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Structural econometrics of decisions and search in games 
 
The first part of this lecture concerns structural econometric analyses of 
strategic thinking in games, using maximum likelihood error-rate models 
of subjects’ decisions and their searches for hidden payoff information. 
 
The material for this first part is drawn mostly from: 

● Costa-Gomes, Crawford, and Broseta, “Cognition and Behavior in 
Normal-Form Games: An Experimental Study,” (2001 Econometrica; 
“CGCB”) and 

● Costa-Gomes and Crawford, “Cognition and Behavior in Two-Person 
Guessing Games: An Experimental Study,” (2006 American Economic 
Review; “CGC”), 

which build on: 

● Harless and Camerer, “The Predictive Utility of Generalized Expected 
 Utility Theories (1994 Econometrica) and 

● El-Gamal and Grether, “Are People Bayesian? Uncovering Behavioral 
 Strategies,” (1995 J. American Statistical Association). 
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Recall that in most experiments that study strategic thinking, game-
theoretically naïve subjects play series of different but related games 
with randomly, anonymously paired partners and no feedback. 
 
The goal is to suppress learning and repeated-game effects, to elicit 
subjects’ initial responses to each game, uncontaminated by learning. 
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subjects’ initial responses to each game, uncontaminated by learning. 
 
 
CGCB’s subjects played a series of 18 matrix games, chosen to 
separate nonstrategic from strategic types as much as possible. 

(CGCB’s results detected strategic thinking without discriminating among 
strategic types as clearly as desired, while ruling out some other types.)  
 
CGC’s subjects played a series of 16 two-person guessing games, 
chosen to further separate strategic types as much as possible. 
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Recall that in most experiments that study strategic thinking, game-
theoretically naïve subjects play series of different but related games 
with randomly, anonymously paired partners and no feedback. 
 
The goal is to suppress learning and repeated-game effects, to elicit 
subjects’ initial responses to each game, uncontaminated by learning. 
 
 
CGCB’s subjects played a series of 18 matrix games, chosen to 
separate nonstrategic from strategic types as much as possible. 

(CGCB’s results detected strategic thinking without discriminating among 
strategic types as clearly as desired, while ruling out some other types.)  
 
CGC’s subjects played a series of 16 two-person guessing games, 
chosen to further separate strategic types as much as possible. 
 
In each case the design monitored subjects’ searches for hidden but 
freely accessible payoff information along with their decisions, with the 
goal of more precisely estimating their decision rules.  
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The econometric problem is characterizing subjects’ heterogeneous 
decision and search sequences in a huge space of possible sequences. 
 
CGCB and CGC did this by assuming (with testing) that each subject’s 
decisions and searches are determined in all games, up to errors, by a 
single strategic decision rule or “type” (not a private-information variable). 
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The econometric problem is characterizing subjects’ heterogeneous 
decision and search sequences in a huge space of possible sequences. 
 
CGCB and CGC did this by assuming (with testing) that each subject’s 
decisions and searches are determined in all games, up to errors, by a 
single strategic decision rule or “type” (not a private-information variable). 
 
The types are a basis for the space of decision and search sequences, 
whose structure allows a tractable description of behavior and makes it 
meaningful to ask how subjects’ decisions and searches are related. 
 
CGCB estimated a mixture model of types, and CGC then estimated 
subjects’ types subject by subject. (An early version of CGCB estimated 
subject by subject estimates, with almost the same results.) 
 
Both approaches allow for rich heterogeneity, but in a mixture model a 
subject’s behavior is treated as evidence even about others’ types. 
 
An intermediate approach is to estimate a clustering or latent class 
model, adding classes as long as they add enough to fit to justify it.  
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Why not estimate the distribution of rules without imposing a structure? 
 
 
Unrestricted lists of types allow overfitting via types that “just happen” to 
do what subjects did in the sample. 
 
 
 
A worthy alternative to equilibrium must be a general decision rule whose 
implications in new games are clear, not just a list of predicted decisions. 
 
 
 
And because a type’s search implications depend not only on what 
decisions it implies but why, such lists give us no way to predict search. 
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CGCB’s and CGC’s types all build in risk-neutrality and (except for 
CGCB’s Altruistic) rule out social preferences: 

● Altruistic (CGCB only), which maximizes the sum of its own and other’s 
 payoffs over all possible decision combinations 
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CGCB’s and CGC’s types all build in risk-neutrality and (except for 
CGCB’s Altruistic) rule out social preferences: 

● Altruistic (CGCB only), which maximizes the sum of its own and other’s 
 payoffs over all possible decision combinations 

● Pessimistic (“maximin”; CGCB only), which (without randomizing) 
 maximizes its  minimum payoff over other's possible decisions 

● Optimistic (“maximax”; CGCB only), which maximizes its maximum 
 payoff over other’s decisions 

● Naïve (CGC’s L1), which best responds to “L0” beliefs that assign 
equal probabilities to the other player’s feasible decisions (with flexible 
error structure and type distribution, L0’s frequency estimates are 0)   

● L2, which best responds to Naïve (CGC’s L1) 

● L3 (CGC only), which best responds to L2 

● D1 (D2), which does one round (two) of deleting decisions dominated 
by pure decisions and best responds to a uniform prior over the other 
player’s remaining decisions (D1, like L2, is k-rationalizable) 

● Equilibrium, which makes its (unique) equilibrium decision 

● Sophisticated, which best responds to the probability distributions of 
 others’ decisions, proxied by the observed population frequencies 
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CGCB’s maximum likelihood error-rate analysis 
 
 
● In CGCB’s mixture model, each subject’s type is drawn from a common 

prior population distribution, whose types are specified a priori. 
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CGCB’s maximum likelihood error-rate analysis 
 
 
● In CGCB’s mixture model, each subject’s type is drawn from a common 

prior population distribution, whose types are specified a priori. 
 

 
● The model assumes that in each game, a subject’s type determines his 

information search, represented by categorical variables that reflect its 
compliance with each type’s Occurrence and Adjacency implications 
(as discussed elsewhere in slides), with errors, and his type and search 
then determine his decision, with uniform random errors (to avoid bias). 

