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Strategic Thinking 

The canonical model of strategic thinking is Nash equilibrium, defined as a 
combination of strategies, one for each player, such that each player’s strategy 
maximizes his expected payoff, given the others’ strategies.  
 
(Nash equilibrium can be defined without reference to its interpretation, but it is 
best thought of as an “equilibrium in beliefs,” in which players’ strategies 
represent beliefs about others’ strategies that are correct, given the rational 
strategy choices they imply.) 
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Strategic Thinking 

The canonical model of strategic thinking is Nash equilibrium, defined as a 
combination of strategies, one for each player, such that each player’s strategy 
maximizes his expected payoff, given the others’ strategies.  
 
(Nash equilibrium can be defined without reference to its interpretation, but it is 
best thought of as an “equilibrium in beliefs,” in which players’ strategies 
represent beliefs about others’ strategies that are correct, given the rational 
strategy choices they imply.) 
 
 
Equilibrium addresses the problem that in games, decision-theoretic rationality 
alone seldom restricts behavior enough to be useful: Even common knowledge 
of rationality implies only that players’ strategies are rationalizable (Bernheim 
1984 Ecma and Pearce 1984 Ecma), which often leaves behavior unrestricted. 
 
Equilibrium makes more definite predictions by adding the “rational-expectations” 
assumption that players’ beliefs are correct, and thus the same for all players. 
 
Because many games have multiple equilibria, equilibrium refinements are often 
added, with the goal of making unique predictions based on theory alone. 
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Applications can safely assume equilibrium if a setting allows learning, if only 
long-run outcomes matter, and if equilibrium is unique. 
 
Otherwise, outcomes are determined or influenced by strategic thinking. 
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Applications can safely assume equilibrium if a setting allows learning, if only 
long-run outcomes matter, and if equilibrium is unique. 
 
Otherwise, outcomes are determined or influenced by strategic thinking. 
 
 
 
Epistemic game theory provides conditions under which thinking based on 
iterated or common knowledge of rationality and beliefs will focus players’ beliefs 
on an equilibrium, even in their initial responses to a game. 
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Applications can safely assume equilibrium if a setting allows learning, if only 
long-run outcomes matter, and if equilibrium is unique. 
 
Otherwise, outcomes are determined or influenced by strategic thinking. 
 
 
 
Epistemic game theory provides conditions under which thinking based on 
iterated or common knowledge of rationality and beliefs will focus players’ beliefs 
on an equilibrium, even in their initial responses to a game. 
 
 
But in many games such thinking is complex, and even people who are capable 
of it may doubt that others are capable, and so on, making a thinking justification 
for equilibrium behaviorally implausible.  
 
 
People may then find simpler, nonequilibrium ways of thinking about the game. 
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Modeling strategic thinking more accurately can yield several benefits: 
 
● It can establish the robustness of conclusions based on equilibrium in 
 games where empirically reliable rules mimic equilibrium. 
 
● It can challenge conclusions based on equilibrium or refinements in 
 games where equilibrium is implausible without learning. 
 
● It can resolve empirical puzzles by explaining the deviations from 
 equilibrium that some games evoke. 
 
● It can elucidate learning from imperfect analogies, where assumptions 
 about cognition determine which analogies players recognize. 
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Modeling strategic thinking more accurately can yield several benefits: 
 
● It can establish the robustness of conclusions based on equilibrium in 
 games where empirically reliable rules mimic equilibrium. 
 
● It can challenge conclusions based on equilibrium or refinements in 
 games where equilibrium is implausible without learning. 
 
● It can resolve empirical puzzles by explaining the deviations from 
 equilibrium that some games evoke. 
 
● It can elucidate learning from imperfect analogies, where assumptions 
 about cognition determine which analogies players recognize. 
 
 
However, even those who grant the desirability of modeling strategic thinking 
more accurately may doubt its feasibility:  

● How can any model out-predict a rational-expectations notion? 

● And how can one identify such a model among the huge set of possible non- 
 equilibrium models? 
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But… 

 

● There is now a large body of experimental research that studies strategic 
thinking by eliciting subjects’ initial responses to games played as if in isolation 
(surveyed in Crawford, Costa-Gomes, and Iriberri 2013 JEL). 

 
● The evidence suggests that people’s thinking in novel or complex games does 

 not follow the fixed-point or indefinitely iterated dominance reasoning that 
equilibrium often requires. 
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point reasoning to characterize; the claim is that fixed-point reasoning doesn’t 
directly describe people’s thinking.) 
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But… 

 

● There is now a large body of experimental research that studies strategic 
thinking by eliciting subjects’ initial responses to games played as if in isolation 
(surveyed in Crawford, Costa-Gomes, and Iriberri 2013 JEL). 

 
● The evidence suggests that people’s thinking in novel or complex games does 

 not follow the fixed-point or indefinitely iterated dominance reasoning that 
equilibrium often requires. 

(Learning can still make people converge to something that we need fixed-
point reasoning to characterize; the claim is that fixed-point reasoning doesn’t 
directly describe people’s thinking.) 

 
● The evidence also identifies systematic patterns that can be modeled. 
 
In this lecture I will compare alternative models and then discuss the evidence. 
 
I focus on normal-form games but discuss extensive-form games at the end.  
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Alternative normal-form models of strategic thinking 
 
The leading alternatives are: 
 
● Adding noise to equilibrium predictions (“equilibrium plus noise”), plus 
 refinements such as risk- or payoff-dominance or “global games”. 
 
●  Finitely iterated dominance and k-rationalizability (for strict dominance the two 

notions are equivalent in the two-person games I focus on here). 
 
● Quantal response equilibrium (“QRE”) and logit QRE (“LQRE”). 
 
● “Level-k” models. 
 
● Cognitive hierarchy (“CH”) models. 
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Alternative normal-form models of strategic thinking 
 
The leading alternatives are: 
 
● Adding noise to equilibrium predictions (“equilibrium plus noise”), plus 
 refinements such as risk- or payoff-dominance or “global games”. 
 
●  Finitely iterated dominance and k-rationalizability (for strict dominance the two 

notions are equivalent in the two-person games I focus on here). 
 
● Quantal response equilibrium (“QRE”) and logit QRE (“LQRE”). 
 
● “Level-k” models. 
 
● Cognitive hierarchy (“CH”) models. 
 
All are general models of strategic behavior, applicable in any norma-form game. 
 
All allow but do not assume equilibrium in all games. 
 
The last three not only predict that deviations from equilibrium will sometimes 
occur, but also which games evoke them and the forms they are likely to take. 
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A. Equilibrium Plus Noise 
 
 
 
Equilibrium plus noise adds noise with a specified, error distribution (usually logit) 
with an estimated precision parameter to equilibrium predictions. 
 
 
 
Although a player’s error distribution is usually sensitive to the payoff costs of 
errors, those costs are evaluated assuming (unlike in most other models 
discussed here) that other players play their equilibrium strategies without errors. 
 
 
 
Equilibrium plus noise often describes observed behavior well but sometimes 
misses systematic patterns in subjects’ deviations from equilibrium. 
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B. Rationalizability and k-rationalizability 
 
In two-person games (with differences in n-person games that are unimportant 
here), the implications of common or finitely iterated knowledge of players’ 
rationality (without further restrictions on beliefs) are captured by indefinitely or 
finitely iterated strict dominance. 
 
Their implications for players’ strategy choices are captured by rationalizability or 
k-rationalizability, set-valued restrictions on individual player’s choices (unlike 
equilibrium, which restricts the relationship between players’ choices). 
 
k-rationalizability reflects the implications of k levels of mutual knowledge of 
rationality; rationalizability is equivalent to k-rationalizability for all k. 
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B. Rationalizability and k-rationalizability 
 
In two-person games (with differences in n-person games that are unimportant 
here), the implications of common or finitely iterated knowledge of players’ 
rationality (without further restrictions on beliefs) are captured by indefinitely or 
finitely iterated strict dominance. 
 
