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Reference-dependence: a meaningful theorem?

max
q

u (q,q− rt) subject to p′tq = xt

"By a meaningful theorem I mean simply a hypothesis
about empirical data which could conceivably be refuted."

P. Samuelson, Foundations of Economic Analysis, p.4, (1947).



Reference-dependence
Is the neoclassical model meaningful?

Afriat’s Theorem1. The following statements are equivalent:

1. There exists a continuous, non-satiated utility function which
rationalises the data.
2. There exists a continuous, concave, monotonic utility function which
rationalises the data.
3. The data satisfy GARP.
4. There exists real numbers {Ut ,λt > 0}t=1,...,T such that
Us ≤ Ut + λtp′t (qs − qt)

1Afriat (1967), Diewert (1973), Varian (1982)



Reference-dependence
Plan for the talk

1 Reference-dependent preferences.
2 An Afriat’s Theorem for reference-dependent preferences?
3 Another look at the NYC taxi drivers.
4 Which theory is best?



Reference-dependence
Reference points

We index observations by t = 1, ...,T .
We observe prices pt ∈ RK

++ and demand choices qt ∈ RK
+.

Reference points are denoted rt ∈ RK .



Reference-dependence
Reference points

r2

r1

r

q2

q1

Reference points have the same
dimensionality as the choice variable.
This is a “two-dimensional reference
point” (there is reference-dependence
in both dimensions).
This creates four regimes (defined by
gains/losses) relative to r .



Reference-dependence
Reference points

r

q2

q1

If the reference point for a good is
zero there is “one-dimensional
reference point”.
Here there is reference-dependence
wrt good 1, but not good two.
This creates two regimes (defined by
gains/losses with respect to good 1)
relative to r .



Reference-dependence

Preferences are such that people care about differences wrt to r as
well as levels (q) of consumption

u(q,q− r)

Through suitable choice of u you get :
The standard model: u(q,q− r) = v (q)
Tversky & Kahneman (1991): u(q,q− r) = w (q− r)
Koszegi & Rabin (2006): u(q,q− r) = m (q) + n (q− r)



Reference-dependence

The main ingredients usually involve:
Reference-dependence: “carriers of value are gains and losses
relative to a reference point".
Loss aversion: "the [utility] function is steeper in the negative
than the positive domain".
Diminishing sensitivity: "the marginal values of both gains
and losses decreases with their size"



Reference-dependence
Reference points

People are endowed with a “book” of
utility functions.
The utility function changes from one
form to another at the reference point.
This creates multiple regimes defined
by gains/losses with respect to r .



Reference-dependence
Reference points

“Loss aversion” occurs when the slope
of the utility function is locally steeper
below r than above.
The marginal utility of gains are
smaller than loses (locally).



Reference-dependence
Reference points

r

The drop in marginal utility at the
reference point associated with “loss
aversion” changes the MRS discretely.
Hard to distinguish from regular
concavity given finite data.



Reference-dependence
Constant sensitivity/sign-dependence

Diminishing sensitivity is more than
“concave above, convex below”.
It relates to the way the local slope of
the utility function changes as the
reference point changes and gets
nearer/further away.



Reference-dependence
Constant sensitivity/sign-dependence

Movements in the reference points do two things
1 Local maps changes their area of application.
2 The local maps themselves may alter.

The consequence of this is that global maps will alter iff the
reference point moves.



Reference-dependence
Constant sensitivity/sign-dependence

r1

r2

q1

q2 Constant sensitivity means that the
MRS through the point of interest
does not change even though the
reference point has moved.
There is no local change in the
indifference curve.
The global map does change though,
as the local regimes shift.



Reference-dependence
Non-constant sensitivity/sign-independence

r1

r2

q1

q2

With diminshing sensitivity the
reference point is closer, and both the
marginal utilities and hence the MRS
change.
Since we are closer in both dimensions
the overall effect on the MRS is not
restricted.
There is a local change in the
indifference curve remote from the
reference point.
Both global and local maps change.