 
 
● The goal is to infer the distribution of types (and implicitly each 

subject’s type, which can be inferred by conditioning on the history) 
from subjects’ decision and search sequences across all games. 
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● CGCB’s maximum likelihood estimation does this inference by 

comparing subjects’ decisions or decisions and searches over all 
games, with each type’s predicted decisions and searches, taking type-
k behavior as evidence for type k only to the extent that the estimated 
error rates suggest it was more likely than non-type k behavior.  

 

 
 
● Conditional on type and game size, decision and search errors can be 

correlated in a given game, with decision error rates conditional on type 
and search compliance. 
 

 
 
● Decision and search errors are assumed to be i.i.d. across games and 

subjects: A general joint probability distribution, except for constraints 
on how game size matters and how search compliance is defined.  
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CGCB’s estimates from decisions alone 

● Naïve and Optimistic always make the same decisions; they are 
 lumped together pending the search analysis, where separated. 

● L2 and Sophisticated decisions are separated, weakly, in only one 
 game for Columns; but identified in the pooled Row and Column data. 

● Any two other types make different decisions in at least 2/18 games for 
 each player role; strategic and nonstrategic types strongly separated.  
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CGCB’s estimates from decisions alone 

● Naïve and Optimistic always make the same decisions; they are 
 lumped together pending the search analysis, where separated. 

● L2 and Sophisticated decisions are separated, weakly, in only one 
 game for Columns; but identified in the pooled Row and Column data. 

● Any two other types make different decisions in at least 2/18 games for 
 each player role; strategic and nonstrategic types strongly separated  

● Maximum likelihood yields consistent estimates of the model’s 7 
 independent type probabilities and 8 type-dependent error rates  

● Few subjects are estimated to be Equilibrium and none Sophisticated. 

● Many subjects are estimated to be Naïve (L1) or Optimistic. 

● Many others are estimated to be the 2-rationalizable types L2 or D1. 

(Even though L2 is weakly separated from Sophisticated, its better fit in 
one game is amplified to a large lead by lower estimated error rates.) 

(These types do well because they reproduce many subjects’ tendency 
to play equilibrium in simple games but switch to Naïve (L1) in others.) 
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CGCB’s estimates from decisions and search 
 

● There is strong separation of search implications across three groups 
of types: (i) Altruistic; (ii) Pessimistic, Naïve (L1), or Optimistic; and (iii) 
L2, D1, D2, Equilibrium, or Sophisticated.   
 

 
● There is also some separation within groups, e.g. L2 from D1. 
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CGCB’s estimates from decisions and search 
 

● There is strong separation of search implications across three groups 
of types: (i) Altruistic; (ii) Pessimistic, Naïve (L1), or Optimistic; and (iii) 
L2, D1, D2, Equilibrium, or Sophisticated.   
 

 
● There is also some separation within groups, e.g. L2 from D1. 
 
 
● Maximum likelihood again yields consistent parameter estimates. 
 
 
● Again, type-k behavior is taken as evidence for type k to the extent that 

estimated error rates suggest it was more likely than other behavior; 
but now the search terms in the likelihood, which are convex in search 
compliance, favor types for which compliance is concentrated on 
particular levels, lowering estimated error rates.  

(Compliance of course should be concentrated on high levels; 
estimates done unconstrained as a check confirm that.)   
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● Estimates for the model of decisions and information search generally 
confirm the type estimates from decisions alone, with some changes. 

Incorporating types’ cognitive implications into an error rate analysis 
yields a coherent account of subjects’ behavior and better predictions. 
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confirm the type estimates from decisions alone, with some changes. 

Incorporating types’ cognitive implications into an error rate analysis 
yields a coherent account of subjects’ behavior and better predictions. 

● Naïve (L1) and L2 now have the largest frequencies, each around 
 45%; and D1 has disappeared. 

The shift toward Naïve (L1), mainly at the expense of Optimistic and 
D1, happens because Naïve (L1) search compliance explains more of 
the variation in subjects’ behavior than Optimistic search compliance, 
which is too unrestrictive to be useful, or D1 compliance, which is more 
restrictive than Naïve (L1)’s but less correlated with subjects’ behavior. 
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● Estimates for the model of decisions and information search generally 
confirm the type estimates from decisions alone, with some changes. 

Incorporating types’ cognitive implications into an error rate analysis 
yields a coherent account of subjects’ behavior and better predictions. 

● Naïve (L1) and L2 now have the largest frequencies, each around 
 45%; and D1 has disappeared. 

The shift toward Naïve (L1), mainly at the expense of Optimistic and 
D1, happens because Naïve (L1) search compliance explains more of 
the variation in subjects’ behavior than Optimistic search compliance, 
which is too unrestrictive to be useful, or D1 compliance, which is more 
restrictive than Naïve (L1)’s but less correlated with subjects’ behavior. 

● Naive (L1) and L2 have high search compliance, error rates that 
 decrease with higher compliance and are low with high compliance. 
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● Estimates for the model of decisions and information search generally 
confirm the type estimates from decisions alone, with some changes. 

Incorporating types’ cognitive implications into an error rate analysis 
yields a coherent account of subjects’ behavior and better predictions. 

● Naïve (L1) and L2 now have the largest frequencies, each around 
 45%; and D1 has disappeared. 

The shift toward Naïve (L1), mainly at the expense of Optimistic and 
D1, happens because Naïve (L1) search compliance explains more of 
the variation in subjects’ behavior than Optimistic search compliance, 
which is too unrestrictive to be useful, or D1 compliance, which is more 
restrictive than Naïve (L1)’s but less correlated with subjects’ behavior. 

● Naive (L1) and L2 have high search compliance, error rates that 
 decrease with higher compliance and are low with high compliance. 

● D1 has fairly high compliance and high error rates that usually 
 decrease with compliance. 

● Altruistic and Equilibrium have low compliance and error rates that 
 usually decrease with compliance. 
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CGC’s estimates from decisions alone 
 
● As noted previously, CGC’s design, with 200 to 800 possible exact 

 (within 0.5) guesses in 16 different games, yields very strong 
separation of types’ guesses. 

