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1. Introduction 

 Because human decisions are the result of cognitive processes, theories of human behavior 

rest at least implicitly on assumptions about cognition. Neuroeconomics reflects the belief that 

using evidence on neural correlates of cognition will lead us to better theories of decisions. 

 Gul and Pesendorfer (2005, henceforth “GP”) argue that, on the contrary, because economic 

theory was intended to explain only decisions it should only be tested by observing decisions. 

They view neuroeconomics as a radical departure from economics in part because neural data 

concern involuntary, unconscious processes. Such processes are not decisions, so “our” theories 

cannot be about them. Moreover, they argue, trying to extend our theories to explain neural data 

would require sacrificing important strengths of rational-choice analysis. 

 This paper attempts to narrow the gap between these views by discussing some recent 

experiments that elicit subjects’ initial responses to games with the goal of identifying the structure 

of their strategic thinking—subjects’ attempts to predict others’ decisions by taking their 

incentives into account.2 Strategic thinking can of course be studied in experiments that elicit 

decisions alone, via designs in which different models of cognition imply different decisions, as 

for example in Stahl and Wilson (1994, 1995) or “SW”; Nagel (1995); and Ho, Camerer, and 

Weigelt (1998) or “HCW”. But the experiments I discuss study strategic thinking more directly, by 

monitoring and analyzing subjects’ searches for hidden but freely accessible payoff information, as 

                                                 
1 This paper is based on joint work with Miguel Costa-Gomes, University of York, and Bruno Broseta, Red de 

Institutos Tecnológicos de la Comunidad Valenciana, particularly on Costa-Gomes and Crawford (2006, 2007). I 
thank Miguel Costa-Gomes for many helpful discussions and comments. The experiments and analysis on which 
this paper is based were funded in part by the U.S. National Science Foundation under grant SES- 0100072 and 
the U.K. Economic & Social Research Council under grant R/000/22/3796. 

2 Why study strategic thinking when with enough experience in a stationary environment, even amoebas—or human 
reinforcement learners, who need not even know that they are playing a game—usually converge to equilibrium? 
Many applications of game theory involve situations with no clear precedents. (Do you sell airline stocks when 
the market re-opens after 9/11, or buy them on the anticipation that others will overreact? How will Microsoft 
respond when your start-up enters one of “its” markets?) Comparative statics and design questions inherently 
involve new games with new equilibria, which players cannot reach by copying behavior from analogous games. 
In such situations subjects’ initial responses are often plainly “strategic” but nonetheless deviate from 
equilibrium. Even in settings in which players can be expected to converge to equilibrium, the structure of 
strategic thinking can influence the rate of convergence and equilibrium selection. 
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in Camerer, Johnson, Rymon, and Sen (1993) and Johnson, Camerer, Sen, and Rymon (2002), 

henceforth collectively “CJ”; Costa-Gomes, Crawford, and Broseta (2001), “CGCB”); and Costa-

Gomes and Crawford (2006, 2007), “CGC”. My discussion draws extensively on CGC (2007), 

which reports and analyzes the information search data from CGC (2006). 

 CJ’s, CGCB’s, and CGC’s analyses of search rest on explicit models of cognition and 

therefore raise some of the same issues that GP raise about neuroeconomics. But the clarity of the 

insights into behavior they yield is an important “proof of concept” that shows how much can be 

gained by expanding the domain of analysis beyond decisions. Further, unlike neural correlates of 

cognition, search is a voluntary, conscious process. Rational-choice analysis can therefore be used 

to describe it, eliminating one source of resistance to studying cognition. Although the analysis of 

search data sidesteps some important issues raised by studying neural data, I hope considering 

these analyses will bring us closer to agreement on how, and whether, to do neuroeconomics. 

 These analyses suggest a concrete answer to GP’s challenge, Why study cognition if our goal 

is only to understand and predict decisions? In CGC’s decision data, for instance, most subjects 

deviate systematically from equilibrium. To the extent that their non-equilibrium decisions can be 

distinguished from randomness, which is considerable, they are almost entirely the decisions of 

rational, self-interested players who understand the game but base their beliefs on simplified 

models of others’ decisions. In other words, subjects’ deviations from equilibrium have mainly to 

do with how they think about others, not preferences or irrationality. (This conclusion is consistent 

with SW’s, Nagel’s, HCW’s, and CGCB’s results, but their evidence is less clear.) 

 One could still choose to use subjects' decisions alone to model their behavior via revealed 

preference, as in GP’s proposal. But in games, given the lack of a rational-choice model of non-

equilibrium beliefs, such an analysis would have to impose equilibrium. Such a reduced-form 

approach would not predict reliably well beyond sample: In different games, subjects’ non-

equilibrium models of others would yield different patterns of deviation from equilibrium; and 

only by coincidence would they be well described by equilibrium with subjects’ previously 

inferred preferences. Thus, no empirically serious model of initial responses to games can ignore 

cognition. And as I will show, using a model of cognition to analyze search allows more precise 

identification of subjects’ decision rules, sometimes even directly revealing the algorithms subjects 

use to process payoff information into decisions and distinguishing intended decisions from errors. 
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 The rest of the paper is organized as follows. Section 2 begins by reviewing CJ’s and 

CGCB’s designs and results, with particular attention to design desiderata for studying cognition 

via search and the associated modeling issues. Section 3 reviews CGC’s (2006) use of decision 

data to identify subjects’ decision rules and the evidence that the main source of their deviations 

from equilibrium is cognitive, not preference-based. Section 4 introduces CGCB’s and CGC’s 

(2006, 2007) model of cognition, search, and decisions; discusses specification issues; and uses 

CGC’s search data to illustrate the model’s use in interpreting CGC’s search data. Section 5 

highlights questions raised by CGC’s (2006) analysis of decisions that search analysis might 

answer, but seem likely to resist analysis via decisions alone. Section 6 outlines an explanation of 

the assumptions that underlie CGCB’s and CGC’s model of cognition and search, which views 

search strategies as rational decisions under plausible assumptions about the benefits and costs of 

search and constraints on working memory.3 Section 7 is the conclusion. Throughout the paper I 

assume that subjects are rational, risk-neutral decision-makers; but when they seem important, as 

indicated below, I allow “social” preferences that reflect altruism, spite, fairness, or reciprocity. 

 

2. Early Experiments that Studied Cognition in Games by Monitoring Information Search 

 In this section I review CJ’s and CGCB’s experimental designs and results. Their and CGC’s 

experiments randomly and anonymously paired subjects to play series of different but related two-

person games, with different partners each play and no feedback between plays. The goal was to 

suppress learning and repeated-game effects in order to elicit subjects’ responses, game by game, 

to each as if played in isolation, and so to reveal strategic thinking as clearly as possible.4

 The structure of the games was publicly announced except for hidden, varying payoff 

parameters, to which subjects were given free access, game by game, one at a time, before making 

their decisions.5 With low search costs, free access made the entire structure effectively public 

knowledge, allowing the results to be used to test theories of behavior in complete-information 

                                                 
3 The proposed explanation differs greatly from classical search theory in purpose, but only slightly in methods. 
4 “Eureka!” learning remains possible, but it can be tested for and seems to be rare. Initial responses yield insights 

into cognition that also help us think about how to model learning from experience, but that is another story. 
5 Subjects were not allowed to write, and the frequencies with which they looked up the parameters made clear that 

they did not memorize them. Subjects were taught the mechanics of looking up targets and limits and entering 
guesses, but not information-search strategies. Access was via a MouseLab interface that automatically recorded 
information searches along with decisions. MouseLab is an automated way to track search as in eye-movement 
studies of individual decisions (Payne, Bettman, and  Johnson (1993), http://www.cebiz.org/mouselab.htm). 
Wang, Spezio, and Camerer (2006) illustrate the use of a modern, more powerful eye-tracking method. 
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versions of the games.6 Varying the payoff parameters makes it impossible for subjects to 

remember the current game’s parameters from previous plays, and so gives them incentives to 

search for the information their decision rules require. It also allows stronger separation of the 

decisions implied by equilibrium and leading alternative decision rules than in designs such as 

Nagel’s or HCW’s, in which subjects play the same game over and over again. 

2a. Camerer, Johnson, Rymon, and Sen’s alternating-offers bargaining experiments 

 CJ (1993, 2002) pioneered the use of search for hidden payoff parameters to study cognition 

in games, eliciting subjects’ initial responses to series of three-period alternating-offers bargaining 

games.7 Previous experiments yielded large, systematic deviations from the subgame-perfect 

equilibrium offer and acceptance decisions when players have pecuniary preferences, like those 

observed in ultimatum experiments. The deviations were attributed to cognitive limitations 

preventing subjects from doing the required backward induction, or believing that their partners 

would; to subjects having "social" preferences that modify their pecuniary payoffs; or both. Most 

researchers now agree that both factors are important, but in the early 1990s this was less clear. 

