationality-based inferences. 
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Yet from a behavioural/empirical point of view, strategic thinking has been 
downplayed in economics and game theory. 
 
 
The canonical model of strategic thinking is the game-theoretic notion of 
Nash equilibrium, defined as a combination of strategies, one for each 
player, such that each player’s strategy maximizes his expected payoff, 
given the others’ strategies.  
 
 
(Equilibrium can be defined and applied without reference to its 
interpretation, but it is best thought of as an “equilibrium in beliefs,” in 
which players’ equilibrium strategies represent beliefs about others’ 
strategies that are correct given the rational strategy choices they imply.) 
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Nash equilibrium addresses the problem that in games, decision-
theoretic rationality alone seldom restricts behavior enough to be useful. 
 
 
Even common knowledge of rationality implies only that players’ 
strategies are rationalizable (Bernheim 1984 Econometrica and Pearce 
1984 Econometrica), which leaves behavior unrestricted in many games. 
 
 
 
Equilibrium makes more definite predictions by augmenting rationality 
with the “rational-expectations” assumption that players’ beliefs are 
correct, and therefore the same for all players. 
 
 
Because many games have multiple equilibria, equilibrium is often 
augmented by refinements, with the goal of deriving unique predictions. 
 
 



5 

 

 
Aside on common or finitely iterated knowledge of rationality 
 
 
 
In two-person games (with some differences in n-person games that are 
unimportant here), the implications of common or finitely iterated 
knowledge of players’ rationality (without further restrictions on beliefs) 
are captured by finitely iterated strict dominance and k-rationalizability. 
 
 
 
k-rationalizability reflects the implications of k levels of mutual knowledge 
of rationality; rationalizability is equivalent to k-rationalizability for all k. 
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A 1-rationalizable strategy (the sets R1 on the next slide) is one for which 
there is a profile of others’ strategies that makes it a best response. 
 
 
A 2-rationalizable strategy (the sets R2) is one for which there exists a 
profile of others’ 1-rationalizable strategies that make it a best response. 
 
And so on…. 
 
Each generally yields set-valued restrictions on individual players’ 
strategy choices (unlike equilibrium which restricts their relationship). 
 
 
Each game has a unique equilibrium (M, C). In the first game M and C 
are the only rationalizable strategies; in the second game all strategies 
are rationalizable, for each player.  
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 Dominance-solvable game 
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Equilibrium reflects the implications of common knowledge of rationality 
plus common beliefs: 
 
Any equilibrium strategy is k-rationalizable for all k, but not all 
combinations of rationalizable strategies are in equilibrium. 
 
In games that are dominance-solvable in k rounds, k-rationalizability 
implies that players have the same beliefs—with a qualification for 
mixed-strategy equilibria that is unimportant here—so any combination of 
k-rationalizable strategies is in equilibrium as in the first game above. 
 
In other games, k-rationalizability and rationalizability allow deviations 
from equilibrium as in the second game above, where there is a “tower” 
or “helix” of beliefs, consistent even with common knowledge of 
rationality, to support any combination of strategies. 
 
(But except for the equilibrium beliefs (M, C), the beliefs in the tower or 
helix differ across players, and many are behaviourally implausible.) 
 
End of aside   
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The generality, simplicity, and tractability of equilibrium analysis have 
made it the method of choice in strategic applications. 
 
If a setting allows learning, and if only long-run outcomes matter, and if 
equilibrium is unique or equilibrium selection does not depend on the 
details of learning, then applications can safely assume equilibrium. 
 
But otherwise, if equilibrium is justified, it must be via strategic thinking. 
 
Epistemic game theory provides conditions under which reasoning based 
on iterated knowledge of rationality and beliefs focuses players’ beliefs 
on a particular equilibrium, even in their initial responses to a game. 
 
But in many games such reasoning is complex enough to make the 
thinking justification for equilibrium behaviorally implausible.  
 
Even people who are capable of such thinking may doubt that others are 
capable, and therefore be unwilling to play their part of an equilibrium. 
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In such settings, reliably predicting initial responses to games may 
require a non-equilibrium model of strategic thinking. 
 
Modeling strategic thinking more accurately can yield several benefits: 
 
● It can establish the robustness of conclusions based on equilibrium in 
 games where empirically reliable rules mimic equilibrium 
 
● It can also challenge conclusions based on equilibrium or refinements 
 in games where equilibrium is implausible without learning 
 
● It can resolve empirical puzzles by explaining the deviations from 
 equilibrium that some games evoke 
 
● It can also elucidate the structure of learning from imperfect analogies, 

where assumptions about cognition determine which analogies 
between current and previous games players recognize and elucidate 
the structure of learning, distinguishing reinforcement from beliefs-
based and more sophisticated rules. 
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However, even those who grant the desirability of improving upon 
equilibrium models of initial responses may doubt its feasibility.  
 
 
 
How can any model systematically out-predict a rational-expectations 
notion such as equilibrium? 
 
 
 
And how can one identify simple models that allow such improvements 
among the huge variety of logically possible non-equilibrium models? 
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Experimental research shows with increasing clarity that people’s initial 
responses to games often deviate systematically from equilibrium. 
  
Importantly, the results also show that the deviations have a large 
structural component that can be modeled in a simple, tractable way. 
 
This component exists because subjects’ thinking tends to avoid the 
fixed-point or indefinitely iterated dominance reasoning that equilibrium 
sometimes requires. In Selten’s words: 
 

“Basic concepts in game theory are often circular in the sense that they 
are based on definitions by implicit properties…. Boundedly rational 
strategic reasoning seems to avoid circular concepts. It directly results 
in a procedure by which a problem solution is found.”         

 
(This is not to say that with enough experience in a stationary setting, 
learning can’t make people converge to steady states that we would 
need fixed-point reasoning to characterize, just that such reasoning 
doesn’t directly describe people’s thinking.) 
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If subjects’ thinking avoids fixed-point or indefinitely iterated dominance 
reasoning, then what does it consist of? 
 
The experimental evidence (see especially Nagel 1995 AER, Stahl and 
Wilson 1994 JEBO, 1995 GEB, Costa-Gomes, Crawford, and Broseta 
2001 Econometrica, Camerer, Ho, and Chong 2004 QJE, Costa-Gomes 
and Crawford 2006 AER) suggests that subjects tend instead to follow 
rules of thumb that anchor beliefs in a simple model of others’ instinctive 
reactions to the game and then adjust their beliefs via a small number of 
iterated best responses. 
 
These rules of thumb—called “types”; no relation to private-information 
variables—are cognitively simple, and have strong intuitive appeal. 
 
Subjects’ thinking is typically heterogeneous, but their types are drawn 
from a stable population distribution concentrated on one to three best-
response iterations. 
 
The finite iteration of best responses by which people adjust their beliefs 
is common to all settings, although the number of iterations may vary.       
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The model of others’ instinctive reactions people use to anchor their 
beliefs may take different forms in different settings: 
 
● Uniform randomness (reflecting the principle of insufficient reason or 
 payoff sampling uninformed by structure) in most normal-form games 
 
● Attraction to salient labels or payoffs when these are important 
 
● Truthfulness in games where players can communicate  
 
The experimental evidence identifies a class of “level-k” or “cognitive 
hierarchy” (“CH”) models that share the generality and much of the 
tractability of equilibrium analysis, but can often out-predict equilibrium. 
 
Level-k types are rational in the sense of best-responding to some 
beliefs; they depart from equilibrium only in that their beliefs are derived 
from simplified, non-equilibrium models of other players. 
  



15 

 

Although level-k/CH models are alternatives to equilibrium analysis, they 
generalize equilibrium rather than replacing it.  
 
Level-k type k (though not its CH counterpart beyond k = 1) respects k-
rationalizability, the condition that corresponds in two-person games to 
the result of k rounds or iterated deletion of dominated strategies. 
 
In sufficiently simple games, the low-level types that describe most 
subjects’ behavior mimic equilibrium strategy choices, even though they 
deviate from equilibrium thinking. 
 
But in more complex games, some or all such types may deviate 
systematically from equilibrium choices.  
 
Importantly, a level-k/CH model not only predicts that such deviations will 
sometimes occur. 
 
Given estimates of the population type frequencies, it also identifies 
which settings are likely to evoke deviations; what forms they will take; 
and with what frequencies. 
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Although level-k/CH models predict a sizeable fraction of deviations from 
equilibrium in many settings, they by no means predict all deviations in 
all interesting settings. 
 
They seem to predict half or more of the deviations in a majority of 
normal-form settings. 
 
 
This should not be disappointing: It is encouraging that such simple and 
tractable models can predict half or more of anything as elusive as 
deviations from equilibrium. 
 
 
Moreover, the experimental results also suggest that the strategic 
thinking-related deviations that level-k/CH models do not predict have 
little discernable structure. 
 
Thus, level-k/CH models generalize equilibrium analysis in a way that is 
likely to be useful in settings where deviations from equilibrium are 
important, while ignoring little that cannot be modeled as errors.  
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Experimental Evidence from Guessing and Other Normal-Form 
Games 
 
“...professional investment may be likened to those newspaper 
competitions in which the competitors have to pick out the six prettiest 
faces from a hundred photographs, the prize being awarded to the 
competitor whose choice most nearly corresponds to the average 
preferences of the competitors as a whole; so that each competitor has 
to pick, not those faces which he himself finds prettiest, but those which 
he thinks likeliest to catch the fancy of the other competitors, all of whom 
are looking at the problem from the same point of view. It is not a case of 
choosing those which, to the best of one’s judgment, are really the 
prettiest, nor even those which average opinion genuinely thinks the 
prettiest. We have reached the third degree where we devote our 
intelligences to anticipating what average opinion expects the average 
opinion to be. And there are some, I believe, who practice the fourth, fifth 
and higher degrees.” 
 
—John Maynard Keynes, The General Theory of Employment, Interest, 
and Money 
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“…imagine you are partners in a private business with a man named Mr. 
Market. Each day, he comes to your office or home and offers to buy 
your interest in the company or sell you his [the choice is yours]. The 
catch is, Mr. Market is an emotional wreck. At times, he suffers from 
excessive highs and at others, suicidal lows. When he is on one of his 
manic highs, his offering price for the business is high as well…. His 
outlook for the company is wonderful, so he is only willing to sell you his 
stake in the company at a premium. At other times, his mood goes south 
and all he sees is a dismal future for the company. In fact… he is willing 
to sell you his part of the company for far less than it is worth. All the 
while, the underlying value of the company may not have changed - just 
Mr. Market's mood.” 
 
—Warren Buffett’s intellectual hero Benjamin Graham (of Graham and 
Dodd’s Security Analysis), in Graham’s The Intelligent Investor 
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The Keynes and Graham quotations evoke simultaneous-move n-person 
guessing or “outguessing” games, possibly with multiple equilibria. 
 
They concern games played without clear precedents. 
 
The key issue they raise is anticipating others’ strategic responses: for 
Keynes to a “landscape” of personal judgments about prettiness, which 
is otherwise payoff-irrelevant; and for Graham to the psychology of a 
representative uninformed investor’s reaction to news. 
 
Equilibrium is not very helpful in anticipating others’ responses in such 
settings. 
 
Instead the quotations explicitly suggest thought processes in which 
players anchor beliefs in a model of others’ instinctive reactions and then 
iterate best responses a finite number of times, processes whose 
heterogeneity and finiteness closely resemble a level-k/CH model. 
 
(Keynes’ “fourth, fifth and higher degrees” is more than the evidence 
suggests is realistic, but it may be only a coy reference to himself.) 
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Here I first discuss Nagel’s (1995 AER); Ho, Camerer, and Weigelt’s 
(1998 AER; “HCW”); and Bosch-Domènech et al.’s (2002 AER) analyses 
of n-person guessing games directly inspired by Keynes’ beauty contest 
analogy, which give a simple introduction. 
 