Their implications for players’ strategy choices are captured by rationalizability or 
k-rationalizability, set-valued restrictions on individual player’s choices (unlike 
equilibrium, which restricts the relationship between players’ choices). 
 
k-rationalizability reflects the implications of k levels of mutual knowledge of 
rationality; rationalizability is equivalent to k-rationalizability for all k. 
 
A 1-rationalizable strategy (the sets R1 on the next slide) is one for which there is 
a profile of others’ strategies that makes it a best response. 
 
A 2-rationalizable strategy (the sets R2) is one for which there exists a profile of 
others’ 1-rationalizable strategies that make it a best response. 
 
And so on…. 
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Each game has a unique equilibrium (M, C). In the first, M and C are the only 
rationalizable strategies; in the second all strategies are rationalizable.  

  R1,R2 R1,R2,R3,R4  
   L C R 

R1,R2,R3 T 
0   

7 
5 

0 
3 

0 

R1,R2,R3,R4 M 
0 

5 
2 

2 
0 

5 

R1 B 
7 

0 
5 

0 
3   

7 

 
 Dominance-solvable game 

 

  Rk for all k Rk for all k Rk for all k 
   L C R 

Rk for all k T 
0   

7 
5 

0 
7 

0 

Rk for all k M 
0 

5 
2 

2 
0 

5 

Rk for all k B 
7 

0 
5 

0 
0   

7 

  Unique equilibrium without dominance 
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Equilibrium reflects the implications of common knowledge of rationality plus 
common beliefs: Any equilibrium strategy is k-rationalizable for all k, but not all 
combinations of rationalizable strategies are in equilibrium. 
 
 
In games that are strictly dominance-solvable in k rounds, k-rationalizability 
implies that players have the same beliefs—with a qualification for mixed-
strategy equilibria that is unimportant here—so any combination of k-
rationalizable strategies is in equilibrium as in the first game above. 
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Equilibrium reflects the implications of common knowledge of rationality plus 
common beliefs: Any equilibrium strategy is k-rationalizable for all k, but not all 
combinations of rationalizable strategies are in equilibrium. 
 
 
In games that are strictly dominance-solvable in k rounds, k-rationalizability 
implies that players have the same beliefs—with a qualification for mixed-
strategy equilibria that is unimportant here—so any combination of k-
rationalizable strategies is in equilibrium as in the first game above. 
 
 
In other games, k-rationalizability and rationalizability allow deviations from 
equilibrium as in the second game above, where there is a “helix” of beliefs to 
make any strategy combination consistent with common knowledge of rationality. 

(But except for the equilibrium beliefs (M, C), the beliefs in the helix differ across 
players, and many are behaviorally implausible.) 
 
 
Finitely iterated dominance and k-rationalizability are often consistent with the 
systematic patterns in subjects’ deviations from equilibrium. 
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C. Quantal Response Equilibrium (“QRE”) and Logit QRE (“LQRE”) 
 
QRE seeks to capture the payoff-sensitivity of deviations from equilibrium that 
equilibrium plus noise sometimes misses. 
 
In a QRE players’ decisions are noisy, with the probability density of each 
decision increasing in its expected payoff. 

But importantly, unlike in equilibrium plus noise (or in level-k and CH models), the 
payoffs are evaluated taking the noisiness of others’ decisions into account. 
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QRE seeks to capture the payoff-sensitivity of deviations from equilibrium that 
equilibrium plus noise sometimes misses. 
 
In a QRE players’ decisions are noisy, with the probability density of each 
decision increasing in its expected payoff. 

But importantly, unlike in equilibrium plus noise (or in level-k and CH models), the 
payoffs are evaluated taking the noisiness of others’ decisions into account. 
 
A QRE model is closed by specifying a response distribution, which is logit in 
almost all applications. As its precision increases, QRE approaches equilibrium; 
and as its precision approaches 0, QRE approaches uniform randomization. 

A QRE is then a fixed point in the space of decision probability distributions, with 
each player’s distribution a noisy best response to others’ distributions. 
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C. Quantal Response Equilibrium (“QRE”) and Logit QRE (“LQRE”) 
 
QRE seeks to capture the payoff-sensitivity of deviations from equilibrium that 
equilibrium plus noise sometimes misses. 
 
In a QRE players’ decisions are noisy, with the probability density of each 
decision increasing in its expected payoff. 

But importantly, unlike in equilibrium plus noise (or in level-k and CH models), the 
payoffs are evaluated taking the noisiness of others’ decisions into account. 
 
A QRE model is closed by specifying a response distribution, which is logit in 
almost all applications. As its precision increases, QRE approaches equilibrium; 
and as its precision approaches 0, QRE approaches uniform randomization. 

A QRE is then a fixed point in the space of decision probability distributions, with 
each player’s distribution a noisy best response to others’ distributions. 
 
In applications QRE’s or LQRE’s precision is estimated econometrically or 
calibrated from previous analyses. 

The resulting QRE, “logit QRE”, or “LQRE” implies error distributions that 
respond to out-of-equilibrium payoffs in plausible ways; and often fits subjects’ 
deviations from equilibrium better than an equilibrium-plus-noise model. 
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D. Level-k Models 

In a level-k model people follow rules of thumb that: 

● Anchor their beliefs in a naïve model of others’ responses, called L0, usually 
 uniform random over the feasible decisions (sometimes truthful, etc.); and 
 
● Adjust their beliefs via a small number (k) of iterated best responses, so L1 
 best responds to L0, L2 to L1, and so on.  

 (Unlike LQRE, Lk types do not respond to the noisiness of others’ decisions.) 
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 uniform random over the feasible decisions (sometimes truthful, etc.); and 
 
● Adjust their beliefs via a small number (k) of iterated best responses, so L1 
 best responds to L0, L2 to L1, and so on.  

 (Unlike LQRE, Lk types do not respond to the noisiness of others’ decisions.) 
 
● Lk (for k > 0) is decision-theoretically rational, with an accurate model of the 

game; it departs from equilibrium only in deriving its beliefs from an 
oversimplified model of others’ responses. 

  



25 

 

D. Level-k Models 

In a level-k model people follow rules of thumb that: 

● Anchor their beliefs in a naïve model of others’ responses, called L0, usually 
 uniform random over the feasible decisions (sometimes truthful, etc.); and 
 
● Adjust their beliefs via a small number (k) of iterated best responses, so L1 
 best responds to L0, L2 to L1, and so on.  

 (Unlike LQRE, Lk types do not respond to the noisiness of others’ decisions.) 
 
● Lk (for k > 0) is decision-theoretically rational, with an accurate model of the 

game; it departs from equilibrium only in deriving its beliefs from an 
oversimplified model of others’ responses. 

 
● Lk (for k > 0) respects k-rationalizability, hence in two-person games its 
 decisions survive k rounds of iterated dominance. 
 
● Thus Lk mimics equilibrium decisions in k-dominance-solvable  games, but may 
 deviate systematically in more complex games. 
 
● A level-k model (with 0 weight on L0) can be viewed as a heterogeneity- 
 tolerant refinement of k-rationalizability (but makes precise predictions). 
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The population level frequencies are treated as behavioral parameters and either 
estimated from the data or calibrated from previous estimates. 
 
The estimated frequency of L0 is normally small or 0 and the distribution of levels 
is concentrated on L1, L2, and L3. 
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The population level frequencies are treated as behavioral parameters and either 
estimated from the data or calibrated from previous estimates. 
 
The estimated frequency of L0 is normally small or 0 and the distribution of levels 
is concentrated on L1, L2, and L3. 
 
It is usually assumed that Lk types make errors (rather than treating L0 as an 
error structure), often taken to be logit with estimated precision, as in LQRE. 
 
Thus the probability density of each type’s decision is increasing in its expected 
payoff, evaluated using the type’s model of others’ decisions. 
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The population level frequencies are treated as behavioral parameters and either 
estimated from the data or calibrated from previous estimates. 
 
The estimated frequency of L0 is normally small or 0 and the distribution of levels 
is concentrated on L1, L2, and L3. 
 
