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Vincent P. Crawford and Nagore Iriberri  

 This appendix provides background and more detail for the paper. 

Labels with Positive or Negative Connotations and/or Focally Labeled End Locations 

Table A1 lists the choice frequencies from five additional RTH Treasure treatments with 

the same payoff structure as RTH-4 (Table 1), but labels with positive or negative connotations 

and/or focally labeled end locations. RTH-2 and RTH-5 are analogous to RTH-4 except for the 

connotations of the focal label. RTH-1 and RTH-3 are like RTH-4 except that the focal label is at 

an end position, and in RTH-3 it has a negative connotation. RTH-6 is like RTH-5 except that the 

focal label is in the third rather than second position; and is like RTH-2 and RTH-4 except for this 

difference in position and that the focal label has a positive connotation in RTH-6 but negative or 

neutral connotations in RTH-2 or RTH-4. The choice frequencies for these treatments echo those 

for the ones we analyze, with shifts in expected directions, and so provide additional evidence of 

the robustness of the patterns in RTH's data. It seems likely that our analysis could be extended to 

them by introducing and estimating payoff perturbations and/or new L0 choice probabilities. 

 

Table A1. Aggregate Choice Frequencies in RTH’s Experiments with Non-neutral Connotations 
RTH-1 Triangle Circle Circle Circle 

Hider (53) 23% 23% 43% 11% 
Seeker (62) 29% 24% 42% 5% 

RTH-2 Polite Rude Honest Friendly 
Hider (53) 15% 26% 51% 8% 
Seeker (62) 8% 40% 40% 11% 

RTH-3 Smile Smile Smile Frown 
Hider (53) 21% 26% 34% 19% 
Seeker (62) 7% 25% 34% 34% 

RTH-5 Frown Smile Frown Frown 
Hider (53) 15% 40% 34% 11% 
Seeker (62) 16% 55% 21% 8% 

RTH-6 Hate Detest Love Dislike 
Hider (53) 11% 23% 38% 28% 
Seeker (62) 20% 21% 55% 14% 

Sample sizes in parentheses; salient labels in italics; order of presentation of locations to subjects as shown.  
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Data Adjustments 

In Table 1, we made minor adjustments to RTH’s published data to reconcile reported 

frequencies and sample sizes. Hiders’ choice frequencies in RT-AABA-Treasure and RT-1234-

Treasure, and seekers’ frequencies in RT-AABA-Mine, all sum to 101%; and hiders’ frequencies in 

RT-AABA-Mine and hiders’ and seekers’ frequencies in RT-1234-Mine sum to 99%. We deal with 

this by translating the percentages into integer numbers of subjects and then rounding as needed. In 

RT-AABA-Treasure, for example, RT’s reported percentages for hiders are 22%, 35%, 19%, and 

25%, with reported sample size 189. Applying the rounded percentages to the sample size yields 

numbers of subjects 41.58, 66.15, 35.91, and 47.25, which round to 42, 66, 36, and 47, which sum 

to 191 > 189. We rounded 41.58 down to 41 and 35.91 down to 35, which is the only way to 

reconcile the sample size and the rounded reported percentages. Similarly, in RT-AABA-Mine we 

rounded 0.39×132 = 51.48 up to 52, which allows us to reconcile the sample size and reported 

percentages. Finally, in R-ABAA the reported percentages for hiders are 16%, 18%, 45%, and 

22%, which add to 101%, with a sample size of 50. This yields numbers of subjects 8, 9, 22.5, and 

11, which add to 50.5. The only way to reconcile this with one typo is to adjust the 45% to 44% as 

in Table 1, yielding numbers of subjects 8, 9, 22, and 11.  

 

Symmetry of Payoff Perturbations Across Roles for Equilibrium and QRE with 

Perturbations Models 

Here we discuss, in more detail than in Section II, the issue of symmetry of payoff 

perturbations across player roles. We focus on the equilibrium with perturbations model, but our 

discussion also applies to the QRE with perturbations model. 