 CJ addressed the cognitive aspect of this question more directly by creating a design to study 

cognition via search and by deriving cognitive implications of alternative models of behavior and 

using them to analyze the search data. Within a publicly announced structure, they presented each 

bargaining game to subjects in extensive form as in Figure 1, as a sequence of three pies and the 

associated offer and acceptance decisions. Discounting was simulated by shrinking the pies over 

time, from roughly $5.00 in round 1 to roughly $2.50 in round 2 and $1.25 in round 3; but the pies 

were varied slightly from game to game, to preserve subjects’ incentives to search. 

 The pies were normally hidden in boxes as for rounds 2 and 3 in Figure 1, but subjects were 

allowed to look them up as often as desired, one at a time. In Figure 1 the subject has opened the 

box to look up the $5.00 round-1 pie.8 Subjects’ knowledge of the structure of the games and their 

                                                 
6 A partial exception is that CJ’s experiments evoked nonpecuniary, "social" preferences, and these and subjects’ 

risk aversion are uncontrolled and privately known. Privately known social preferences are easily accommodated 
in the analysis of CJ’s results, and risk aversion was unlikely to have been significant. 

7 CJ’s (1993) and CJ’s (2002) designs differed in some ways, for example framing in losses versus in gains, that are 
not important for my purposes and are not discussed here.  At roughly the same time in the early 1990s, CJ (2004) 
did a MouseLab study of forward induction in extensive-form games. Algaze [Croson] (1990) reported a very brief 
study of search for hidden payoff information in matrix games. Neither is discussed here.  

8 CJ used a “rollover” option in MouseLab, in which subjects could open the box that concealed a pie by moving the 
cursor into it, revealing the pie for as long as the cursor was in the box. Subjects could also use the interface to 
look up their roles in each round; but these were known and those look-ups were not reported or analyzed. 
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free access to the pies allowed them to evaluate their own and their partners’ pecuniary payoffs for 

any combination of offer and acceptance decisions. 

 If free access to the pies induces public knowledge of pecuniary payoffs, and if it is also 

public knowledge that subjects maximize their own expected pecuniary payoffs, then the results 

can be used to test theories of behavior in complete-information versions of the game, which has a 

unique subgame-perfect equilibrium whose offer and acceptance decisions are easily computed by 

backward induction. Even if players have privately observed social preferences, the incomplete-

information version of the game has a generically unique sequential equilibrium whose strategies 

are easily computed by backward induction. In each case, the subgame-perfect or sequential 

equilibrium initial offer depends on both the second- and third-round pies, so that the search 

requirements of equilibrium are mostly independent of preferences.9 From now on I use “subgame-

perfect equilibrium” to subsume pecuniary payoff-maximization.  

 In CJ's baseline treatment, in which subjects untrained except in the mechanics were 

rewarded according to their payoffs playing the games against each other, subjects’ decisions were 

far from the subgame-perfect equilibrium, replicating the results of previous studies and suggesting 

that requiring subjects to look up the pies did not significantly affect their decisions. 

 CJ took the analysis a step further by using a model of cognition and search to analyze the 

search data. They first noted that 10% of their baseline subjects never looked at the third-round pie 

and 19% never looked at the second-round pie. Thus, even if those subjects' decisions conform to 

equilibrium (given some specification of preferences, with or without a social component), they 

cannot possibly be making equilibrium decisions for the reasons the theory assumes. In a non-

magical world their compliance with equilibrium cannot be expected to persist beyond sample. 

 This observation motivates a basic general restriction on how cognition drives search, which 

anticipating CGCB’s term for it I call “Occurrence”: If a subject’s decision rule depends on a piece 

of hidden payoff information, then that piece must appear in her/his look-up sequence.  

Occurrence, as a cognitive restriction, goes against GP’s proposal, but it is still uncontroversial 

enough to be widely accepted by theorists. In this case at least, the epistemic foundations of 

equilibrium have implications for the interpretation of decisions it seems hard to justify ignoring. 

                                                 
9 Only “mostly” because with only pecuniary preferences, the first-round pie, as long as it is large enough, does not 

affect the equilibrium initial offer. With social preferences the first-round pie may be relevant because it may 
influence the responder's acceptance decision. 
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 If Occurrence were the whole story, there would be little to gain from studying cognition via 

search. Because CJ’s subjects who never looked at the second- or third-round pies tended to make 

decisions far from subgame-perfect equilibrium, there is little risk of misinterpreting them; even 

so, Occurrence helps by ruling out explanations in which subjects’ decisions are in sequential 

equilibrium for extreme distributions of social preferences. Inferences based on Occurrence are 

sometimes useful in CGCB’s and, as we will see, CGC’s analyses as well, but the full power of 

monitoring search depends on analyzing the order, and perhaps the duration, of subjects’ look-ups.    

 CJ’s analysis of order and duration is based on the argument that in their design the backward 

induction that is the easiest way to compute sequential or subgame-perfect equilibrium decisions 

has a characteristic search pattern, in which subjects first look up the third-round pie, then the 

second-round pie (possibly re-checking the third), and so on, with most transitions from adjacent 

later- to earlier-round pies. Their argument rests on the empirical generalization that most subjects 

use the interface as a computational aid, making the comparisons or other operations on which 

their decisions are based via adjacent look-ups and relying on repeated look-ups rather than 

memory. This observation motivates another basic restriction, which again anticipating CGCB’s 

term I call “Adjacency”: The hidden parameters associated with the simplest of the operations on 

which a subject’s decision rule depends will appear as adjacent look-ups in his look-up sequence.10   

 Adjacency, unlike Occurrence, requires assumptions that not all theorists find compelling. It 

is theoretically possible for a subject to scan the pies in any order, memorize them, and then “go 

into his brain” to figure out what to do, in which case the order and duration of his look-ups will 

reveal nothing about cognition. (Here, brain imaging has a potential advantage over monitoring 

search because involuntary correlates of such a subject's thinking may still be observable.) 

 Fortunately, subjects’ searches in designs like CJ’s, CGCB’s, and CGC’s exhibit strong 

regularities that make Adjacency a reasonable working hypothesis. When challenged, CJ defended 

their Adjacency-based characterization of backward-induction search by running a “robot” 

treatment with the same games as their baseline, in which subjects were told that they were playing 

against a computer that simulated a rational, self-interested player. This was followed after four 

periods by a “robot/trained subjects” treatment in which the same subjects received training in 

                                                 
10 This informal definition, like the one for Occurrence, is intentionally vague regarding how often look-ups or 

operations appear to accommodate variations in CJ’s, CGCB’s and CGC’s use of Occurrence and Adjacency. The 
notions are made more precise in CGCB’s analysis and, as explained below, CGC’s. Note that both are general 
restrictions on how cognition drives search, which can be applied for a variety of games and decision rules.  
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backward induction (but not search) and continued to play against robots as before. The latter 

subjects’ search patterns were close to the backward-induction pattern (CJ 2002, Figure 6). 

Although the shift in search was small prior to training, these results provide support for CJ’s 

characterization, Adjacency, and of course Occurrence. As illustrated below, further (and 

sometimes stronger) support for Adjacency is provided by CGCB’s trained subjects, CGC’s 

robot/trained subjects with high compliance with their assigned decision rule's guesses (Table 2), 

and CGC’s baseline subjects with high compliance with their apparent rule's guesses (Table 3). 

 CJ’s robot subjects’ offer and acceptance decisions were shifted away from the baseline 

patterns toward subgame-perfect equilibrium, but were still far from it. Their robot/trained 

subjects’ decisions were approximately in subgame-perfect equilibrium (CJ (2002, Table II)). 

These shifts can be attributed to the robot treatment’s “turning off” social preferences, assuming 

subjects don’t think of experimenters or their funding agencies as “people”; the robot treatment’s 

eliminating strategic uncertainty; and/or cognition. CJ suggest that the deviations from equilibrium 

in the baseline are due to a combination of social preferences and cognition, with both important. 

 Returning to cognition and search, CJ’s baseline subjects’ searches were almost the opposite 

of the searches of robot/trained subjects and CJ’s characterization of backward induction search: 

baseline subjects spent 60-75% of the time looking up the first-round pie and only 20-30% looking 

up the second-round pie and 5-10% looking up the third-round pie, with most transitions forward, 

from earlier to later rounds. Importantly, subjects who looked up the second- and third-round pies 

more often, or had more backward transitions, also had a weak tendency to make, or accept, offers 

closer to the subgame-perfect equilibrium (CJ (2002, Figures 4-5)). Thus, CJ’s baseline subjects’ 

deviations from backward induction search were correlated with their deviations from subgame-

perfect equilibrium decisions, in the direction that an epistemic, procedural view of subjects’ 

decision-making would suggest. Although the correlation is weak, this result is an exciting first 

indication that subjects’ search patterns might reveal something about their strategic thinking. 