I then discuss Costa-Gomes and Crawford’s (2006 AER; “CGC”) 
analysis of two-person guessing games, whose design comes close to 
letting the data reveal subjects’ thinking directly, without an econometric 
“middleman”. 
 
CGC’s evidence and analysis are more precise than previous studies, 
but their conclusions are representative of the conclusions of most other 
studies of initial responses to normal-form games with neutral framing.  
  
Other important experimental analyses of strategic thinking via eliciting 
initial responses to normal-form complete-information games include 
Stahl and Wilson (1994 JEBO, 1995 GEB); Costa-Gomes, Crawford, and 
Broseta (2001 Econometrica); Camerer, Ho, and Chong (2004 QJE); 
Chong, Camerer, and Ho (2005); and Costa-Gomes and Weizsäcker 
(2008 REStud). 
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Nagel’s (1995); Ho, Camerer, and Weigelt’s (1998); and Bosch-
Domènech et al.’s (2002) experiments 
 
In Nagel’s and HCW’s n-person guessing games, n subjects (n = 15-18 
in Nagel, n = 3 or 7 in HCW) made simultaneous guesses between lower 
and upper limits (0 to 100 in Nagel, 0 to 100 or 100 to 200 in HCW). 
 
In Bosch-Domènech et al. (2002 AER) essentially the same games were 
played in the field, by more than 7500 volunteers recruited from 
subscribers of the newspapers Financial Times, Spektrum der 
Wissenchaft, or Expansión. 
 
In each case the subject who guessed closest to a target (p = 1/2, 2/3, or 
4/3 in Nagel; p = 0.7, 0.9, 1.1, or 1.3 in HCW; and p = 2/3 in Bosch-
Domènech et al.) times the group average guess won a prize. 
 
There were several treatments, each with identical targets and limits for 
all players and games. The structures were publicly announced, to justify 
comparing the results with predictions based on complete information. 
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For definiteness, consider Nagel’s leading treatment: 
 
● 15-18 subjects simultaneously guessed between [0,100] 
 
● The subject whose guess was closest to a target p (= 1/2 or 2/3, say), 
 times the group average guess wins a prize, say $50 
 
● The structure was publicly announced 
 
If you are one of the few people in the world who have not already done 
so, please take a moment to decide what you would guess, in a group of 
non-game-theorists: 
 
● if p = 1/2 
 
● if p = 2/3 
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Nagel’s games have a unique equilibrium, in which all players guess 0. 
 
The games are dominance-solvable, so the equilibrium can be found by 
iteratively eliminating dominated guesses. 
 
For example, if p = 1/2: 
 
● It’s dominated to guess more than 50 (because 1/2 × 100 ≤ 50). 
● Unless you think that other people will make dominated guesses, it’s 
 also dominated to guess more than 25 (because 1/2 × 50 ≤ 25). 
● And so on, down to 12.5, 6.25, 3.125, and eventually to 0. 
 
The rationality-based argument for this “all–0” equilibrium is stronger 
than many equilibrium arguments: it depends only on iterated knowledge 
of rationality, not on the assumption that players have the same beliefs. 
 
However, even people who are rational are seldom certain that others 
are rational, or at least that others believe that others are rational. 
 
Thus, they won’t (and shouldn’t) guess 0. But what do (should) they do?     
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Nagel’s and HCW’s subjects each played a game repeatedly, but their 
first-round guesses can be viewed as initial responses to a game played 
as if in isolation if they treated their own influences on future guesses as 
negligible, which is plausible for all but HCW’s 3-subject groups. 
 
Bosch-Domènech et al.’s subjects played only once. 
 
 
The results vividly illustrate the failure of equilibrium as a descriptive 
model of initial responses, and the heterogeneity and discreteness of 
strategic thinking. 
 
Nagel’s subjects never made equilibrium guesses initially; HCW’s rarely 
did so, and Bosch-Domènech et al.’s (who had much more time to 
reflect, and who could consult with others) fairly rarely did so. 
 
In each case most subjects’ initial guesses respected from 0 to 3 rounds 
of iterated dominance, in games where 3 to an infinite number are 
needed to reach equilibrium. 
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Here I reproduce part of Nagel’s Figure 1 (top p = 1/2, bottom p = 2/3) 
and Bosch-Domènech et al.’s Figure 1, which illustrate these points. 
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These data resemble neither equilibrium plus noise nor “equilibrium 
taking noise into account” as in QRE (for any reasonable error 
distribution, though by Haile et al’s (2008 AER) result we could make the 
data an exact QRE for an unreasonable distribution).  
 
The data do suggest that subjects’ deviations from equilibrium have a 
coherent structure. 
 
The guess distributions have spikes that track 50p

k 
for k = 1, 2, 3 across 

treatments with various ps, respecting 0-3 rounds of iterated dominance. 
 
Like the spectrograph peaks that foreshadow the existence of chemical 
elements, these spikes are evidence of a partly deterministic structure, 
one that is discrete and individually heterogeneous. 
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It is clear that no model that imposes homogeneity of strategic thinking 
(as most leading models but level-k/CH do) will do justice to behavior. 
 
(Allowing heterogeneity is essential for the some explanations, including 
those proposed below for Kahneman’s Entry Magic and Huarongdao.) 
 
 
 
Also, subjects do not respect indefinitely iterated dominance or 
indefinitely iterated best responses; instead their decisions respect k-
rationalizability for at most small values of k. 
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But what about the spikes, whose consistency is the most remarkable 
part of the results?  
 
 
Many theorists instinctively interpret Nagel’s results as evidence that 
subjects explicitly performed finitely iterated dominance, the way we 
teach students to solve such games. 
 
In this interpretation, which I will call Dk, a player does k rounds of 
iterated dominance for some small number, k = 1 or 2, and then best 
responds to a uniform prior over other players’ remaining strategies 
(completing k-rationalizability by adding a specific selection): thus in 
Nagel’s games Dk guesses ([0+100p

k
]/2)p ≡ 50p

k
. 
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But there is another interpretation of the spikes, which has the same 
implications for choice behavior in Nagel’s games but which can differ in 
important ways in other settings, and which I shall argue is very likely the 
correct interpretation.  
  
In this “level-k” interpretation, a player starts with a uniform prior L0 over 
the strategy space and then iterates best responses k times, with k = 1, 
2, or 3: thus in Nagel’s games Lk+1 guesses [(0+100)/2]p

k+1
, which 

equals ([0+100p
k
]/2)p ≡ 50p

k
. 

 
Note that it is Lk+1 that is Dk’s cousin, not Lk. The difference in indices is 
only a quirk of notation, without further significance. 
 
 
Both Lk+1 and Dk yield k-rationalizable strategies, though not always the 
same ones in other games. In games without dominance Dk, k = 1,2,… 
coincides with L1. 
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Aside on specifying L0 
  
 
These lectures focus mainly on two-person games. 
 
But in n-person games like Nagel’s it matters whether L0 is independent 
across players or correlated. 
 
The limited evidence that is available (HCW and Costa-Gomes, 
Crawford, and Iriberri 2009 JEEA) suggests that most people have highly 
correlated (“representative agent”-like) models of others. 
 
 
Accordingly, and in keeping with the literature, in analyzing Nagel’s data I 
take L0 to directly model the distribution of all others’ average guess. 
 
End of aside 
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The complete lack of separation of Dk’s and Lk+1’s guesses in Nagel’s 
design shows that the inference that subjects performed finitely iterated 
dominance is premature. 
   
In other experiments, including some of HCW’s and Costa-Gomes, 
Crawford, and Broseta’s, Dk’s and Lk+1’s guesses are weakly 
separated, and the results are inconclusive on this point. 
 
But in Costa-Gomes and Crawford’s experiment discussed next, Dk’s 
and Lk+1’s guesses are strongly separated, and the results very strongly 
favor Lk+1 over Dk rules. 
 
Thus, subjects’ guesses respect k-rationalizability for small k not 
because they explicitly perform iterated dominance, but because they 
follow rules that implicitly respect it. 
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Costa-Gomes and Crawford’s (2006 AER) experiments 
 
Nagel’s and HCW’s designs are distinguished by very large strategy 
spaces, which greatly increase the informativeness of their results. 
 
But from the point of view of studying strategic thinking it is a weakness 
that each subject played only one game (although there was between-
subjects variation across treatments). 
 
Even though most subjects played their game repeatedly, their later 
choices confound strategic thinking with learning, so there was in effect 
only one observation per subject. 
 
(Recall that first-round choices can still be viewed as initial responses to 
a game played as if in isolation if subjects treat their own influences on 
future choices as negligible.) 
 
Even with very large strategy spaces, one observation yields limited 
information, and the results leave considerable ambiguity of 
interpretation regarding subjects’ types. 
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By contrast, in Stahl and Wilson’s (1994 JEBO, 1995 GEB) and Costa-
Gomes, Crawford, and Broseta’s (2001 Econometrica) designs, each 
subject played a series of different but related games, run in a way that 
suppresses learning and repeated-game effects. 
 
However, in these experiments the games had small strategy spaces, 
with only two to four choices per player.  
 
CGC’s design combines the variation through a series of games of those 
designs with the large strategy spaces of Nagel’s and HCW’s designs, 
greatly increasing the power of subjects’ choices to reveal their thinking. 
 
Another advantage is that CGC’s design involves two-person games, in 
which a subject must predict the decisions of a partner who does not 
view the subject himself as a negligible part of the interaction; this fully 
engages strategic thinking in a way that games like Nagel’s do not.  
 

Two-person games also avoid the “representative agent” ambiguity of 

interpretation noted in the aside above.  
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In CGC’s games subjects were randomly and anonymously paired to 
play a series of 16 different two-person guessing games, with no 
feedback. 
 
 
The profile of a subject’s guesses in the 16 games forms a “fingerprint” 
that helps to identify his strategic thinking very precisely.  
 
 
 
The design suppresses learning and repeated-game effects to elicit 
subjects’ initial responses, game by game, studying strategic thinking 
“uncontaminated” by learning. 
 
(“Eureka!” learning was possible, but it was tested for and found to be 
rare.) 
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In CGC’s games each player has his own lower and upper limit, both 
strictly positive to make the games finitely dominance-solvable. 
 
(Players are not required to guess between their limits. Guesses outside 
the limits are automatically adjusted up to the lower or down to the upper 
limit as necessary: a trick to enhance separation of information search 
implications, not important for this discussion.)   
 
 
Each player also has his own target, and his payoff increases with the 
closeness of his guess to his target times the other’s guess. 
 
 
The targets and limits vary independently across players and games, 
with targets both less than one, both greater than one, or “mixed”. 
 
(In Nagel’s and HCW’s previous experiments the targets and limits were 
always the same for both players, and varied at most between subjects 
across treatments.) 



37 

 

CGC’s guessing games have essentially unique equilibria (“essentially” 
due solely to the automatic adjustment), determined by players’ lower 
(upper) limits when the product of targets is less (greater) than one. 
 
Consider a game in which players’ targets are 0.7 and 1.5, the first 
player’s limits are [300, 500], and the second’s are [100, 900].  
 
The product of targets is 1.05 > 1, and the equilibrium is therefore 
determined by players’ upper limits.  
 
In equilibrium the first player guesses his upper limit 500, but the second 
player guesses 750 (= 500 × his target 1.5), below his upper limit 900. 
 
No guess is dominated for the first player, but any guess outside [450, 
750] is dominated for the second player. Given this, any guess outside 
[315, 500] is iteratively dominated for the first player. Given this, any 
guess outside [472.5, 750] is dominated for the second player, and so on 
until the equilibrium at (500, 750) is reached after 22 iterations. 
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The discontinuity of the equilibrium correspondence when the product of 
targets is one enhances the separation of equilibrium from other types. 
 
 
 
The design stress-tests equilibrium in that it includes games that differ 
mainly in whether the product of targets is slightly greater or slightly less 
than one, a difference equilibrium responds to much more strongly than 
behaviorally plausible nonequilibrium types do. 
 