It is usually assumed that Lk types make errors (rather than treating L0 as an 
error structure), often taken to be logit with estimated precision, as in LQRE. 
 
Thus the probability density of each type’s decision is increasing in its expected 
payoff, evaluated using the type’s model of others’ decisions. 
 
Unlike QRE, a level-k model treats deviations from equilibrium as an integral, 
deterministic part of the structure, rather than as responses to errors. 
 
But it too responds to out-of-equilibrium payoffs in plausible ways, and often fits 
subjects’ deviations from equilibrium better than an equilibrium-plus-noise model. 
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E. Cognitive Hierarchy (“CH”) Models 

In a CH model, a close relative of level-k, Lk best responds not to Lk-1 alone but 
to a mixture of lower-level types; and the type frequencies are assumed to be 
determined by Poisson distribution with an estimated parameter (the average k). 

(To an econometrician this specification may seem more natural than a level-k 
specification; but which better describes non-econometricans’ thinking is an 
empirical question, on which the jury is still out.) 
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In a CH model, a close relative of level-k, Lk best responds not to Lk-1 alone but 
to a mixture of lower-level types; and the type frequencies are assumed to be 
determined by Poisson distribution with an estimated parameter (the average k). 

(To an econometrician this specification may seem more natural than a level-k 
specification; but which better describes non-econometricans’ thinking is an 
empirical question, on which the jury is still out.) 
 
A CH L1 is the same as a level-k L1, but CH L2 and higher types differ. 
 
CH types make undominated decisions, but unlike level-k types, but a CH L2 or 
higher might not respect k–rationalizability. 
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E. Cognitive Hierarchy (“CH”) Models 

In a CH model, a close relative of level-k, Lk best responds not to Lk-1 alone but 
to a mixture of lower-level types; and the type frequencies are assumed to be 
determined by Poisson distribution with an estimated parameter (the average k). 

(To an econometrician this specification may seem more natural than a level-k 
specification; but which better describes non-econometricans’ thinking is an 
empirical question, on which the jury is still out.) 
 
A CH L1 is the same as a level-k L1, but CH L2 and higher types differ. 
 
CH types make undominated decisions, but unlike level-k types, but a CH L2 or 
higher might not respect k–rationalizability. 
 
In a CH model L1 and higher types are usually assumed not to make errors. 
 
Instead the uniformly random L0, which has positive frequency in the Poisson 
distribution, doubles as an error structure. 
 
A CH model also responds to out-of-equilibrium payoffs in plausible ways and fits 
subjects’ deviations from equilibrium better than an equilibrium-plus-noise model. 
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Experimental evidence from guessing and other normal-form games 
 
“...professional investment may be likened to those newspaper competitions in 
which the competitors have to pick out the six prettiest faces from a hundred 
photographs, the prize being awarded to the competitor whose choice most 
nearly corresponds to the average preferences of the competitors as a whole; so 
that each competitor has to pick, not those faces which he himself finds prettiest, 
but those which he thinks likeliest to catch the fancy of the other competitors, all 
of whom are looking at the problem from the same point of view. It is not a case 
of choosing those which, to the best of one’s judgment, are really the prettiest, 
nor even those which average opinion genuinely thinks the prettiest. We have 
reached the third degree where we devote our intelligences to anticipating what 
average opinion expects the average opinion to be. And there are some, I 
believe, who practice the fourth, fifth and higher degrees.” 
 
—John Maynard Keynes, The General Theory of Employment, Interest, and 
Money 
  



33 

 

Experimental evidence from guessing and other normal-form games 
 
“...professional investment may be likened to those newspaper competitions in 
which the competitors have to pick out the six prettiest faces from a hundred 
photographs, the prize being awarded to the competitor whose choice most 
nearly corresponds to the average preferences of the competitors as a whole; so 
that each competitor has to pick, not those faces which he himself finds prettiest, 
but those which he thinks likeliest to catch the fancy of the other competitors, all 
of whom are looking at the problem from the same point of view. It is not a case 
of choosing those which, to the best of one’s judgment, are really the prettiest, 
nor even those which average opinion genuinely thinks the prettiest. We have 
reached the third degree where we devote our intelligences to anticipating what 
average opinion expects the average opinion to be. And there are some, I 
believe, who practice the fourth, fifth and higher degrees.” 
 
—John Maynard Keynes, The General Theory of Employment, Interest, and 
Money 
 
The Keynes quotation suggests thinking in which players anchor their beliefs in a 
model of others’ naive reactions and then iterate best responses a finite, 
heterogeneous number of times. (Keynes’ “fourth, fifth and higher degrees” are 
way too high to be realistic, but they may be only a coy reference to himself.) 
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I first discuss Nagel’s (1995 AER); Ho, Camerer, and Weigelt’s (1998 AER; 
“HCW”); and Bosch-Domènech et al.’s (2002 AER) analyses of n-person 
guessing games, which give a simple introduction to this literature. 
 
I then discuss Costa-Gomes and Crawford’s (2006 AER; “CGC”) analysis of two-
person guessing games, whose design comes closer to letting the data reveal 
subjects’ thinking directly, without an econometric “middleman”. 
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guessing games, which give a simple introduction to this literature. 
 
I then discuss Costa-Gomes and Crawford’s (2006 AER; “CGC”) analysis of two-
person guessing games, whose design comes closer to letting the data reveal 
subjects’ thinking directly, without an econometric “middleman”. 
 
Recall that in most experiments that study strategic thinking, game-theoretically 
naïve subjects play series of different but related games with randomly, 
anonymously paired partners and no feedback. 
 
The goal is to suppress learning and repeated-game effects, to elicit subjects’ 
initial responses to each game, “uncontaminated” by learning. 
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I first discuss Nagel’s (1995 AER); Ho, Camerer, and Weigelt’s (1998 AER; 
“HCW”); and Bosch-Domènech et al.’s (2002 AER) analyses of n-person 
guessing games, which give a simple introduction to this literature. 
 
I then discuss Costa-Gomes and Crawford’s (2006 AER; “CGC”) analysis of two-
person guessing games, whose design comes closer to letting the data reveal 
subjects’ thinking directly, without an econometric “middleman”. 
 
Recall that in most experiments that study strategic thinking, game-theoretically 
naïve subjects play series of different but related games with randomly, 
anonymously paired partners and no feedback. 
 
The goal is to suppress learning and repeated-game effects, to elicit subjects’ 
initial responses to each game, “uncontaminated” by learning. 
 
CGC’s design follows this practice. 
 
Nagel’s and HCW’s subject groups repeatedly played n-person games, but in 
their larger groups it is plausible that subjects treated future influences as 
negligible, so that their first-period responses can be viewed as initial responses 
to games played as if in isolation, “uncontaminated” by strategic teaching.    
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In Nagel’s and HCW’s n-person guessing games, n subjects (n = 15-18 in Nagel, 
n = 3 or 7 in HCW) made simultaneous guesses between lower and upper limits 
(0 to 100 in Nagel, 0 to 100 or 100 to 200 in HCW). 
 
In Bosch-Domènech et al. (2002 AER), essentially the same games were played 
in the field, by more than 7500 volunteers recruited from subscribers of the 
newspapers Financial Times, Spektrum der Wissenchaft, or Expansión. 
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In Nagel’s and HCW’s n-person guessing games, n subjects (n = 15-18 in Nagel, 
n = 3 or 7 in HCW) made simultaneous guesses between lower and upper limits 
(0 to 100 in Nagel, 0 to 100 or 100 to 200 in HCW). 
 
In Bosch-Domènech et al. (2002 AER), essentially the same games were played 
in the field, by more than 7500 volunteers recruited from subscribers of the 
newspapers Financial Times, Spektrum der Wissenchaft, or Expansión. 
 
 
 
In each case the subject who guessed closest to a target (p = 1/2, 2/3, or 4/3 in 
Nagel; p = 0.7, 0.9, 1.1, or 1.3 in HCW; and p = 2/3 in Bosch-Domènech et al.) 
times the group average guess won a prize. 
  