2b. Costa-Gomes, Crawford, and Broseta’s matrix-game experiments 

 CGCB adapted CJ’s methods, building on SW’s (1994, 1995) designs, to study cognition via 

search in a series of 18 2×2, 2×3, or 2×4 matrix games with unique pure-strategy equilibria, some 

of which can be identified by iterated dominance and some without pure-strategy dominance. The 

games were designed to turn off social preferences, and CGCB’s results show little evidence of 

them. I therefore assume that subjects maximized their own expected pecuniary payoffs. 
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 Within a publicly announced structure, CGCB presented each game to subjects as a matrix 

with players' payoffs spatially separated to ease cognition and clarify inferences from search. The 

payoffs were hidden but subjects were allowed to look them up as often as desired. Instead of the 

rollover option CJ used, CGCB used a MouseLab “click” option, in which subjects could open a 

box by moving the cursor into it and left-clicking the mouse.11 In the 2×2 game in Figure 2 the 

subject, framed as the row player, has opened the box with his own payoff, 42, when he chooses 

decision # and his partner chooses @. If free access induces public knowledge of the payoffs and it 

is public knowledge that subjects maximize them, then the structure is public knowledge and the 

results can be used to test theories of behavior in complete-information versions of the games.  

 Although there are close connections between epistemic analyses of equilibrium decisions in 

extensive- and normal-form games, their cognitive foundations are very different. The different 

presentation of payoff information in CGCB’s matrix games allow them to explore aspects of 

strategic thinking that do not come into play in CJ’s bargaining games. Moreover, although 

CGCB’s games have small strategy spaces, their sequence of 18 games creates a large space of 

possible decision histories, which allows their design to separate the implications of leading 

normal-form theories of decisions more strongly than in previous designs in which subjects play 

series of different matrix games with small strategy spaces as in SW (1994, 1995), or in which they 

repeatedly play the same normal-form game with large strategy spaces as in Nagel and HCW. 

 Finally, and most importantly here, the 8-16 hidden payoffs in CGCB’s design create a large 

space of possible information searches, which allows the design to separate leading theories’ 

implications for search as well as decisions. In CJ’s design, a subject’s searches can vary in only 

one important dimension: backward or forward in the pies. Measuring a subject’s searches in this 

dimension can convey a limited amount of information about his strategic thinking—though as we 

have seen, this information can be quite revealing. In CGCB’s games, by contrast, a subject’s 

searches can vary in three important dimensions: up-down (or not) in his own payoffs, left-right 

(or not) in his partner’s payoffs, and the frequency of transitions from his own to his partner’s 

payoffs. With the subject framed as the row player in Figure 2, it is clear that, assuming 

Adjacency, the first of these dimensions is naturally associated with decision-theoretic rationality, 

the second with using others’ incentives to predict their decisions, and the third with interpersonal 

payoff comparisons. It would be difficult to imagine an empirically successful theory of initial 

                                                 
11 Before he could continue, a subject had to close the box by right-clicking, which could be done from anywhere. 
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responses to this kind of game in which those three traits were not independently variable and 

important. Only a design with a search space as rich as CGCB’s can separate the implications of 

alternative theories for both search and decisions strongly enough to identify their relationships. 

 In addition to a baseline treatment that paired subjects to play the 18 games with other 

subjects, CGCB conducted a trained subjects treatment, identical to the baseline except that each 

subject was trained and rewarded for identifying equilibrium decisions. This treatment confirms 

that subjects trained and motivated to find equilibrium guesses could do so; and provides data on 

Equilibrium search behavior that are helpful in evaluating the model of cognition and search.    

 CGCB’s games have unique equilibria that are easily identified by direct checking, best-

response dynamics (which always converges in their games), or (in most of their games) iterated 

pure-strategy dominance. Yet, as in previous studies of initial responses to matrix games, CGCB 

found systematic patterns of deviation from equilibrium, with high equilibrium compliance in 

games solvable by one or two rounds of iterated dominance but much lower compliance in games 

solvable by three rounds or the circular logic of equilibrium without dominance (CGCB, Table II). 

These patterns are not well explained by noisy generalizations of equilibrium such as McKelvey 

and Palfrey’s (1995) quantal response equilibrium. CGCB explained them via a structural non-

equilibrium model of initial responses in the spirit of SW’s, Nagel’s, and HCW’s models, in which 

each subject's decisions are determined by one of a small set of decision rules or types, which 

determines his decisions, with error, in each game. The types are general principles of strategic 

decision-making, selected for behavioral plausibility and theoretical interest. 

 The leading types in CGCB’s analysis include L1 (for Level 1, first named by SW), called 

Naive in CGCB and L1 here from now on, which best responds to a uniform random L0 

"anchoring type"; L2, which best responds to L1; Equilibrium, which makes its equilibrium 

decision; D1 (Dominance 1), which does one round of deletion of dominated decisions and then 

best responds to a uniform prior over the other's remaining decisions; D2, which does two rounds 

of iterated deletion and then best responds to a uniform prior over the other's remaining decisions; 

and Sophisticated, which best responds to the probabilities of other's decisions, as estimated from 

subjects' observed frequencies, included to test whether subjects have prior understanding of 
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others' decisions that transcends simple rules.12 Because CGCB gave first priority to separating 

strategic from nonstrategic types, L1’s decisions were perfectly confounded with those of a 

maximax type CGCB called Optimistic. CGCB’s econometric analysis of decisions alone 

estimated high frequencies of L1, L2, and D1. Because those types mimic equilibrium in simple 

games but deviate systematically in more complex games, this estimated type distribution allows 

the model to explain the aggregate relationship between complexity and equilibrium compliance. 

 Turning to CGCB’s analysis of search, the main difficulty was imposing enough structure on 

the enormous spaces of possible decision and search histories to describe subjects’ behavior in a 

comprehensible way. Although CJ identified a correlation (and a “right” direction for it) between 

subjects’ decision and search deviations from subgame-perfect equilibrium in their alternating-

offers bargaining games, their analysis does not show how to define or identify such a relationship 

in the higher-dimensional spaces of possible decisions and searches created by CGCB’s design. 

 CGCB addressed this issue by using the types as models of cognition and search as well as 

decisions. They took an explicitly procedural view of decision-making, in which a subject's type 

and the associated cognitive process determine his search, and his type and search then determine 

his decision, game by game.13 They characterized the link between cognition and search via the 

Occurrence and Adjacency restrictions described above, which generalize the ideas behind CJ’s 

characterization of backward-induction search to a much wider class of games, patterns of hidden 

payoff information, and types. With these restrictions on cognition and search, the types provide a 

kind of basis for the spaces of possible decision and search histories, imposing enough structure to 

make it meaningful to ask whether subjects’ decisions and searches are related in a coherent way. 

 Incorporating search into the econometric analysis yields a somewhat different view of 

subjects’ deviations from equilibrium than previous analyses of decisions. It shifts CGCB’s 

estimated type distribution toward L1 at the expense of Optimistic and D1, leaving L1 and L2 as 

the only empirically important types. Part of this shift occurs because L1’s searches, unlike L1’s 

decisions, are clearly separated from Optimistic’s, and L1’s search implications explain more of 

                                                 
12 Lk's and Dk-1's decisions both survive k rounds of iterated elimination of dominated decisions and so in two-

person games are k-rationalizable (Bernheim (1984)). Although Dk-1 types are closer to how theorists analyze 
games, Lk types seem more natural and predominate in applications.  

13 Because a type's search implications depend not only on what decisions it specifies, but why, something like a 
types-based model seems necessary here. In CJ (1993) types are implicit in the discussion and limited to two, 
which might be called “subgame-perfect equilibrium” and “other”. CJ (2002) adapted CGCB’s analysis by 
defining extensive-form “types” modeled after CGCB’s and SW’s normal-form types, using them to construct a 
more structured data analysis than CJ’s (1993). 
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the variation in subjects’ searches and decisions than Optimistic’s, which are too unrestrictive to be 

useful. Another part of the shift occurs because L1’s search implications explain more of the 

variation in subjects’ searches and decisions than D1’s, which are much more restrictive than 

Optimistic’s but too weakly correlated with subjects’ observed decisions. D1 loses frequency to L2 

as well, even though their decisions are only weakly separated in CGCB’s design, because L2’s 

search implications explain more of the variation in subjects’ searches and decisions. 