 
 
It also yields other interesting results, discussed in the paper. 
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CGC’S data analysis 
As suggested by previous work, CGC’s data analysis assumed that each 
subject’s guesses were determined, up to logit errors, by a single type in 
all 16 games. This assumption was tested and found reasonable. 
 
Most of the analysis restricted attention to a list of plausible types:  
 
● L0, L1, L2, and L3 as defined above, with L0 uniform random  
 
● D1 and D2 as defined above  
 
● Equilibrium, which makes its equilibrium decisions 
 
● Sophisticated, which best responds to the probability distributions of 
others’ decisions, estimated from the observed frequencies (an ideal, 
included to learn if any subjects have an understanding of others’ 
decisions that transcends mechanical rules.)  
 
The restriction to this list was also tested and found to be a reasonable 
approximation to the support of subjects’ decision rules. 
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CGC’s large strategy spaces and the independent variation of targets 
and limits across games greatly enhance the separation of types’ 
implications, to the point where many subjects’ types can be precisely 
identified from their guessing “fingerprints”: 

Types’ guesses in the 16 games, in (randomized) order played 

 L1 L2 L3 D1 D2 Eq. Soph. 
1 600 525 630 600 611.25 750 630 
2 520 650 650 617.5 650 650 650 
3 780 900 900 838.5 900 900 900 
4 350 546 318.5 451.5 423.15 300 420 
5 450 315 472.5 337.5 341.25 500 375 
6 350 105 122.5 122.5 122.5 100 122 
7 210 315 220.5 227.5 227.5 350 262 
8 350 420 367.5 420 420 500 420 
9 500 500 500 500 500 500 500 

10 350 300 300 300 300 300 300 
11 500 225 375 262.5 262.5 150 300 
12 780 900 900 838.5 900 900 900 
13 780 455 709.8 604.5 604.5 390 695 
14 200 175 150 200 150 150 162 
15 150 175 100 150 100 100 132 
16 150 250 112.5 162.5 131.25 100 187 
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Of the 88 subjects in CGC’s main treatments, 43 made guesses that 
complied exactly (within 0.5) with one type’s guesses in from 7 to 16 of 
the games: 
 
 
20 L1, 12 L2, 3 L3, and 8 Equilibrium. 
 
 
 
 
For example, CGC’s Figure 2 (next slide) shows the “fingerprints” of the 
12 subjects whose guesses conformed most closely to L2’s. 
 
 
Of these subjects’ 192 guesses, 138 (72%) were exact L2 guesses. 
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CGC’s Figure 2. “Fingerprints” of 12 Apparent L2 Subjects 

(Only deviations from L2’s guesses are shown.) 
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The size of CGC’s strategy spaces, with 200 to 800 possible exact 
guesses in each of 16 different games, makes exact compliance 
powerful evidence for a type: 
 
If a subject chooses 525, 650, 900 in games 1-3, intuitively and 
econometrically we already “know” he’s an L2. 
 
(By contrast, there are usually many possible reasons for choosing one 
of the strategies in a small matrix game; and even in Nagel’s games, 
rules as cognitively disparate as Dk and Lk+1 yield identical decisions.)       
 
Further, because CGC’s definition of L2 builds in risk-neutral, self-
interested rationality, we also know that a subject’s deviations from 
equilibrium are caused not by irrationality, risk aversion, altruism, spite, 
or confusion, but by his simplified model of others. 
 
(Even so, doubts remain about the subjects with high exact compliance 
with Equilibrium, who seem to follow types that only mimic equilibrium in 
games with targets both less than one or greater than one.)    
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That the level-k model is directly suggested by the data for half of CGC’s 
subjects (rather than via data-fitting exercises) is an important advantage 
over alternatives. 
 
 
 
CGC’s other 45 subjects made guesses that conformed less closely to a 
type. 
 
But for all but 14 of them, violations of simple dominance were 
comparatively rare (less than 20%, versus 38% for random guesses), 
suggesting that their behavior was coherent, even though less well 
described by the types.  
 
And econometric estimates of their types are concentrated on L1, L2, L3, 
and Equilibrium in roughly the same proportions. 
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CGC’s Figure 1. 
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Lessons for modeling strategic behavior in initial responses 
 
CGC’s analysis reinforces and sharpens the conclusions of previous 
analyses: 
 
● No model that imposes homogeneity of strategic thinking will do justice 
 to subjects’ behavior 
 
● Subjects do not respect indefinitely iterated dominance or best 

responses; their decisions respect k-rationalizability only for small k 
 
● There are few if any Dk subjects; people respect iterated dominance to 
 the extent that their Lk types do, not because they explicitly perform it. 

(This is strongly reinforced by CGC’s data on subjects’ searches for 
hidden payoff information and their data on “robot/trained subjects”.)  

 
● There are few if any Sophisticated subjects. (The jury is still out on the 
 extent to which this conclusion generalizes.) 
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CGC’s results show that a hybrid level-k or CH model with a uniform 
random L0 and only L1, L2, L3, and possibly Equilibrium subjects 
explains a large fraction of subjects’ deviations from equilibrium. 
 
 
CGC’s results could still be domain-specific, but they are consistent with 
most other results from different settings, just more precise. 
 
 
Further, although about half of CGC’s subjects’ deviations from 
equilibrium remain unexplained by a hybrid level-k or CH model, the 
specification test suggests that the deviations have little discernable 
structure. 
 
 
Thus it may still be optimal for a modeler to treat the remaining 
deviations as errors, and the part of the structure that can be identified 
may provide a basis for unbiased modeling of initial responses to games. 
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Application: M. M. Kaye’s Far Pavilions: Responding to Payoff 
Asymmetries in Outguessing Games 
 
“…ride hard for the north, since they will be sure you will go southward 
where the climate is kinder….” 

 
—Koda Dad (played by Omar Sharif in the HBO miniseries) to 
Ash/Ashok in M.M. Kaye’s The Far Pavilions (1978, p. 97) 

 
I now consider an example that illustrates applications of level-k models.  
 
Early in The Far Pavilions, the main male character, Ash/Ashok, is trying 
to escape from his pursuers along a north-south road. 
 
Both Ash and his pursuers must choose between north and south. 
Although Ash moves first, the pursuers must make their choice 
irrevocably before they learn Ash’s choice, so their choices are 
strategically simultaneous. 
 
South is warm, but north are the Himalayas, with winter coming. 
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Imagine that if the pursuers catch Ash, they gain two units of payoff and 
Ash loses two, and that both the pursuers and Ash gain one extra unit for 
choosing South, whether or not Ash is caught. 
 
 
 
This yields the payoff matrix: 
 

 
  Pursuers 
  South (q) North 

Ash 

South (p) 
3 

-1 
0 

1 

North 
1 

0 
2 

-2 

  Far Pavilions Escape 
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Examples like this are as common in experimental game theory as they 
are in fiction, but fiction sometimes more clearly reveals the thinking 
behind a decision. 
 
 
 
Ash’s mentor Koda Dad advises Ash to ride north, for the reason given in 
the quotation: 
 

“…ride hard for the north, since they will be sure you will go 
southward where the climate is kinder….” 

 
 
Ash overcomes his fear of freezing and follows this advice, the pursuers 
unimaginatively go south, and Ash escapes. 
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Koda Dad is advising Ash to choose the L3 response to a uniform 
random L0. 
 
(L3 ties my personal best k for a clearly explained level-k type in fiction. I 
suspect even postmodern fiction may have nothing clearly higher than 
L3: it wouldn’t be credible.)  
 
 
If the pursuers expect Ash to go south because it’s “kinder”, they must be 
modeling Ash as an L1 response to a uniform random L0. 
 
For, the payoff asymmetry on which this inference rests is decisive only if 
north and south do not differ in the probability of being caught, which is 
more important. 
 
 
Thus, Koda Dad must be modeling the pursuers as L2 and advising Ash 
to choose the L3 response to a uniform random L0. 
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We could take the inference that Ash will go south because it’s “kinder” 
literally as a best response to a uniform random L0. 
 
 
But there is a behaviorally more plausible interpretation in which the 
inference is Ash’s model of the pursuers’ model of Ash’s instinctive 
reaction ignoring strategic considerations, and given this, plausibly based 
on the principle of insufficient reason. 
 
 
 
In a more complex game, a uniform random L0 could plausibly 
approximate random sampling of payoffs unstratified by the other 
player’s strategy choices. 
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How does the level-k model compare in predictive success with an 
equilibrium model? 
 
Escape has a unique equilibrium in mixed strategies, in which 
 

3p + 1(1 – p) = 0p + 2(1 – p) or p = 1/4, and 
–1q +1(1 – q) = 0q –2(1 – q) or q = 3/4. 

 
Thus Ash’s Pr{South}, p* = 1/4, and the Pursuers’ Pr{South}, q* = 3/4. 
 
 
This equilibrium responds to the payoff asymmetry between South and 
North in a decision-theoretically intuitive way for Pursuers (because q = 
3/4 > the 1/2 of equilibrium without the payoff asymmetry), but 
counterintuitively for Ash (because p = 1/4 < 1/2). 
 
 
In equilibrium the novel’s observed outcome {Ash North, Pursuers South} 
has probability (1 – p*)q* = 9/16: much better than a random 25%.  
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By contrast, the level-k model implies decisions as follows: 
 
 

 Type Ash Pursuers 

L0 uniformly random Uniformly random 
L1 South South 
L2 North South 
L3 North North 
L4 South North 
L5 South South 

Lk types’ decisions in Far Pavilions Escape 
 
 
Thus the level-k model predicts the outcome provided that Ash is either 
L2 or (as we know from the quotation) L3, and the Pursuers are either L1 
or (as Koda Dad believes) L2.  
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Of course, applications seldom come with an omniscient narrator telling 
us how players think. 
 
Even so, if the game is clearly defined and we have data, we can specify 
a level-k model, derive its implications, and use them to estimate the 
type frequency distribution. 
 
Alternatively, we can calibrate the model using previous estimates from 
similar settings. 
 
Suppose, for example, that we calibrate a level-k model by assuming 
that each player role in Escape is filled from a plausible 50-30-20 mixture 
of L1s, L2s, and L3s, and that there are no errors. 
 
Then the predicted frequency with which Ash goes North is 1/2 and the 
frequency with which the Pursuers go South is 4/5. 
 
Assuming independence, this implies that the observed outcome {Ash 
North, Pursuers South} has probability 2/5: less than the equilibrium 
predicted frequency of 9/16, but still better than a random 25%. 
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More importantly, the level-k model gracefully explains a puzzling 
divergence between observed aggregate behavior patterns and 
equilibrium predictions. 
 
In games like Escape and closely related perturbed Matching Pennies 
games, the unique mixed-strategy equilibrium responds to the payoff 
asymmetry between South and North in a decision-theoretically intuitive 
way for the pursuers’ role (q* = 3/4 > 1/2, the probability with which 
pursuers go south in the analogous game with no north-south payoff 
asymmetry); but in a counterintuitive way for Ash’s role (p* = 1/4 < 1/2). 
 
Yet experimental subjects’ aggregate choices in initial responses to 
games like this reflect decision-theoretic intuition in both player roles. 
(Ash’s counterintuitive choice would not contradict this pattern if he were 
a subject, because his revealed type is in the minority.) 
 
In such games the level-k and CH models’ predictions “quasi-purify” 
something roughly like a mixed-strategy equilibrium via the predictable 
heterogeneity of players’ strategic thinking, while avoiding some 
implausible implications of equilibrium. 
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Application: Groucho’s Curse: Zero-Sum Betting and Auctions with 
Incomplete Information 

 
“I sent the club a wire stating, ‘Please accept my resignation. I don’t want 
to belong to any club that will accept people like me as a member’.” 