39 

 

 
 
In Nagel’s and HCW’s n-person guessing games, n subjects (n = 15-18 in Nagel, 
n = 3 or 7 in HCW) made simultaneous guesses between lower and upper limits 
(0 to 100 in Nagel, 0 to 100 or 100 to 200 in HCW). 
 
In Bosch-Domènech et al. (2002 AER), essentially the same games were played 
in the field, by more than 7500 volunteers recruited from subscribers of the 
newspapers Financial Times, Spektrum der Wissenchaft, or Expansión. 
 
 
 
In each case the subject who guessed closest to a target (p = 1/2, 2/3, or 4/3 in 
Nagel; p = 0.7, 0.9, 1.1, or 1.3 in HCW; and p = 2/3 in Bosch-Domènech et al.) 
times the group average guess won a prize. 
 
 
 
There were several treatments, each with identical targets and limits for all 
players and games. The structures were publicly announced, to justify comparing 
the results with predictions based on complete information game theory. 
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For definiteness, consider Nagel’s leading treatment: 
 
● 15-18 subjects simultaneously guessed between [0,100]. 
 
● The subject whose guess was closest to a target p (= 1/2 or 2/3), times the 

group average guess won a prize, say £50. 
 
● The structure was publicly announced. 
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These games have a unique equilibrium, in which all players guess 0. 
 
The games are dominance-solvable, so the equilibrium can be found by 
iteratively eliminating dominated guesses. 
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For definiteness, consider Nagel’s leading treatment: 
 
● 15-18 subjects simultaneously guessed between [0,100]. 
 
● The subject whose guess was closest to a target p (= 1/2 or 2/3), times the 

group average guess won a prize, say £50. 
 
● The structure was publicly announced. 
 
These games have a unique equilibrium, in which all players guess 0. 
 
The games are dominance-solvable, so the equilibrium can be found by 
iteratively eliminating dominated guesses. 
 
For example, if p = 1/2: 
 
● It’s dominated to guess more than 50 (because 1/2 × 100 ≤ 50). 
 
● Unless you think that other people will make dominated guesses, it’s 
 also dominated to guess more than 25 (because 1/2 × 50 ≤ 25). 
 
● And so on, down to 12.5, 6.25, 3.125, and eventually to 0. 
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The rationality-based argument for this “all–0” equilibrium is stronger than many 
equilibrium arguments: it depends “only” on iterated knowledge of rationality 
(though not finitely), not on the assumption that players have the same beliefs. 
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The rationality-based argument for this “all–0” equilibrium is stronger than many 
equilibrium arguments: it depends “only” on iterated knowledge of rationality 
(though not finitely), not on the assumption that players have the same beliefs. 
 
However, even people who are rational are seldom certain that others are 
rational, or at least that others believe that others are rational. 
 
Thus, they won’t (and shouldn’t) guess 0. But what do (should) they do?     
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The rationality-based argument for this “all–0” equilibrium is stronger than many 
equilibrium arguments: it depends “only” on iterated knowledge of rationality 
(though not finitely), not on the assumption that players have the same beliefs. 
 
However, even people who are rational are seldom certain that others are 
rational, or at least that others believe that others are rational. 
 
Thus, they won’t (and shouldn’t) guess 0. But what do (should) they do?     
 
 
Nagel’s subjects never made equilibrium guesses initially; HCW’s rarely did so, 
and Bosch-Domènech et al.’s (who had much more time to reflect, and who 
could consult with others) fairly rarely did so. 
 
Most subjects’ guesses respected from 0 to 3 rounds of iterated dominance, in 
games where 3 to an infinite number are needed to reach equilibrium. 
 
 
Nagel’s Figure 1 (top p = 1/2, bottom p = 2/3) and Bosch-Domènech et al.’s 
Figure 1 illustrate these points: 
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Nagel’s Figure 1 (top p = 1/2, bottom p = 2/3) 
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Bosch-Domènech et al.’s Figure 1 (p = 2/3) 
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These data resemble neither equilibrium plus noise nor QRE. 

(For logit or any reasonable error distribution, though by Haile et al’s 2008 AER 
result we could make the data an exact QRE for an unreasonable distribution.)  
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These data resemble neither equilibrium plus noise nor QRE. 

(For logit or any reasonable error distribution, though by Haile et al’s 2008 AER 
result we could make the data an exact QRE for an unreasonable distribution.)  
 
 
 
The data do suggest that deviations from equilibrium have a coherent structure. 
 
The distributions of subjects’ guesses have spikes that track 50p

k 
for k = 1, 2, 3 

across treatments with various ps, respecting 0-3 rounds of iterated dominance, 
so that guesses respect k-rationalizability for at most small values of k. 
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These data resemble neither equilibrium plus noise nor QRE. 

(For logit or any reasonable error distribution, though by Haile et al’s 2008 AER 
result we could make the data an exact QRE for an unreasonable distribution.)  
 
 
 
The data do suggest that deviations from equilibrium have a coherent structure. 
 
The distributions of subjects’ guesses have spikes that track 50p

k 
for k = 1, 2, 3 

across treatments with various ps, respecting 0-3 rounds of iterated dominance, 
so that guesses respect k-rationalizability for at most small values of k. 
 
 
 
Like the spectrograph peaks that foreshadow the existence of chemical 
elements, these spikes are evidence of a partly deterministic structure, one that 
is discrete and individually heterogeneous. 
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But separation of decision rules is comparatively weak in these games, despite 
their large strategy spaces, because each subject played only one game 
(although there was useful between-subjects variation across treatments).   
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But separation of decision rules is comparatively weak in these games, despite 
their large strategy spaces, because each subject played only one game 
(although there was useful between-subjects variation across treatments).   
 
 
For example, many theorists infer from the spikes in the data that subjects 
explicitly performed finitely iterated dominance, as we teach students to do. 
 
 
In this interpretation, called Dk, a player does k rounds of iterated dominance and 
then best responds to a uniform prior over other players’ remaining strategies. 
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But separation of decision rules is comparatively weak in these games, despite 
their large strategy spaces, because each subject played only one game 
(although there was useful between-subjects variation across treatments).   
 
 
For example, many theorists infer from the spikes in the data that subjects 
explicitly performed finitely iterated dominance, as we teach students to do. 
 
 
In this interpretation, called Dk, a player does k rounds of iterated dominance and 
then best responds to a uniform prior over other players’ remaining strategies. 
 
 
Dk respects k-rationalizability by construction, adding a selection via the prior. 
 
 
In Nagel’s and HCW’s games Dk guesses ([0+100p

k
]/2)p ≡ 50p

k
. 

(In games without dominance Dk for k > 0 makes the same decisions as L1.) 
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Inferring finitely iterated dominance is premature, because in these games Lk+1 
makes exactly the same guesses: [(0+100)/2]p

k+1 
≡ ([0+100p

k
]/2)p ≡ 50p

k
. 

(Note that it is Lk+1 that is Dk’s cousin, not Lk: an unimportant quirk of notation.) 
  
 
Lk+1 respects k-rationalizability, often with a different selection, though not here. 
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Inferring finitely iterated dominance is premature, because in these games Lk+1 
makes exactly the same guesses: [(0+100)/2]p

k+1 
≡ ([0+100p

k
]/2)p ≡ 50p

k
. 

(Note that it is Lk+1 that is Dk’s cousin, not Lk: an unimportant quirk of notation.) 
  
 
Lk+1 respects k-rationalizability, often with a different selection, though not here. 
 
 
In other experiments, including some of HCW’s, Dk’s and Lk+1’s guesses are 
weakly separated, and the results are inconclusive on which rule subjects follow. 
 
In CGC’s experiment discussed next, Dk’s and Lk+1’s guesses are strongly 
separated, and the results very strongly favor Lk+1 rules: 
 
Subjects’ guesses respect k-rationalizability not because they explicitly perform 
iterated dominance, but because they follow rules that implicitly respect it. 
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Aside on specifying L0 in n-person games 
  
These lectures focus mainly on two-person games, but in n-person games it can 
matter whether L0 is independent across players or correlated. 
 