 Overall, CGCB’s analysis of decisions and search gives a strikingly simple view of behavior, 

with L1 and L2 making up 90% of the population. This type distribution and the clear relationships 

between subjects’ cognition as revealed by search and their decisions support my claim that their 

deviations from equilibrium in these games are due mainly to how they think about others. 

 

3. Costa-Gomes and Crawford’s Two-Person Guessing Game Experiments 

 CGC (2006, 2007) adapted CGCB’s methods to elicit subjects’ initial responses to a series of 

16 dominance-solvable two-person guessing games, cousins of Nagel’s and HCW’s n-person 

guessing games. In this section I review CGC’s design and their results for decisions, which 

provide even stronger evidence that the deviations from equilibrium in initial responses to games 

are due mainly to strategic thinking. In Section 4 I review CGC’s analysis of cognition and search.   

3a. CGC’s design 

 In CGC's games, newly designed for the purpose of studying cognition via decisions and 

search, two players make simultaneous guesses. Each player has his own lower and upper limit, 

both strictly positive, as in some of HCW’s games, to ensure finite dominance-solvability. Unlike 

in previous designs, however, players are not required to guess between their limits: To enhance 

the separation of types via search, guesses outside the limits are automatically adjusted up to the 

lower limit or down to the upper limit as necessary. Thus, the only thing about a guess that affects 

the outcome is the adjusted guess it leads to. Each player also has his own target, and (unlike in 

Nagel’s and HCW’s “winner-take-all” games) his payoff is higher, the closer his adjusted guess is 

to his target times his partner’s adjusted guess. In the most important departure from previous 

guessing designs, the targets and limits vary independently across players and games, with the 

targets either both less than one, both greater than one, or (unlike in previous designs) mixed.14 

The resulting games are asymmetric and dominance-solvable in 3 to 52 rounds, with essentially 

                                                 
14 In previous designs the targets and limits were the same for both players, and varied only across treatments. 
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unique equilibria determined (but not always directly) by players’ lower limits when the product of 

the targets is less than one or their upper limits when the product is greater than one. 

 From the point of view of studying decisions, CGC’s design combines the main strength of 

SW’s and CGCB’s designs, with subjects playing sequences of different but related games, and the 

main strength of Nagel’s and HCW’s designs, games with very large strategy spaces. This 

combination greatly enhances the separation of equilibrium and other leading types’ decisions. 

 CGC’s games explore different aspects of strategic thinking than CJ's, CGCB's, or Nagel’s 

and HCW’s games. Of particular note is the subtle way in which the location of the equilibrium is 

determined by the product of players’ targets, which adds greatly to the power of the design to 

distinguish equilibrium from boundedly rational strategic thinking. The only important difference 

between some of CGC’s games is whether the product of targets is slightly greater or slightly less 

than one. Equilibrium responds very strongly to this difference, but low-level Lk or Dk types, 

whose guesses vary continuously with the targets, respond much less. Also noteworthy is the 

strong separation of Lk’s and Dk-1’s decisions, which are perfectly confounded in most of Nagel’s 

and HCW’s treatments and only weakly separated in their other treatments and in CGCB’s design. 

 In addition to a baseline treatment that paired subjects to play the 16 games with other 

subjects, CGC conducted six different robot/trained subjects treatments, identical to the baseline 

except that each subject was trained and rewarded as a type: L1, L2, L3, D1, D2, or Equilibrium. 

These treatments assess the types’ cognitive demands, confirming for instance that subjects trained 

and motivated to make equilibrium guesses could do so; and provide data on the search behavior 

of subjects of known types that are helpful in evaluating the model of cognition and search.    

 In all treatments, within a publicly announced structure, CGC presented each game to 

subjects as an array of targets and limits, with these payoff parameters hidden but subjects allowed 

to look them up as often as desired, one at a time, using MouseLab’s click option as in CGCB. In 

Figure 3 the subject has opened the box to look up his own (“Your”) lower limit, 100. 

3b. CGC’s analysis of decisions 

 The strong separation of types’ implications for guesses (CGC 2006, Figure 5) and the clarity 

of CGC’s baseline subjects’ responses allow many of their types to be confidently identified from 

guesses alone. Of 88 subjects, 43 have clear “fingerprints” in that they made guesses that complied 

exactly (within 0.5) with one type's guesses in 7-16 of the games (20 L1, 12 L2, 3 L3, and 8 
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Equilibrium).15 Figure 4 (CGC (2006, Figure 2)) shows the fingerprints of the 12 whose apparent 

types were L2. Of their 192 (= 12×16) guesses, 138 (72%) were exact, which means they tracked 

the complex pattern of the games’ L2 guesses with a remarkable degree of accuracy. I stress that 

these baseline subjects, unlike the robot/trained subjects, were taught nothing about strategic 

thinking: The models of others’ guesses implicit in their apparent types were self-generated.   

 Given how strongly CGC's design separates types’ guesses, and that guesses could take 200-

800 different rounded values, these 43 subjects’ compliance is far higher than could occur by 

chance. Further, because the types specify precise, well-separated guess sequences in a very large 

space of possibilities, their compliance rules out alternative interpretations of their guesses.16 In 

particular, because the types build in risk-neutral, self-interested rationality and perfect models of 

the game, the deviations from equilibrium of the 35 whose apparent types are L1, L2, or L3 can be 

attributed to non-equilibrium beliefs, not irrationality, risk aversion, altruism, spite, or confusion.  

 CGC’s other 45 subjects’ types are less apparent from their guesses; but L1, L2, and hybrids 

of L3 and/or Equilibrium are still the only types that show up in econometric estimates.17 The fact 

that most subjects follow low-level Lk types, which mimic equilibrium in games that are 

dominance-solvable in small numbers of rounds but deviate systematically in some more complex 

games, also explains the inverse relationship between strategic complexity and equilibrium 

compliance observed in CGCB and previous experiments (CGCB, Table II).    

 CGC’s results for decisions provide very strong evidence that subjects’ deviations from 

equilibrium in initial responses to games are due mainly to non-equilibrium strategic thinking, not 

preferences or irrationality. As noted in the Introduction, one could still use subjects’ guesses alone 

                                                 
15 11 of these subjects were from an “open boxes” treatment, not discussed here, identical to the baseline but with 

the parameters continually visible. The results of this treatment (and analogous treatments in CJ and CGCB) 
confirm that making subjects look up the parameters does not significantly affect their decisions, so that the data 
can be pooled with baseline decision data, as here. CGC’s open boxes subjects have numbers that begin with a 5.      

16 By contrast, in SW's or CGCB's matrix-game designs, even a perfect fit does not distinguish a subject's best-fitting 
type from nearby omitted types; and in Nagel's and HCW's guessing-game designs, with large strategy spaces but 
with each subject playing only one game repeatedly, the ambiguity is worse.  

17 Nagel’s results are often viewed as evidence that subjects perform finitely iterated dominance, as in Dk-1. 
However, Lk's and Dk-1's decisions are perfectly confounded in Nagel’s main treatments and weakly separated in 
Nagel’s and HCW’s other treatments and in CGCB’s design. CGC's clear separation of Lk from Dk-1 allows them 
to conclude that Dk types don't exist in significant numbers, at least in this setting, and thus that subjects respect 
low levels of iterated dominance as a by-product of following Lk types, not because they explicitly perform it. 
Sophisticated, which is clearly separated from Equilbrium here, also doesn't exist in significant numbers. CGC’s 
(2006, Section II.D) specification test rules out significant numbers of other types, omitted from the specification.  
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to model their behavior via revealed preference, but such a model would misattribute the cause of 

the deviations, and so would predict well beyond sample only by coincidence.  

 

4. Costa-Gomes and Crawford’s Analysis of Cognition and Search  

 CGC’s (2006, Section II.E; 2007) model of cognition and search refines CGCB’s model, 

adapting their Occurrence and Adjacency restrictions to give a tractable characterization of each 

type’s search requirements. With regard to search, CGC’s design combines the strengths of CJ’s 

presentation of games as functions of a small number of hidden parameters within an intuitive 

common structure, which allows subjects to focus on predicting others' responses without getting 

lost in the details of the structure; and CGCB’s high-dimensional search spaces, which make 

search more informative and allow greater separation via search. CGC’s design strongly and 

independently separates the implications of leading types for search and decisions, which makes it 

easier to identify relationships between them and multiplies the power of the design. Finally, it 

makes each type’s implications search independent of the game, which simplifies the analysis.18      

 This section begins with a discussion of the issues that arise in specifying a model of 

cognition and search. It then presents CGC’s leading types’ search requirements and illustrates 

how they are derived. Finally, it presents sample search data for some of CGC’s robot/trained and 

baseline subjects. As these data will be used to show, CGC’s design and characterization of types’ 

search implications make it possible to read the algorithms a large minority of subjects used to 

choose their guesses directly from their search sequences. Other subjects’ cognition is not apparent 

from their searches, but CGC’s (2006) measures of their compliance with leading types’ search 

implications have considerable discriminatory power in the econometric analysis, often allowing 

those subjects’ types to be reliably estimated from searches alone, without regard to guesses. 