(ai,bi, and pi are a player’s lower limit, upper limit, and target, and aj,bj, and pj 
are his partner’s.) 

Types’ guesses in the 16 games, in (randomized) order played 

Game ai bi pi aj bj pj L1 L2 L3 D1 D2 Eq So 
1 100 900 1.5 300 500 0.7 600 525 630 600 611.25 750 630 
2 300 900 1.3 300 500 1.5 520 650 650 617.5 650 650 650 
3 300 900 1.3 300 900 1.3 780 900 900 838.5 900 900 900 
4 300 900 0.7 100 900 1.3 350 546 318.5 451.5 423.15 300 420 
5 100 500 1.5 100 500 0.7 450 315 472.5 337.5 341.25 500 375 
6 100 500 0.7 100 900 0.5 350 105 122.5 122.5 122.5 100 122 
7 100 500 0.7 100 500 1.5 210 315 220.5 227.5 227.5 350 262 
8 300 500 0.7 100 900 1.5 350 420 367.5 420 420 500 420 
9 300 500 1.5 300 900 1.3 500 500 500 500 500 500 500 

10 300 500 0.7 100 900 0.5 350 300 300 300 300 300 300 
11 100 500 1.5 100 900 0.5 500 225 375 262.5 262.5 150 300 
12 300 900 1.3 300 900 1.3 780 900 900 838.5 900 900 900 
13 100 900 1.3 300 900 0.7 780 455 709.8 604.5 604.5 390 695 
14 100 900 0.5 300 500 0.7 200 175 150 200 150 150 162 
15 100 900 0.5 100 500 0.7 150 175 100 150 100 100 132 
16 100 900 0.5 100 500 1.5 150 250 112.5 162.5 131.25 100 187 
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● Of CGC’s 88 subjects, 43’s guesses complied exactly with one type’s 

guesses in from 7 to 16 games: 20 L1, 12 L2, 3 L3, and 8 Equilibrium. 
 
 
 
● Those subjects’ types can confidently be identified from their guessing 

“fingerprints”, without econometrics (with qualification for Equilibrium).  

(By contrast, there are usually many possible reasons for choosing one 
of a few strategies in a small matrix game; and even in Nagel’s games, 
rules as cognitively disparate as Dk and Lk+1 make identical guesses.)       

 
 
 
● Further, because CGC’s definitions of level-k types builds in risk- 

neutral, self-interested rationality, we know that the deviations from 
equilibrium of subjects with high exact compliance with level-k types 
are caused not by irrationality, risk aversion, altruism, spite, or 
confusion, but by their simplified model of others. 
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CGC’s maximum likelihood error-rate analysis 

 
● CGC’s other 45 subjects’ guesses conformed less exactly to a type; 

estimating their types requires econometrics. 
 
 
● CGC estimated a model generally similar to CGCB’s, again with types 

specified a priori, but subject by subject. 
 

 
● The model again assumes that in each game, a subject’s type 

determines his information search, with errors, and his type and search 
then determine his decision, now with logit rather than uniform errors. 

 
 
● The goal is again to infer each subject’s type from his decisions and 
 searches  across all games. 
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● CGC’s maximum likelihood error-rate analysis does this inference by 
comparing subjects’ decisions, or decisions and searches, over all 
games, with each type’s predicted decisions and searches, taking type-
k behavior as evidence for type k only to the extent that the estimated 
error rates suggest it was more likely than non-type k behavior.  
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given game, with decision error rates conditional on type and search 
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● Decision and search errors are assumed to be i.i.d. across games.  
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● CGC’s maximum likelihood error-rate analysis does this inference by 
comparing subjects’ decisions, or decisions and searches, over all 
games, with each type’s predicted decisions and searches, taking type-
k behavior as evidence for type k only to the extent that the estimated 
error rates suggest it was more likely than non-type k behavior.  
 

 
● Conditional on type, decision and search errors can be correlated in a 

given game, with decision error rates conditional on type and search 
compliance. 

 
● Decision and search errors are assumed to be i.i.d. across games.  
 

 
● Because of the very high sample frequency of exact guesses, CGC 

allowed “spike-logit” errors: In each game, a subject makes his type’s 
guess exactly (within 0.5) with probability 1- ε and otherwise makes 
logit errors (extra likelihood credit for exact guesses, whose weight is 
discontinuously higher than guesses that are close but not within 0.5). 
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Subject i's log-likelihood for guesses alone reduces to: 
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standard logit term for non-exact guesses, with deviation costs measured 
using each type's beliefs; and λ is the logit precision. 
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where g indexes games and k indexes types. 

The first two terms concern exact guesses; )),(( i
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g xRd  is the 

standard logit term for non-exact guesses, with deviation costs measured 
using each type's beliefs; and λ is the logit precision. 
 

The maximum likelihood estimate of ε is /G, the sample frequency of 
subject i's non-exact guesses for type k. 
 
The maximum likelihood estimate of λ is the standard logit precision, 
restricted to non-exact guesses. 
 
The maximum likelihood estimate of the subject’s type k maximizes (7) 
over k, given the estimated ε and λ, trading off the count of exact 
guesses against the logit cost of deviations. 

ikn
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CGC’s estimates from guesses alone 
 
 
● The hypothesis that ε = 1 is rejected for all but 7 of 88 subjects: the 
 spike is necessary. 
 
 
● The hypothesis that λ = 0 (payoff-insensitivity) is rejected for 34 

subjects: logit errors significantly improve the fit over a spike-uniform 
model like CGCB’s for only 39% of the subjects, suggesting that most  
“errors” are either cognitive or due to misspecification. 

 
 
● The hypothesis that {λ = 0 and ε = 1} is rejected at the 5% level for all 
 but 10 subjects: the model does better than random for 89% of them.   
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● Estimation from guesses alone yields type estimates as in column 3 of 
 Table 1: 43 L1, 20 L2, 3 L3, 5 D1, 14 Equilibrium, and 3 Sophisticated. 