 
—Groucho Marx (1959, p. 321), Telegram to the Beverly Hills Friar’s 
Club  
 
“Son…One of these days in your travels, a guy is going to show you a 
brand-new deck of cards on which the seal is not yet broken. Then this 
guy is going to offer to bet you that he can make the jack of spades jump 
out of this brand-new deck of cards and squirt cider in your ear. But, son, 
do not accept this bet, because as sure as you stand there, you're going 
to wind up with an ear full of cider.”  
  
 —Obadiah (“The Sky”) Masterson, quoting his father in Damon 
 Runyon (Guys and Dolls: The Stories of Damon Runyon, 1932) 
  



58 

 

 
 
Although most laboratory evidence on strategic thinking comes from 
symmetric-information designs, most field evidence and applications 
involve settings with informational asymmetries. 
 
 
 
It is therefore important to extend what can be learned about strategic 
thinking in complete-information games to incomplete-information 
games. 
 
 
 
I now discuss laboratory and field evidence on games with informational 
asymmetries, focusing on cases where the games allow clear inferences 
about strategic thinking. 
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Experiments on zero-sum betting 
 
Experiments on zero-sum betting build on Milgrom and Stokey’s (1982 
JET) no-trade theorem, which shows that if traders are weakly risk-
averse and have consistent beliefs, and the initial allocation is Pareto-
efficient relative to the information available, then even if traders receive 
new private information, no weakly mutually beneficial trade is possible; 
and if traders are strictly risk-averse, no trade at all is possible. 
 
For, any such trade would make it common knowledge that both traders 
had benefited, contradicting the hypothesis that the original allocation 
was Pareto-efficient. 
 
This result has been called the Groucho Marx theorem because its logic 
resembles that of our Marx quotation. 
 
By contrast with the conclusions of the theorem, speculative zero-sum 
trades are common in real markets. This fact has a number of possible 
explanations, of which one is nonequilibrium strategic thinking. 
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The experiments by Brocas, Carrillo, Camerer, and Wang (2009) (see 
also Camerer, Ho, and Chong 2004 QJE, Section VI, and Rogers, 
Palfrey, and Camerer 2009 JET) have the control required to distinguish 
between such explanations and those based on factors like hedging or 
joy of gambling. 
 
Brocas et al.’s design used simple three-state betting games, including 
this one: 
 

player/state A B C 

1 25 5 20 

2 0 30 5 

Zero-Sum Betting Game 
 
Each of two players, 1 and 2, is given information about which of three 
ex ante equally likely states has occurred, A, B, or C. As indicated in 
Figure 1, player 1 learns either that the state is {A or B} or that it is C; 
player 2 learns that the state is A or that it is {B or C}. 
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The rules of the game and the information structure were publicly 
announced, with the goal of inducing common knowledge. 
 
 

player/state A B C 

1 25 5 20 

2 0 30 5 

Zero-Sum Betting Game 
 
 
Once informed, the players choose simultaneously between two 
decisions: Bet or Pass. 
 
 
A player who chooses Pass earns 10 no matter what the state. If one 
chooses Bet while the other chooses Pass, they both earn 10. 
 
 
If both players choose Bet, they get one of the payoffs in the table, 
depending on which state has occurred.  
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player/state A B C 

1 25 5 20 

2 0 30 5 

Zero-Sum Betting Game 
 
This game has a unique trembling-hand perfect Bayesian equilibrium. 
 
In this equilibrium, player 1 told C will Bet because 20 > 10, and player 2 
told A will Pass because 0 < 10. 
 
Given this, player 1 told {A or B} will Pass, because player 2 will Pass if 
told A, so betting given {A or B} yields player 1 at most 5 < 10. 
 
Given this, player 2 will Pass if told {B or C}, because player 1 will Pass if 
told {A or B}, so betting given {B or C} yields player 2 at most 5 < 10. 
 
This covers all contingencies and completes the characterization of 
equilibrium, which shows that the game is weakly dominance-solvable in 
three rounds. No betting takes place in equilibrium in any state. 
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Despite this clear equilibrium conclusion, in Brocas et al.’s and several 
similar experiments approximately half of the subjects bet. 
 
To explain this Brocas et al. proposed a level-k model with a 
specification like those discussed above, but with L0 adapted to allow for 
incomplete information. 
 
 
Following Camerer, Ho, and Chong (2004 iQJE, Section VI) and 
Crawford and Iriberri (2007 Econometrica), Brocas et al. assumed that 
L0 bids uniformly randomly, independent of its private information. 
 
In judging this specification, bear in mind that L0 is meant to describe a 
player’s model of the instinctive starting point of others’ strategic thinking, 
from which point of view it is behaviorally plausible that L0 ignores 
others’ private information, which it does not observe. 
 
 
As in previous level-k analyses, Brocas et al. took their L1 to best 
respond to their L0, and their L2 to best respond to their L1. 
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player/state A B C 

1 25 5 20 

2 0 30 5 

Zero-Sum Betting Game 
 
Following Crawford and Iriberri (2007 Econometrica), call an L1 that best 
responds to a random L0 “random L1” even though it is not itself random; 
and call an L2 that best responds to a random L1 “random L2”. 
 
Given this, random L1 player 1s Bet if told {C} because it yields 20 > 10 if 
player 2 Bets, a random L0 player 2 bets with probability one-half in 
either contingency, and Betting is otherwise costless. 
 
Unlike in equilibrium, random L1 player 1s Bet if told {A or B} because it 
yields 25 in state {A} and a random L0 player 2 bets with probability one-
half in {A}, it yields 5 in state {B} and a random L0 player 2 Bets with 
probability one-half in {B or C}, the two states are equally likely ex ante, 
so Betting if told {A or B} yields expected payoff (25 + 5)/2 = 15 > 10. 
 
Random L1 player 2s Pass if told {A}, because it yields 0 < 10. 
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player/state A B C 

1 25 5 20 

2 0 30 5 

Zero-Sum Betting Game 
 
Unlike in equilibrium, random L1 player 2s Bet if told {B or C}, because it 
yields 30 in state {B} and a random L0 player 1 Bets with probability one-
half in {A or B}, it yields 5 in state {C} and a random L0 player 1 Bets with 
probability one-half in {C}, the two states are equally likely ex ante, so 
Betting if told {B or C} yields expected payoff (30 + 5)/2 = 17.5 > 10. 
 
Thus, if all subjects were random L1s, 100% of player 1s and 67% of 
player 2s would Bet, too much in each role to fit the aggregate data; and 
betting would occur only in states B and C, also not true in the data. 
 
Brocas et al.’s data analysis finds clusters corresponding to random L1s, 
L2s, and L3s (who correspond here to Equilibrium players), and a cluster 
of apparently irrational players, which mixture of types fits much better. 
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Auction experiments 
  
There is a rich literature on sealed-bid incomplete information auction 
experiments, which despite similar goals and methods has developed 
largely independently of the literature on game experiments. 
 
In sealed-bid auction experiments, subjects’ initial responses tend to 
exhibit overbidding, relative to the risk-neutral Bayesian equilibrium, in 
first- or second-price, independent-private-value or common-value 
auctions (Kagel and Levin 1986 AER, Goeree, Holt, and Palfrey 2002 
JET). 
 
The literature on auction experiments has proposed different 
explanations of overbidding in private- and common-value auctions: “joy 
of winning” and/or risk-aversion for private-value auctions, and the 
winner’s curse for common-value auctions. 
 
Moreover, these explanations are only loosely related to explanations 
that have been proposed for deviations from equilibrium in other games. 
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Kagel and Levin (1986 AER) and Eyster and Rabin (2005 Econometrica) 
sought to unify the explanations of nonequilibrium behavior in auctions 
and other games. 

Kagel and Levin formalize the intuition behind the curse in models in 
which “naïve” bidders do not adjust their value estimates for the 
information revealed by winning (essentially, random L1 bidding), but 
otherwise follow equilibrium logic. 

Eyster and Rabin’s notion of “cursed equilibrium”, in which people 
underestimate the correlation between others’ decisions and private 
information but otherwise behave as in equilibrium, generalizes Kagel 
and Levin’s model to allow intermediate levels of value adjustment, 
ranging from standard equilibrium with full adjustment to “fully-cursed” 
equilibrium with no adjustment. 
 
Both models allow players to deviate from equilibrium only to the extent 
that they do not draw correct inferences from the outcome. Thus their 
predictions coincide with equilibrium in games in which such inferences 
are not relevant, and they do not help to explain non-equilibrium behavior 
in independent-private-value auctions. 
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Crawford and Iriberri (2007 Econometrica) propose a level-k analysis of 
behavior in the classic auction experiments of Kagel and Levin 1986 
AER and others, which provides an alternative way to unify the 
explanation of results for initial responses in auction experiments, without 
invoking joy of winning or risk aversion. 
 
Crawford and Iriberri’s analysis explores the robustness of equilibrium 
auction theory to failures of the equilibrium assumption and makes a 
connection between experiments on auctions and strategic thinking.  
 
The key issue is how to specify L0; there are two  possibilities here: 
 
● Random L0, as in Brocas et al.’s analysis of zero-sum betting, bids 

uniformly on the interval between the lowest and highest possible 
values (even if above own value, given that L0 represents a player’s 
model of others’ instinctive, nonstrategic responses to the game). 

 
● Truthful L0, which is meaningful in auctions though not in all 

incomplete-information games, bids its expected value conditional on 
its own signal. 
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Crawford and Iriberri build separate type hierarchies on these L0s:  
 
Random (Truthful) Lk is defined by iterating best responses from 
Random (Truthful) L0. 
 
In their empirical analysis, they allow each subject to be one of the types, 
from either hierarchy. 
 
 
For a given Lk type, as in an equilibrium analysis, the optimal bid must 
take into account value adjustment for the information revealed by 
winning (only in common-value auctions), and the bidding trade-off 
between the higher price paid if the bidder wins and the probability of 
winning (only in first-price auctions). 
 
Crawford and Iriberri show that their level-k model allows a tractable 
characterization of these aspects of the bidder’s problem, which closely 
parallels the equilibrium characterization (but yields different results). 
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With regard to value adjustment, Random L1 does not condition on 
winning because Random L0 bidders bid randomly, independent of their 
values; thus Random L1 is “fully cursed” in Eyster and Rabin’s sense. 
 
The other types do condition on winning in various ways, but this 
conditioning tends to make bidders’ bids strategic substitutes, in that the 
higher others’ bids are, the greater the (downward) adjustment. 
 
Thus, to the extent that Random L1 overbids, Random L2 tends to 
underbid (relative to equilibrium): If it’s bad news that you beat 
equilibrium bidders, it’s even worse news that you beat overbidders. 
 
The bidding tradeoff, by contrast, can go either way, as it can in an 
equilibrium analysis. 
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The question, empirically, is whether an estimated mixture of Random L1 
overbidding and Random L2 underbidding fits the data from auction 
experiments better than alternative models. 
 
In three of four leading cases, a level-k model does better than 
equilibrium plus noise, cursed equilibrium, and/or logit QRE. 
 
For the remaining case (Kagel and Levin’s first-price auction), the most 
flexible cursed equilibrium specification has a small advantage. 
 
 
Except in Kagel and Levin’s second-price auctions, the estimated type 
frequencies are similar to those found in other experiments: 
 
Crawford and Iriberri estimated low or zero frequencies of Random and 
Truthful L0, large frequencies (59-65%) of random L1 bidders, and much 
smaller but significant frequencies of random L2 (4-9%), truthful L1 (9-
18%), and truthful L2 (1-16%). 
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Application: Kahneman’s Entry Magic: Coordination via Symmetry-
Breaking 
 
“…to a psychologist, it looks like magic.” 
 
   —Kahneman 1988, quoted in Camerer, Ho, and Chong (2004 QJE) 
 
Kahneman’s “magic” refers to the fact that subjects in his own and 
others’ (Rapoport et al. 1998 and Rapoport and Seale 2002) market-
entry experiments  made choices surprisingly close to equilibrium in the 
aggregate.  
 
