Online Appendix to

New York City Cabdrivers' Labor Supply Revisited: Reference-Dependent

Preferences with Rational-Expectations Targets for Hours and Income

By Vincent P. Crawford and Juanjuan Meng

June 2010

Table A1	: Marginal Eff	ects on the l	Probability (Sample	of Stopping: s	: Probit Esti	mation with	ı Split
			(1)			(2)	
	Evaluation Point for Marginal Effect	Pooled data	First hour's earning > expected	First hour's earning < expected	Pooled data	First hour's earning> expected	First hour's earning <= expected
Cumulative total hours	8.0	.020***	0.025***	0.017**	0.009***	0.026***	0.004
Cumulative Income/100	1.5	0.035* (.016)	0.030 (0.020)	0.037 (0.026)	0.020 (0.014)	0.034 (0.028)	0.029* (0.022)
Min temp<30	0.0	-	-	-	0.004* (0.008)	0.011 (0.021)	0.011 (0.011)
Max temp>80	0.0	-	-	-	-0.017* (0.010)	-0.041 (0.025)	-0.017 (0.012)
Hourly rain	0.0	-	-	-	0.011 (0.164)	-0.520 (0.718)	0.098 (0.122)
Daily snow	0.0	-	-	-	-0.001 (0.005)	-0.004 (0.010)	-0.084 (0.094)
Downtown	0.0	-	-	-	0.002 (0.008)	0.009 (0.019)	-0.002 (0.009)
Uptown	0.0	-	-	-	-0.002 (0.006)	-0.006 (0.015)	-0.003 (0.007)
Bronx	0.0	-			0.072 (0.071)	0.099*** (0.030)	.148** (.122)
Queens	0.0	-	-	-	0.045 (0.045)	0.040 (0.087)	0.060 (0.067)
Brooklyn	0.0	-	-	-	0.088***	0.140* (0.107)	0.070** (0.050)
Airport	0.0	-	-	-	(0.076***	0.184***	0.038 (0.041)
LaGuardia Airport	0.0	-	-	-	0.073*** (0.037)	0.176*** (0.079)	0.007 (0.028)
Other	0.0	-	-	-	0.148*** (0.084)	0.233** (0.132)	0.082 (0.105)
Drivers (21) Day of week (7)		No No	No No	No No	Yes Yes	Yes Yes	Yes Yes
Hour of day (19)	2:00 p.m.	No	No	No	Yes	Yes	Yes
Log likelihood Pseudo R ² Observation		-1550.452 0.1239 8958	-806.30573 0.1314 4664	-742.87617 0.1172 4294	-1344.8812 0.2401 8958	-683.58849 0.2636 4664	-628.45562 0.2532 4294

Online Appendix A: Estimations of Tables 2-4 without weights.

Note: Standard errors are computed for the marginal effects to maximize comparability with Farber's estimates, but with significance levels computed for the underlying coefficients rather than the marginal effects: *10%, **5%, ***1%. Robust standard errors clustered by shift are assumed. We use Farber's evaluation point: after 8 total working hours and \$150 earnings on a dry day with moderate temperatures in midtown Manhattan at 2:00 p.m. Driver fixed effects and day of week dummies are equally weighted. For dummy variables, the marginal effect is calculated by the difference between values 0 and 1. As in Farber (2008), we do not distinguish between driving hours and waiting time between fares. Among the dummy control variables, only driver fixed effects, hour of the day, day of the week, and certain location controls have effects significantly different from 0.

		Using driver spec	ific sample average	Using driver and day	-of-the-week specific
		income and hours pr	ior to the current shift	sample average incom	me and hours prior to
		as ta	argets	the current sl	nift as targets
	Evaluation point for marginal effect	(1)	(2)	(3)	(4)
Cumulative total		0.040***	0.065***	0.047***	0.109***
hours>hours target		(0.013)	(0.031)	(0.014)	(0.039)
Cumulative income		0.052***	0.024	0.043***	0.038*
> income target		(0.06)	(0.025)	(0.015)	(0.024)
Cumulative total	8.0	0.012***	0.019***	0.013***	0.016***
hours	8.0	(0.004)	(0.009)	(0.004)	(0.008)
Cumulative	1.5	-0.007	0.024	-0.001	0.006
Income/100	1.3	(0.013)	(0.035)	(0.015)	(0.029)
Weather (4)		No	Yes	No	Yes
Locations (9)		No	Yes	No	Yes
Drivers (21)		No	Yes	No	Yes
Days of the week		No	Vac	No	Vac
(7)		NO	105	NO	105
Hour of the day	2:00 n m	No	Vac	No	Vac
(19)	2.00 p.m.	NO	165	INO	les
Log likelihood		-1546.1866	-1369.5477	-1535.036	-1349.809
Pseudo R ²		0.1630	0.2587	0.1691	0.2693
Observation		10337	10337	10337	10337