4a. Specification issues  

 Studying cognition via search requires a model of how cognition determines subjects' look-

up sequences. Previous papers have taken quite different positions on this issue. CJ’s analysis gave 

roughly equal weight to look-up durations and total numbers of look-ups (“acquisitions”) of each 

pie and to the numbers of transitions between look-ups of adjacent pies. Rubinstein’s (2005) 

analysis considered only durations. Gabaix et al.’s (2006) focused on total numbers of look-ups 

                                                 
18 By contrast, the lack of a simple common structure in CGCB's design makes rules' search implications vary from 

game to game in ways so complex you need a "codebook" to identify them. 
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rather than durations, but also considered some aspects of the order of look-ups. CGCB’s and 

CGC’s analyses focused instead on which look-ups subjects make, in the sense of Occurrence, and 

on the order of look-ups in the sense of Adjacency, relegating durations to a secondary role.19

 On another dimension, CJ's and Rubinstein's analyses and most of Gabaix et al.’s aggregated 

search data across subjects and over time, while CGCB and CGC took the position that cognition 

and search are so heterogeneous that it is essential to study them at the individual level. 

 CGCB’s and CGC’s focus on Occurrence and Adjacency follows naturally from a procedural 

view of decision-making and the empirical tendency, now confirmed by a large body of MouseLab 

data, of most subjects to perform the operations on hidden parameters on which their decisions are 

based via adjacent look-ups, relying on repeated look-ups rather than memory. In this view, 

duration is unimportant per se because the information content of a look-up is independent of its 

length as long as the length suffices for cognition; look-ups too short for comprehension, less than 

0.18 seconds, were filtered out in all the analyses discussed here. Although duration might still be 

correlated with time spent thinking about a particular parameter, which might be important in a 

more refined model of cognition, search, and decisions, a procedural view does not suggest such a 

correlation, and CGCB’s and CGC’s subjects sometimes left boxes open for long periods while 

staring out the window, etc., which would weaken any such correlations.20 Total numbers of look-

ups are important, but are captured indirectly through CGC’s notion of search compliance. 

4b. CGC's model of cognition and search 

 CGC's model of cognition and search, like CGCB’s, is based on a procedural view of 

decision-making. Each leading type implies a generically unique, pure adjusted guess in each 

game, which maximizes its expected payoff given the beliefs regarding others’ guesses implicit in 

the type. (The leading types all specify best responses to some beliefs.) Each type is thereby 

naturally associated with algorithms that process hidden payoff information into decisions, which 

CGC use as models of cognition. Given the need to go beyond Occurrence (Section 2a) and the 

lack of a well-developed theory of cognition and search, the goal was to add enough restrictions to 

extract the signal from subjects’ look-up sequences but not so many that they distort its meaning. 

CGC derived types’ minimal search implications under conservative assumptions, based on 

Occurrence and Adjacency, about how cognition determines search (CGC (2006, Section I.B)). 
                                                 
19 CGCB and CGC made no claim that durations are irrelevant, just that durations don't deserve priority. CGCB 

(Table IV) present some results on durations under the heading of "gaze times". 
20 Spezio, Wang, and Camerer’s (2006) eye-tracking methods have an advantage in avoiding this ambiguity.   
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 The leading role in these derivations is played by a type’s ideal guesses, those that would be 

optimal given the type’s beliefs, ignoring its limits. Given the quasiconcavity of CGC’s payoff 

functions, a subject can enter his ideal guess and know that his adjusted guess will be optimal 

without checking his own limits. Thus, a type’s ideal guess not only determines its adjusted guess 

and the resulting outcome, it also determines the type’s minimal search implications. 

 The left-hand side of Table 1 (CGC (2006, Table 4)) lists the formulas for the leading types' 

ideal guesses in CGC's games, which are easily derived as in CGC (2006, Section I.B), using 

CGC’s notation for the limits and targets, ai for the player’s own lower limit, bi for the player’s 

own upper limit, and pi for the player’s own lower target, with analogous notation using 

superscript j’s for the player’s partner’s limits and target. The right-hand side of Table 1 lists the 

leading types' minimal search implications expressed as sequences of parameter look-ups, first in 

CGC’s notation and then in terms of the associated box numbers (1 for ai, 2 for pi, 3 for bi, 4 for aj, 

5 for pj, 6 for bj) in which MouseLab records subjects’ look-up sequences in our design. Table 1 

shows look-ups in the order that seems most natural; but that order is not required in the analysis.21

 The search implications are derived as follows. Evaluating a formula for a type's ideal guess 

requires a series of arithmetic operations, some of which—the innermost operations, whose 

parameters are in square brackets in the right-hand side of Table 1, like [aj,bj] for L1—are basic in 

that they logically precede other operations. Like CGCB, CGC assumed that subjects perform 

basic operations via adjacent look-ups, remembering their results, and otherwise relying on 

repeated look-ups rather than memory. Basic operations are then represented by adjacent look-ups 

that can appear in either order but cannot be separated by other look-ups. The look-ups of other 

operations can appear in any order and are conservatively allowed to be separated. In Table 1 such 

operations are represented by look-ups within curly brackets or parentheses.22

                                                 
21 In CGC’s design, unlike in CGCB's, Equilibrium's minimal search implications are simpler than any boundedly 

rational type's implications. This makes it harder to explain deviations from equilibrium by cognitive complexity. 
But we will see that high-compliance Equilibrium robot/trained subjects search more than high-compliance 
robot/trained subjects of other types, so CGC’s Equilibrium search implications may not reflect its complexity. 

22 L1’s search implications illustrate an important advantage of the automatic adjustment feature of CGC’s design. 
L1’s ideal guess depends on its own target but only its partner’s limits, while L2’s and D1’s depend on both 
players’ targets and limits and Equilibrium’s depends on both players’ targets and a combination of its own and 
its partner’s lower or upper limits. In other designs, such as CGCB’s, L1’s decisions almost inevitably depend 
only on its own payoff parameters, and more sophisticated types’ decisions depend on both own and other’s 
parameters. Thus the automatic adjustment feature allows CGC to separate solipsism from the strategic naivete of 
L1. CGC’s data give no evidence of solipsism, but a great deal of evidence of naivete. CGC’s data also show that 
most subjects understood and relied upon automatic adjustment, which was carefully explained to them.     
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 An L1 player i, for instance, best responds to the belief that player j’s guess is uniformly 

distributed between his limits. This yields a guess for j that is never adjusted, and that averages 

[aj+bj]/2. CGC (2006, Section I.B) shows via a certainty equivalence property of CGC’s games 

(Observation 2) that L1’s ideal guess is pi[aj+bj]/2, which will be automatically adjusted, if 

necessary, to R(ai,bi; pi[aj+bj]/2) ≡ min{bi, max{ai, pi[aj+bj]/2}}. The only basic operation is 

[aj+bj]. An L1 player i therefore has minimal look-up sequence: {[aj, bj] (to compute j’s average 

guess), pi (to identify i’s ideal guess)] ≡ {[4, 6], 2}, of which [4, 6] cannot be separated.  

 An L2 player i best responds to the belief that player j is L1, taking the adjustment of j’s 

guess into account. An L1 player j’s adjusted guess is R(aj,bj; pj[ai+bi]/2), so an L2 player i’s ideal 

guess is piR(aj,bj; pj[ai+bi]/2), which will be automatically adjusted to R(ai,bi; piR(aj,bj;pj[ai+bi]/2)). 

An L2 player i therefore has look-up sequence: {([ai, bi], pj) (to predict j’s L1 ideal guess), aj, bj (to 

predict j’s L1 adjusted guess), pi (to identify i’s ideal guess)] = {([1, 3], 5), 4, 6, 2}.23  

 In CGC’s (2006) econometric analysis of search, not discussed here, search compliance for a 

given subject, type, and game is measured by the density of the type’s complete minimal search 

sequence in the subject’s look-up sequence for the game, allowing for the heterogeneity of search 

behavior.24 CGC’s measure is a significant advance on CGCB’s measure, which is based on the 

percentages of a type’s Occurrence and Adjacency requirements satisfied by the entire sequence. 