(Thus Kahneman should have said “…to a game theorist, it looks like 
magic.”) 
 
Another interesting feature was that subjects achieved systematically 
better coordination ex post than in the natural equilibrium benchmark. 
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In these experiments, n subjects choose simultaneously between 
entering (“In”) and staying out (“Out”) of a market with given capacity. 
 
 
In yields a given positive profit if no more subjects enter than a given 
market capacity; but a given negative profit if too many enter. 
 
 
For simplicity, Out yields 0 profit, no matter how many subjects enter. 
 
 
 
In these games, efficient coordination requires breaking the symmetry of 
players’ roles. 
 
 
But because players cannot distinguish their roles, it is not sensible to 
predict systematic differences across roles in behavior. 
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Thus, the natural equilibrium benchmark is the unique, symmetric mixed-
strategy equilibrium, in which each player enters with a given probability 
that makes all players indifferent between In and Out. 
 
 
This mixed-strategy equilibrium yields an expected number of entrants 
approximately equal to market capacity, but there is a positive probability 
that either too many or too few will enter. 
 
 
Subjects came surprisingly close to this equilibrium benchmark. 
 
But they also tended to have systematically better coordination ex post 
(number of entrants stochastically closer to market capacity) than in the 
equilibrium. 
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A level-k Analysis of Two-Person Entry/Battle of the Sexes Games  
 
Camerer, Ho, and Chong (2004 QJE, Section III.C) explain Kahneman’s 
magic via a CH, in which the heterogeneity of strategic thinking allows 
some players to mentally simulate others’ entry decisions and 
accommodate them. 
 
The more sophisticated players become somewhat like Stackelberg 
followers, which in entry games yields coordination benefits for all. 
 
Here I illustrate their analysis in a two-person Battle of the Sexes game, 
which is like a two-person market-entry game with capacity one, and 
which makes the central points as simply as possible. 
 
For simplicity, I also substitute a level-k model for their CH model. 
 
The analysis illustrates the importance of the structured heterogeneity of 
strategic thinking a level-k model allows. 
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Consider a two-person Battle of the Sexes game with a > 1: 
 In Out 

In 
0 

0 
1 

a 

Out 
a 

1 
0 

0 

 Battle of the Sexes 
 
The unique symmetric equilibrium is in mixed strategies, with p ≡ Pr{In} = 
a/(1+a) for both players. 
 
The mixed-strategy equilibrium expected coordination rate is 2p(1 – p) = 
2a/(1+a)

2
, and players’ equilibrium expected payoffs are a/(1+a). 

 
This expected coordination rate is maximized when a = 1, where it takes 
the value ½. 
 
With a > 1 these expected payoffs a/(1+a) < 1: worse for each player 
than his worst pure-strategy equilibrium. As a → ∞, the expected 
coordination rate 2a/(1 + a)

2
 → 0 like 1/a. 



77 

 

Now consider a level-k model in which each player follows one of four 
types, L1, L2, L3, or L4, with each role filled by a draw from the same 
distribution. 
 
For simplicity assume the frequency of L0 is 0, and that L0 chooses 
uniformly randomly, with Pr{In} = Pr{Out} = 1/2. 
 

Type 
pairings 

L1 L2 L3 L4 

L1 In, In In, Out In, In In, Out 

L2 Out, In Out, Out Out, In Out, Out 

L3 In, In In, Out In, In In, Out 

L4 Out, In Out, Out Out, In Out, Out 
Outcomes in Battle of the Sexes 

 
L1s mentally simulate L0s’ random decisions and best respond, thus, 
with a > 1, choosing In; L2s choose Out; L3s choose In; and L4s choose 
Out. 
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The predicted outcome distribution is determined by the outcomes of the 
possible type pairings and the type frequencies. 
 
If both roles are filled from the same distribution, players have equal ex 
ante payoffs, proportional to the expected coordination rate. 
 
L3 behaves like L1, and L4 like L2. 
 
Lumping L1 and L3, and also L2 and L4, together and letting v denote 
their total probability, the expected coordination rate is 2v(1 – v). 
 
This is maximized at v = ½, where it takes the value ½. 
 
Thus for v near ½, which is behaviorally plausible, the coordination rate 
is near ½. 
 
For more extreme values the rate is worse, → 0 as v → 0 or 1. 
 
But because the equilibrium coordination rate of 2a/(1 + a)

2
 → 0 like 1/a, 

even for moderate values of a, the level-k coordination rate is higher. 
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The level-k analysis suggests a view of tacit coordination profoundly 
different from the traditional view, and illustrates the importance of the 
heterogeneity of strategic thinking the model allows. 
 
Equilibrium and selection principles such as risk- or payoff-dominance 
(Harsanyi and Selten 1987) play no direct role in players’ thinking. 
 
Coordination, when it occurs, is an almost accidental (though statistically 
predictable) by-product of the use of non-equilibrium decision rules. 
 
Even though players’ decisions are simultaneous and there is no 
communication or observation of the other’s decision, the heterogeneity 
of strategic thinking allows more sophisticated players such as L2s to 
mentally simulate the decisions of less sophisticated players such as L1s 
and accommodate them, just as Stackelberg followers would. 
 
This mental simulation doesn’t work perfectly, because an L2 is as likely 
to be paired with another L2 as an L1. Neither would it work if strategic 
thinking were homogeneous. But it’s very surprising that it works at all. 
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Application: Yushchenko and Lake Wobegon: Non-neutral Framing 
in Outguessing Games 
 

“Any government wanting to kill an opponent…would not try it at a 
meeting with government officials.” 

 
—comment, quoted in Chivers (2004), on the poisoning of 
Ukrainian presidential candidate—now ex-president—Viktor 
Yushchenko. 

    
   “…in Lake Wobegon, the correct answer is usually ‘c’.” 
 

—Garrison Keillor (1997) on multiple-choice tests (quoted in 
Attali and Bar-Hillel 2003)  
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Both quotations refer to simultaneous-move zero-sum two-person games 
with unique mixed-strategy equilibria. 
 
 
In the first, the players are a government assassin choosing one of 
several dinners at which to try to poison Yuschenko, only one of which is 
with officials of the government suspected of wanting to poison him; and 
an investigator who has the resources to check only one of the dinners. 
 
 
In the second, the players are a test designer deciding where to hide the 
correct answer and a clueless test-taker trying to guess the hiding place. 
 
Although there is nothing as uniquely salient as the dinner with 
government officials, psychologists think that with four possible answers, 
both the a and d end locations and location c are inherently salient (with 
the jury still out on which is more salient; see Christenfeld 1995 and 
Rubinstein, Tversky, and Heller 1996). 
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In each case the key issue is how players react to framing of decisions 
that is non-neutral but does not directly affect payoffs. 
 
 
Equilibrium in zero-sum two-person games leaves no room for such 
framing to affect outcomes, but people often react to it anyway. 
 
 
The thinking reflected by the quotations is plainly strategic, but non-
equilibrium: 
 
To the first, for example, any game theorist worth his salt would respond, 
“If that’s what people think, a meeting with government officials is exactly 
where I would try to poison Yushchenko.” 
 
 
We will see that the quotation can be understood as a thought process in 
which a player anchors his beliefs in an instinctive reaction to the 
salience of the dinner with government officials and then iterates best 
responses a small number of times.  
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Consider Rubinstein, Tversky, and Heller’s 1993, 1996, 1998-99 (“RTH”) 
experiments with zero-sum, two-person “hide-and-seek” games with non-
neutral framing of locations, analyzed by Crawford and Iriberri (2007 
AER). 
 
A typical seeker’s instructions (a hider’s instructions are analogous): 
Your opponent has hidden a prize in one of four boxes arranged in a 
row. The boxes are marked as shown below: A, B, A, A. Your goal is, of 
course, to find the prize. His goal is that you will not find it. You are 
allowed to open only one box. Which box are you going to open? 
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RTH’s framing of the hide-and-seek game is non-neutral in two ways: 
 
 
● The “B” location is distinguished by its label.  
 
● The two “end A” locations may be inherently focal. 
 
 
This gives the “central A” location its own brand of uniqueness as the 
“least salient” location. 
 
 
Mathematically this “negative” uniqueness is analogous to the “positive” 
uniqueness of “B”. 
 
 
However, its psychological effects will be seen to be completely different. 
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RTH’s design is important as a tractable abstract model of a non-neutral 
cultural or geographic frame, or “landscape.” 
 
Hide-and-seek games are often played on such landscapes, although 
traditional game theory rules out any influence of the landscape by fiat. 
 
 
This is well illustrated by the Yuschenko and Lake Wobegon quotations. 
 
 
Yuschenko’s meeting with government officials is analogous to RTH’s B, 
although in that example there’s nothing like RTH’s end locations. 
 
 
With four possible choices arrayed left to right in the zero-sum game 
between a test designer deciding where to hide the correct answer and a 
clueless test-taker trying to guess where it is, the Lake Wobegon 
example is very close to RTH’s design. 
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RTH’s hide-and-seek game has a clear equilibrium prediction, which 
leaves no room for framing to systematically influence the outcome. 
 
The traditional theory of zero-sum two-person games is the strongpoint 
of noncooperative game theory, where the normative arguments for 
playing equilibrium strategies are immune most counterarguments. 
 
Yet framing has a strong and systematic effect in RTH’s experiments, 
qualitatively the same around the world, with Central A (or its analogs in 
other treatments, as explained in the paper) most prevalent for hiders 
(37% in the aggregate) and even more prevalent for seekers (46%). 
 
 
In this game one might argue that deviations do not violate the theory 
because any strategy is a best response to equilibrium beliefs. 
 
But systematic deviations of aggregate frequencies from equilibrium 
probabilities must (with high probability) have a systematic cause. 
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Crawford and Iriberri’s Table 1 
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RTH took the main patterns in their data as evidence that their subjects 
did not think strategically: 
 
● “The finding that both choosers and guessers selected the least salient  
 alternative suggests little or no strategic thinking.” 
 
● “In the competitive games, however, the players employed a naïve 

strategy (avoiding the endpoints), that is not guided by valid strategic 
reasoning. In particular, the hiders in this experiment either did not 
expect that the seekers too, will tend to avoid the endpoints, or else 
did not appreciate the strategic consequences of this expectation.” 

 
But Crawford and Iriberri’s analysis suggests that RTH’s subjects were 
actually more than usually sophisticated (with many L3s and even L4s, 
although in most settings L1s and L2s are more common)—their thinking 
was plainly strategic, but just didn’t follow equilibrium logic. 
 
Crawford and Iriberri’s analysis suggests that the Yushchenko quotation 
simply reflects the reasoning of an L1 poisoner, or equivalently of an L2 
investigator reasoning about an L1 poisoner. 
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RTH’s results raise a couple of puzzles: 
 
● On average hiders are as smart as seekers, so hiders tempted to hide 

in central A should realize that seekers will be just as tempted to look 
there. Why do hiders allow seekers to find them 32% of the time 
when they could hold it to 25% via the equilibrium mixed strategy? 

 
● Further, why do seekers choose central A (or its analogs) even more 
 often (46% in Table 3 below) than hiders (37%)?   
 
 
Although the payoff structure of RTH’s game is asymmetric, QRE 
ignores labeling and (logit or not) coincides with equilibrium in the game, 
and so neither helps to explain the asymmetry of choice distributions. 
 
 
The role asymmetry in subjects’ behavior and how it is linked to the 
game’s payoffs points strongly in the direction of a level-k/CH model, and 
is a mystery from the viewpoint of other theories I am aware of. 
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n constructing such a level-k model, defining L0 as uniform random 
would be unnatural, given the non-neutral framing of decisions and that 
L0 describes others’ instinctive responses. 
 
It would also make Lk the same as Equilibrium for k > 0. 
 
 
But a level-k model with a role-independent L0 that probabilistically 
favors salient locations yields a simple explanation of RTH’s results. 
 