 
The limited available evidence (e.g. HCW and Costa-Gomes, Crawford, and 
Iriberri 2009 JEEA) suggests that most subjects have highly correlated, 
“representative agent”-like, models of others. 

(This may be related to the phenomenon of informational naiveté discussed 
elsewhere in these lectures.)  
 
 
Accordingly, and in keeping with the literature, in analyzing Nagel’s data I take L0 
to directly model the distribution of all others’ average guess. 
 
 
End of aside 
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CGC’s (2006 AER) two-person guessing game experiments 
 
 
In CGC’s design (as in Stahl and Wilson’s 1994 JEBO, 1995 GEB and Costa-
Gomes, Crawford, and Broseta’s 2001 Ecma designs), each subject played a 
series of different games, with learning and repeated-game effects suppressed. 

(“Eureka!” learning was possible, but it was tested for and found to be rare.) 
 
 
CGC’s design combines the variation of games with Nagel’s and HCW’s large 
strategy spaces to increase the power of subjects’ decisions to reveal thinking. 
 
 
Their two-person games more fully engage strategic thinking, because subjects 
know their partners do not view themselves as negligible parts of the interaction.  
 
 
Two-person games also avoid the ambiguity of interpretation noted above 
regarding whether L0 is independent across players or correlated. 
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Subjects were randomly and anonymously paired to play a series of 16 different 
two-person guessing games, without feedback. 
 
 
 
Each player had his own lower and upper limit, both strictly positive. 

(Positive limits make the games finitely dominance-solvable, in 2 to 53 rounds.) 
 
Each player also had his own target, and his payoff increases with the closeness 
of his guess to his target times the other’s guess. 
 
 
 
The targets and limits varied independently across players and games, with 
targets both less than one, both greater than one, or “mixed”. 

(In Nagel’s and HCW’s designs the targets and limits were always the same for 
both players, and varied at most between subjects across treatments.) 
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These games have essentially unique equilibria, determined by players’ lower 
(upper) limits when the product of targets is less (greater) than one. 
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These games have essentially unique equilibria, determined by players’ lower 
(upper) limits when the product of targets is less (greater) than one. 
 
 
Consider a game in which players’ targets are 0.7 and 1.5, the first player’s limits 
are [300, 500], and the second player’s are [100, 900].  
 
The product of targets is 1.05 > 1, and the equilibrium is therefore determined by 
players’ upper limits: The first player guesses his upper limit 500, but the second 
player guesses 750 (= 500 × his target 1.5), below his upper limit 900. 
 
No guess is dominated for the first player, but any guess outside [450, 750] is 
dominated for the second player. Given that, any guess outside [315, 500] is 
iteratively dominated for the first player, and so on until the equilibrium at (500, 
750) is reached after 22 iterations. 
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These games have essentially unique equilibria, determined by players’ lower 
(upper) limits when the product of targets is less (greater) than one. 
 
 
Consider a game in which players’ targets are 0.7 and 1.5, the first player’s limits 
are [300, 500], and the second player’s are [100, 900].  
 
The product of targets is 1.05 > 1, and the equilibrium is therefore determined by 
players’ upper limits: The first player guesses his upper limit 500, but the second 
player guesses 750 (= 500 × his target 1.5), below his upper limit 900. 
 
No guess is dominated for the first player, but any guess outside [450, 750] is 
dominated for the second player. Given that, any guess outside [315, 500] is 
iteratively dominated for the first player, and so on until the equilibrium at (500, 
750) is reached after 22 iterations. 

 
 
The discontinuity of the equilibrium correspondence stress-tests equilibrium and 
enhances its separation from other types: Equilibrium responds much more 
strongly to the difference between games where the product of targets is slightly 
greater or less than one than behaviorally plausible other decision rules do. 
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CGC’S data analysis 
As suggested by previous work, CGC assumed that each subject’s guesses were 
determined, up to errors, by a single type in all 16 games. 
 
CGC’s types all build in risk-neutrality and rule out social preferences: 
 

● L1, L2, and L3, as defined above 

(In CGC’s design, L2 and L3 are not separated from their CH counterparts; see 
CGC, footnote 36.)    

 

● D1 and D2, as defined above 

 

● Equilibrium, which makes its (essentially unique) equilibrium decision 

 

● Sophisticated, which best responds to the probability distributions of 
 others’ decisions, proxied by the observed population frequencies 
 
The restriction to this list was also tested and found to be a reasonable 
approximation to the support of subjects’ decision rules. 
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● CGC’s design yields very strong separation of types’ guesses. 

(ai,bi, and pi are a player’s lower limit, upper limit, and target, and aj,bj, and pj are his 
partner’s.) 

 

Types’ guesses in the 16 games, in (randomized) order played 

Game ai bi pi aj bj pj L1 L2 L3 D1 D2 Eq So 
1 100 900 1.5 300 500 0.7 600 525 630 600 611.25 750 630 
2 300 900 1.3 300 500 1.5 520 650 650 617.5 650 650 650 
3 300 900 1.3 300 900 1.3 780 900 900 838.5 900 900 900 
4 300 900 0.7 100 900 1.3 350 546 318.5 451.5 423.15 300 420 
5 100 500 1.5 100 500 0.7 450 315 472.5 337.5 341.25 500 375 
6 100 500 0.7 100 900 0.5 350 105 122.5 122.5 122.5 100 122 
7 100 500 0.7 100 500 1.5 210 315 220.5 227.5 227.5 350 262 
8 300 500 0.7 100 900 1.5 350 420 367.5 420 420 500 420 
9 300 500 1.5 300 900 1.3 500 500 500 500 500 500 500 

10 300 500 0.7 100 900 0.5 350 300 300 300 300 300 300 
11 100 500 1.5 100 900 0.5 500 225 375 262.5 262.5 150 300 
12 300 900 1.3 300 900 1.3 780 900 900 838.5 900 900 900 
13 100 900 1.3 300 900 0.7 780 455 709.8 604.5 604.5 390 695 
14 100 900 0.5 300 500 0.7 200 175 150 200 150 150 162 
15 100 900 0.5 100 500 0.7 150 175 100 150 100 100 132 
16 100 900 0.5 100 500 1.5 150 250 112.5 162.5 131.25 100 187 
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● Of CGC’s 88 subjects, 43 subject’s guesses complied exactly with one type’s 
 guesses in from 7 to 16 games: 20 L1, 12 L2, 3 L3, and 8 Equilibrium. 
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● Of CGC’s 88 subjects, 43 subject’s guesses complied exactly with one type’s 
 guesses in from 7 to 16 games: 20 L1, 12 L2, 3 L3, and 8 Equilibrium. 
 
● The size of CGC’s strategy spaces, with 200 to 800 possible exact (within 0.5) 

guesses across 16 different games, makes exact compliance very powerful 
evidence for a subject’s apparent type, so that his type can confidently be 
identified from his guessing “fingerprint”, without econometrics (with a 
qualification for Equilibrium, discussed below). 

(By contrast, there are usually many possible reasons for choosing one of a 
few strategies in a small matrix game; and even in Nagel’s games, rules as 
cognitively disparate as Dk and Lk+1 make identical guesses.)       
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 guesses in from 7 to 16 games: 20 L1, 12 L2, 3 L3, and 8 Equilibrium. 
 
● The size of CGC’s strategy spaces, with 200 to 800 possible exact (within 0.5) 

guesses across 16 different games, makes exact compliance very powerful 
evidence for a subject’s apparent type, so that his type can confidently be 
identified from his guessing “fingerprint”, without econometrics (with a 
qualification for Equilibrium, discussed below). 

(By contrast, there are usually many possible reasons for choosing one of a 
few strategies in a small matrix game; and even in Nagel’s games, rules as 
cognitively disparate as Dk and Lk+1 make identical guesses.)       

