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Overview 
 
Starting with Nagel (1995 AER) and Stahl and Wilson (1995 GEB; “SW”), experimental 
evidence suggests that subjects’ strategic thinking, as revealed by their initial responses 
to games, often deviates systematically from equilibrium. 
 
Nonetheless, the deviations seem to have a structure that is stable across a range of 
games, and which is discrete and individually heterogeneous.  
 
 
In Nagel’s “guessing games”, for example, 15-18 subjects simultaneously guess between 
limits [0,100], with the subject whose guess is closest to a target p (= 1/2 or 2/3) times the 
group average guess winning a prize, say $50. 
 
These games are dominance-solvable, so the equilibrium can be found by iteratively 
eliminating stupid guesses. For example, if p = ½ it’s stupid to guess more than 50 (1/2 × 
100); unless you think other people are stupid, it’s also stupid to guess more than 25; and 
so on. Thus the games have a unique equilibrium, in which all players guess 0.  
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Yet Nagel’s subjects never guessed 0 initially; their guesses were heterogeneous, 
respecting 0 to 3 rounds of iterated dominance (first picture p = 1/2; second p = 2/3): 

 

 

Spikes are clearly visible (amid the noise) at 50pk for target p and low integers k.
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Other studies of initial responses to games have since found evidence of systematic 
deviations from equilibrium with a similarly discrete, individually heterogeneous structure. 
 
 
These results suggest the possibility of a general, structural non-equilibrium model of 
initial responses to games that can out-predict equilibrium in some games. 
 
(Such a model would presumably mimic equilibrium in some games but deviate 
systematically in others, thus allowing us to predict both when equilibrium will be a reliable 
guide to behavior and what is likely to happen when it is not.)         
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The spikes in Nagel’s data and similar subsequent results leave open some important 
questions about the structure of strategic thinking, which need to be resolved, at least 
approximately, before a model can be specified with confidence. 
 
 
For example, the spikes at 50pk might have come from subjects doing k–1 rounds of 
iterated dominance (as theorists often assume when they see her data) and then best 
responding to a uniform prior over the remaining guesses. 
 
Such subjects would guess p([0+100pk-1]/2), following a type later called Dk-1. 
 
 
Or, the spikes might have come from subjects starting with a uniform prior over feasible 
guesses and iterating best responses k times. 
 
Such subjects would guess pk[(0+100)/2], following a type called Lk. 
 
 
Although the difference between these interpretations of subjects’ behavior matters a lot in 
some interesting games, in Nagel’s design Lk and Dk-1 are not separated, and the 
decisions they imply are only weakly separated in most other designs.  
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One way to make further progress is to create designs that enhance the separation of the 
decisions implied by different modes of strategic thinking, and this has been done. 
 
 
But another way—potentially of greater interest to this group—is to create designs using 
an interface that hides some payoff-relevant information but makes it freely searchable. 
 
With careful design, the leading alternative models of strategic thinking imply different 
patterns of search as well as different decision patterns, and the process data provides a 
second view of subjects’ cognition and behavior, at comparatively low additional cost. 
 
 
Further, creating such designs and analyzing the search data seem to require an 
algorithmic view of how subjects process payoff information into decisions. 
 
This view looks likely to yield deeper insight into the structure of strategic thinking than the 
conventional approach of theorizing about decisions as if the stork brought them. 
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In the rest of these slides I briefly describe three examples of this approach, highlighting 
modes of analysis and how search data changes the view of strategic thinking: 
 
 

CJ’s analysis of extensive-form alternating- offers bargaining games 
 
CGCB’s analysis of matrix games 
 
CGC’s analysis of normal-form two-person guessing games 
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These analyses each begin with a model in which each subject follows one of a pre-
specified set of behavioral decision rules or “types” in each of the games he plays. 
 
A subject’s type determines his information search, and his type and search (the latter 
possibly including errors) then determine his decision. 
 
Each type is naturally associated with algorithms that process information into decisions. 
 
The analysis uses these algorithms as models of cognition, deriving search implications 
under simple, empirically motivated assumptions about how cognition determines search. 
 
Types’ derived implications provide a kind of basis for the huge space of possible decision 
and search sequences, which imposes enough structure to describe behavior in a 
comprehensible way and make it meaningful to ask how decisions and search are related. 
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CJ’s Extensive-Form Alternating-Offers Bargaining G ames 

 

CJ’s subjects played series of alternating-offers bargaining games, in extensive form. 