(Some of these estimates are called into question by CGC’s 
specification test, discussed below; see Table 1’s columns 4 and 5). 

 
 
● Unlike the often-suggested interpretation of previous guessing results 

that subjects are performing finitely iterated dominance, separating Lk 
from Dk-1 reveals that Dk types don’t exist in any significant numbers. 

(Results for R/TS subjects not discussed here suggest that people find 
iterated dominance highly unnatural—as opposed to Lk’s iterated best 
resonses—and so respect finitely iterated dominance without explicitly 
performing it.)  

 
 
● Sophisticated, which is clearly separated from Equilbrium here 
 because few subjects play equilibrium strategies, also doesn’t exist. 
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CGC’s estimates from guesses and search 
 
● The main problem in econometrically analyzing search is extracting 

signals from highly idiosyncratic, noisy searches, without a theoretical 
model that implies strong restrictions on how cognition drives search. 

  
● CGC summarize a subject’s compliance with a type’s search 

implications in a game roughly by the density of the type’s 
characteristic look-up sequence (as discussed previously) in the 
subject’s look-up sequence. 

 
● CGC further assume (simplifying CGCB) that, given type, errors in 
 search and guesses are independent of each other and across games. 

(This simplifying assumption makes the log-likelihood separable across 
guesses and search, avoiding some complications.) 

 
● To avoid stronger distributional assumptions with no theory to guide 
 them, CGC discretized search compliance into three categories: 

CH ≡ [0.67,1.00], CM ≡ [0.33,0.67], and CL ≡ [0,0.33]. 
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Subject i's guesses-and-search log-likelihood is: 
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cm is the number of games for which subject i has type-k style-s  

compliance c (“style” is where the subject’s relevant look-ups are).  

The search term is convex in the
isk

cm and therefore favors types for 

which compliance varies less across games, because such types 
"explain" search behavior better, as in CGCB. 

The maximum-likelihood estimates of   and c , given k and s, are 

/G and Gmisk

c / , the sample frequencies with which subject i's adjusted 

guesses are non-exact for that k and i has compliance c for that k and s.  
 
The maximum likelihood estimate of λ is the standard logit precision. 

ikn
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● The maximum likelihood estimate of subject i's type k maximizes the 
 above log-likelihood over k and s, given the estimated ε and λ. 
 
 
● Most guesses-and-search type estimates, especially for subjects 
 whose guess fingerprints were clear, reaffirm guesses-only estimates, 

including the absence of significant numbers of subjects of types other 
than L1, L2, Equilibrium, or hybrids of L3 or Equilibrium. 

 
● Incorporating search does refine and sharpen conclusions in some 
 ways, and a few subjects’ type estimates change. 
 
● And most subjects’ types can be more precisely identified by decisions 
 and search than by decisions or search alone (Table 7B): 
 
 
● The search part of the likelihood has weight only about 1/6 of the 

precise predictions than our theory of guesses—a necessary evil, 
given the noisiness and idiosyncrasy of search behavior. 
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CGC’s specification test 
 
For the 45 subjects whose guesses conformed less exactly to one of 
CGC’s types, there is room for doubt about whether CGC’s specification 
omits relevant types and/or overfits by including irrelevant types. 

 
 
CGC conducted a specification test, comparing the guesses-only 
likelihood of each subject’s type estimate with those of estimates based 
on 88 pseudotypes, each constructed one subject’s guesses. 
 
 
If CGC had omitted a relevant type, say L2, the pseudotypes of subjects 
CGC now estimated to be L2 would outperform their hypothetical non-L2 
estimated types, and would all make approximately the same guesses. 
 
 
CGC found five such small clusters involving a total of 11 subjects, 
diagnosed omitted types, and left those subjects unclassified in Table 1. 
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With regard to overfitting via irrelevant types, a credible type estimate for 
a subject should have higher likelihood than as many pseudotypes as it 
would at random: With 8 types, assuming approximately i.i.d. likelihoods, 
it should have higher likelihood than 87/8 ≈ 11 pseudotypes. 
 
Some subjects’ type estimates do not pass this test, and so are left 
unclassified in columns 5 and 6 of CGC’s Table 1. 
 
With this classification econometric estimates of subjects’ types are 
concentrated on L1, L2, L3, and Equilibrium in roughly the proportions as 
for subjects whose types are apparent from their guesses alone. 
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Revealed reference-dependent preference 
and cabdrivers’ labor supply  

Recall that Crawford and Meng (2011 AER) adapted Kőszegi and 
Rabin’s (2006 QJE) model of reference-dependent preferences to 
continue the Camerer et al. (1997 QJE)-Farber (2005 JPE, 2008 AER) 
debate on cabdrivers’ labor supply. As applied to cabdrivers’ labor supply  

● A driver’s preferences reflect both the standard consumption utility of  
income and leisure and reference-dependent “gain-loss” utility, with 
their relative importance tuned by an estimated parameter. 
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● A driver has a daily target for hours as well as income, and he is loss- 
averse in both dimensions, with working longer than the hours target a 
loss, just as earning less than the income target is. 
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Revealed reference-dependent preference 
and cabdrivers’ labor supply  

Recall that Crawford and Meng (2011 AER) adapted Kőszegi and 
Rabin’s (2006 QJE) model of reference-dependent preferences to 
continue the Camerer et al. (1997 QJE)-Farber (2005 JPE, 2008 AER) 
debate on cabdrivers’ labor supply. As applied to cabdrivers’ labor supply  

● A driver’s preferences reflect both the standard consumption utility of  
income and leisure and reference-dependent “gain-loss” utility, with 
their relative importance tuned by an estimated parameter. 

(The “only” deviation from a neoclassical model is adding changes in 
income and leisure to their levels in the domain of preferences.)  

● A driver has a daily target for hours as well as income, and he is loss- 
averse in both dimensions, with working longer than the hours target a 
loss, just as earning less than the income target is. 