There is no logical reason why a role-asymmetric payoff structure should not evoke 

instinctive aversions or attractions that differ in magnitudes as well as signs. The issue here is 

slightly different than for the symmetry across roles of L0 in our level-k model, discussed below, 

because we allow the signs of the perturbations to differ in keeping with Bacharach and Stahl’s 

(1997ab) intuition, without which equilibrium with perturbations fits the data extremely poorly; the 

only question is whether to assume that their magnitudes are the same across roles. If anything the 

case for equal magnitudes is weaker than the case for a role-symmetric L0, because hard-wired 

payoff perturbations presumably stem from an evolutionary or learning process that is surely 
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influenced by payoffs as well as framing. These a priori considerations are reinforced by our strong 

rejection of the restriction to perturbations of equal magnitudes in RTH's dataset (Table 3) and by 

the qualitatively perverse behavior of the analogous QRE with restricted perturbations model (web 

appendix below).   

 The problem with equilibrium with unrestricted perturbations, as we see it, is that there is 

no theory that could explain (or even restrict the specification of) such differences in magnitudes. 

This makes “explaining” the role-asymmetry in RTH's subjects’ behavior (via an unexplained 

twofold role difference in magnitudes) an empirical dead end. Our overfitting and portability 

analyses make this subjective judgment more concrete, by showing that equilibrium with 

unrestricted perturbations, which has the best fit of all the models we consider in RTH's dataset 

(Table 3), does worst of all in our within-sample overfitting test (Table 4); does worse than 

equilibrium without perturbations under the natural restrictions on hiders’ and seekers’ instinctive 

reactions to salience in O’Neill’s game; and is not well-defined for Rapoport and Boebel's game.           

 

Quantal Response Equilibrium (“QRE”) with and without Payoff Perturbations 

 Here we discuss the QRE with payoff perturbations models mentioned in Section II. In a 

QRE players’ choices are noisy, with the probability of each choice increasing in its expected 

payoff given the distribution of others’ choices; a QRE is thus a fixed point in the space of players’ 

choice distributions. QRE describes the patterns of deviations from equilibrium in some other 

experiments, and so has the potential to explain RTH’s results better than equilibrium does. Its 

specification is completed by a response distribution, whose noisiness is represented (inversely) by 

a precision parameter. Some of our results are independent of this distribution, but for others we 

adopt the standard assumption of logit responses and study the special case called “logit QRE”. 

Because QRE responds only to the payoff structure, it ignores the framing of the Hide-and-

Seek game without payoff perturbations. In that game, for any error distribution, there is a unique 

QRE, which yields the same choice probabilities as equilibrium. To see this, suppose to the 

contrary that in a QRE the most probable location for Hiders, call it P, has probability greater than 

1/4. Because QRE choice probabilities increase with expected payoffs and the game is constant-

sum, P must then have the highest expected payoff for Seekers, thus probability greater than 1/4 for 

them. But then some location other than P has higher expected payoff for Hiders, a contradiction. 
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We therefore consider explanations that combine logit QRE with payoff perturbations as in 

Section II’s equilibrium with perturbations analysis (Figure 2), which make QRE sensitive to the 

framing and give it the potential to explain RTH’s results by responding asymmetrically to the 

asymmetries in the perturbed game's payoff structure. As usual, such models must be solved 

computationally. 

QRE with perturbations does no better than equilibrium with perturbations in explaining 

RTH’s results. Figure A1 illustrates logit QRE with payoff perturbations restricted to be equal in 

magnitude but opposite in sign across player roles, as a function of the precision λ, with e = 0.2187 

and f = 0.2010, the values that best fit RTH’s data for the equilibrium with restricted perturbations 

model. (The maximum likelihood estimate of λ in the QRE with restricted perturbations model is 

effectively infinite, reducing the model to the analogous equilibrium model.) For all combinations 

of e, f = 0.1, 0.2, 0.3, or 0.4 (all consistent with a totally mixed equilibrium), as in Figure A1, the 

logit QRE probability of central A dips below 0.25 for low values of λ for seekers but never for 

hiders; and it is always higher for hiders, reversing the patterns in RTH’s data. There is enough 

structure to suggest that this result is symptomatic of a theorem, but we have been unable to prove 

it. Thus, logit QRE can explain the prevalence of central A for Hiders and Seekers with 

perturbations of equal magnitudes but opposite signs across player roles. But the main difficulty is 

explaining the greater prevalence of central A for seekers, and in this case logit QRE robustly 

predicts that central A is more prevalent for hiders. 