In these games subjects systematically deviated from the subgame-perfect equilibrium 
strategies, with proposers usually making offers more generous than equilibrium predicts, 
and responders often rejecting offers of positive amounts.  

At the time the experiments were designed, there was controversy about whether the 
deviations were due to revenge motives (rejecting “unfair” offers) or cognitive limitations 
(subjects being unable to compute subgame-perfect equilibrium strategies).    
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Within a publicly announced structure, CJ presented a game as a series of “pies” via 
MouseLab, which normally concealed the pies but allowed subjects to look them up as 
often as desired, one at a time. (Subjects were not allowed to write down the pies, and the 
frequencies with which they looked them up made clear that they did not memorize them.) 

 

CJ's Figure 1. MouseLab Screen Display 
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CJ argued that the backward induction that is the easiest way to compute the subgame-
perfect or sequential equilibrium (with or without revenge motives) is naturally associated 
with search patterns in which subjects first look at the last-period pie, then back and forth 
between the past and second-last pie, then between the second-last and first pie. 

  

CJ’s robot/trained subjects (playing against a computer they were told was programmed to 
play the subgame-perfect equilibrium) came close to this search pattern. 

 

But CJ’s Baseline subjects, playing without training against other baseline subjects, 
deviated substantially from backward-induction search: 

 

About 10% of the subjects never looked at the last-period pie (so even if they had 
played subgame-perfect equilibrium strategies, we would not expect it to persist 
beyond sample). 

 

Many other subjects deviated from backward-induction search in more subtle ways.   
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CJ identified a weak but positive correlation between individual subjects’ deviations from 
equilibrium search and their deviations from equilibrium decisions: 

Subjects whose searches were further from backward induction made decisions further 
from subgame-perfect equilibrium decisions. 

 

CJ also found evidence of a mixture of “types” in the subject population: 

Level-0 types who treat the first round as an ultimatum game 

Level-1 types who look one round ahead but truncate beyond that, and 

Level-2 types who look two rounds ahead as subgame-perfect equilibrium requires, 
hence in this game are functionally equivalent to Equilibrium types. 

 

Level-2, Level-1, and Level-0 types deviate progressively more and more from subgame-
perfect equilibrium in search as well as decisions, so that a mixture of types implies a 
positive correlation between search and decision deviations. 

 

Overall, CJ’s analysis suggests that the deviations from subgame-perfect equilibrium are 
due roughly half to revenge motives and half to cognitive limitations. 
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CJ’s and other analyses of search must address the problem that it is logically possible for 
subjects to scan and memorize the hidden information and then retreat into their brains to 
decide what to do, in which case their search patterns reveal nothing about their thinking. 

 
 
Inspecting actual searches suggests that there are strong regularities in search behavior, 
and as a result subjects’ searches contain a lot of information about cognition. 
 
(Something like these regularities persist for eyetracking data as in WSC, with the 
additional advantage that the tracker measures attention more directly; in MouseLab, by 
contrast, a subject can open a box and then gaze out the window without attending to it.) 
 
 

The goal in search analysis is to add enough assumptions to make it possible to extract 
the signal from the noise in subjects’ look-up sequences; but not so many assumptions 
that they distort the signal’s meaning. 

 

Given the noisiness and heterogeneity of subjects’ searches, this is a delicate balance.  
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CJ, CGCB, and CGC stylize the search evidence by imposing empirically motivated 
restrictions on subjects’ search patterns, which CGCB called: 

 

Occurrence (if your type’s decision depends on a particular piece of hidden 
information, you must have looked at it at least once), and 

 

Adjacency (if the most basic operations your type’s decision requires involve two 
pieces of hidden information, they “must” be adjacent in your look-up sequence).    

 

CJ implicitly invoke Occurrence and Adjacency, but also use other measures. 

 

CGCB explicitly use Occurrence and Adjacency in their econometric analysis, and also 
use some other measures. 

 

CGC use a more refined measure in the same spirit, based on measures of the density of 
a type’s characteristic look-up sequence (characterized using requirements in the spirit of 
Occurrence and Adjacency) in a subject’s observed sequence.     
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CGCB’s Matrix Games 

CGCB’s subjects played a series of 18 normal-form games, with various patterns of 
iterated dominance or unique pure-strategy equilibria without dominance. 