● Most importantly, the targets are endogenized by setting them equal to 
a driver’s theoretical rational expectations of hours and income, in 
Kőszegi and Rabin’s notion of “preferred personal equilibrium”, 
operationalized via natural sample proxies. 
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Details  
 
Treating each day separately as in previous such analyses, consider the 
preferences of a given driver during his shift on a given day. 
 
I and H denote income earned and hours worked that day; I

r
 and H

r 

denote income and hours targets for the day. 
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Kőszegi and Rabin’s, Farber’s, and Crawford and Meng’s analyses make 
assumptions on functional structure that go beyond theory or evidence: 
 

● Consumption utility is additively separable across income and hours, 
 with U1(·) increasing in I, U2(·) decreasing in H, and both concave. 
 
● Consumption utility has a particular, standard functional form. 
 
● Gain-loss utility is additively separable, determined good by good by 

differences between goods’ realized and target consumption utilities. 
 
● Gain-loss utility is linear in good by good utility differences (constant 

sensitivity). 

(With constant sensitivity the previous assumption reduces to additive 
separability across goods of our u(q,q−r) utility function below.) 
 

● Losses have a constant weight relative to gains, (the “coefficient of 
loss aversion”, empirically ≈ 2 to 3), the same for income and hours. 
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Blow, Crawford, and Crawford (2015; “BCC”) study nonparametric 
versions of a generalized Kőszegi-Rabin model, to learn to what extent 
the empirical success of applications is due to Kőszegi and Rabin’s 
ancillary structural assumptions or reference-dependence per se. 
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Blow, Crawford, and Crawford (2015; “BCC”) study nonparametric 
versions of a generalized Kőszegi-Rabin model, to learn to what extent 
the empirical success of applications is due to Kőszegi and Rabin’s 
ancillary structural assumptions or reference-dependence per se. 
 
 
 
BCC derive nonparametric necessary and sufficient conditions, in the 
revealed-preference tradition of Samuelson, Houthakker, and Afriat, for 
the existence of reference-dependent preferences that rationalize choice 
as in Kőszegi and Rabin’s model, without restricting functional structure. 
 
 
 
Given the revealed-preference tradition’s reliance on rationality, such an 
analysis is possible, despite the non-neoclassical inclusion of changes 
as well as levels in the domain of preferences, only because the model is 
consistent with rationality in the broad sense of choice consistency. 
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The observable implications of reference-dependent preferences turn on: 
 
● Whether “sensitivity” is constant (“sign-dependence”) or diminishing 
 (really, variable), and 
 
● Whether reference points are unobservable or observable (really, 
 modelable as known functions of the data, as via sample proxies). 
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New York City cabdrivers studied by Farber and Crawford and Meng: 
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The observable implications of reference-dependent preferences turn on: 
 
● Whether “sensitivity” is constant (“sign-dependence”) or diminishing 
 (really, variable), and 
 
● Whether reference points are unobservable or observable (really, 
 modelable as known functions of the data, as via sample proxies). 
 
 
BCC consider all four cases, but focus on the case of constant sensitivity 
and observable reference points, which seems most useful. 
 
They illustrate the results by nonparametrically analyzing the dataset on 
New York City cabdrivers studied by Farber and Crawford and Meng: 
 
● The analysis rejects most of the ancillary separability and functional 
 structure assumptions maintained in previous work. 
 
● But reference-dependence still allows a plausible, rationality-based 
 explanation of drivers’ choices.  
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BCC focus on the leading case of multiple price-quantity observations for 
one consumer (or equivalently a group with homogeneous preferences 

as in Crawford and Meng):                with       
 

 and      
 . 

The constructions also involve a reference point    with      for each 

observation, taken (following Crawford and Meng) as a point expectation. 

(Sample variation ensures that realizations deviate from expectations.)   
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(Sample variation ensures that realizations deviate from expectations.)   
 

Reference-dependent preferences are represented by a family of utility 

functions         , indexed by the reference point (observable or not). 

(This nests the standard reference-independent specification, where 
only levels matter; the case where only changes matter; and the Kőszegi 
and Rabin case where both levels and changes matter.) 
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BCC focus on the leading case of multiple price-quantity observations for 
one consumer (or equivalently a group with homogeneous preferences 

as in Crawford and Meng):                with       
 

 and      
 . 

The constructions also involve a reference point    with      for each 

observation, taken (following Crawford and Meng) as a point expectation. 

(Sample variation ensures that realizations deviate from expectations.)   
 

Reference-dependent preferences are represented by a family of utility 

functions         , indexed by the reference point (observable or not). 

(This nests the standard reference-independent specification, where 
only levels matter; the case where only changes matter; and the Kőszegi 
and Rabin case where both levels and changes matter.) 
 
As in previous nonparametric demand analyses, BCC restrict attention 

to utility functions          that are continuous, non-satiated, 
and non-decreasing in consumption levels, and now changes. 

(         is just as flexible as an arbitrary continuous and non-
satiated function        would be, but easier to interpret. Continuity of 
     now includes continuity with respect to  , a plausible restriction.) 
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Afriat (1967 IER) showed that a reference-independent utility function 
can rationalize the data if and only if the data satisfy GARP. 

Definition 1. (Rationalization). A reference-dependent utility function 
         and a set of reference points             rationalize the data 

               iff 

                      for all   such that     
       

  . 
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    where R indicates that there is some 
sequence of observations                such that  
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   . 
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We derive necessary and sufficient conditions for a reference-dependent 
rationalization for a sample with GARP violations, which that generalize 
those for a reference-independent rationalization. 
  



69 
 

Afriat (1967 IER) showed that a reference-independent utility function 
can rationalize the data if and only if the data satisfy GARP. 

Definition 1. (Rationalization). A reference-dependent utility function 
         and a set of reference points             rationalize the data 

               iff 

                      for all   such that     
       

  . 

Definition 2. (Generalized Axiom of Revealed Preference; “GARP”). 

      implies   
       

    where R indicates that there is some 
sequence of observations                such that  

  
       

   ,   
       

        
       

   . 

 
We derive necessary and sufficient conditions for a reference-dependent 
rationalization for a sample with GARP violations, which that generalize 
those for a reference-independent rationalization. 
 