Like equilibrium with payoff perturbations, logit QRE can only explain RTH’s results by 

postulating large differences across player roles in the magnitudes of the perturbations e and f as 

well as their signs. But this again yields an effectively infinite estimate of λ, reducing logit QRE, in 

terms of its substantive implications, to Section II’s equilibrium with unrestricted perturbations 

model. (With payoff perturbations restricted to have equal magnitudes across player roles, the 

estimated λ→∞. With perturbations allowed to differ in magnitude across roles, for any sufficiently 

large but finite λ QRE can adjust the perturbations to match the observed frequencies exactly. Thus 

λ and the perturbations are not identified, but all parameter values that maximize the likelihood are 

equivalent to those obtained when λ→∞. With finite λ the estimated perturbations for hiders 

(seekers) are higher (lower) than those estimated for equilibrium with perturbations.) Figure A2 

illustrates logit QRE with eH = 0.2910, fH = 0.2535, and eS = fS = 0.1539, the values that give the 

best fit for this model. 
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Figure A1. QRE with Payoff Perturbations of Equal Magnitudes Across Player Roles 

 

 

Figure A2. QRE with Payoff Perturbations of Differing Magnitudes Across Player Roles 

 

Symmetry of L0 Across Roles for Level-k Models 

Here we discuss, in more detail than in Section III, the issue of symmetry of L0 across 

player roles for level-k models. 

In our view the case for a role-symmetric L0 is partly an empirical question and partly rests 

on behavioral plausibility. Assuming for the sake of argument that some kind of level-k model is 

correct, the issue is how best to describe a player’s strategic thinking with regard to the order in 
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which he processes information about the game. One can imagine a model in which a player first 

reacts, all at once, to the game’s framing, feasible decisions, and payoffs, and so forms a payoff-

sensitive, role-asymmetric (though perhaps nonstrategic) L0; and then reacts further to the payoffs 

and strategic structure via a best-responding L1, L2, etc. But one can equally well imagine a 

compartmentalization of the thought process in which a player reacts first to the framing and 

feasible decisions, which are arguably more primitive than payoffs even in games where the 

strategic structure is as transparent as in hide-and-seek; and to payoffs only in later stages. 

 The latter compartmentalization is more in keeping with the spirit of the nonstrategic L0s 

in most of the previous level-k literature. See the uniform random L0 in Stahl and Wilson (1994, 

1995) and several subsequent analyses; the truthful and credulous L0s in Crawford (2003); and the 

truthful and random L0s in Crawford and Iriberri (2005). The role-symmetric, non-uniform random 

L0 in Ho, Camerer, and Weigelt (1998) implicitly allows payoffs to matter by not imposing 

uniformity, but does so only for symmetric games where the distinction between nonstrategic and 

payoff-insensitive doesn't matter, and doesn't try to model payoff-sensitivity or connect L0s across 

games. The one L0 in the literature that is clearly payoff-sensitive is Bacharach and Stahl's 

(1997ab), which favors salience for seekers and avoids it for hiders. 

A Bacharach and Stahl-style model fits slightly better than our favored model, and does 

10% better within RTH's sample in our overfitting test (Table 4). But it does poorly beyond sample 

in O’Neill’s game (Table 5), and it is not even well-defined for Rapoport and Boebel’s game. The 

simplicity of a payoff-insensitive L0 and the fact that its specification can be based on decision-

theoretic evidence about reactions to framing are (together with the simplicity and generality of the 

iterated best responses that define L1, etc.) the key to our level-k model’s portability, because 

different games are much more likely to have compelling analogies between their sets of feasible 

decisions and framing than between strategic structures, as would be required to transport a 

Bacharach and Stahl-style L0. 

Overfitting 

 This section gives more detail on the overfitting test discussed in Section V. Table A2 

gives the treatment by treatment parameter estimates on which the overfitting comparisons in 

Table 4 are based. The estimated type frequencies for our proposed level-k model in Table 

A2, particularly those of L4, vary widely across RTH's six treatments, which is disturbing 

because level-k types are meant to be general strategic decision rules. The estimated type 
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frequencies for L1 and L2 are actually very stable. The type frequencies for L3 and L4 are less 

stable, but mainly for RTH-4 and RT-AABA-Mine. Even so, we cannot reject the constraint 

that in our proposed level-k model, the type frequencies are the same in all six RTH 

treatments, despite RTH's large samples (p-value 0.9873). This failure to reject despite the 

varying point estimates is due mainly to two factors: (i) The designs, with only one 

observation per subject in the games we study, are not well suited to identifying subjects’ 

decision rules; and (ii) L4’s and to a lesser extent L3’s frequency estimates are weakly 

identified in RTH's data because L4 never chooses central A and L3 seldom does (Table 2), 

so they are not much involved in either of the major, robust patterns in the data. 