Reference-dependence
Rationalising the un-rationalisable

q1

q2

q1

q2

Here we have a violation of WARP.
There is no neoclassical utility function
which can explain these observations.



Reference-dependence
Rationalising the un-rationalisable

r1
q1

q2

q1

But suppose we have reference
dependence wrt good 1.
There is a book of two indifference
curves maps defined wrt loss-gain
regimes relative to r1.
q1 was selected in the loss regime
using loss-side preferences.



Reference-dependence
Rationalising the un-rationalisable

r2
q1

q2

q2

Now the reference point changes from
r1 to r2.
q2 was chosen using different gain-side
preferences.



Reference-dependence
Rationalising the un-rationalisable

r2 r1
q1

q2

q1

q2

As long as
the global indifference curves do not
cross the budget constraints
each within-regime indifference curve
maps is well-behaved

we can rationalise these choices.



Reference-dependence
Rationalising the un-rationalisable

q1

q2
The global indifference curves can look
severely non-standard (although with
loss-aversion they may merely become
more concave at the boundary).
Nonetheless, for a given reference
point they are (fairly) well-behaved.
But they change with the reference
point and therefore global indifference
curves are tangled as the reference
point moves.



Reference-dependence

Data: {pt ,qt}t=1,...,T repeated observations on an individual
consumer.
The data may include {rt}t=1,...,T

Are these data (in)consistent with this ...

max
q

u (q,q− rt) subject to p′tq = xt

...?



Reference-dependence

Overview of theoretical results
Non-constant sensitivity Constant sensitivity

Unobserved {rt} Prop. 1 Prop. 3
Observed {rt} Prop. 2 Prop. 4



Reference-dependence
“Rationalise”

Definition: “Rationalise”
A reference dependent utility function u (q,q− r) and a set of
reference points {rt}t=1,...,T rationalise the data {pt ,qt}t=1,...,T if
u (qt ,qt − rt) ≥ u (q,q− rt) for all q such that ptq ≤ p′tqt .



Reference-dependence
Non-constant sensitivity, unobserved rt

Proposition 1 (non-constant sensitivity, unobserved rt)
For any dataset {pt ,qt}t=1,...,T there exists a set of reference
points {rt}t=1,...,T and a utility function u (q,q− r) which is
continuous, non-satiated and non-decreasing with respect to q for
a given r which rationalises those data.



Reference-dependence
Non-constant sensitivity, observed rt

Proposition 2 (non-constant sensitivity, observed rt)
The following conditions are equivalent:
1. There exists a reference-dependent utility function that
rationalizes the data {pt ,qt , rt}t=1,...,T such that u (q,q− r) is
continuous, non-satiated, and non-decreasing with respect to q.
2. The observations within each subset of the data defined a
common reference point satisfy GARP.



Reference-dependence
Constant sensitivity, unobserved rt

Proposition 3 (constant sensitivity, unobserved rt)
The following conditions are equivalent:
1. There exist a set of reference points {rt}t=1,...,T such that
rk
t 6= qk

t for some k and a utility function u (q,q− r) which is
continuous, non-satiated and non-decreasing with constant
sensitivity which rationalise the data {pt ,qt}t=1,...,T .
2. There exists a partition of the data {pt ,qt}t=1,...,T into 2K

subsets or fewer which satisfy GARP.



Reference-dependence
Constant sensitivity, unobserved rt

r

q2

q1

The global indifference curves are
composed of at most four local maps.
These maps are locally invariant to
changes in the reference point.
The set of observations must be
rationalisable by not more than four
maps.



Reference-dependence
Constant sensitivity, unobserved rt

q1

q2

q1

q2

q3

This requires 3 maps.
Not rationalisable with a
1-dimensional reference point.
Except ....



Reference-dependence
Constant sensitivity, unobserved rt

q1

q2

q1

q2

q3

r1 r3 r2

If (at least one of the) bundles lie on
the boundaries then this is not the
case.
You can rationalise with fewer than
three maps.