Following Afriat, Diewert (1973 RES), and Varian (1982 ECMA), we give 
a tractable, linear programming method to check whether our conditions 
are satisfied and recover rationalizing preferences when they exist. 
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When reference points are unobservable, with diminishing sensitivity the 
indifference map can change with the reference point in an unrestricted 
way, making the hypothesis of rationality with reference-dependent 
preferences irrefutable: 
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When reference points are unobservable, with diminishing sensitivity the 
indifference map can change with the reference point in an unrestricted 
way, making the hypothesis of rationality with reference-dependent 
preferences irrefutable: 
 
Proposition 1. (Diminishing sensitivity with unobservable reference 
points). For any dataset               , there exists a set of reference 

points             and a reference-dependent utility function          

which is continuous, nonsatiated, and non-decreasing with respect to   
for a given   which rationalizes those data. 
 
Proof. We can use reference-dependence to make the indifference 
curve through each observation coincide with its budget line. Let 

                     which is continuous, nonsatiated and non-

decreasing with respect to   for a given    . Set      . (Although 
   is normally conformable to   , not   ,    serves here only to identify 
the marginal utilities of the approximating linear preferences.) Then 

               
      

    and              
     

   .  
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Constant sensitivity is a useful, if oversimplified, way to rule out the 
theoretically possible but empirically implausible strong local variations in 
preferences that prevent the model from having testable implications with 
diminishing sensitivity. 
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denote the vector whose k-th component is            . 
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Constant sensitivity is a useful, if oversimplified, way to rule out the 
theoretically possible but empirically implausible strong local variations in 
preferences that prevent the model from having testable implications with 
diminishing sensitivity. 
 
 
A reference point (observed or hypothesized) partitions the commodity 

space into    reference regimes. Observations are in the same regime 
(whether or not they have exactly the same reference point) if and only if 

they have the same good-by-good gain-loss pattern. Let            
denote the vector whose k-th component is            . 
 
 
Definition 3. (Constant Sensitivity). A reference-dependent utility 
function          exhibits constant sensitivity/sign-dependence if for 
any two bundles    and   it is the case that                   
                          if                      
                      . 
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Under constant sensitivity each gain-loss regime has its own local 
indifference map, which extends throughout the space but is “switched 
on” only for consumption bundles in that regime. 
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Under constant sensitivity each gain-loss regime has its own local 
indifference map, which extends throughout the space but is “switched 
on” only for consumption bundles in that regime. 
 
 
Although constant sensitivity requires the local map to remain constant 

within a regime, it allows the level of          to vary with      . 
 
 
We assume that preferences are continuous and weakly monotonic, so 

that for any   the local maps join uniquely across regimes to create a 
well-defined global indifference map. 
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Constant sensitivity with two active gain-loss regimes 
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Under constant sensitivity each gain-loss regime has its own local 
indifference map, which extends throughout the space but is “switched 
on” only for consumption bundles in that regime. 
 
 
Although constant sensitivity requires the local map to remain constant 

within a regime, it allows the level of          to vary with      . 
 
 
We assume that preferences are continuous and weakly monotonic, so 

that for any   the local maps join uniquely across regimes to create a 
well-defined global indifference map. 
 
 
Although the local indifference maps are insensitive to the precise 

location of  , even small changes in   vary how they connect across 
regimes, altering the shape of the global map. 
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When reference points are unobservable, with constant sensitivity choice 
can be rationalized by reference-dependent preferences if and only if 
one can hypothesize reference points that group the observations into 2

K
 

gain-loss regimes (where K is the number of goods), such that each 
regime’s observations satisfy GARP, so that they are rationalizable 
within their regime by reference-independent preferences: 
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When reference points are unobservable, with constant sensitivity choice 
can be rationalized by reference-dependent preferences if and only if 
one can hypothesize reference points that group the observations into 2

K
 

gain-loss regimes (where K is the number of goods), such that each 
regime’s observations satisfy GARP, so that they are rationalizable 
within their regime by reference-independent preferences: 
 
Proposition 2. (Constant sensitivity with unobservable reference points). 
The following conditions are equivalent: 
 
1. There exist a set of reference points             and a reference-

dependent utility function           which exhibits constant sensitivity 
and which is continuous, nonsatiated, and non-decreasing with respect 
to   for a given   which rationalize the data               . 

 
2. There exists an exclusive and exhaustive partition of the data 
               into    or fewer subsets such that GARP is satisfied within 

each subset. 
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Sketch of proof. 
 
 
 
         Plainly if we cannot satisfy GARP within some specification of 
2

K
 regimes, we cannot rationalize the data.  

 
 
 
         Suppose that there exists a partition of the observations into 

   subsets within which the data satisfy GARP. The cross-regime 
restrictions for rationalization can always be satisfied by hypothesizing 
reference points that put each observation’s entire budget set within its 

reference regime.   
  



84 
 

 
 
When reference points are observable, Proposition 1’s result that with 
diminishing sensitivity the hypothesis of reference-dependent 
preferences is irrefutable, remains valid with a minor qualification. 
 
 
 
Proposition 3. (Diminishing sensitivity with observable reference points). 
The following conditions are equivalent: 
 
1. There exists a reference-dependent utility function          which is 

continuous, nonsatiated and non-decreasing with respect to   which 
rationalizes the data                  .  

 
2. Every subset of the data which is defined by having a common 
reference point satisfies GARP. 
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Proof of Proposition 3.  
 
 
(1)   (2):  For a fixed reference point,          is continuous, 

nonsatiated and non-decreasing with respect to   and therefore implies 
GARP by Afriat’s Theorem. 
 
 
 

(2)   (1): In any subset with a common reference point, GARP and 
Afriat’s Theorem implies that, as in the proof of Proposition 2, we can 
find a utility function that rationalizes the data for that subset. For other 
observations we can use reference-dependence to construct such a 
utility function (but no longer as immediately as in the proof of 
Proposition 1).  
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Corollary 1. (Reference dependence with a fixed reference point). The 
following conditions are equivalent: 
 
1. There exists a reference-dependent utility function          which is 
continuous, nonsatiated and non-decreasing with respect to   which 
rationalizes the dataset                    where      for all  . 
 