Within a publicly announced structure, each game was presented as a matrix with players’ 
payoffs separated horizontally via MouseLab. (All subjects were framed as Row players.) 

 

CGCB's Figure 1. MouseLab Screen Display (for a 2×2  game) 
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The 18 games were chosen to separate leading types’ implications for decisions. 

 

Subjects’ decisions replicated most patterns in previous experiments. 

 

In particular, there was evidence of a mixture of “types”, with many apparent L1 (“Naïve” in 
CGCB, distinct from CJ’s extensive-form type Level-1 above) and L2 types, and apparent 
traces of an iterated dominance type D1.   

 

But separation of some types was weak or nonexistent, leaving considerable ambiguity. 
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Analysis of subjects’ search for hidden but freely accessible payoff information, assuming 
Occurrence and Adjacency, strengthens and refines this classification. 

 
The multidimensionality of search makes it more informative—compare CJ’s essentially 
one-dimensional searches—but also makes it necessary to impose structure on the huge 
space of possible search sequences, which is done by specifying a list of leading types. 
 
The size of the space of possible decision sequences alone seems to make it necessary 
to impose a types-based structure. 
 
But types play an additional role in search analysis, making it meaningful to ask whether a 
subject’s searches deviated from equilibrium in the “same direction” as his decisions (by 
contrast, the directions are immediately apparent in CJ’s one-dimensional search space). 
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One would like to dispense with the need to specify a list of types a priori, and my co-
authors and I have spent considerable time trying to figure out how to do this by 
something like a multidimensional clustering analysis, without success.  
 
 
One problem is computational feasibility; another is that standard clustering analyses 
depend on distance metrics that do not seem appropriate in this setting.  

 

 

CGC address this problem indirectly by conducting a careful specification test, looking 
both for “underperforming” types and omitted types. 

 

They find few or none of either, relative to their initially specified list; but this is not a 
completely satisfactory way to proceed.     



 19

In CGCB's display, a subject's searches can vary in three main dimensions: 

The extent to which his transitions are up-down in his own payoffs, which under 
Occurrence and Adjacency is (for a Row player) associated with decision-theoretic 
rationality; 

The extent to which his transitions are left-right in other's payoffs, which under 
Occurrence and Adjacency is associated with thinking about his partner’s incentives;  

The extent to which he makes transitions from own to other's payoffs and back for the 
same decision combination, which under Occurrence and Adjacency is associated with 
interpersonal fairness or competitiveness comparisons. 
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Incorporating search compliance into the analysis shifts CGCB’s estimated type 
distribution toward L1 (Naïve), at the expense of Optimistic (maximax) and D1. 

Part of the shift occurs because L1’s search implications explain more of the variation in 
subjects’ searches and decisions than Optimistic's, which are too unrestrictive to be useful 
in the sample.   

Another part of the shift occurs because L1’s search implications explain more of the 
variation in subjects’ searches and decisions than D1’s, which are more restrictive, but 
very weakly correlated with subjects’ decisions. 

  

D1 also loses some frequency to L2, even though their decisions are weakly separated in 
CGCB’s design, because L2’s search implications explain much more of the variation in 
subjects' searches and decisions. 

Overall, CGCB's analysis of decisions and search yields a significantly different 
interpretation of behavior than their analysis of decisions alone. 

 

The analysis including search suggests a strikingly simple view of behavior, with L1 
(Naïve) and L2 making up 65-90% of the population, and D1 making up 0% if one believes 
CGCB's model of search or 20% if not. (CGC’s subsequent work suggests 0% is right.) 



 21

CGC’s Two-Person Guessing Games 
 
CGC’s subjects played a series of 16 different two-person guessing games. 
 
In the games, each player has his own lower and upper limit, both strictly positive; but 
players are not required to guess between their limits. 
 
Guesses outside the limits are automatically adjusted up to the lower or down to the upper 
limit as necessary (a trick to enhance separation of rules via search). 
 
Each player also has his own target, and his payoff increases with the closeness of his 
adjusted guess to his target times the other player’s adjusted guess. 
 
The targets and limits vary independently across players and 16 games, with the targets 
either both less than one, both greater than one, or mixed. 
 