4c. Sample search data 

 Table 2 gives a sample of the information search data for CGC’s robot/trained subjects and 

Table 3 gives an analogous sample for baseline subjects of various assigned or apparent types, 

with Table 1’s search implications repeated for convenience. In each case the subjects were chosen 

for high exact compliance with their types’ guesses, not for compliance with any theory of search; 

subjects’ frequencies of exact guesses are in parentheses after their types. Only the orders of look-

ups are shown; and only from the first two or three games, but these games are representative. 
                                                 
23 With automatic adjustment, an L2 player i does not need to know his own limits to play the game or think about 

the effects of his own guess being adjusted, only to predict j’s L1 guess. By contrast, an L1 player i doesn’t need 
to know his own limits, only j’s. Because the possible values of the limits are not public knowledge, an L2 player 
i cannot infer that adjustment of player j’s ideal guess can occur only at his upper (lower) limit when pj  > 1 (pj  < 
1). An L2 subject who incorrectly infers this may omit aj = 4 (bj = 6) when pj > 1 (pj < 1). 

24 As is evident from Tables 2 and 3, subjects’ look-up sequences vary widely in what CGC called “style”: Most 
robot/trained and baseline subjects with high exact compliance consistently look first at their type’s minimal 
search sequence and then continue looking, apparently randomly, or stop and enter their guess (for example L2 
robot/trained subject 910, L3 subject 1008, and D1 subject 1501 in Table 2; and L2 baseline subjects 108 and 206 
in Table 3). But some such subjects look randomly first and turn to the relevant sequence at the end (L1 
robot/trained subject 904). CGC’s (2006 Section II.E) econometric analysis uses a binary nuisance parameter to 
distinguish these “early” and “late” styles and filter them out to obtain a better measure of search compliance. 
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 Recalling that the theory allows any order of look-ups grouped within square or curly 

brackets or parentheses, the searches of high-guess-compliance robot/trained or baseline subjects 

conform closely to CGC’s theory, with a subject’s assigned or apparent type’s minimal sequence 

unusually dense in his observed sequence.25 The only exception is the Equilibrium subjects, who 

search far longer and in more complex patterns than CGC’s theory suggests, perhaps because its 

minimal Equilibrium search requirements allow more luck than these subjects enjoyed.26 Baseline 

L1, L2, and perhaps L3 and Equilibrium subjects’ searches are very close to those of their 

robot/trained counterparts, suggesting that (unlike in CJ) training had little effect on their search 

behavior.27 Perhaps Equilibrium search in normal-form games is less unnatural than backward-

induction search in CJ’s extensive-form games. For the simpler types L1, L2, and perhaps L3, the 

algorithms subjects use to identify their types’ guesses can be directly read from their searches. 

 CGC’s (2006, Section II.E, Table 7) econometric analysis shows that such inferences are 

usually consistent with estimates based on guesses alone, and that search compliance as measured 

here is also useful in identifying the types of subjects whose types are not apparent from their 

searches. For some subjects, econometric estimates based on guesses and search together resolve 

tensions between guesses-only and search-only estimates in favor of a type other than the guesses-

only estimate. Those estimates confirm the presence of significant numbers of subjects of types L1, 

L2, Equilibrium, or hybrids of L3 and/or Equilibrium in the population, and the absence of 

significant numbers of subjects of other types. Once again, subjects’ deviations from equilibrium 

can be attributed mostly to non-equilibrium strategic thinking, not preferences or irrationality. 

 For some subjects search is an important check on type inferences based on guesses. Baseline 

subject 309, whose 16 exact L2 guesses seem overwhelming evidence that his type is L2, violated 
                                                 
25 CGC’s specification analysis turned up only one clear violation of their proposed characterization of types’ search 

implications, which is instructive. Baseline subject 415 (not shown in Table 3), whose apparent type was L1 with 
9 exact guesses, had zero L1 search compliance in 9 of the 16 games because he had no adjacent [aj,bj] pairs. His 
look-up sequences, however, were rich in (aj,pi,bj) and (bj,pi,aj) triples, in those orders; but not in such triples with 
other superscripts. This strongly suggests that 415 was an L1 who happened to be more comfortable with three 
numbers in working memory than CGC’s characterization of search assumes, or than their other subjects were. 
But because this violated CGC’s assumptions on search, this subject was "officially" estimated to be D1. 

26 One of the methods CGC allow for identifying Equilibrium guesses is equilibrium checking, which has the least 
search requirements among all methods. Equilibrium checking can identify the Equilibrium guess very quickly if 
the player has the luck to check the equilibrium first (CGC 2006, Appendix H; CGC 2007). Allowing this is 
unavoidable without risking incorrectly concluding that a subject has violated Equilibrium’s search implications.   

27 CGC's baseline subjects with high compliance for some type are like robot/untrained subjects, which don't usually 
exist because you can't tell robot subjects how they will be paid without training them in how the robot works. 
These “naturally occurring” baseline robot subjects provide an unusual opportunity to separate the effects of 
training and strategic uncertainty, by comparing their behavior with robot/trained subjects’ behavior. 
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L2 Occurrence by missing one of its required look-ups in games 1-5 (Table 3 shows his look-ups 

for games 1-3). Just as for CJ’s subjects who never looked at the second- or third-round pie, in 

games 1-5 this subject could not have been making L2 guesses for the reason the theory assumes, 

and his compliance could not be expected to persist.28 Fortunately, 309 had a Eureka! moment 

after game 5, and from then on complied almost perfectly with L2’s search requirements.   

 

5. Further Questions Search Analysis Might Answer 

To illustrate some of the further possibilities for search analysis, this section discusses two 

questions raised by CGC’s (2006) analysis of guesses that resist analysis via decisions alone. 

These questions will be addressed in CGC (2007). 

5a. What are CGC’s baseline apparent Equilibrium subjects really doing? 

 Figure 5 (CGC (2006, Figure 4)) graphs the guesses of CGC's 8 baseline subjects with 7 or 

more exact Equilibrium guesses. The 16 games are ordered by strategic structure as in CGC (2006, 

Table 3) (not in the randomized order in which subjects played them), with the 8 games with 

mixed targets (one greater and one less than one) in the right half of the figure. Of these subjects’ 

128 guesses in the 16 games, 69 (54%) were exact Equilibrium guesses. In CGC’s (2006) 

likelihood-based econometrics, given their a priori specification of possible types and the large 

strategy spaces of CGC’s games, this is overwhelming evidence that their types are Equilibrium. 

But as Figure 5 makes clear, their Equilibrium compliance was far higher for games without mixed 

targets (55 out of 64 possible exact Equilibrium guesses, or 86%) than for games with mixed 

targets (14 out of 64, or 22%). Thus it is (nonparametrically) clear that these subjects, despite 

Equilibrium compliance that is off the scale by normal standards, are actually following a rule that 

only mimics Equilibrium, and that only in games without mixed targets. 

 The puzzle is deepened by noting that all the ways game theorists teach people to identify 

equilibria (best-response dynamics, equilibrium checking, and iterated dominance) work equally 

well with and without mixed targets. Further, CGC’s Equilibrium robot/trained subjects, who were 

taught these three ways to identify their equilibrium guesses, have roughly the same equilibrium 

compliance with and without mixed targets (Figure 6; CGC (2007)). Thus whatever the baseline 
                                                 
28 Subject 309 omitted look-ups 4 and 6 (his partner’s lower and upper limits) in game 1 and look-up 4 in games 2-5. 

This suggests that he did not yet understand that he needed to check his partner’s lower limit to be sure of his L2 
guess even when his own target, or the product of targets, was greater than 1; but he omitted look-up 4 even in 
game 4 where both targets were less than 1, showing that his error was probably more complex. That these 
omissions did not lead to non-L2 guesses in games 1-5 is an accident of our design with no greater significance.    
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apparent Equilibrium subjects were doing, it’s not one of the first things a game theorist would 

think of. (Subjects’ debriefing questionnaires did not reveal what it was.) Nonetheless, the rule or 

rules they follow have a decidedly non-random structure: All 44 of those subjects’ deviations from 

Equilibrium (the solid line in Figure 5) when it is separated from L3 (dotted line), with or without 

mixed targets, are in the direction of (and sometimes beyond) their L3 guesses; though this could 

reflect the fact that in CGC's games, L3 guesses are always less extreme than Equilibrium guesses. 

 CGC’s (2007) analysis will try to resolve the puzzle by using the search data to answer the 

following questions: 

 (1) How do the baseline apparent Equilibrium subjects find their equilibrium guesses in the 

games without mixed targets: best-response dynamics, equilibrium checking, iterated 

dominance, or something else that doesn’t “work” with mixed targets? Refining CGC’s 

(2006) characterization of Equilibrium search to separate the three methods and redoing the 

estimation with the refined compliance measures, separately for games with and without 

mixed targets, should be revealing. The absence of baseline Dk subjects suggests that iterated 

dominance, even finitely truncated, is unlikely. Best-response dynamics, perhaps truncated 

after 1-2 rounds, seems more likely.  