2. There exists a utility function      which is continuous, concave, 
nonsatiated and non-decreasing with respect to   which rationalizes the 
dataset                

 
3. The data                satisfies GARP. 

 
 
Proof of Corollary 1. 
 
With all observations sharing the same, single reference point, this 

follows from Proposition 2.   
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Proposition 4. (Constant sensitivity with observable reference points). 

The following conditions are equivalent: 

 
1. There exists a reference-dependent utility function          which 
exhibits constant sensitivity and which is continuous, nonsatiated and 
non-decreasing with respect to   for a given   which rationalizes the data 
                 . 

 
 
2. The data within each regime defined by the reference points satisfy 
GARP and the implied revealed preferred and revealed worse sets (as 
defined by Varian but not explained here) for each observation are 
disjoint. 

 

Proof omitted. 
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Rationalizing a cross-regime GARP violation with constant sensitivity 
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Application to cabdrivers’ labor supply 
 

BCC use their methods to reconsider Farber’s (2005, 2008) and 
Crawford and Meng’s (2011) analyses of Farber’s dataset from a 
nonparametric point of view.  
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    subject to    

       
  

 

where   
  is the value of their time endowment at the hourly wage   

 .  
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Given Propositions 1’s and 3’s negative results, BCC assume constant 
sensitivity throughout. 
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BCC use their methods to reconsider Farber’s (2005, 2008) and 
Crawford and Meng’s (2011) analyses of Farber’s dataset from a 
nonparametric point of view. The model of interest is  
 

                
    subject to    

       
  

 

where   
  is the value of their time endowment at the hourly wage   

 .  
 
Given Propositions 1’s and 3’s negative results, BCC assume constant 
sensitivity throughout. 
 
 
Partly for computational feasibility, BCC follow the nonparameteric 
tradition of modeling each driver separately, by contrast with the labor-
economics tradition of assuming drivers all have the same preferences. 

(“Point” estimates are feasible, possibly even for latent class models. 
The problem is computing the Selten measures of goodness of fit.)  
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Farber collected 538 “trip sheets” for 15 drivers between June 1999 and 
May 2001. Each trip sheet records the driver's name, hack number, and 
date and the details of each fare. For each fare the data record the start 
time, start location, end time, end location and fare. 
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observed for each driver is    and is different for each driver.  
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Farber collected 538 “trip sheets” for 15 drivers between June 1999 and 
May 2001. Each trip sheet records the driver's name, hack number, and 
date and the details of each fare. For each fare the data record the start 
time, start location, end time, end location and fare. 

Create a price-quantity panel dataset     
    

  
        

        
  where          

indicates a driver and          indexes observations (shifts) for each 

driver. The first shift for each driver is     and the total number of shifts 
observed for each driver is    and is different for each driver.  
 

BCC define two choice variables, leisure time    
   and consumption    

   

and their corresponding prices: 
 

  
   

  
 

  
 
   

                                
        

  

  
     

 

 
   

               
         

  

where hourly earnings is adjusted for waiting (and not earning) time. 
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BCC begin by checking whether any of the drivers satisfy the weak 
axiom of revealed preference (“WARP”): that is, whether their choices 
can be rationalized by standard, reference-independent preferences. 
 
BCC present two measures of the results of this and later tests. The first 

is the “pass rate”,         , which does not reflect the model’s flexibility. 
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BCC begin by checking whether any of the drivers satisfy the weak 
axiom of revealed preference (“WARP”): that is, whether their choices 
can be rationalized by standard, reference-independent preferences. 
 
BCC present two measures of the results of this and later tests. The first 

is the “pass rate”,         , which does not reflect the model’s flexibility. 
 

 

The second,                , is the difference between    and the 

“area”   , the size of the set of all possible choices (Selten and Krischker 
1983). 
 

The second measure rewards a model for a good pass rate despite 
demanding restrictions, essential comparing models that vary in 
flexibility:  
 

An unrestrictive model yields     , a pass despite sharp restrictions 

yields     , and a failure despite weak restrictions yields      . 
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Unobserved reference points 

With constant sensitivity, when reference points are unobserved, 
Proposition 2 shows that the test for whether a driver’s choices are 
consistent with reference-dependent preferences reduces to determining 
how many indifference maps are required to rationalize them. 
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Unobserved reference points 

With constant sensitivity, when reference points are unobserved, 
Proposition 2 shows that the test for whether a driver’s choices are 
consistent with reference-dependent preferences reduces to determining 
how many indifference maps are required to rationalize them. 

With only two goods, WARP is necessary and sufficient for utility 
maximization. Thus if a driver’s observations satisfy WARP, perfect fit 
can be achieved with a single, reference-independent indifference map. 
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how many indifference maps are required to rationalize them. 

With only two goods, WARP is necessary and sufficient for utility 
maximization. Thus if a driver’s observations satisfy WARP, perfect fit 
can be achieved with a single, reference-independent indifference map. 

If not, BCC check whether a driver’s observations can be partitioned into 
two subsets, within each of which WARP is satisfied and they can be 
rationalized by a single indifference map. If so, the observations can be 
rationalized by reference-dependent preferences with a target for hours 
or earnings (which, is not identified with unobservable reference points). 
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Unobserved reference points 

With constant sensitivity, when reference points are unobserved, 
Proposition 2 shows that the test for whether a driver’s choices are 
consistent with reference-dependent preferences reduces to determining 
how many indifference maps are required to rationalize them. 

With only two goods, WARP is necessary and sufficient for utility 
maximization. Thus if a driver’s observations satisfy WARP, perfect fit 
can be achieved with a single, reference-independent indifference map. 

If not, BCC check whether a driver’s observations can be partitioned into 
two subsets, within each of which WARP is satisfied and they can be 
rationalized by a single indifference map. If so, the observations can be 
rationalized by reference-dependent preferences with a target for hours 
or earnings (which is not identified with unobservable reference points). 