The 16 games subjects played are finitely dominance-solvable in 3 to 52 rounds, with 
essentially (because the only thing about a guess that matters is its adjusted guess) 
unique equilibria determined by the targets and limits in a simple way.  
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Consider a sample game where a player’s own limits and target are [300, 900] and 1.5 
and his partner’s limits and target are [100, 900] and 0.5. 
 
The product of targets 1.5 × 0.5 < 1, which is easily shown to imply that players’ 
equilibrium adjusted guesses are determined (at least indirectly) by their lower limits. 
 
The player’s equilibrium adjusted guess equals his lower limit of 300, but his partner’s 
equilibrium adjusted guess is above his lower limit at 150.  
 
 
 
The way in which equilibrium is determined, by players’ lower limits when the product of 
their targets is less than 1, or by players’ upper limits when the product of their targets is 
greater than 1, enhances separation of Equilibrium from other types: 
 
Equilibrium responds very strongly to small differences in the product of the targets, while 
other, empirically plausible types are almost completely unmoved by them. 
 
That equilibrium is jointly determined by both players’ payoff parameters also helps to 
separate the search implications of equilibrium and other rules. 
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The large strategy spaces and variation of targets and limits in CGC’s design yields very 
strong separation of decisions, akin to strategic “fingerprinting”: 
 

Types’ guesses in the 16 games, in (randomized) ord er played  
 L1 L2 L3 D1 D2 Eq. Soph. 
1 600 525 630 600 611.25 750 630 
2 520 650 650 617.5 650 650 650 
3 780 900 900 838.5 900 900 900 
4 350 546 318.5 451.5 423.15 300 420 
5 450 315 472.5 337.5 341.25 500 375 
6 350 105 122.5 122.5 122.5 100 122 
7 210 315 220.5 227.5 227.5 350 262 
8 350 420 367.5 420 420 500 420 
9 500 500 500 500 500 500 500 
10 350 300 300 300 300 300 300 
11 500 225 375 262.5 262.5 150 300 
12 780 900 900 838.5 900 900 900 
13 780 455 709.8 604.5 604.5 390 695 
14 200 175 150 200 150 150 162 
15 150 175 100 150 100 100 132 
16 150 250 112.5 162.5 131.25 100 187 

 
Further, of CGC’s 88 main subjects, 43 made guesses that complied exactly (within 0.5) 
with one type’s guesses in 7-16 of the games (20 L1, 12 L2, 3 L3, and 8 Equilibrium). 
 
CGC’s other 45 subjects’ types are less apparent from their guesses; but L1, L2, L3, and 
Equilibrium are still the only ones that show up in econometric estimates.  
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Following CJ and CGCB, within a publicly announced structure CGC presented each 
game to subjects via a MouseLab interface that normally concealed the targets and limits 
but allowed subjects to look them up as often as desired, one at a time. 
 

 
 

CGC's Figure 6. Screen Shot of the MouseLab Display  
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Types as Models of Cognition, Search, and Decisions  
 
As in CGCB’s analysis, search is multidimensional, and a useful search analysis depends 
on using a pre-specified list of types to structure the space of possible searches and relate 
search to decisions. 
 
Like CGCB’s and CJ’s, CGC’s model of cognition, search, and decisions is based on a 
procedural/algorithmic view of decision-making, in which each subject follows one type in 
each game he plays, his type determines his search, and his type and search then 
determine his decision. 
 
Each type is naturally associated with algorithms that process information into decisions. 
 
The analysis uses these algorithms as models of cognition, deriving search implications 
under simple, empirically motivated assumptions about how cognition determines search. 
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Types’ minimal search implications in CGC’s games can be derived from their ideal 
guesses, those they would make if they had no limits. (With automatic rounding of 
guesses to fall within their limits, and quasiconcave payoffs, ideal guesses are all they 
need to know, and all that matters for minimal restrictions.) 
 
Evaluating a formula for a type’s ideal guess requires a series of operations, some of 
which are basic in that they logically precede any other operation. 
 
CGC (and CGCB) derived types’ search implications under the assumptions that subjects 
perform basic operations one at a time via adjacent look-ups, remember their results, and 
otherwise rely on repeated look-ups rather than memory. 
 
Basic operations are then represented by adjacent look-up pairs that can appear in either 
order, but cannot be separated by other look-ups.   
 