Reference-dependence
Constant sensitivity, observed rt

Proposition 4 (constant sensitivity, observed rt)
The following conditions are equivalent:
1. There exists a reference-dependent utility function that
rationalizes the data such that u (q,q− r) exhibits constant
sensitivity and is continuous, non-satiated, and non-decreasing
with respect to q for any given rt .
2. The data within each regime defined by the reference points
satisfy GARP and the implied global revealed preferred and
revealed worse sets for each observation are disjoint.



Reference-dependence
Constant sensitivity, unobserved rt

r2r1
q1

q2

q1

q2

This satisfies the necessary condition
(2 maps).
But it is not rationalisable.
This is because no global map,
composed of the local ones, can
rationalise the observations.



Reference-dependence
Constant sensitivity, unobserved rt

x is (globally) preferred to both q1
and q2

Given r1, the gain side revealed
preference is q2 is preferred to x .
Hence there must be affordable convex
combinations of x and q2 which are
preferred to q1.



Reference-dependence
Further results

1 If the reference point does not move, or rt ≤ 0 ∀t then the
model collapses to the standard neoclassical model.

2 You can also test for a less than K−dimensional reference
point model (special case).

3 You need at least 2K + 1 observations to falsify the model
with a K−dimensional reference point.



Empirical Application
NYC taxi drivers

In the absence of large income effects, a neoclassical model of
labor supply predicts a positive wage elasticity of hours worked.
Camerer et al. (QJE, 1997) found a strongly negative elasticity of
hours with respect to their closest analog of a wage, realised
earnings per hour.

They interpret their finding as evidence of target earnings
behaviour by taxi drivers.

Target earnings behaviour can be an example of
reference-dependent preferences - there is a sharp kink in the
utility function at the reference/target level so that workers quit
when income reaches the reference/target level.



Empirical Application
NYC taxi drivers

Farber AER, 2008 collected his own NYC taxidriver data.
He estimated a non-structural model which allowed for an earnings
reference point.

He found:
There was evidence in favour of an earning reference point.
But reference points varied unpredictably from day to day -
they were too unstable and imprecisely estimated to allow a
useful reference-dependent model of labour supply.



Empirical Application
NYC taxi drivers

V. Crawford and Meng AER, 2011 re-examined Farber’s data.
They using a structural model based on Koszegi & Rabin’s
(QJE,2006) theory model which conceptualises reference points as
rational expectations. They assume constant sensitivity. They also
allowed for hours targets.

They found:
Reference points are an important element of the story.
Using Koszegi & Rabin’s model as a guide they were able
more successfully to fit the variation in reference points.



Empirical Application
NYC taxi drivers

Farber collected 538 "trip sheets" for 15 drivers between June 1999
and May 2001.
Each trip sheet records the driver’s name, hack number, and date
and the details of each fare.

For each fare the data record the start time, start location,end
time, end location, and fare.



Empirical Application
NYC taxi drivers



Empirical Application
NYC taxi drivers

Our data:
{

pi
t ,qi

t
}i=1,...,15

t=1,...,Ti
where

qi
t =

[
l i
t

c i
t

]
=

[
24 – work hours – breaks – waiting

consumption

]

pi
t =

[
w i

t
1

]
=

[
hourly earnings

numeraire

]
We adjust hourly earnings for time spent waiting.



Empirical Application
NYC taxi drivers
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Empirical Application
NYC taxi drivers
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Empirical Application
NYC taxi drivers
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Empirical Application
NYC taxi drivers
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Empirical Application
NYC taxi drivers
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Empirical Application
NYC taxi drivers

For each individual driver we apply the various tests of
reference-dependence with constant sensitivity.

1 Unobserved preference points
1 reference-dependence in one dimension
2 reference-dependence in both dimensions

2 Alternative models of observed reference points
1 reference-dependence in either dimension
2 reference-dependence in both dimensions



Empirical Application
Model comparison - Selten’s Index

It’s an attempt to apply Occam’s Razor empirically.
It trades-off

1 The pass rate (proportion of the data consistent with the
model), denoted by r ∈ [0, 1].

2 The size of the set of theory-consistent actions relative to the
size of the set of all feasible actions, denoted by a ∈ [0, 1]



Empirical Application
Model comparison - Selten’s Index

A good theory combines
a small a (theory which constrains predicted behaviour)
with a high r (behaviour with a high level of
theory-consistency).