Table A2: Marginal Effects on the Probability of Stopping: Reduced-Form Model Allowing Jumps at the Targets

Note: Standard errors are computed for the marginal effects to maximize comparability with Farber's estimates, but with significance levels computed for the underlying coefficients rather than the marginal effects: *10%, **5%, ***1%. Robust standard errors clustered by shift are assumed. We use Farber's evaluation point: after 8 total working hours and \$150 earnings on a dry day with moderate temperatures in midtown Manhattan at 2:00 p.m. Driver fixed effects and day of week dummies are equally weighted. For dummy variables, the marginal effect is calculated by the difference between values 0 and 1. As in Farber (2008), we do not distinguish between driving hours and waiting time between fares. Among the dummy control variables, only driver fixed effects, hour of the day, day of the week, and certain location controls have effects significantly different from 0.

1	able A5: Structural	Estimates under Al	ternative Specificat	ions of Expectations	5
	 (1) Use driver and day-of-the-week specific sample averages prior to the current shift as the income/hours targets and the next-trip earnings/times expectation 	(2) Use driver and day-of-the-week specific sample averages prior and after the current shift as the income/hours targets and next- trip the earnings/times expectation	 (3) Use driver and day-of-the-week specific sample averages prior to the current shift as the income/hours targets and fit the sophisticated next-trip earnings/time expectation 	 (4) Use driver (without day-of-the-week difference) specific sample averages prior to the current shift as income/hours targets and the next-trip earnings/time expectation 	(5) Income target only: use driver and day-of-the- week specific sample averages prior to the current shift as income target and next-trip earnings/time expectation
$\eta(\lambda_{H} - 1)$ [p-value] $\eta(\lambda_{I} - 1)$ [p-value] θ [p-value]	2.338*** [0.000] 0.631*** [0.004] 0.015*** [0.000] 0.839***	4.327*** [0.000] 0.610*** [0.000] 0.020*** [0.000] 0.483	0.872*** [0.000] 0.267*** [0.008] 0.018*** [0.000] 0.883***	0.237*** [0.000] 0.044* [0.0594] 0.099*** [0.000] 0.258***	- 3.163*** [0.000] 0.014*** [.000] 1.645***
$[p-value]$ σ $[p-value^+]$ c $[p-value]$ Test $\lambda_{H} = \lambda_{I}$ $[p-value]$	[0.003] 0.196 [0.168] 0.007 [0.954] [0.214]	0.483 [0.403] 0.185 [0.293] 0.006 [0.958] [0.177]	[0.000] 0.096 [0.996] -0.012 [0.998] [0.996]	[0.000] 0.040 [0.105] 0.134 [0.782] [0.204]	[0.000] 0.539*** [0.757] 0.138 [0.719]
Log-likelihood	-1360.9672	-1361.711	-1351.4242	-1368.8756	-1371.8068

Table A 3. Structural	Estimates under	Alternative	Specifications	of Expectations
rabic AS, bu uctural	Estimates under	Anter matrix c	opermeations	of Expectations

Notes: Significance levels *10%, **5%, ***1%. We perform likelihood ratio test on each estimated parameter and indicate the corresponding p-value and significance level. ⁺The null-hypothesis is that each parameter equals zero except for the variance estimate where we test $\sigma = 1$. Control variables include driver fixed effects (18), day of week (6), hour of day (18), location(8), and weather (4).

Online Appendix B: Derivation of the Likelihood Function in the Structural Estimation

Given a driver's preferences,

(B1)
$$V(I, H | I^{r}, H^{r}) = (1 - \eta) \left[I - \frac{\theta}{1 + \rho} H^{1+\rho} \right] + \eta \left[\mathbf{1}_{(I-I^{r} \le 0)} \lambda(I - I^{r}) + \mathbf{1}_{(I-I^{r} > 0)}(I - I^{r}) \right]$$

$$- \eta \left[\mathbf{1}_{(H-H^{r} \ge 0)} \lambda \left[\frac{\theta}{1 + \rho} H^{1+\rho} - \frac{\theta}{1 + \rho} (H^{r})^{1+\rho} \right] \right] - \eta \left[\mathbf{1}_{(H-H^{r} < 0)} \left[\frac{\theta}{1 + \rho} H^{1+\rho} - \frac{\theta}{1 + \rho} (H^{r})^{1+\rho} \right] \right].$$
We assume the driver decides to stop at the end of a given trip if and only if his anticipated

We assume the driver decides to stop at the end of a given trip if and only if his anticipated gain in utility from continuing work for one more trip is negative. Again letting I_t and H_t denote income earned and hours worked by the end of trip t, this requires:

(B2)
$$E[V(I_{t+1}, H_{t+1}|I^r, H^r)] - V(I_t, H_t|I^r, H^r) + \varepsilon < 0,$$

where $I_{t+1} = I_t + E(f_{t+1})$ and $H_{t+1} = H_t + E(h_{t+1})$, $E(f_{t+1})$ and $E(h_{t+1})$ are the next trip's expected fare and time (searching and driving), $x_t\beta$ include the effect of control variables, cis the constant term, and ε is a normal error with mean zero and variance σ^2 . The likelihood function can now be written, with *i* denoting the shift and *t* the trip within a given shift, as: (B3)

$$\begin{split} &\sum_{i=1}^{584} \sum_{t=i}^{T_i} \ln \Phi[((1-\eta)(A_{it} - \frac{\theta}{\rho+1}B_{it}(\rho)) + \eta(\lambda a_{1,it} + a_{2,it} - \lambda \frac{\theta}{\rho+1}b_{1,it}(\rho) - \frac{\theta}{\rho+1}b_{2,it}(\rho)) + x_i\beta + c)/\sigma] \\ &A_{it} = I_{i,t+1} - I_{i,t} \,. \\ &B_{it}(\rho) = H_{i,t+1}^{\rho+1} - H_{i,t}^{\rho+1} \,. \\ &a_{1,it} = 1_{(I_{i,t+1} - I_i^r \le 0)}(I_{i,t+1} - I_i^r) - 1_{(I_{i,t} - I_i^r \le 0)}(I_{i,t} - I_i^r) \,. \\ &a_{2,it} = 1_{(I_{i,t+1} - I_i^r \ge 0)}(I_{i,t+1} - I_i^r) - 1_{(I_{i,t} - I_i^r \ge 0)}(I_{i,t} - I_i^r) \,. \\ &b_{1,it}(\rho) = 1_{(H_{i,t+1} - H_i^r \ge 0)}(H_{i,t+1}^{\rho+1} - (H_i^r)^{\rho+1}) - 1_{(H_{i,t} - H_i^r \ge 0)}(H_{i,t}^{\rho+1} - (H_i^r)^{\rho+1}) \,. \end{split}$$

Note that

 $A_{it} = a_{1,it} + a_{2,it}$ and $B_{it} = b_{1,it}(\rho) + b_{2,it}(\rho)$.

Substituting these equations yields a reduced form for the likelihood function:

(B4)
$$\sum_{i=1}^{584} \sum_{t=i}^{T_i} \ln \Phi[((1-\eta+\eta\lambda)a_{1,it}+a_{2,it}-(1-\eta+\eta\lambda)\frac{\theta}{\rho+1}b_{1,it}(\rho)-\frac{\theta}{\rho+1}b_{2,it}(\rho)+x_t\beta+c)/\sigma].$$

Ar	Table C1: T e Used as Pro	rip Fares a xies for Di	nd Time Estimates W ivers' Sophisticated E	hose Fitted Valu Expectations in T	es able 4
	Time	Fare		Time	Fare
Clock hours			Day of the Week		
0	-0.100	0.006	Monday	0.017	-
	(0.228)	(0.022)	ý	(0.025)	-
1	-0.121	-0.005	Tuesday	-0.007	0.001
-	(0.231)	(0.022)	Tuesday	(0.023)	(0.003)
2	-0.255	-0.025	Wednesday	-0.012	-0.002
	(0.239)	(0.024)	•	(0.023)	(0.004)
3	-0.193	-	Thursday	0.013	0.004
	(0.265)	-	2	(0.023)	(0.004)
4	-	0.026	Friday	-0.003	-0.000
	-	(0.039)		(0.023)	(0.003)
5 - 10	-0.022	-0.006	Saturday	0.038*	0.006*
5 - 10	(0, 226)	(0.021)	Saturday	(0.022)	(0, 003)
11	(0.220)	(0.021)	Sunday	(0.022)	(0.003)
11	-0.022	-0.011	Sunday	-	0.001
	(0.227)	(0.022)		-	(0.004)
12	0.026	-0.005	Mini temp < 30	0.016	0.000
	(0.227)	(0.022)		(0.027)	(0.004)
13	-0.032	-0.001	Max temp > 80	0.019	-0.002
	(0.227)	(0.021)		(0.023)	(0.003)
14	-0.074	-0.003	Hourly rain	-0.147	-0.073
	(0.227)	(0.021)		(0.317)	(0.046)
15	-0.084	-0.005	Daily snow	0.006	0.000
	(0.227)	(0.021)		(0.010)	(0.001)
16	-0.074	0.007	Downtown	-0.025	0.013
	(0.227)	(0.022)		(0.121)	(0.018)
17	-0.132	-0.006	Midtown	-0.066	0.001
	(0.226)	(0.021)		(0.120)	(0.018)
18	-0.152	-0.010	Uptown	-0.036	0.003
	(0.226)	(0.021)		(0.121)	(0.018)
19	-0.189	-0.016	Bronx	-	-
	(0.226)	(0.021)		-	-
20	-0.137	-0.006	Queens	0.337**	0.080***
	(0.226)	(0.021)		(0.151)	(0.022)
21	-0.160	-0.008	Brooklyn	0.180	0.052***
	(0.226)	(0.021)		(0.135)	(0.020)
22	-0.177	-0.004	Kennedy Airport	0.645***	0.164***
	(0.226)	(0.021)		(0.136)	(0.020)
22	-0.128	0.003	LaGuardia	0.333**	0.110***
23			Airport		
	(0.226)	(0.021)		(0.130)	(0.019)
Constant	0.307	0.051*	Others	0.154	0.030
	(0.260)	(0.029)		(0.156)	(0.023)
Driver dummy			D٦		
21	Yes	Yes	κ <i>z</i>	0.122	0.202
Observations	2989	2989		2989	2989