 
● Further, because CGC’s types build in risk-neutral, self-interested rationality, 

the deviations from equilibrium of subjects with high exact compliance with 
level-k types must be caused not by irrationality, risk aversion, altruism, spite, 
or confusion, but by their simplified models of others. 
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guesses across 16 different games, makes exact compliance very powerful 
evidence for a subject’s apparent type, so that his type can confidently be 
identified from his guessing “fingerprint”, without econometrics (with a 
qualification for Equilibrium, discussed below). 

(By contrast, there are usually many possible reasons for choosing one of a 
few strategies in a small matrix game; and even in Nagel’s games, rules as 
cognitively disparate as Dk and Lk+1 make identical guesses.)       

 
● Further, because CGC’s types build in risk-neutral, self-interested rationality, 

the deviations from equilibrium of subjects with high exact compliance with 
level-k types must be caused not by irrationality, risk aversion, altruism, spite, 
or confusion, but by their simplified models of others. 

 
● CGC’s other 45 subjects made guesses that conformed less closely to a type. 
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● Of CGC’s 88 subjects, 43 subject’s guesses complied exactly with one type’s 
 guesses in from 7 to 16 games: 20 L1, 12 L2, 3 L3, and 8 Equilibrium. 
 
● The size of CGC’s strategy spaces, with 200 to 800 possible exact (within 0.5) 

guesses across 16 different games, makes exact compliance very powerful 
evidence for a subject’s apparent type, so that his type can confidently be 
identified from his guessing “fingerprint”, without econometrics (with a 
qualification for Equilibrium, discussed below). 

(By contrast, there are usually many possible reasons for choosing one of a 
few strategies in a small matrix game; and even in Nagel’s games, rules as 
cognitively disparate as Dk and Lk+1 make identical guesses.)       

 
● Further, because CGC’s types build in risk-neutral, self-interested rationality, 

the deviations from equilibrium of subjects with high exact compliance with 
level-k types must be caused not by irrationality, risk aversion, altruism, spite, 
or confusion, but by their simplified models of others. 

 
● CGC’s other 45 subjects made guesses that conformed less closely to a type. 
 
● But all but 14 violated simple dominance in less than 20% of the games 
 (versus 38% for random guesses); and econometric estimates of their types 
 are concentrated on L1, L2, L3, and Equilibrium in similar proportions. 
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Aside on apparent Equilibrium subjects  

Doubts remain about the subjects with high exact compliance with Equilibrium; 
consider the 8 subjects with near-Equilibrium fingerprints.  
 
● 85% of those 8 subjects’ deviations from equilibrium were in games with mixed 
 targets (on the right half of Figure 4 below). 

(By contrast, L1s’ exact compliance with L1 guesses is almost the same with 
and without mixed targets; though L2s’ and L3s’ is lower with mixed targets.)  

 
● Those subjects, whose exact Equilibrium compliance was off the chart, are 
 following a rule that only mimics Equilibrium, and only without mixed targets. 
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Aside on apparent Equilibrium subjects  

Doubts remain about the subjects with high exact compliance with Equilibrium; 
consider the 8 subjects with near-Equilibrium fingerprints.  
 
● 85% of those 8 subjects’ deviations from equilibrium were in games with mixed 
 targets (on the right half of Figure 4 below). 

(By contrast, L1s’ exact compliance with L1 guesses is almost the same with 
and without mixed targets; though L2s’ and L3s’ is lower with mixed targets.)  

 
● Those subjects, whose exact Equilibrium compliance was off the chart, are 
 following a rule that only mimics Equilibrium, and only without mixed targets. 

 
● Yet the ways we teach people to identify equilibria (best-response 

dynamics, equilibrium checking, iterated dominance) work equally well with and 
without mixed targets: Whatever those subjects were doing, it’s something we 
haven’t thought of (the questionnaires don’t help). 

 
● Equilibrium Robot/Trained Subjects’ compliance was as high with as without 
 mixed targets, so training eliminates whatever those subjects were doing. 
 
End of aside 
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To sum up, CGC’s results show that a level-k or CH model with a uniform 
random L0 and L1, L2, L3, and possibly Equilibrium subjects explains a large 
fraction of subjects’ deviations from equilibrium. 
 
 
Although about half of CGC’s subjects’ deviations from equilibrium remain 
unexplained by such a model, CGC’s specification test (discussed in other slides) 
suggests that there are not significant numbers of subjects following other rules. 
 
 
CGC’s conclusions are consistent with the results of most previous studies of 
initial responses to normal-form games with neutral framing, just more precise. 

(Some later studies have questioned their portability, but the jury is still out.)  
 
 
Thus it may be reasonable to take the part of the structure that can be identified 
as a basis for modeling, and treat the remaining deviations as errors. 
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Extensive-form games 
 
Beard and Beil (1994 MS) start with Rosenthal's (1981 JET) game, framed in 
extensive form (displayed here in normal form, with A the row player).  

    l r 

L 
y 

x 
 

y 
x 

 R 
v 

0 

w 
z 

 
● “Real-time play” (as opposed to “strategy method”). 
 
●  Player A can opt out (L) with payoffs x for A and y for B; or give player B the 

move (R). B then has two choices: l with payoffs 0 for A, v for B; or r with 
payoffs z for A and w for B; where z > x and w > v (y > or < w). 

 

● The unique subgame-perfect equilibrium is (R, r) (which uniquely survives
 iterated weak dominance), but A players who think B is not certain to play r are 
 tempted by L; thus the game tests for reliance on other’s dominance. 
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Assuming subjects maximize expected pecuniary payoffs (no risk aversion, no 
social preferences), intuition suggests: 
  
(H1) A players should be more willing to play R when x is lower (R is less risky). 
 
(H2) A players should be more willing to play R when w – v is higher (B has more 
incentive to choose r). 
 
(H3) A players should be more willing to play R when y is lower (B is less likely to 
resent A’s choice of R and choose l), or w and v are higher (B is more likely to 
reciprocate A’s choice of R by choosing r). 
 
Subgame-perfect equilibrium doesn't say any of (H1)-(H3), but extensive- or 
normal-form QRE might (McKelvey and Palfrey 1995 GEB, 1998 EE), maybe 
with social preferences that depend on others’ choices (Rabin 1993 AER).  
 
Beard and Beil’s treatments test these intuitions, mostly holding the critical 
probability that B chooses l that makes A indifferent between L and R near 0: 

● Can test (H1) by comparing Treatments 1, 2, and 3. 

● Can test (H2) by comparing Treatments 1 and 4. 

● Can test (H3) by comparing Treatments 1 and 5. 
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Beard and Beil’s Treatments 

(A,B) $payoffs  Player A plays R  

Treatment Player A plays L Player B plays l Player B plays r Critical probability
+
 

1 (9.75, 3.00) (3.00, 4.75) (10.00, 5.00) 3.57% 

2 (9.00, 3.00) (3.00, 4.75) (10.00, 5.00) 14.29% 

3 (7.00, 3.00) (3.00, 4.75) (10.00, 5.00) 42.86% 

4 (9.75, 3.00) (3.00, 3.00) (10.00, 5.00) 3.57% 

5 (9.75, 6.00) (3.00, 4.75) (10.00, 5.00) 3.57% 

6 (9.75, 5.00) (5.00, 9.75) (10.00, 10.00) 5.00% 

7* (58.50, 18.00) (18.00, 28.50) (60.00, 30.00) 3.57% 

 
*Subjects in treatment 7 received the stated payoffs only with probability 1/6. 

 

+
Probability of nonmaximizing play of l by B that a risk-neutral 

payoff-maximizing A subject needs for L to be optimal. 
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Results 

● 97.8% of B subjects made choices that maximized own pecuniary rewards. 

● Despite predictability of B subjects’ decisions, most A subjects opted out. 

● (H1)-(H3) were all correct: The rate of opting out varied across treatments in a 
coherent manner, suggesting that payoffs had a significant, intuitive effect on 
subjects’ willingnesses to rely on the self-interested behavior of others.  

 
● Experience as a B player was associated with significantly greater willingness 
 to rely on the other’s maximization in the role of an A player. 