A bad theory combines
a big a (almost anything goes)
with a low r (behaviour cannot even be consistent with almost
anything goes).

Selten argues m(r , a) and

m(1, 0) > m(0, 1)
m(0, 0) = m(1, 1)
m(r̄, ā) = m̄



Empirical Application
Model comparison - Selten’s Index

Selten’s measure of predictive success:

m(r , a) = r − a

m ∈ [−1, 1]
m→ 1: a good theory
m→ −1: a pathologically bad theory



Empirical Application
Model comparison - Kullback Leibler Information

Another interesting way of combining r and a is to think
about how informative the empirical exercise is relative to the
permissiveness of a model given by a.
This is an attempt to answer the question “given how flexible
the model is, what did we learn from the data?”
We use the Kullback-Leibler information gain

KL(r , a) = r log2
r
a + (1− r ) log2

(1− r )
(1− a)



Empirical Application
Model comparison - Kullback Leibler Information

What did we learn?
if the model is very flexible (a→ 1) and the data accorded
with it (r → 1), then “not much”
if the model is very restrictive (a→ 0) and the data failed to
fit (r → 0), then “not much either”

KL(0, 0) = KL(1, 1) = KL(c, c) = 0

but if the model is very restrictive (a→ 0) and the data fits
well (r → 1), or the model is very flexible (a→ 1) and the
data fits poorly (r → 0), then “quite a bit” (either way).

KL(0, 1)→ ∞, KL(1, 0)→ ∞



Empirical Application
Model comparison

The two measures try to address two different questions
Kullback Leibler Divergence: the expected amount of
information gained by examining the data, relative to the
flexibility of the model.
Selten Index: how well does the model fit the data given its
flexibility



Empirical Application
Unobserved Reference points - Pass Rate



Empirical Application
Unobserved Reference points - Selten Index of Predictive Success
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Empirical Application
Unobserved Reference points - KLIC



Empirical Application
Unobserved Reference points
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Empirical Application
Observed Reference points

We consider 18 models of the reference point.
1D and 2D reference-dependence in which we model the
reference point as a known function of the data:

the leave-me-out-mean
the leave-me-out-mean conditional on day/night shift
the leave-me-out-mean conditional on raining/not raining
the last shift
the last shift conditional on day/night
the last shift conditional on rain



Empirical Application
Observed Reference points - Pass Rates



Empirical Application
Observed Reference points - Selten Index of Predictive Success



Empirical Application
Observed Reference points - KLIC



Empirical Application
Observed Reference points - Earnings

Pass Rate Information Gain Predictive Success
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Empirical Application
Observed Reference points - Hours

Pass Rate Information Gain Predictive Success
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Empirical Application
Observed Reference points - Earnings & hours

Pass Rate Information Gain Predictive Success

WARP Mean Mean|day Mean|rain Last Last|day Last|rain

Model

P
as

s 
R

at
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

WARP Mean Mean|day Mean|rain Last Last|day Last|rain

Model

In
fo

rm
at

io
n 

G
ai

n 
(b

its
)

0
1

2
3

4
5

WARP Mean Mean|day Mean|rain Last Last|day Last|rain

Model

S
el

te
n 

In
de

x

−
1.

0
−

0.
5

0.
0

0.
5

1.
0



Conclusions

Reference-dependence is a meaningful theorem.
We will refrain from making population level statements on
the basis of a sample of 15 individuals. But we might
tentatively suggest:

The neoclassical cannot fit as well as the behavioural
alternative. Yet once you penalise models for flexibility it
seems that it is hard to beat.
Nonetheless, some reasonably plausible observed
reference-points provide a better account of behaviour than
the neoclassical model.

It is probably not always necessary (or advisable) to reach for
the behavioural explanation if WARP will do.