 (2) How do the baseline apparent Equilibrium subjects’ search patterns differ in games with 

and without mixed targets? How do the differences compare to the differences for baseline 

L1, L2, or L3 subjects? CGC’s 20 apparent baseline L1 subjects’ compliance with L1 guesses 

is almost the same with and without mixed targets (CGC, Figure 1), which is unsurprising 

because whether or not the targets are mixed is irrelevant to subjects who don’t try to model 

others’ incentives. But the 12 apparent L2 (Figure 4; CGC, Figure 2) and 3 apparent L3 

(CGC, Figure 3) subjects’ compliance with their types’ guesses is much lower with than 

without mixed targets. This is curious, because for L2 and L3, unlike for Equilibrium, games 

with mixed targets require no deeper understanding. 

 (3) How do Equilibrium robot/trained subjects with high compliance find their equilibrium 

guesses even in games with mixed targets? How do their searches in those games differ from 

baseline apparent Equilibrium subjects’ searches? CGC strove to make Equilibrium 

robot/trained subjects’ training as neutral as possible, but something must come first, and 

they were taught equilibrium checking first, then best-response dynamics, then iterated 

dominance. To the extent that these subjects used one of those methods, it explains why they 
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have equal compliance with and without mixed targets. But if some of them used something 

else that deviates from equilibrium mainly in games with mixed targets, it might provide 

important clues to what the baseline Equilibrium subjects did.  

5b. Why are Lk the only types other than Equilibrium with nonnegligible frequencies? 

 CGC's (2006) analysis of decisions and search estimated significant numbers of subjects of 

types L1, L2, Equilibrium, or hybrids of L3 and/or Equilibrium, and nothing else that does better 

than a random model of guesses for more than one subject. Why do these types predominate, out 

of the enormous number of possibilities? Why, for instance, are there no significant numbers of Dk 

types, which are closer to what game theorists teach? 

 CGC’s (2007) analysis will try to answer this question by using search and other methods to 

look more deeply into the following phenomena: 

 

(1) Most robot/trained subjects could reliably identify their type’s guesses, even for types 

as difficult as Equilibrium or D2. Individual subjects' exact compliance with their type’s 

guesses was usually bimodal within type, on very high and very low. 

Even so, there are several signs of differences in difficulty across types: 

   

  (2) None of CGC’s 70 robot/trained Lk subjects ever failed their type’s Understanding Test, 

  while 1/31 failed the D1 Test, 1/20 failed the D2 Test, and 7/36 failed the Equilibrium Test. 

 

(3) For those who passed the Test, compliance was highest for Lk types, then Equilibrium, 

then Dk types. This suggests that Dk is harder than Equilibrium, but more analysis is 

needed to tell if this was an artifact of the more stringent screening of the Equilibrium Test.   

 

(4) Within the Lk and Dk type hierarchies, compliance was higher for lower k as one would 

expect, except that L1 compliance was lower than L2 or L3 compliance. This may be 

because L1 best responds to a random L0 robot, which some subjects think they can 

outguess; but L2 and L3 best respond to a deterministic L1 or L2 robot, which doesn't invite 

gambling. 

   

  (5) Remarkably, 7 of our 19 robot/trained D1 subjects who passed the D1 Understanding 
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Test, in which L2 answers are wrong, then “morphed” into L2s when making their guesses, 

significantly reducing their earnings (Figure 7 and subject 804 in Table 2; recall that L2 and 

D1 are cousins, both making 2-rationalizable guesses). This kind of morphing is the only 

kind that occurred, which seems compelling evidence that Dk types are unnatural. But a 

comparison of Lk's and Dk-1's search and storage requirements may have something to add. 

 

6. A Rational-Choice Model of Optimal Search for Hidden Payoff Information   

 This section outlines a simple rational-choice analysis in support of the Occurrence and 

Adjacency assumptions that underlie CGCB’s and CGC’s models of cognition and search. The 

analysis is general in that it takes the formula that relates a type's decision to the hidden parameters 

as given. It views search for hidden payoff information as just another kind of rational decision, 

deriving subjects’ demand for it from the benefits of making better decisions under plausible 

assumptions about the benefits and costs of search and storing numbers in working memory. 

 The model rests on two assumptions about cognition and search:  

 

(1) The costs of look-ups are small. There is a great deal of evidence that subjects in 

experiments with hidden but freely accessible payoff parameters perceive the cost of looking 

them up as negligible, scarcely larger than the cost of reading them in a printed table. Having 

to look things up has small effects on their decisions (as shown in CGCB’s and CGC’s 

(2006) Open Boxes control treatments), subjects usually make many more look-ups than 

efficient search requires, and they usually make some motivated purely by curiosity. 

 

(2) There is a flow cost of keeping numbers in working memory, which starts small for the 

first number but even then is larger than the cost of a look-up; and which increases with the 

number of stored numbers. Total memory cost is the time integral of the flow cost, and is 

therefore proportional, other things equal, to total storage time, and increasing in the number 

of stored numbers. (If working memory were free, nothing would prevent the scanning and 

memorization referred to in my discussions of CJ and CGCB, but this is plainly unrealistic.) 

 

 Occurrence follows immediately from assumption (1). A rational player looks up all 

costlessly available information that might affect his beliefs. When, as in these designs, 
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information comes in discrete quanta with nonnegligible effects on beliefs and the optimal 

decision, this conclusion extends to information available at low cost.29

 Given Occurrence, Adjacency (in CGC’s sense that the basic (innermost) operations in 

square brackets in the right-hand side of Table 1 are represented by adjacent look-ups) follows 

from assumption (2). Under (2), a player minimizes the total memory plus look-up cost by 

processing the basic operations needed to evaluate the expression for his ideal guess before other 

operations with whose results they are to be combined, storing the results (meanwhile “forgetting” 

the parameters they combine), and then combining them. Basic operations take precedence over 

other operations because “distributing” them increases memory cost.30 For example, in evaluating 

the expression pi [aj+bj]/2 for L1's ideal guess, processing [aj+bj] first, storing the result, and then 

combining it with pi yield the following sequence of numbers of numbers in working memory: 1, 

2, 1, 2, 1. The distributed alternative of processing pi aj, storing the result, then processing pi bj and 

combining it with pi aj yields the sequence: 1, 2, 1, 2, 3, 2, 1, which dominates the first sequence.  

The first method also saves the cost of looking up pi a second time, but this is much less important.  

 Although Occurrence and Adjacency are only necessary conditions for optimal search, I stop 

with them because they have considerable empirical support, they make the main patterns of 

subjects’ search behavior in CJ's extensive-form and CGCB's and CGC's normal-form games 

intelligible, and they seem more transparent than other conditions for optimality and thus more 

likely to be descriptive of subjects’ search behavior.  

 I close by noting that although this model supports CJ’s, CGCB’s, and CGC’s use of 

Occurrence and Adjacency, it says nothing directly about how to measure search compliance in an 

econometric analysis. CGC’s use of the density of a type’s minimal search sequence in the part of 

the observed sequence where the subject tends to make his relevant look-ups (his search “style,” in 

CGC’s terminology) is a judgment call, which seems to be well supported by inspecting the data.   

 

                                                 
29 Note that because MouseLab allows a subject to enter a tentative guess without confirming it (the *s in the data in 

Tables 2 and 3), thereby saving storage cost, the variations in search style noted in Section 4b, footnote 24, are 
consistent with optimality when look-up costs are negligible even if storage costs are not. 

30 This effect is related to the reason that backward induction is the most efficient way to solve a finite-horizon 
dynamic programming problem like those subjects faced in CJ’s design: other ways are feasible, but wasteful of 
storage and computational capacity (though the latter is assumed to be freely available here). 
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7. Conclusion 

 CJ’s, CGCB’s, and CGC’s analyses of cognition in games via monitoring subjects’ searches 

for hidden but freely accessible payoff information bridge part of the gap between neuroeconomics 

and conventional economics because they rest on explicit models of cognition but search, unlike 

neural correlates of cognition, can be viewed as a rational choice. This paper has sought to use 

those analyses to make two points about the potential uses of neural data in economics. 

 First, standard assumptions of rational choice and equilibrium have yielded successful 

explanations of many phenomena, which as GP note can usefully be tested via revealed preference 

analysis of decision data. But there are other, equally important phenomena that appear to stem 

from failures of the implicit assumptions about cognition that underlie standard analyses, for which 

tests that don’t take cognition explicitly into account are likely to be biased and misleading. 