Online Appendix C: Trip Fares and Time Estimates Whose Fitted Values are Used as Proxies for Drivers' Expectations in Table 4, column 3

Notes: Significance levels: * 10%, ** 5%, *** 1%. Fare and (driving, waiting and breaking) time for the next trip are jointly estimated as seemingly unrelated regressions.

Online Appendix D: Implied Average Probabilities of Stopping for Various Ranges

e driver and day-of- he-week specific nple averages prior the current shift as he income/hours rgets and the next- ip earnings/times expectation 0.020	Use driver and day-of- the-week specific sample averages prior and after the current shift as the income/hours targets and next-trip the earnings/times expectation 0.021	Use driver and day-of- the-week specific sample averages prior to the current shift as the income/hours targets and fit the sophisticated next-trip earnings/time expectation	Use driver (without day-of-the-week difference) specific sample averages prior to the current shift as income/hours targets and the next-trip earnings/time expectation
he-week specific nple averages prior the current shift as he income/hours rgets and the next- ip earnings/times expectation 0.020	the-week specific sample averages prior and after the current shift as the income/hours targets and next-trip the earnings/times expectation 0.021	the-week specific sample averages prior to the current shift as the income/hours targets and fit the sophisticated next-trip earnings/time expectation	day-of-the-week difference) specific sample averages prior to the current shift as income/hours targets and the next-trip earnings/time expectation
nple averages prior the current shift as he income/hours rgets and the next- ip earnings/times expectation 0.020	sample averages prior and after the current shift as the income/hours targets and next-trip the earnings/times expectation 0.021	sample averages prior to the current shift as the income/hours targets and fit the sophisticated next-trip earnings/time expectation	difference) specific sample averages prior to the current shift as income/hours targets and the next-trip earnings/time expectation
the current shift as he income/hours rgets and the next- ip earnings/times expectation 0.020	and after the current shift as the income/hours targets and next-trip the earnings/times expectation 0.021	to the current shift as the income/hours targets and fit the sophisticated next-trip earnings/time expectation	sample averages prior to the current shift as income/hours targets and the next-trip earnings/time expectation
he income/hours rgets and the next- ip earnings/times expectation 0.020	shift as the income/hours targets and next-trip the earnings/times expectation 0.021	the income/hours targets and fit the sophisticated next-trip earnings/time expectation	to the current shift as income/hours targets and the next-trip earnings/time expectation
rgets and the next- ip earnings/times expectation 0.020	income/hours targets and next-trip the earnings/times expectation 0.021	targets and fit the sophisticated next-trip earnings/time expectation	income/hours targets and the next-trip earnings/time expectation
expectation 0.020	and next-trip the earnings/times expectation 0.021	sophisticated next-trip earnings/time expectation	and the next-trip earnings/time expectation
expectation 0.020	earnings/times expectation 0.021	earnings/time expectation	earnings/time expectation
0.020	expectation 0.021	expectation	expectation
0.020	0.021	0.010	
0.020	0.021	0.010	
		0.019	0.022
0.083	0.097	0.080	0.092
0.105	0.109	0.103	0.103
0.159	0.148	0.139	0.134
0.175	0.156	0.175	0.150
0.0180	0.0193	0.018	0.021
0.081	0.086	0.094	0.094
0.106	0.109	0.113	0.119
0.161	0.148	0.181	0.138
0.188	0.180	0.187	0.164
	0.0180 0.081 0.106 0.161 0.188	0.01800.01930.0810.0860.1060.1090.1610.1480.1880.180	0.0180 0.0193 0.018 0.081 0.086 0.094 0.106 0.109 0.113 0.161 0.148 0.181 0.188 0.180 0.187

probabilities are first computed for each driver and range and then averaged across drivers within each range, hence do not sum to one.

Table D1. Implied Average Probabilities of Stopping for Various Ranges Relative to the Targets