 

   A chose R  
Treatment # of pairs A chose L B chose l B chose r % secure by A 

1 35 23 2 10 65.7% 

 2 31 20 0 11 64.5% 

 3 25 5 0 20 20.0% 
4 32 15 0 17 46.9% 
5 21 18 0 3 85.7% 
6 26 8 0 18 30.7% 
7* 30 20 0 10 66.7% 
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Other work tests key theoretical extensive-form notions:  

● Subgame-perfectness/backward induction (a form of iterated weak dominance 
 in the normal form; generalizations perfect Bayesian or sequential equilibrium). 

● Forward induction (another form of iterated weak dominance in the normal 
 form). 

Experiments by Cooper, DeJong, Forsythe, and Ross (1990, 1994) and others 
show that forward induction falls short of describing most subjects’ thinking.   
 
Camerer, Johnson, Rymon, and Sen 1993 and Johnson, Camerer, Sen, and 
Rymon 2002 JET (discussed in other slides) studied backward induction in three-
period alternating-offers bargaining games, finding widespread deviations in 
subjects’ decisions and information searches from subgame-perfect equilibrium. 
 
Binmore, McCarthy, Ponti, L. Samuelson, and Shaked 2002 JET dissect 
backward induction into (i) rationality, (ii) subgame-consistency (play in a 
subgame is independent of its position in a larger game), and (iii) truncation 
consistency (replacing a subgame with its equilibrium payoffs does not affect 
play elsewhere in the game). Via comparisons across alternating-offers 
bargaining games with carefully related structure, controlling for social 
preferences, they find widespread violations of subgame and truncation 
consistency, which are roughly consistent with heterogeneous, finite look-ahead. 
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Extensive-form games with communication  
 
J. Wang, Spezio, and Camerer (2010 AER; “WSC”; see also CCGI, 2013 JEL, 
Section 9.3.2) used eyetracking to study the use of cheap talk to signal private 
information in discrete Crawford and Sobel (1982 Ecma) sender-receiver games. 
 
Here the main puzzle from previous work is that: 
 
● Senders and receivers deviate systematically from equilibrium in the direction 
 of “overcommunication”; i.e. senders are more truthful and receivers more 
 credulous than in equilibrium with no cost of lying; and 
 
● Despite those deviations, Crawford and Sobel’s equilibrium-based comparative 

statics result, that more communication is possible, the closer are the sender’s 
and receiver’s preferences, is strongly confirmed.     
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Extensive-form games with communication  
 
J. Wang, Spezio, and Camerer (2010 AER; “WSC”; see also CCGI, 2013 JEL, 
Section 9.3.2) used eyetracking to study the use of cheap talk to signal private 
information in discrete Crawford and Sobel (1982 Ecma) sender-receiver games. 
 
Here the main puzzle from previous work is that: 
 
● Senders and receivers deviate systematically from equilibrium in the direction 
 of “overcommunication”; i.e. senders are more truthful and receivers more 
 credulous than in equilibrium with no cost of lying; and 
 
● Despite those deviations, Crawford and Sobel’s equilibrium-based comparative 

statics result, that more communication is possible, the closer are the sender’s 
and receiver’s preferences, is strongly confirmed.     

 
WSC resolve the puzzle by finding that their subjects’ information searches and 
decisions are close to the predictions of a level-k model with L0 anchored not in 
uniform randomness but in truthfulness, in the style of Crawford’s (2003 AER) 
level-k model of signaling of intended decisions (CGCI, Section 9.1). 
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WSC’s design implements discretized sender-receiver games that vary the 
closeness of sender’s and receiver’s preferences, while eyetracking senders. 
 
Sender observes state S = 1, 2, 3, 4, or 5, sends message M = 1, 2, 3, 4, or 5.  
 
Receiver observes message M, chooses action A = 1, 2, 3, 4, or 5. 
 
 
The Receiver’s choice of A determines the welfare of both: 
 
● The Receiver’s ideal outcome is A = S. 
 
● The Sender’s ideal outcome is A = S + b (or 5, if S + B > 5). 
 
 
The Receiver’s von Neumann-Morgenstern utility function is 
110 – 20|S – A|

1.4
, and the Sender’s is 110 – 20|S + b – A|

1.4
.  

 
 
The difference in preferences varied across treatments: b = 0, 1, or 2. 
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Crawford and Sobel characterized the possible equilibrium relationships between 
Sender’s observed S and Receiver’s choice of A. 
 
 
For models with continuous state and action spaces that generalize Wang et al.’s 
examples (except for discreteness), they showed that all equilibria are “partition 
equilibria”, in which the Sender partitions the set of states into contiguous groups 
and tells the Receiver, in effect, only which group his observation lies in. 
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For models with continuous state and action spaces that generalize Wang et al.’s 
examples (except for discreteness), they showed that all equilibria are “partition 
equilibria”, in which the Sender partitions the set of states into contiguous groups 
and tells the Receiver, in effect, only which group his observation lies in. 
 
 
For any difference in Sender’s and Receiver’s preferences (b), there is a range of 
equilibria, from a “babbling” equilibrium with one partition element to more 
informative equilibria that exist when b is small enough. 
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Crawford and Sobel characterized the possible equilibrium relationships between 
Sender’s observed S and Receiver’s choice of A. 
 
 
For models with continuous state and action spaces that generalize Wang et al.’s 
examples (except for discreteness), they showed that all equilibria are “partition 
equilibria”, in which the Sender partitions the set of states into contiguous groups 
and tells the Receiver, in effect, only which group his observation lies in. 
 
 
For any difference in Sender’s and Receiver’s preferences (b), there is a range of 
equilibria, from a “babbling” equilibrium with one partition element to more 
informative equilibria that exist when b is small enough. 
 
 
Under reasonable assumptions there is a “most informative” equilibrium, which 
has the most partition elements and gives the Receiver the highest ex ante 
(before the Sender observes the state) expected payoff. 

 
As the preference difference decreases, the amount of information transmitted in 
the most informative equilibrium increases (measured by the correlation between 
S and A, or by the Receiver’s expected payoff). 
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In Crawford and Sobel’s analysis, because talk is cheap, there is nothing to tie 
down the meanings of messages in equilibrium. 
 
What is tied down are the possible equilibrium relationships between Sender’s 
observed S and Receiver’s choice of A. 
 
The meanings of messages are implicit in the beliefs that support the equilibrium. 
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In Crawford and Sobel’s analysis, because talk is cheap, there is nothing to tie 
down the meanings of messages in equilibrium. 
 
What is tied down are the possible equilibrium relationships between Sender’s 
observed S and Receiver’s choice of A. 
 
The meanings of messages are implicit in the beliefs that support the equilibrium. 
 
 
Importantly, however, the Receiver’s beliefs on hearing the Sender’s message M 
are necessarily an unbiased—though noisy—estimate of S: 
 
In equilibrium there can be no lying or deception as often occurs in real 
communication, only intentional vagueness (which also occurs). 
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In Crawford and Sobel’s analysis, because talk is cheap, there is nothing to tie 
down the meanings of messages in equilibrium. 
 
What is tied down are the possible equilibrium relationships between Sender’s 
observed S and Receiver’s choice of A. 
 
The meanings of messages are implicit in the beliefs that support the equilibrium. 
 
 
Importantly, however, the Receiver’s beliefs on hearing the Sender’s message M 
are necessarily an unbiased—though noisy—estimate of S: 
 
In equilibrium there can be no lying or deception as often occurs in real 
communication, only intentional vagueness (which also occurs). 
 
 
But behaviorally, with a clear correspondence between state and message as I 
WSC’s design, messages are understood literally, even if not always believed. 
 
This motivates WSC’s and Crawford’s 2003 level-k analyses with L0 anchored in 
truthfulness rather than uniform randomness.  
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When b = 0 or 1 in WSC’s design (sender’s and receiver’s preferences are close 
enough) there are multiple equilibria; WSC focus on the most informative one. 
 
 
When b = 0, the most informative equilibrium has M = S and A = S: perfect truth-
telling, credulity, and communication, as is plausible with identical preferences. 
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enough) there are multiple equilibria; WSC focus on the most informative one. 
 