 
 
Assume that L0 hiders and seekers both choose A, B, A, A with 
probabilities p/2, q, 1– p – q, p/2 respectively, with p > ½ and q > ¼. 
 
 
L0 favors both the end locations and the B location, equally for hiders 
and seekers, but the model lets the data decide which is more salient.  
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For behaviorally plausible type distributions (estimated 0% L0, 19% L1, 
32% L2, 24% L3, 25% L4—almost hump-shaped), a level-k model 
gracefully explains the major patterns in RTH’s data, the prevalence of 
central A for hiders and its even greater prevalence for seekers:  
 
 
● Given L0’s attraction to salient locations, L1 hiders choose central A to 

avoid L0 seekers and L1 seekers avoid central A searching for L0 
hiders (the data suggest that end locations are more salient than B).  

 
● For similar reasons, L2 hiders choose central A with probability 

between 0 and 1 (breaking payoff ties randomly) and L2 seekers 
choose it with probability 1. 

 
● L3 hiders avoid central A and L3 seekers choose it with probability 
  between zero and one (breaking payoff ties randomly).  
 
● L4 hiders and seekers both avoid central A. 
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Crawford and Iriberri’s Table 3 
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Note that only a heterogeneous population with substantial frequencies 
of L2 and L3 as well as L1 (estimated 0% L0, 19% L1, 32% L2, 24% L3, 
25% L4) can reproduce the aggregate patterns in the data. 
 
(Even though there is a nonnegligible estimated frequency of L4s, they 
don’t really matter here because they never choose central A (Table 2 
above), hence they are not implicated in the major aggregate patterns. 
 
For the same reason, their frequency is not well identified in the 
estimation.)  
 
For example, Crawford and Iriberri estimate (Table 3 above, row 5) that 
the salience of an end location is greater than the salience of the B (p > 
2q). 
 
Given this, a 50-50 mix of L1s and L2s in both player roles would imply 
(Table 2 above, right-most columns in each panel) 75% of hiders but 
only 50% of seekers choosing central A, in contrast to the 37% of hiders 
and 46% of seekers who did choose central A. 
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In Crawford and Iriberri’s analysis of RTH’s data, the role asymmetry in 
aggregate behavior follows naturally from the asymmetry of the game’s 
payoff structure, via hiders’ and seekers’ asymmetric responses to L0’s 
role-symmetric choices. 
 
Allowing L0 to vary across roles as in Bacharach and Stahl (2000), 
although it yields a small improvement in fit (Table 3), would beg the 
question of why subjects’ responses were so role-asymmetric. 
 
 
The freedom to specify L0 leaves room for doubts about overfitting and 
portability, the extent to which a model estimated from responses to  
one game can be extended to predict responses to different games. 
 
 
Crawford and Iriberri tested for overfitting, confirming the level-k model. 
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A more challenging test regards portability. 
 
 
Crawford and Iriberri tested for portability by using the leading alternative 
models, estimated from RTH’s data, to “predict” subjects’ initial 
responses in the two closest relatives of RTH’s games in the literature: 
 
● O’Neill’s 1987 PNAS famous card-matching game, and 
 
● Rapoport and Boebel’s 1992 GEB closely related game. 
 
 
These games both raise the same kinds of strategic issues as RTH’s 
games, but with more complex patterns of wins and losses, different 
framing, and in the latter case five locations. 
 
I focus here on Crawford and Iriberri’s analysis of O’Neill’s game.  
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In O’Neill’s card-matching game, players simultaneously and 
independently choose one of four cards: A, 2, 3, J. 
 
One player, say the row player—but the game was presented to subjects 
as a story, not a matrix—wins if there is a match on J or a mismatch on 
A, 2, or 3; the other player wins in the other cases. 
 
 

 A 2 3 J 

A 
1 

0 
0 

1 
0 

1 
1 

0 

2 
0 

1 
1 

0 
0 

1 
1 

0 

3 
0 

1 
0 

1 
1 

0 
1 

0 

J 
1 

0 
1 

0 
1 

0 
0 

1 

O’Neill’s card-matching game 
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O’Neill’s game is like a hide-and-seek game, except that each player is a 
hider (h) for some locations and a seeker (s) for others.  
 
 
A, 2, and 3 are strategically symmetric, and equilibrium (without payoff 
perturbations) has Pr{A} = Pr{2} = Pr{3} = 0.2, Pr{J} = 0.4. 
 
 

 A (s) 2 (s) 3 (s) J (h) 

A 
(h) 

1 
0 

0 
1 

0 
1 

1 
0 

2 
(h) 

0 
1 

1 
0 

0 
1 

1 
0 

3 
(h) 

0 
1 

0 
1 

1 
0 

1 
0 

J 
(s) 

1 
0 

1 
0 

1 
0 

0 
1 

O’Neill’s card-matching game 
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The portability test directly addresses the issue of whether level-k 
models allow the modeler too much flexibility.  
 
With regard to the flexibility of L0, first consider how to adapt our 
“psychological” specification of L0 from RTH’s to O’Neill’s game. 
 
“Anyone” should agree on the right kind of L0: 
 
● A and J, “face” cards and end locations, are more salient than 2 and 3, 
 but the specification should allow either A or J to be more salient. 
 
That the RTH estimates suggested that their end locations are more 
salient than the B label does not dictate whether A or J is more salient, 
though it does reinforce that they are both more salient than 2 and 3. 
 
This is a psychological issue, but because it is “only” a psychological 
issue, it is easy to gather evidence on it from different settings, and such 
evidence is more likely to yield convergence than if it were partly a 
strategic issue.     
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Further, because all that matters about L0 is what it makes L1s do in 
each role, the remaining freedom to choose L0 allows only two models. 
 
With regard to the flexibility of the type frequencies, empirically plausible 
frequencies often imply severe limits on what decision patterns a level-k 
model can generate.   
 
 
Discussions of O’Neill’s data (which we did not have before we carried 
out the analysis), had been dominated by an “Ace effect”: 
 
Aggregated over all 105 rounds, row and column players played A with 
frequencies 22.0% and 22.6%, significantly above the equilibrium 20%. 
 
 
O’Neill speculated that this was because “…players were attracted by 
the powerful connotations of an Ace”.  
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Yet no behaviorally plausible level-k model can make a row player play A 
more than the equilibrium 20%. 
 
Crawford and Iriberri’s online appendix, Tables A3 and A4, show that, 
excluding L0s as normally having 0 estimated frequencies and restricting 
attention to row players (Player 1s), when A is more salient (3j – a < 1) 
only L4 chooses A, with probability at most 1/3; and when A is less 
salient (3j – a > 1) only L3 chooses A, with probability at most 1/3. 
 
This is logically possible, but in the first case it would require a 
population of 60% or more L4s, and in the second case it would require 
60% or more L3s.) 
 
Thus, despite the flexibility of the estimated type distribution, the level-k 
model’s structure and the principles that guide the specification of L0 
imply that row players play A less than the equilibrium 20%. 
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Speculating that O’Neill’s subjects’ initial responses must not have had 
an Ace effect, Crawford and Iriberri got the data and found that there was 
in fact no Ace effect for initial responses. 
 
Instead there was a Joker effect, a full order of magnitude stronger, in 
which row players played J 56% of the time and column players played it 
64% of the time. 
 
Unlike the putative Ace effect, the Joker effect and the other observed 
frequencies can be gracefully explained by a level-k model with an L0 
that probabilistically favors the salient A and J cards, in the spirit of 
Crawford and Iriberri’s analysis of RTH’s data.  
 
Crawford and Iriberri’s analysis traces the portability of the level-k model 
to the fact that L0 is psychological rather than strategic, and that it is 
based on simple and universal intuition and evidence.  
 
If L0 were strategic, it would interact with the strategic structure in new 
ways in each new game, and seldom could one extrapolate a 
specification from one game to another. 
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Crawford and Iriberri’s Table 5 
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Application: Huarangdao and D-Day: Communication of Intentions 
in Outguessing Games 
 
 
 
General Kongming: “Have you forgotten the tactic of ‘letting weak points 
look weak and strong points look strong’?” 
  
 
 
General Cao Cao: “Don’t you know what the military texts say? ‘A show 
of force is best where you are weak. Where strong, feign weakness.’” 
 
  —Luo Guanzhong’s historical novel, Three Kingdoms  
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The quotations refer to a two-person outguessing game with complete 
information and one-sided communication of intentions via cheap talk. 
 
 
In the story, set around 200 A.D., fleeing general Cao Cao chose 
between two escape routes, the easier Main Road and the awful 
Huarong Road, trying to avoid capture by pursuing General Kongming 
(http://en.wikipedia.org/wiki/Battle_of_Red_Cliffs). 
 
 
Kongming (the sender in this example) waited in ambush along the 
Huarong Road and set campfires there, thus sending a deceptively 
truthful message. 
 
 
Cao Cao (the receiver), misjudging Kongming’s communication strategy, 
inverted the truthful message and was caught by Kongming (but was 
later released). 

http://en.wikipedia.org/wiki/Battle_of_Red_Cliffs
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Consider a simple model of the underlying game (without 
communication): 
 

  Kongming  
  Main Huarong 

Cao Cao 

Main 
3 

-1 
0 

1 

Huarong 
1 

0 
2 

-2 

Huarongdao 
 
(Remarkably, Huarongdao has the same payoffs as Far Pavilions 
Escape.) 
 
● Cao Cao loses 2 and Kongming gains 2 if Cao Cao is captured. 
 
● But both Cao Cao and Kongming gain 1 by taking the Main Road, 

whether or not Cao Cao is captured: It’s important to be comfortable, 
even if (especially if?) if you think you’re about to die.  
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The key issues here are how Kongming should choose his message and 
how Cao Cao—knowing Kongming is choosing strategically to anticipate 
Cao Cao’s interpretation—should interpret Kongming’s message. 
 
 
In real settings like this, a receiver’s thinking often assigns a prominent 
role to the literal meanings of messages, without necessarily taking them 
at face value; and a sender’s thinking takes this into account. 
 
 
But a standard equilibrium analysis precludes a role for the literal 
meanings of payoff-irrelevant messages (Crawford and Sobel 1982 
Econometrica; see however Farrell’s 1993 GEB neologism-proofness 
refinement, which depends on meanings). 
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Moreover, there is no equilibrium (refined or not) in a zero-sum (or this) 
two-person game in which cheap talk conveys information or the receiver 
responds to the message. 
 
 
In such an equilibrium, if there was information in the sender’s message 
that the receiver found it optimal to respond to, the receiver’s response 
would help him and so hurt the sender, who would then prefer to make 
his message uninformative. 
 
 
Thus communication can have no effect in any equilibrium, and as a 
result the underlying game must be played according to its unique 
mixed-strategy equilibrium, as if there were no communication phase. 
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Yet intuition suggests that in many such situations: 
 
 
● The sender’s message and action are part of a single, integrated 
 strategy. 
 
 
● The sender tries to anticipate which message will fool the receiver and 
 chooses it nonrandomly.  
 
 
● The sender’s action differs from what he would have chosen with no 
 opportunity to send a message. 
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Huarongdao is only one datapoint (and possibly fictional!). But there’s 
another example in which the same thing may have happened.  
 
Consider the Allies’ choice of where to invade Europe on D-Day (6 June 
1944), the motivating example of Crawford (2003 AER). 
 
The underlying game can also be modeled as an outguessing game: 

  Germans 

  Defend Calais 
Defend 

Normandy 

Allies 

Attack 
Calais 

1 
-1 

-2 
2 

Attack 
Normandy 

-1 
1 

1 
-1 

 
● Attacking an undefended Calais is better for the Allies than attacking 
 an undefended Normandy, so better for the Allies on average. 
 
● Defending an unattacked Normandy is worse for the Germans than 
 defending an unattacked Calais and so worse for them on average. 
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Now imagine that D-Day is preceded by a message from the Allies to the 
Germans regarding their intentions about where to attack, as in 
Operation Fortitude South 
(http://en.wikipedia.org/wiki/Operation_Fortitude). 
 