E.g. [aj+bj] (averaging the partner’s limits) is the only basic operation for L1's ideal guess, 
pi[aj+bj]/2. Such pairs are grouped within square brackets, as in {[aj, bj], pi} for L1. 
 
Other operations can appear in any order and their look-ups can be separated. They are 
represented by look-ups grouped within curly brackets or parentheses. 
 
It is easier to use this and other types’ derivations to interpret the search data by 
translating them from CGC’s notation into the box numbers MouseLab records: 
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SPEAK RODENT LIKE A NATIVE IN ONE EASY LESSON! 

    
 

 a p b 
You 
(i) 1 2 3 

S/he 
(j) 4 5 6 

 
MouseLab Box Numbers 

  
For example, Equilibrium’s ideal guess is piaj if pipj < 1 or pibj if pipj > 1, and its search 
implications are {[pi,pj],aj} ≡ {[2, 5], 4} if pipj < 1 or {[pi,pj],bj} ≡ {[2, 5], 6} if pipj > 1: in this 
design, Equilibrium’s search implications are theoretically simpler than all but L1’s.
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L1’s search implications 
(Note: Unlike in this picture, subjects could never open more than one box at a time.) 

 
 

L1’s ideal guess: pi[aj+bj]/2 = 750. L1’s search implications: {[aj, bj], pi} ≡ {[4, 6], 2}. 
 

(L1 does not need to look up its own limits because it can enter its ideal guess 
and rely on automatic adjustment to ensure that its adjusted guess is optimal. Thus this 
design even separates L1 from a Solipsistic type that only looks up its own parameters.) 
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L2’s search implications: first step 
(Note: Unlike in this picture, subjects could never open more than one box at a time.) 

 
 

L2’s model of its partner’s L1 guess: pi[aj+bj]/2 = 300. 
Search implications: {[ai,bi],pj} ≡ {[1,3],5}. 

 
(L2 needs to look up its own limits only to predict its partner’s L1 guess; like L1 it can enter 
its ideal guess and rely on automatic adjustment to ensure its adjusted guess is optimal.)  
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L2’s search implications: second step 
(Note: Unlike in this picture, subjects could never open more than one box at a time.) 

 
 

L2’s ideal guess: piR(aj,bj; pj[ai+bi]/2) = 450. 
L2’s search implications: {([ai,bi],pj),aj,bj,pi} ≡ {([1, 3], 5), 4, 6, 2}. 

 
(L2 needs to look up its partner’s limits aj = 4 and bj = 6 

to predict its partner’s L1 adjusted guess.) 
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Search data for representative R/TS and Baseline subjects, chosen for high compliance 
with their type’s guesses, not for their compliance with any theory of search,  suggest that:  
 
There is little difference between the look-up sequences of R/TS and Baseline subjects 
of a given type (assigned for R/TS, apparent for Baseline). 
 
The relevant sequences for a type (Table 4) are unusually dense in the sequences of 
subjects of that type (assigned or apparent), at least for the simpler types. 
 
We can quickly learn to read the algorithms many subjects are using directly from the 
data, to the point where their types can be reliably identified from search alone. 
 
The Equilibrium and D2 subjects are clearly stressed out, yet they usually “get it right”. 
 
For some subjects, search is an important check on decisions; e.g. Baseline subject 309, 
with 16 exact L2 guesses, misses some of L2’s relevant look-ups, avoiding deviations 
from L2 only by luck (even without feedback, s/he later has a Eureka! moment between 
games 5 and 6, and from then on complies perfectly; reminiscent of CJ’s subjects who 
never looked at the last period pie and so could not have been performing the backward 
induction needed to identify subgame-perfect equilibrium). 
 
Perhaps more instructive is Baseline subject 415 (not shown), who is plainly an L1 who 
fails Adjacency because he can comfortably remember three numbers at a time (CGC fn. 
43), and is therefore misclassified as a very noisy D1 in CGC’s search analysis: he is the 
only clear failure of CGC’s model of cognition and search among 71 Baseline subjects.    
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L1 {[4,6],2} 
L2 {([1,3],5),4,6,2} 
L3 {([4,6],2),1,3,5} 
D1 {(4,[5,1], (6,[5,3]),2} 
D2 {(1,[2,4]),(3,[2,6]),(4,[5,1],(6,[5,3]),5,2} 
Eq {[2,5],4} if pr. tar.<1,{[2,5],6} if > 1 



 33

 

 
L1 {[4,6],2} 
L2 {([1,3],5),4,6,2} 
L3 {([4,6],2),1,3,5} 
D1 {(4,[5,1], (6,[5,3]),2} 
D2 {(1,[2,4]),(3,[2,6]),(4,[5,1],(6,[5,3]),5,2} 
Eq {[2,5],4} if pr. tar.<1,{[2,5],6} if > 1 
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Two puzzles we hope the search analysis will help to resolve: 

What are Those Baseline “ Equilibrium”  Subjects Really Doing? 
 