As Table A2 shows, the parameter estimates for the other models also vary widely 

across treatments. Like the instability of the type frequencies for L3 and L4, this is probably 

due to differences in observed frequencies other than the larger ones involving central A that 

our analysis focuses on. The two treatments that differ the most from the others are RTH-4, in 

which B is chosen more than in any other treatment (Table 1, footnote 7) and RT-AABA-

Mine, in which hiders’ and seekers’ frequencies of central A differ the least. 

 

Table A2. Treatment by Treatment Parameter Estimates in RTH’s Games 

Treatment Level-k with symmetric L0 favoring salience Equilibrium with unrestricted 
perturbations 

 r s T u v e eH fH eS fS

RTH-4 0 0.2499 0.2643 0.4858 0.0000 0 0.3307 0.1451 0.2736 0.0377 
RT-AABA-Treasure 0 0.1577 0.3265 0.2257 0.2901 0 0.3648 0.2941 0.1164 0.1640 

RT-AABA-Mine 0 0.1566 0.3393 0.0686 0.4355 0 0.1818 0.2121 0.1028 0.2192 
RT-1234-Treasure 0 0.1572 0.3810 0.1421 0.3197 0 0.3035 0.2976 0.1471 0.1390 

RT-1234-Mine 0 0.2066 0.3153 0.2603 0.2178 0 0.2669 0.2406 0.1667 0.1111 
R-ABAA 0 0.1933 0.3743 0.2683 0.1641 0 0.4141 0.3594 0.2500 0.2600 

Treatment Level-k with symmetric L0 avoiding salience Level-k with asymmetric L0 
 r s T u v e r s t ε 

RTH-4 0 0.2897 0 0.4911 0.2192 0 0 0.7940 0.2060 0.7312 
RT-AABA-Treasure 0 0.4184 0.0668 0.3265 0.1883 0 0 0.5408 0.4592 0.6588 

RT-AABA-Mine 0 0.2176 0.4239 0 0.3585 0 0 0.8032 0.1968 0.8081 
RT-1234-Treasure 0 0.3761 0.0822 0.3816 0.1601 0 0 0.6091 0.3909 0.6984 

RT-1234-Mine 0 0.3797 0.0334 0.4745 0.1124 0 0 0.6804 0.3196 0.7419 
R-ABAA 0 0.3925 0.0337 0.3326 0.2412 0 0 0.7300 0.2700 0.6042 
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This section gives background on Section VI’s portability analysis. Figure A3 and Tables 

A3-A4 give the details of types’ choices in the best-fitting regions for our proposed level-k model 

in O’Neill’s game, just as Figure 3 and Table 2 did for RTH’s games. Table A5 gives the details of 

types’ choices in the best-fitting regions for our proposed model in Rapoport and Boebel’s game. 

Portability 

Figure A3. L1's Choices in O’Neill's Game as Functions of L0’s Choice Probabilities a and j 
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Table A3. Types’ Expected Payoffs and Choice Probabilities in O’Neill’s Game when 3j - a< 1 
Player 1 Exp. Payoff Choice Pr. Exp. Payoff Choice Pr. Player 2 Exp. Payoff Choice Pr. Exp. Payoff Choice Pr. 

  A+ 2j < 1 a+ 2j < 1 a+ 2j > 1 a+ 2j > 1  a+ 2j < 1 a+ 2j < 1 a+ 2j > 1 a+ 2j > 1 
L0 (Pr. R)   L0 (Pr. r)  

A - a - A A - a - a 
2 -      (1-a-j)/2 - (1-a-j)/2 2 - (1-a-j)/2 - (1-a-j)/2 
3 -      (1-a-j)/2 - (1-a-j)/2 3 - (1-a-j)/2 - (1-a-j)/2 
J - j - J J - j - j 

L1 (Pr. s)   L1 (Pr. s)  
A 1-a-j 0 1-a-j 0 A a+j    0 a+j 1
2 (1+a-j)/2 1/2  (1+a-j)/2 1/2 2 (1-a+j)/2    0 (1-a+j)/2 0
3 (1+a-j)/2      1/2 (1+a-j)/2 1/2 3 (1-a+j)/2 0 (1-a+j)/2 0 
J  J 0  J 0 J 1-j 1 1-j 0 