Imagine further that the message is (approximately!) cheap talk. 
 

 
 

A “Tank” from Operation Fortitude 

http://en.wikipedia.org/wiki/Operation_Fortitude
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In what sense did the same thing happen in Huarongdao and D-Day?  
 
In each case the deception succeeded, but the sender won in the less 
beneficial of the two possible ways to win. 
 
Kongming's message was literally truthful—he lit fires on the Huarong 
Road and ambushed Cao Cao there—but Cao Cao was fooled because 
he misread Kongming’s message strategy and inverted the message. 
 
 
In D-Day the message was literally deceptive but the Germans were 
fooled because they “believed” it (either because they were credulous or 
because they inverted the message one too many times). 
 
 
The sender’s and receiver’s message strategies and beliefs were 
different, but the outcome in the underlying game was the same: The 
sender won, but in the less beneficial of the two possible ways. 
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The quotations tell us why Cao Cao was fooled by Kongming’s message: 
with a truthful L0, his rationale resembles L1 thinking, while Kongming’s 
resembles L2 thinking. 
 
 
 
But the quotations don’t tell us why in each case the sender won only in 
the less beneficial way.  
 
 
General Kongming: “Have you forgotten the tactic of ‘letting weak points 
look weak and strong points look strong’?” 
  
 
General Cao Cao: “Don’t you know what the military texts say? ‘A show 
of force is best where you are weak. Where strong, feign weakness.’” 
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To restate the puzzle more concretely, for both D-Day and Huarongdao: 
 
● Why did the receiver allow himself to be fooled by a costless (hence 
 easily faked) message from an enemy? 
 
● If the sender expected his message to fool the receiver, why didn't he 
 reverse it and fool the receiver in the way that would have allowed him 

to win in the more beneficial way? 
 
(Why didn't the Allies feint at Normandy and attack at Calais? Why 
didn't Kongming light fires and ambush Cao Cao on the Main Road?) 
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A level-k analysis suggests that it was more than a coincidence that the 
same thing happened in both cases. 
 
Although Sophisticated subjects are rare in laboratory experiments, they 
may be more common in the field; and it is interesting to see whether a 
plausible model allows deception between Sophisticated players.   
 
 
Accordingly, let Allies’ and Germans’ types be drawn from separate 
distributions, each including both level-k or Mortal types (in honor of 
Puck, in A Midsummer Night’s Dream, Act 3: “Lord, what fools these 
mortals be!”) and a fully strategically rational or Sophisticated, type. 
 
Mortal types use step-by-step procedures that generically determine 
unique pure strategies, and avoid simultaneous determination of the kind 
used to define equilibrium; recall the Selten (1998 EER) quote above. 
 
Sophisticated types know everything about the game, including the 
distribution of Mortal types; and play an equilibrium in a “reduced game” 
between Sophisticated players, taking Mortals’ choices as given. 
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How should L0 be adapted to an extensive-form game with 
communication? 
 
Here a uniform random L0 seems quite unnatural. For sender or 
receiver, the instinctive reaction to a message in a language one 
understands is surely to focus on its literal meaning, even if one ends up 
either lying or not taking the message at face value.     
 
 
The level-k model therefore anchors Mortal types’ messages and 
responses on L0s based on truthfulness for senders and credulity for 
receivers, just as in the informal literature on deception.  
 
(The literature has not yet converged on whether L0 receivers should be 
defined as credulous or uniform random—compare Ellingsen and Östling 
(2010 AER)—but the distinction is partly semantic because truthful L0 
senders imply that L1 receivers are also credulous.)   
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Mortal Allied types’ simplified models of other players make L1 or higher 
Mortal Allied types always expect to fool the Germans, either by lying 
(like the Allies) or by telling the truth (like Kongming). 
 
 
Given this, all L1 or higher Mortal Allied types send a message they 
expect to make the Germans think they will attack Normandy, and then 
attack Calais. 
 
 
If we knew the Allies and Germans were Mortal, we could now derive the 
model’s implications from an estimate of the type frequencies of Mortal 
Allies who tell the truth or lie, and of Mortal Germans who believe or 
invert the Allies’ message. 
 
 
But the analysis must also take into account the possibility of 
Sophisticated Allies and Germans, who know everything about the 
game, including the distribution of Mortal types, and play an equilibrium 
in the resulting game.   
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To take into account the possibility of Sophisticated Allies and Germans, 
note that Mortal players’ strategies are determined independently of each 
other’s and Sophisticated players’ strategies, and so can be treated as 
exogenous (even though they affect other players’ payoffs). 
 
 
 
Plug in the distributions of Mortal Allies’ and Germans’ independently 
determined behaviors to obtain a “reduced game” between Sophisticated 
Allies and Sophisticated Germans. 
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Because Sophisticated players’ payoffs are influenced by Mortal players’ 
decisions, the reduced game is no longer zero-sum, its messages are 
not cheap talk, and it has incomplete information. 
 
 
The sender’s message, ostensibly about his intentions, is in fact read by 
a Sophisticated receiver as a signal of the sender’s type. 
   
 
 
Thus, the possibility of Mortal players completely changes the character 
of the game between Sophisticated players, which is what gives the 
model the ability to explain the effectiveness of communication in a zero-
sum game and the possibility of deception among Sophisticated players.  
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The equilibria of the reduced game are determined by the population 
frequencies of Mortal and Sophisticated senders and receivers. There 
are two leading cases, with different implications: 
 
When Sophisticated Allies and Germans are common—not behaviorally 
plausible—the reduced game has a mixed-strategy equilibrium whose 
outcome is virtually equivalent to D-Day’s without communication. 
 
When Sophisticated Allies and Germans are rare, the game has an 
essentially unique pure-strategy equilibrium, in which Sophisticated Allies 
can predict Sophisticated Germans’ decisions, and vice versa. 
 
In the latter, pure-strategy equilibrium, Sophisticated Germans always 
defend Calais (because they know that Mortal Allies, who predominate 
when Sophisticated Allies are rare, will always attack Calais). 
 
Sophisticated Allies cannot fool Sophisticated Germans, and so send the 
message that fools the most Mortal Germans (lying if more Mortal 
Germans believe than invert: no pure message can fool both kinds, or 
any Sophisticated Germans), and attack at the more profitable location. 
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Thus there is sometimes a pure-strategy “Fortitude” equilibrium in which 
Sophisticated Allies attack Normandy while Sophisticated Germans 
defend Calais. 

But there is never a pure-strategy “reverse-Fortitude” equilibrium in 
which Sophisticated Allies attack Calais while Sophisticated Germans 
defend Normandy, even though that would be more profitable for Allies. 

For, in such an equilibrium, any (pure) deviation from Sophisticated 
Allies’ equilibrium message would “prove” to Sophisticated Germans that 
the Allies were Mortal, making it optimal for them to defend Calais. 

If Sophisticated Allies attack Calais in the equilibrium, the conclusion is 
immediate. 

If, instead, Sophisticated Allies attack Normandy in the equilibrium while 
Sophisticated Germans defend Normandy, Sophisticated Allies’ 
message fools only the most likely kind of Mortal German (believers or 
inverters), with payoff gain of their frequency times the payoff of 
attacking an undefended Normandy. 

But reversing the message and attack location would still fool the most 
likely kind of Mortal German, but now with payoff gain of their frequency 
times the higher payoff of attacking undefended Calais, a contradiction. 
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In that sense, the model explains why Sophisticated Allies don’t attack 
Calais (or Kongming did not light campfires and ambush on Main Road). 
 
In the pure-strategy equilibrium that exists when Sophisticated Allies and 
Germans are rare, the Allies’ message and action are part of a single, 
integrated strategy; and the probability of attacking Normandy is much 
higher than if no communication was possible.  
 
The Allies choose their message nonrandomly, the deception succeeds 
most of the time, but it allows the Allies to win in the less beneficial way.  
 
Thus for plausible parameter values, with no unexplained difference in 
the sophistication of Allies and Germans, the model explains why 
Sophisticated Germans might allow themselves to be “fooled” by a 
costless message from a Sophisticated enemy: It is an unavoidable cost 
of exploiting mistakes by Mortal enemies, who are much more common.  
 
Nonetheless, Sophisticated players in either role do strictly better than 
their Mortal counterparts. 
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Their advantage comes from the ability to avoid being fooled and/or to 
choose which Mortal type(s) to fool. 
 
In the mixed-strategy equilibrium that prevails when Sophisticated Allies 
and Germans are common, Sophisticated players’ equilibrium mixed 
strategies offset each other’s gains from fooling Mortal Receivers, and in 
each role Sophisticated and Mortal players have equal expected payoffs. 
 
 
This suggests that in an adaptive analysis of the dynamics of the type 
distribution, as in Conlisk (2001 AER), the frequencies of Sophisticated 
types will grow until the population is in the region of mixed-strategy 
equilibria in which types’ expected payoffs are equal. 
 
Thus Sophisticated and Mortal players can coexist in long-run 
equilibrium. 
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Application: Alphonse and Gaston: Communication of Intentions in 
Coordination Games 

 

 
 
“After you, Alphonse.” “No, you first, my dear Gaston!” 

   
 —Frederick B. Opper’s comic strip, Alphonse and Gaston 
(http://en.wikipedia.org/wiki/Alphonse_and_Gaston) 

 
“What we got here…is a failure to communicate.”  

 
—Paul Newman as the title character in Cool Hand Luke 
(http://www.imdb.com/title/tt0061512/)  

http://en.wikipedia.org/wiki/Alphonse_and_Gaston
http://www.imdb.com/title/tt0061512/
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If level-k models allow preplay communication of intentions to affect the 
outcomes of zero-sum games, it should come as no surprise that they 
also allow effective communication in coordination games. 
 
Ellingsen and Östling (2010 AER) and Crawford (2007), not discussed in 
detail here, adapt Crawford’s (2003 AER) approach to study different 
aspects of preplay communication of intentions in coordination and other 
games.  
 
Ellingsen and Östling use a level-k model to study the effectiveness of a 
single round of one- or two-sided preplay communication in games 
where communication of intentions plays various roles. 
    
Crawford uses a level-k model to study the effectiveness of one- or multi-
round two-sided communication in games like Battle of the Sexes, 
building on Farrell’s 1987 RAND J and Rabin’s 1994 JET analyses.  
 
In each case the power of the analysis stems from the use of a model that 
does not assume equilibrium, which is question-begging in this context; but 
which imposes a realistic structure less agnostic than rationalizability.    
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Application: October Surprise: Communication of Private Information 
in Outguessing Games 
 

“…The news that day was the so-called ‘October Surprise’ broadcast 
by bin Laden. He hadn’t shown himself in nearly a year, but now, four 
days before the [2004 presidential] election, his spectral presence 
echoed into every American home. It was a surprisingly complete 
statement by the al Qaeda leader about his motivations, his actions, 
and his view of the current American landscape. He praised Allah and, 
through most of the eighteen minutes, attacked Bush,…. At the end, he 
managed to be dismissive of Kerry, but it was an afterthought in his 
‘anyone but Bush’ treatise…. Inside the CIA…the analysis moved on a 
different track. They had spent years, as had a similar bin Laden unit at 
FBI, parsing each expressed word of the al Qaeda leader…. What 
they’d learned over nearly a decade is that bin Laden speaks only for 
strategic reasons…. Today’s conclusion: bin Laden’s message was 
clearly designed to help the President’s reelection.” 

—Suskind, The One Percent Doctrine, 2006, pp. 335-6 (quoted in 
Jazayerli 2008 http://www.fivethirtyeight.com/2008/10/guest-column-
will-bin-laden-strike.html).  

http://www.fivethirtyeight.com/2008/10/guest-column-will-bin-laden-strike.html
http://www.fivethirtyeight.com/2008/10/guest-column-will-bin-laden-strike.html
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October Surprise 
 
The quotation refers to a zero-sum two-person game with incomplete 
information and one-sided preplay communication of private information 
via cheap talk.  
 