 Second, with unbounded capacity for experimentation it might be possible to discover all we 

need to know about behavior by observing decisions alone. But this is an arbitrary constraint, and 

CJ’s, CGCB’s, and CGC’s analyses show that expanding the domain of analysis beyond decisions 

can yield a clearer view of behavior than is practically achievable by observing only decisions. 
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Figure 1. Display for CJ’s Alternating-Offers Bargaining Experiments (CJ (2002), Figure 1) 

 

 
 

Figure 2. Display for a 2×2 Game in CGCB’s Matrix-Game Experiments (CGCB, Figure 1) 
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Figure 3. Display for CGC’s Two-Person Guessing Games (CGC (2006), Figure 6) 
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Figure 4. “Fingerprints” of 12 Apparent L2 Baseline Subjects (CGC (2006), Figure 2) 
Note: Only deviations from L2's guesses are shown. 

138 (72%) of these subjects' 192 guesses were exact L2 guesses. 
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Figure 5. “Fingerprints” of 8 Apparent Equilibrium Baseline Subjects (CGC (2006), Figure 4))   
Note: Only deviations from Equilibrium's guesses are shown. 

69 (54%) of these subjects' 128 guesses were exact Equilibrium guesses. 
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Figure 6. “Fingerprints” of 10 UCSD Equilibrium Robot/Trained Subjects ((CGC (2007))   

Note: Only deviations from Equilibrium's guesses are shown. 
92 (58%) of these subjects' 160 guesses were exact Equilibrium guesses. 
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Figure 7. “Fingerprints” of 6 York Robot/Trained Subjects Who “Morphed” from D1to L2 (CGC (2007)) 

Note: Only deviations from D1's guesses are shown. 
28 (29%) of these subjects' 96 guesses were exact D1 guesses and 72 (75%) were exact L2 guesses. 
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Type Ideal guess Minimal search sequence 

L1 pi [aj+bj]/2 {[aj,bj],pi} ≡ {[4, 6], 2} 

L2 piR(aj,bj; pj[ai+bi]/2) {([ai,bi],pj),aj,bj,pi} ≡ {([1, 3], 5), 4, 6, 2} 

L3 piR(aj,bj; pjR(ai,bi; pi[aj+bj]/2)) {([aj,bj],pi),ai,bi,pj} ≡ {([4, 6], 2), 1, 3, 5} 

D1 pi(max{aj,pjai} + min{pjbi,bj})/2 {(aj,[pj,ai]),(bj,[pj,bi]),pi} ≡ {(4,[5,1]),(6,[5,3]),2} 

D2 pi[max{max{aj,pjai},pjmax{ai,piaj}} 
+min{pjmin{pibj,bi},min{pjbi,bj}}]/2 

{(ai,[pi,aj]),(bi,[pi, bj]),(aj,[pj,ai]),(bj,[pj,bi]),pj,pi} 
≡ {(1,[2,4]),(3,[2,6]),(4,[5,1]),(6,[5,3]),5,2} 

Eq. piaj if pipj < 1 or pibj if pipj > 1 {[pi,pj],aj} ≡ {[2, 5], 4} if pipj < 1 
or {[pi,pj],bj} ≡ {[2, 5], 6} if pipj > 1 

Soph. [no closed-form expression, but CGC took Soph.’s 
search implications to be the same as D2's] 

{(ai,[pi,aj]),(bi,[pi, bj]),(aj,[pj,ai]),(bj,[pj,bi]),pj,pi} 
≡ {(1,[2,4]),(3,[2,6]),(4,[5,1]),(6,[5,3]),5,2} 

 
Table 1. Types’ Ideal Guesses and Minimal Search Sequences (CGC (2006), Table 4) 

Note: R(a,b;x) ≡ min{b, max{a, x}} ≡ max{a, min{b, x}}denotes x’s adjusted guess with limits a and b.  
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Table 2. Selected Robot/Trained Subjects’ Information Searches and Assigned Types’ Search Implications
          Types’ Search Implications    

   MouseLab box number L1 {[4,6],2}  
   a p b L2 {([1,3],5),4,6,2}  
  You (i) 1  2 3 L3 {([4,6],2),1,3,5}  
  S/he (j) 4           5 6 D1 {(4,[5,1], (6,[5,3]),2}
     D2 {(1,[2,4]),(3,[2,6]),(4,[5,1],(6,[5,3]),5,2}  
             Eq {[2,5],4} if pr. tar.<1,{[2,5],6} if > 1  
       

Subject            904 1716 1807 1607 1811 2008 1001 1412 805 1601 804 1110 1202 704 1205 1408 2002 
Type(#ex.)L1 (16) 

 
L1 (16) 
 

L1 (16) 
 

L2 (16)
 

L2 (16)
 

L2 (16)
 

L3 (16)
 

L3 (16)
 

D1 (16)
 

D1 (16) 
 

D1 (3) D2 (14)
6)  

D2 (15)
 

Eq (16)
 

Eq (16)
 

Eq (15)
 

Eq (16) 
 Alt.(#ex.) L2 (

 
1

Game                

 
     

     
            
              
             
              

                

 
 

         
        
           
            
             

 
1 123456 

 
146462 462513 

  
135462

 
134446 111313 462135 146231 154356 254514 

 
154346

 
135464 246466 123456 123456 123123 142536 

 4623 134646
 

1313 5213*4
 

131313
 

21364* 564623
 

423213
 

36231
 

5213 2646*1
 

135464 363256 424652 456445 125365
 23

 
6

 
5423

 
246231

 
1 2642

 
313

 
641321 565365 562525 632132

 
253616

  52
 

 342462 626365 6352*4
 

11 361454
  422646 652651 65 613451
  124625 452262 213452

   5*1224 6526
 

 63
  654646

  
2 123456 

 
462462 

 
462132 

 
135461 134653 131313 462135 462462 514535 514653 

 
515135 135134 123645 123456 123456 123456 143625 

 4231
 

13 25
 

354621
 

125642 566622
 

642562 546231 615364
 

6213 365462
 

642163 132462 525123 244565 456123 361425
  3 313562

 
333 223146 546231

 
23  3 451463 426262 652625 565263 643524

 
142523

 52
 

2562*6
 

211136 241356 635256 212554 1 625656
   2

 
 414262 462*13 262365

 
146662 3

  135362 524242 456
 

654251
  *14654

 
466135 44526*

   6 6462 31
Notes:  The subjects' frequencies of making their assigned types’ (and when relevant, alternate types’) exact guesses are in parentheses after 
the assigned type. A * in a subject's look-up sequence means that the subject entered a guess there without immediately confirming it. 
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Table 3. Selected Baseline Subjects’ Information Searches and Apparent Types’ Search Implications
    Types’ Search Implications

MouseLab box number L1 {[4,6],2}
a p b L2 {([1,3],5),4,6,2}

You (i) 1 2 3 L3 {([4,6],2),1,3,5}
  S/he (j) 4 5 6 D1 {(4,[5,1], (6,[5,3]),2}

D2 {(1,[2,4]),(3,[2,6]),(4,[5,1],(6,[5,3]),5,2}
    Eq {[2,5],4} if pr. tar.<1,{[2,5],6} if > 1

Subject     101 118 413 108 206 309 405 210 302 318 417 404 202 310 315
Type(#ex.)L1 (15) L1 (15) L1 (14) L2 (13) L2 (15) L2 (16) L2 (16) L3 (9) L3 (7) L1 (7) Eq (8) Eq (9) Eq (8) Eq (11) Eq (11)
Alt.(#ex.)    Eq (9) Eq (7) D1 (5) L3 (7) L2 (6) D2 (7)
Alt.(#ex.)     D2 (8)  L2 (5) L3 (7)
Game     

 
 
   
    
    
    
    

 
     
     
    

  
    
     

    

1 146246 
 

246134 123456 135642
 

533146 1352 144652 123456 221135 132456 252531 462135 123456 123126 213465
 213

 
626241 545612 213 313312 123456 465645 465252 464656 464655 254613 544121 624163

 32*135
 

 3463*
 

546232 213456 213213 13242* 446531 645515 621342 565421 564121
 12512 254213 45456*

 
 1462
 

641252 21354* *525 254362 325466
 654 541 462121 135462 *21545
 3 426256 4*

 356234
 131354
 645

2 46213 
 

246262 123564 135642
 

531462 135263 132456 123456 213546 132465 255236 462461 123456 123546 134652
 2131

 
 62213*

 
3 31 1526*2 253156 465562 566213 132*46

  
62*365 352524 445613 216326 124653

 *3 456545 231654 545463 2 243563 261315 255462 231456 656121
 463123 456*2 21*266 463562 513565 *62 3
 156562 54123 23
 62

3 462*46 
 

246242 264231 
  

135642 535164 135263 312456 123455 265413 134652 521363 462135 123456 123655 132465
 466413 53 2231 5231*1 645612 232145 1323*4

  
641526 215634 123562 463213 544163

 *426
 

 236545 3 563214 5263*6 *52 3 *3625
 5233** 563214 52
 513 523*65

  4123
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