L2 (Pr. t)   L2 (Pr. t)  
A 0        0 0 0 A 0 0 0 0
2 0        0 1 1/2 2 ½ 0 1/2 0
3 0        0 1 1/2 3 ½ 0 1/2 0
J 1    1 0 0 J 1 1 1 1 

L3 (Pr. u)   L3 (Pr. u)  
A 0        0 0 0 A 1 1/3 0 0
2 0        0 0 0 2 1 1/3 1/2 0
3 0        0 0 0 3 1 1/3 1/2 0
J 1        1 1 1 J 0 0 1 1

L4 (Pr. v)   L4 (Pr. v)  
A 2/3        1/3 0 0 A 1 1/3 1 1/3
2 2/3        1/3 0 0 2 1 1/3 1 1/3
3 2/3        1/3 0 0 3 1 1/3 1 1/3
J 0        0 1 1 J 0 0 0 0

Total  a+2j < 1 a+2j > 1 Total a+2j < 1 a+2j > 1
A ra+(1-ε)[v/3] + (1-r) ε/4 ra+ (1-r) ε/4 A ra+(1-ε) [u/3+v/3]+ (1-r) ε/4 ra+(1-ε) [s+v/3]+ (1-r) ε/4 
2 r(1-a-j)/2+ (1-ε) [s/2+v/3]+ (1-r) ε/4 r(1-a-j)/2+ (1-ε) [s/2+t/2]+ (1-r) ε/4 2 r(1-a-j)/2+(1-ε) [u/3+v/3]+ (1-r) ε/4 r(1-a-j)/2+(1-ε) [v/3]+ (1-r) ε/4 
3 r(1-a-j)/2+(1-ε) [s/3+v/3]+ (1-r) ε/4 r(1-a-j)/2+ (1-ε) [s/2+t/2]+ (1-r) ε/4 3 r(1-a-j)/2+(1-ε) [u/3+v/3]+ (1-r) ε/4 r(1-a-j)/2+(1-ε) [v/3]+ (1-r) ε/4 
J Rj+(1-ε) [t+u]+ (1-r) ε/4 rj+(1-ε) [u+v]+ (1-r) ε/4 J rj+(1-ε) [s+t]+ (1-r) ε/4 rj+(1-ε) [t+u]+ (1-r) ε/4 
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Table A4. Types’ Expected Payoffs and Choice Probabilities in O’Neill’s Game when 3j – a > 1 
Player 1 Exp. Payoff  Choice Pr. Player 2 Exp. Payoff Choice Pr.

L0 (Pr. R)  L0 (Pr. r)
A - a A - a 
2 -  (1-a-j)/2 2 - (1-a-j)/2 
3 -  (1-a-j)/2 3 - (1-a-j)/2 
J - j J - j 

L1 (Pr. S)  L1 (Pr. s)
A 1-a-j 0 A a+j  1
2 (1+a-j)/2 0 2 (1-a+j)/2  0
3 (1+a-j)/2 0 3 (1-a+j)/2 0 
J  j 1 J 1-j 0 

L2 (Pr. T)  L2 (Pr. t)
A 0    0 A 1 1/3
2 1    1/2 2 1 1/3
3 1    1/2 3 1 1/3
J 0  0 J 0 0 

L3 (Pr. U)  L3 (Pr. u)
A 2/3    1/3 A 0 0
2 2/3    1/3 2 1/2 0
3 2/3    1/3 3 1/2 0
J 0    0 J 1 1

L4 (Pr. V)  L4 (Pr. v)
A 0    0 A 1/3 0
2 0    0 2 1/3 0
3 0    0 3 1/3 0
J 1    1 J 1 1

Total   Total
A Ra+(1-ε)[u/3]+ (1-r) ε/4 A ra+(1-ε)[s+t/3]+ (1-r) ε/4 
2 r(1-a-j)/2+(1-ε)[t/2+u/3]+ (1-r) ε/4 2 r(1-a-j)/2+(1-ε)[t/3] + (1-r) ε/4 
3 R(1-a-j)/2+(1-ε)[t/2+ u/3]+ (1-r) ε/4 3 r(1-a-j)/2+(1-ε)[t/3]+ (1-r) ε/4 
J Rj+(1-ε)[s+v]+ (1-r) ε/4 J rj+(1-ε)[u+v]+ (1-r) ε/4 
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Table A5. Types’ Expected Payoffs and Choice Probabilities in Rapoport and Boebel’s Game
Player 1 Exp. Payoff Choice Pr. Exp. Payoff Choice Pr. Player 2 Exp. Payoff Choice Pr. Exp. Payoff Choice Pr. 