Consider CGC’s eight Baseline subjects with near-Equilibrium fingerprints 
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Ordering the games by strategic structure as in Figure 4, with the 8 games with mixed 
targets (one > 1, one < 1) on the right, shows that these subjects’ deviations from 
equilibrium occur almost exclusively with mixed targets. 
 
Thus these subjects, whose exact compliance with Equilibrium guesses is off the scale by 
any normal standard, are actually following a rule that only mimics Equilibrium, and that 
only in games without mixed targets.  
 
Yet all the ways we teach people to identify equilibria (best-response dynamics, 
equilibrium checking, iterated dominance) work just as well with mixed targets. 
 
Whatever these subjects are doing, it’s something we haven’t thought of yet. 
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Equilibrium R/TS subjects’ compliance is equally high with and without mixed targets, so 
training eliminates whatever the Baseline subjects are doing: 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
Fingerprints of 10 UCSD Equilibrium R/TS Subjects

(only deviations from Eq.'s guesses are shown)
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Why are Lk the only non- Equilibrium types that exist? 
 
A careful analysis of CGC’s decision data, including specification tests not described here, 
reveals many subjects of types L1, L2, Equilibrium, or hybrids of L3 and/or Equilibrium, but 
no other types that do better than a random model of guesses for more than one subject. 
 
Why, out of the enormous number of possibilities do these rules predominate? 
  
Why, for instance, don't we get Dk rules, which are closer to what we teach?  
 
Answering this question may be the key to a deeper theory of bounded rationality.  

 
(i) Most R/TS subjects could reliably identify their type’s guesses, even Equilibrium or D2. 
(These average rates are for exact compliance, and so are quite high. Individual subjects’ 
compliance was usually bimodal within type, on very high and very low.)  
 

 R/TS Subjects’ Exact Compliance with Assigned Type’ s Guesses and Duration  
 L1 L2 L3 D1 D2 Eq.(N/A) 

Number of subjects 25 27 18 30 19 29 
% Compliance|Passed UT2  80.0 91.0 84.7 62.1 56.6 70.3 

% Failed UT2  0.0 0.0 0.0 3.2 5.0 19.4 
Duration (seconds) 45.4 54.9 79.2 77 120.5 96.3  
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(ii) But there are noticeable signs of differences in difficulty across types: 
 
(a) No one ever failed an Lk Understanding Test, while some failed the Dk and many 
failed the Equilibrium Understanding Test. 
 
(b) For those who passed, compliance was highest for Lk types, then Equilibrium, then Dk 
types. This suggests that Dk is even harder than Equilibrium, but could just be an artifact 
of the more stringent screening of the Equilibrium Test.   
 
(c) Among Lk and Dk types, compliance was higher for lower k as expected, except L1 
was lower than L2 or L3 compliance. (We suspect that this is because L1 best responds to 
a random L0 robot, which some subjects think they can outguess; while L2 and L3 best 
respond to a deterministic L1 or L2 robot.) 
 
(d) Remarkably, 7 of 19 R/TS D1 subjects passed the D1 Understanding Test, in which L2 
answers are wrong; and then “morphed” into L2s when making their guesses, significantly 
reducing their earnings. E.g. R/TS D1 subject 804 made 16 exact L2 (and so only 3 exact 
D1) guesses. (Recall that it is L2 that is D1’s cousin.) This kind of morphing, in this 
direction, is the only kind that occurred. We view this as pretty compelling evidence that 
Dk types are unnatural. 
 
Perhaps level-k thinking is the most workable effective model of others’ decisions. 
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Fingerprints of 7 R/TS Subjects who morphed  from D1 to L2
(only deviations from D1's guesses are shown)
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