Only bin Laden knows which candidate he wants; and, talk being cheap, 
he will say what it takes to help his candidate win. 
 
A representative American voter knows only that he wants whichever 
candidate bin Laden doesn’t want. 
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The key issues are how bin Laden should relate his statement to what he 
really wants and how the American should interpret bin Laden’s 
statement, knowing that bin Laden is choosing the message strategically. 
 
 
Once again, the literal meanings of messages are likely to play a 
prominent role in applications, but equilibrium analysis precludes such a 
role. 
 
 
There is again no equilibrium in which cheap talk conveys information, or 
in which the receiver responds to the sender’s message. 
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Consider, however, a level-k model in which L0 is anchored on 
truthfulness for the sender (bin Laden) and credulity for the receiver 
(American voter). (Or one could derive credulity for an L1 receiver.)   
 
An L0 or L1 American believes bin Laden’s message, and therefore 
votes for whichever candidate bin Laden attacks. 
 
An L0 bin Laden who wants Bush to win attacks Kerry, but an L1 (L2) bin 
Laden who wants Bush to win attacks Bush to induce L0 (L1) Americans 
to vote for Bush. 
 
Given bin Laden’s choice, an L0 or L1 American then votes for Bush, but 
an L2 American votes for Kerry.  
 
Bin Laden chooses his message to fool the most prevalent kind of 
American—believer or inverter—as in Crawford’s (2003 AER) analysis. 
 
An L2 bin Laden believes Americans are L1, so believes that “reverse 
psychology” will be effective.  
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Experimental Evidence: Wang, Spezio, and Camerer (2010 AER)  
 
I now discuss some experimental evidence on communication of private 
information in discretized versions of Crawford and Sobel’s (1982 
Econometrica) sender-receiver games. 
 
Sender observes state S = 1, 2, 3, 4, or 5, sends message M = 1, 2, 3, 4, 
or 5. Receiver observes message, chooses action A = 1, 2, 3, 4, or 5. 
 
The Receiver’s choice of A determines the welfare of both: 
 
● The Receiver’s ideal outcome is A = S. 
 
● The Sender’s ideal outcome is A = S + b (or 5, if S + B > 5). 
 
The Receiver’s von Neumann-Morgenstern utility function is 
110 – 20|S – A|

1.4
, and the Sender’s is 110 – 20|S + b – A|

1.4
.  

 
The difference in preferences varied across treatments: b = 0, 1, or 2. 
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Crawford and Sobel’s theoretical analysis characterized the possible 
equilibrium relationships between Sender’s observed S and Receiver’s 
choice of A, which determine the informativeness of communication. 
 
They showed, for models with continuous state and action spaces that 
generalize Wang et al.’s examples (except for discreteness), that all 
equilibria are “partition equilibria”, in which the Sender partitions the set 
of states into contiguous groups and tells the Receiver, in effect, only 
which group his observation lies in. 
 
For any difference in Sender’s and Receiver’s preferences (b), there is a 
range of equilibria, from a “babbling” equilibrium with one partition 
element to more informative equilibria that exist when b is small enough. 
 
Under reasonable assumptions there is a “most informative” equilibrium, 
which has the most partition elements and gives the Receiver the highest 
ex ante (before the Sender observes the state) expected payoff. 

As the preference difference decreases, the amount of information 
transmitted in the most informative equilibrium increases (measured by 
the correlation between S and A or the Receiver’s expected payoff). 
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The unambiguous part of Crawford and Sobel’s characterization of 
equilibrium concerns the possible relationships between S and A. 
 
 
 
Because messages have no direct effect on payoffs (“cheap talk”), there 
is nothing to tie down their meanings in equilibrium. 
 
 
 
As a result, any equilibrium relationship between S and A can be 
supported by any sufficiently rich language, with the meanings of 
messages determined by players’ equilibrium beliefs. 
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Behaviorally, however, in experiments like Wang et al.’s with a clear 
correspondence between state and message—S = 1, 2, 3, 4, or 5 and M 
= 1, 2, 3, 4, or 5—or where communication is in a common natural 
language, interpretations of messages are dictated by literal meanings. 
  
Thus messages are always understood—even if not always believed. 
 
Wang et al.’s data analysis therefore fixes the meanings of Sender 
subjects’ messages at their literal values. 
 
 
 
 
Even with this restriction, when b = 0 or 1 in their design (Sender’s and 
Receiver’s preferences are close enough) there are multiple equilibria. 
 
 
Wang et al.’s analysis then focuses on the “most informative” equilibrium. 
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When b = 0, the most informative equilibrium has M = S and A = S: 
perfect truth-telling, credulity, and perfect information transmission, as is 
intuitively plausible with identical preferences. 
 
 
 
 
 
When b = 2, the most informative equilibrium has Senders sending a 
completely uninformative message M = {1, 2, 3, 4, 5} for any value of S; 
and Receivers ignoring it, hence choosing A = 3, which is optimal given 
their prior beliefs, for any value of M. 
 
(A babbling equilibrium also exists when b = 0 or 1, but then it is not the 
most informative equilibrium.)  
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When b = 1, the most informative equilibrium has Senders sending M = 1 
when S = 1 but M = {2, 3, 4, 5} when S = 2, 3, 4, or 5; and Receivers 
choosing A = 1 when M = 1 and A = 3 or 4 when M = {2, 3, 4, 5}. 
 
(The Sender’s message M = {2, 3, 4, 5} is the simplest way to implement 
the intentional vagueness of this partition equilibrium. Another way would 
be for the Sender to randomize M uniformly on {2, 3, 4, 5} when S = 1.) 
 
 
Thus, when b = 1 the difference in preferences causes noisy information 
transmission even in the most informative equilibrium. 
 
 
Importantly, however, in Crawford and Sobel’s equilibrium analysis the 
Receiver’s beliefs on hearing the Sender’s message M are necessarily 
an unbiased—though noisy—estimate of S: 
 
In equilibrium there can be no lying or deception as often occurs in real 
communication, only intentional vagueness (which also occurs). 
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Turning to Wang et al.’s experimental results, when b = 0 Senders 
almost always set M = S and Receivers almost always set A = M: 
 
The result is near the perfect information transmission predicted by the 
most informative equilibrium. 
 
 
 
Figure 1 (next slide) shows the Sender’s message frequencies and the 
Receiver’s action frequencies as functions of the observed state S when 
b = 0.  
 
(A circle’s size shows the Sender’s message frequencies. 
 
A circle’s darkness and the numbers inside show the Receiver’s action 
frequencies.) 
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Figure 1: Raw Data Pie Charts (b=0)   (Hidden Bias-Stranger) 
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As b increases to 1 or 2, the amount of information transmitted 
decreases as predicted by Crawford and Sobel’s equilibrium comparative 
statics. 
 
But there are also systematic deviations from the most informative (or 
from any) equilibrium, and lying and successful deception are common. 
 
 
Figure 3 (next slide) shows the Sender’s message frequencies and the 
Receiver’s action frequencies as functions of the observed state S when 
b = 2.  
 
In the essentially unique, most informative equilibrium when b = 2, M = 
{1, 2, 3, 4, 5}, so equilibrium message distributions would look the same 
for all five rows; and equilibrium actions would be concentrated on A = 3. 
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Figure 3: Raw Data Pie Chart (b=2) (Hidden Bias-Stranger) 
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However, although the observed actions are quite close to A = 3, the 
message distributions shift rightward as S increases (going down in the 
table). Thus:  
    
 
● Most Senders exaggerate the truth (most messages are above the 

diagonal), apparently trying to move Receivers from Receivers’ ideal 
action A = S toward Senders’ ideal action A = S + 2 (or 5, if S + 2 > 5). 

 
 
● Even so, there is some information in Senders’ messages (the 
 message distributions shift rightward going down in the table, so 

messages are  positively correlated with the state). 
 
 
● Receivers are usually deceived to some extent (the average A is 
 almost always > S). 
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Figure 2 (next slide) shows the Sender’s message frequencies and the 
Receiver’s action frequencies as functions of the observed state S when 
b = 1. 
 
 
 
When b = 1, in the most informative robust equilibrium, the Sender’s 
message is M = 1 when S = 1 and M = {2, 3, 4, 5} when S = 2, 3, 4, or 5; 
and the Receiver chooses A = 1 when M = 1 and A = 3 or 4 when M = {2, 
3, 4, 5}. 
 
 
 
Thus, in equilibrium the distributions of messages and actions would be 
the same for S = 2, 3, 4, or 5. 
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Figure 2: Raw Data Pie Chart (b=1) (Hidden Bias-Stranger) 
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However, when b = 1: 
 
 
● Senders again almost always exaggerate the truth (messages above 

the diagonal), apparently trying to move Receivers from Receivers’ 
ideal action A = S toward Senders’ ideal action A = S + 1 (or 5, if S + 1 
> 5).   

 
 
● Even so, there is again some information in Senders’ messages 

(the message distributions shift rightward going down in the table, so 
the messages are positively correlated with the state). 

 
 
● Receivers are again deceived to some extent (average A usually > 
 S). 
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What kind of model can explain results like this? Wang et al., following 
Cai and Wang (2006 GEB), propose a level-k explanation in the style of 
Crawford’s (2003 AER) analysis of preplay communication of intentions: 
 
Anchor beliefs in a truthful Sender L0, which sets M = S; and a credulous 
Receiver L0 (which also best responds to an L0 Sender), setting A = M. 
 
L1 Senders best respond to L0 Receivers by inflating their messages by 
b: M = S + b (up to M = 5), so that L0 Receivers will choose S + b, 
yielding the Sender’s ideal action given S. 
 
L1 Receivers (as defined by Wang et al.; the numbering is a convention) 
best respond to L1 Senders by discounting the message, normally 
setting A = M – b, yielding Receivers’ ideal action given M = S + b of S.  
 
(The qualification “normally” reflects Wang et al.’s assumption that L1 
Receivers take into account that when b = 2, L1 senders with S = 3, 4, or 
5 all send M = 5, with the result that L1 Receivers, knowing that S is 
equally likely to be 3, 4, or 5, choose A = 4 instead of A = M – 2b = 3.)  
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L2 Senders best respond to L1 Receivers by inflating their messages by 
2b: M = S + 2b (up to M = 5), so that L1 Receivers will set A = M – b = S 
+ b, yielding Senders’ ideal action given S. 
 
 
L2 Receivers best respond to L2 Senders by discounting the message, 
normally setting A = M – 2b, yielding Receivers’ ideal action given M = S 
+ 2b of S. 
 
(The qualification “normally” reflects Wang et al.’s assumption that L2 
Receivers take into account that when b = 1, L2 senders with S = 3, 4, or 
5 all send M = 5, with the result that L2 Receivers, knowing that S is 
equally likely to be 3, 4, or 5, choose A = 4 instead of A = M – 2b = 3.) 
 
 
L2 Receivers also take into account that when b = 2, L2 senders with S = 
2, 3, 4, or 5 send M = 5, so that L2 Receivers, knowing that S is equally 
likely to be 2, 3, 4, or 5, choose A = 4 instead of A = M – 2b = 3. 
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Econometric estimation classifies 18% of 16 Sender subjects as L0, 25% 
L1, 25% L2, 14% Sophisticated, and 18% Equilibrium (note different type 
definitions).  
 
 
 
Figures 2 and 3 show why. 
 
(Note that when b = 1, L1, L2, and Eq all predict M = 5 when S = 4 or 5; 
and when b = 2, L1, L2, and Eq all predict M = 5 when S = 3, 4, or 5.) 
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Figure 2: Raw Data Pie Chart (b=1) (Hidden Bias-Stranger) 
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Figure 3: Raw Data Pie Chart (b=2) (Hidden Bias-Stranger) 

  