 3m/2+n>1  3m/2+n>1 3m/2+n<1 3m/2+n<1 3m/2+n>1 3m/2+n>1 3m/2+n<1 3m/2+n<1 
L0 (Pr. r)   L0 (Pr. r)  

C - m/2 - m/2 C - m/2 - m/2 
L - (1-m-n)/2 - (1-m-n)/2 L - (1-m-n)/2 - (1-m-n)/2 
F - n - n F - N - n 
I - (1-m-n)/2 - (1-m-n)/2 I - (1-m-n)/2 - (1-m-n)/2 
O  m/2 m/2 O m/2 m/2 

L1 (Pr. s)   L1 (Pr. s)  
C m/2 0 m/2 0 C 1-m/2 0 1-m/2 1 
L 1/2+n/2 1 1/2+n/2 1 L 1/2-n/2 0 1/2-n/2 0 
F 1/2-n/2 0 1/2-n/2 0 F 1/2+n/2 0 1/2+n/2 0 
I 1-m-n 0 1-m-n 0 I m+n 1 m+n 0 
O (1-m+n)/2 0 (1-m+n)/2 0 O (1+m-n)/2 0 (1+m-n)/2 0 

L2 (Pr. t)   L2 (Pr. t)  
C 0  1 ½ 1 1/2 0 1 1 C
L 1  1 ½ 1 1/2 1/2 0 0 L
F 0  0 0 0 0 0 0 0 F
I 1  0 0 0 0 1/2 0 0 I
O 0  0 0 0 0 0 0 0 O

L3 (Pr. u)   L3 (Pr. u)  
C ½  1 1 0 0 1/4 1/2 1/4 C
L 0  ½ 0 1 1/4 0 0 0 L
F ½  ½ 0 1 1/4 1/4 1/2 1/4 F
I ½  0 0 1 1/4 1/4 1/2 1/4 I
O ½  1/4 1/2 1/4 O 1/2 0 1 1/4 

L4 (Pr. v)   L4 (Pr. v)  
C 1  1 0 0 C 3/4 ¼ 3/4 1/4 
L 0  0 0 1/4 0 0 3/4 1 L
F 0  0 1/2 0 F 3/4 ¼ 3/4 1/4 
I 0  0 1/2 0 I 3/4 ¼ 3/4 1/4 
O 0  0 1/2 0 O 3/4 ¼ 3/4 1/4 

Total 3m/2+n>1 3m/2+n<1 Total 3m/2+n>1 3m/2+n<1
C rm/2+(1-ε)[u/4+v]+ (1-r)ε/5 rm/2+(1-ε) [t+u/4]+ (1-r)ε/5 C rm/2+(1-ε) [t/2+u+v/4]+ (1-r)ε/5 rm/2+(1-ε) [s+t/2+v/4]+ (1-r)ε/5 
L r(1-m-n)/2+(1-ε) [s+t/2]+ (1-r)ε/5 r(1-m-n)/2+(1-ε) [s+v]+ (1-r)ε/5 L r(1-m-n)/2+(1-ε) [t/2]+ (1-r) ε/5 r(1-m-n)/2+(1-ε) [t/2+u/4]+ (1-r) ε/5 
F rn +(1-ε) [u/4]+ (1-r) ε/5 rn +(1-ε) [u/4]+ (1-r) ε/5 F rn +(1-ε) [v/4]+ (1-r) ε/5 rn +(1-ε) [u/4+v/4]+ (1-r) ε/5 
I r(1-m-n)/2+(1-ε) [t/2+u/4] (1-r) ε/5 r(1-m-n)/2 +(1-ε) [u/4] (1-r) ε/5 I r(1-m-n)/2+(1-ε) [s+v/4]+ (1-r) ε/5 r(1-m-n)/2+(1-ε) u/4+v/4]+ (1-r)ε/5 
O rm/2+(1-ε) [u/4]+ (1-r)ε/5 rm/2 +(1-ε) [u/4]+ (1-r)ε/5 O rm/2+(1-ε) [v/4]+ (1-r) ε/5 rm/2+(1-ε) [u/4+v/4]+ (1-r) ε/5 
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