 
When b = 0, the most informative equilibrium has M = S and A = S: perfect truth-
telling, credulity, and communication, as is plausible with identical preferences. 
 
When b = 1, the most informative equilibrium has Senders sending M = 1 when S 
= 1 but M = {2, 3, 4, 5} when S = 2, 3, 4, or 5; and Receivers choosing A = 1 
when M = 1 and A = 3 or 4 when M = {2, 3, 4, 5}: The difference in preferences 
then causes imperfect communication even in the most informative equilibrium. 
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= 1 but M = {2, 3, 4, 5} when S = 2, 3, 4, or 5; and Receivers choosing A = 1 
when M = 1 and A = 3 or 4 when M = {2, 3, 4, 5}: The difference in preferences 
then causes imperfect communication even in the most informative equilibrium. 

(The Sender’s message M = {2, 3, 4, 5} is the simplest way to implement the 
intentional vagueness of this partition equilibrium. Another way would be for the 
Sender to randomize M uniformly on {2, 3, 4, 5} when S = 1.) 

(A babbling equilibrium also exists when b = 0 or 1, but then it is not the most 
informative equilibrium.)  
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= 1 but M = {2, 3, 4, 5} when S = 2, 3, 4, or 5; and Receivers choosing A = 1 
when M = 1 and A = 3 or 4 when M = {2, 3, 4, 5}: The difference in preferences 
then causes imperfect communication even in the most informative equilibrium. 

(The Sender’s message M = {2, 3, 4, 5} is the simplest way to implement the 
intentional vagueness of this partition equilibrium. Another way would be for the 
Sender to randomize M uniformly on {2, 3, 4, 5} when S = 1.) 

(A babbling equilibrium also exists when b = 0 or 1, but then it is not the most 
informative equilibrium.)  
 
When b = 2, the most informative equilibrium has Senders sending a completely 
uninformative message M = {1, 2, 3, 4, 5} for any value of S; and Receivers 
ignoring it, hence choosing A = 3, which is optimal given their prior beliefs, for 
any value of M. 
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When b = 0 Wang et al.’s Senders almost always set M = S and their Receivers 
almost always set A = M: near the perfect communication predicted by the most 
informative equilibrium with identical preferences. 
 
Figure 1 (next slide) shows the Sender’s message frequencies and the 
Receiver’s action frequencies as functions of the observed state S when b = 0.  
 



93 

 

 

 
(A circle’s size shows the Sender’s message frequencies. A circle’s darkness 
and the numbers inside show the Receiver’s action frequencies.) 
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As b increases from 0 to 1 or 2, the amount of information transmitted decreases, 
as predicted by Crawford and Sobel’s equilibrium comparative statics. 
 
 
Figure 2 (previous slide) shows the Sender’s message frequencies and the 
Receiver’s action frequencies as functions of the observed state S when b = 1. 
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As b increases from 0 to 1 or 2, the amount of information transmitted decreases, 
as predicted by Crawford and Sobel’s equilibrium comparative statics. 
 
 
Figure 2 (previous slide) shows the Sender’s message frequencies and the 
Receiver’s action frequencies as functions of the observed state S when b = 1. 
 
When b = 1, in the most informative robust equilibrium, Sender’s message is M = 
1 when S = 1 and M = {2, 3, 4, 5} when S = 2, 3, 4, or 5; and Receiver chooses A 
= 1 when M = 1 and A = 3 or 4 when M = {2, 3, 4, 5}: Thus, in equilibrium the 
distributions of messages and actions are the same for S = 2, 3, 4, or 5. 
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1 when S = 1 and M = {2, 3, 4, 5} when S = 2, 3, 4, or 5; and Receiver chooses A 
= 1 when M = 1 and A = 3 or 4 when M = {2, 3, 4, 5}: Thus, in equilibrium the 
distributions of messages and actions are the same for S = 2, 3, 4, or 5. 
 
However, in Figure 2: 
 
● Senders almost always exaggerate the truth (messages above diagonal), 

apparently trying to move Receivers from Receivers’ ideal action A = S toward 
Senders’ ideal action A = S + 1 (or 5, if S + 1 > 5).   
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apparently trying to move Receivers from Receivers’ ideal action A = S toward 
Senders’ ideal action A = S + 1 (or 5, if S + 1 > 5).   

 
● Even so, there is some information in Senders’ messages (message 

distributions shift rightward going down, so positively correlated with the state). 
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● Even so, there is some information in Senders’ messages (message 

distributions shift rightward going down, so positively correlated with the state). 
 
● Receivers are deceived to some extent (average A usually > S). 
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Figure 3 (next slide) shows the Sender’s message frequencies and the 
Receiver’s action frequencies as functions of the observed state S when b = 2.  
 
 
In the essentially unique, most informative equilibrium when b = 2, M = {1, 2, 3, 4, 
5}, so equilibrium message distributions would look the same for all five rows; 
and equilibrium actions would be concentrated on A = 3. 
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Figure 3 (previous slide) shows the Sender’s message frequencies and the 
Receiver’s action frequencies as functions of the observed state S when b = 2.  
 
 
In the essentially unique, most informative equilibrium when b = 2, M = {1, 2, 3, 4, 
5}, so equilibrium message distributions would look the same for all five rows; 
and equilibrium actions would be concentrated on A = 3. 
 

 

However, in Figure 3:  
    
● Most Senders again exaggerate the truth (messages above the diagonal), 

apparently trying to move Receivers from Receivers’ ideal action A = S toward 
Senders’ ideal action A = S + 2 (or 5, if S + 2 > 5). 
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What kind of model can explain results like this?  
 
 
WSC, following Cai and Wang (2006 GEB), propose a level-k explanation in the 
style of Crawford’s (2003 AER) analysis of preplay communication of intentions: 
 
Anchor beliefs in a truthful Sender L0, which sets M = S; and a credulous 
Receiver L0 (which also best responds to an L0 Sender), setting A = M. 
 
L1 Senders best respond to L0 Receivers, inflating messages by b: M = S + b 
(up to M = 5), so L0 Receivers choose S + b, yielding Sender’s ideal action given 
S. 
 
L1 Receivers (in WSC’s numbering convention) best respond to L1 Senders, 
discounting messages by b, normally setting A = M – b, yielding Receivers’ ideal 
action given M = S + b of S.  
 
(“Normally” reflects WSC’s assumption that L1 Receivers take into account that 
when b = 2, L1 senders with S = 3, 4, or 5 all send M = 5, so L1 Receivers, 
knowing S is equally likely to be 3, 4, or 5, choose A = 4 not A = M – 2b = 3.)  



105 

 

 
 
 

 
  



106 

 

 
L2 Senders best respond to L1 Receivers, inflating messages by 2b: M = S + 2b 
(up to M = 5), so L1 Receivers set A = M – b = S + b, yielding Senders’ ideal 
action given S. 
 
 
 
L2 Receivers best respond to L2 Senders, discounting messages by 2b, normally 
setting A = M – 2b, yielding Receivers’ ideal action given M = S + 2b of S. 
 
(“Normally” reflects WSC’s assumption that L2 Receivers take into account that 
when b = 1, L2 senders with S = 3, 4, or 5 all send M = 5, so L2 Receivers, 
knowing S is equally likely to be 3, 4, or 5, choose A = 4 not A = M – 2b = 3. 
 
L2 Receivers also take into account that when b = 2, L2 senders with S = 2, 3, 4, 
or 5 send M = 5, so L2 Receivers, knowing S is equally likely to be 2, 3, 4, or 5, 
choose A = 4 not A = M – 2b = 3.) 
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Econometric estimation classifies 18% of 16 Sender subjects as L0, 25% L1, 
25% L2, 14% Sophisticated, and 18% Equilibrium (note different type definitions).  
  
Figures 2 and 3 show why. (When b = 1, L1, L2, and Eq all predict M = 5 when S 
= 4 or 5; and when b = 2, L1, L2, and Eq all predict M = 5 when S = 3, 4, or 5.) 
 

 

 