If two maps do not suffice, BCC check whether a driver’s observations 
can be partitioned into four (= 2

2
) subsets, within each of which WARP is 

satisfied. If so, the observations can be rationalized by reference-
dependent preferences with targets for both hours and earnings. 
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The cross-driver average pass rates for the neoclassical, two-map, and 
four-map models are 86.36%, 99.47% and 100% respectively. 
 
Is the 13-14% increase in from neoclassical to reference-dependent 
models enough to justify the latter models’ extra flexibility? 
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with unobserved reference points and a small sample, a very high area.  
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drivers, and the one-map (reference-independent) model does best for 8. 

(The cross-driver heterogeneity in the Selten indices is due to drivers’ 
different numbers of observations and the variability of hourly wages.)   
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The cross-driver average pass rates for the neoclassical, two-map, and 
four-map models are 86.36%, 99.47% and 100% respectively. 
 
Is the 13-14% increase in from neoclassical to reference-dependent 
models enough to justify the latter models’ extra flexibility? 
 
 
The four-map (two-target reference-dependent) model does poorly for all 
15 drivers, hardly better than random, with a very high pass rate but also, 
with unobserved reference points and a small sample, a very high area.  
 
The two-map (one-target reference-dependent) model does best for 7 
drivers, and the one-map (reference-independent) model does best for 8. 

(The cross-driver heterogeneity in the Selten indices is due to drivers’ 
different numbers of observations and the variability of hourly wages.)   
   
Overall, with unobserved reference points the reference-independent 
model does best: Its area is much smaller than those of both reference-
dependent models, but its pass rate is still high, at 86.36%.    
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Table 2: Selten indices with unobserved reference points 

Driver One map Two Maps Four Maps 

1 0.8718 0.8730 0.0000 
2 0.9360 0.2050 0.0000 
3 0.9250 0.8240 0.0010 
4 0.7826 0.4100 0.0000 
5 0.9583 0.5920 0.0000 
6 0.8919 0.9160 0.0050 
7 0.8321 0.3100 0.0010 
8 0.8889 0.9380 0.0010 
9 0.8811 0.2120 0.0000 

10 0.7627 0.3880 0.0000 
11 0.8714 0.9847 0.0150 
12 0.7639 0.9861 0.0450 
13 0.8182 0.6797 0.0000 
14 0.8261 0.9593 0.0080 
15 0.8261 0.9570 0.0060 
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Observed reference points 

With constant sensitivity, when reference points are observed or as here, 
modeled as functions of the data, Proposition 4 is the relevant result.  

BCC follow Koszegi and Rabin (2006) in conceptualizing the reference 
points as rational expectations; and Crawford and Meng (2011) in 
treating reference points as point expectations, driver by driver. 

BCC model them from a driver’s observations in two alternative ways: 

● Proxy by leave-one-out means (close to Crawford and Meng 2011). 
 
● Proxy by a backward-looking, lagged model in which the reference 
 point depends on what the driver chose on his last comparable shift. 
 
BCC cross the leave-one-out mean and lagged reference point models 
with distinguishing day from night shifts and rainy from dry shifts. 

(E.g. the reference point for a rainy shift with the backward-looking model 
is what happened on the driver’s last comparably rainy shift.) 
 
Altogether there are 18 alternative reference-point models. 
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Table 3 reports Selten indices, driver by driver, for the models with 
observed/modeled reference points with respect to hours. 
 
If all drivers are assumed to form their reference points in the same way, 
all 18 models have reasonable Selten indices (0.7246 on average), with 
cross-driver averages ranging only from 0.7047 to 0.7627. 
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cross-driver averages ranging only from 0.7047 to 0.7627. 
 
The best model is the lagged conditional on weather one (the average 
Selten index across drivers is 0.7627. with median 0.7857). 
 
 
If drivers are allowed to form their reference points heterogeneously, the 
day/night lagged model is best (or joint best) for 8 drivers; the 
unconditional leave-one-out model is best for driver 4; and the leave-
one-out day/night model is best for drivers 8 and 9. 
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Table 3 reports Selten indices, driver by driver, for the models with 
observed/modeled reference points with respect to hours. 
 
If all drivers are assumed to form their reference points in the same way, 
all 18 models have reasonable Selten indices (0.7246 on average), with 
cross-driver averages ranging only from 0.7047 to 0.7627. 
 
The best model is the lagged conditional on weather one (the average 
Selten index across drivers is 0.7627. with median 0.7857). 
 
 
If drivers are allowed to form their reference points heterogeneously, the 
day/night lagged model is best (or joint best) for 8 drivers; the 
unconditional leave-one-out model is best for driver 4; and the leave-
one-out day/night model is best for drivers 8 and 9. 
 
 
Overall, allowing heterogeneity in how drivers form reference points and 
choosing the best model for each driver, the average Selten index for 
observed reference points with respect to hours is 0.8122.  
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Table 3: Selten indices with observed reference points with respect to hours 

  Leave-one-out   Lagged  

Driver  Day/Night Rain/Dry  Day/Night Rain/Dry 

1 0.7692 0.7436 0.7692 0.8462 0.7692 0.8462 
2 0.7430 0.7730 0.7190 0.8290 0.8500 0.8130 
3 0.8000 0.7480 0.7990 0.7250 0.9250 0.7240 
4 0.6537 0.6082 0.6507 0.5552 0.5197 0.5582 
5 0.8550 0.8610 0.8610 0.8333 0.9553 0.8303 
6 0.7297 0.6757 0.7277 0.8919 0.8919 0.8108 
7 0.6062 0.5992 0.6418 0.8657 0.8657 0.8647 
8 0.8444 0.8667 0.7323 0.7111 0.7333 0.6889 
9 0.7350 0.7570 0.7230 0.5034 0.6093 0.4984 

10 0.5591 0.7615 0.6309 0.7517 0.8714 0.6401 
11 0.8000 0.7429 0.8000 0.8286 0.7857 0.8286 
12 0.6806 0.6806 0.4583 0.6806 0.6250 0.6806 
13 0.8162 0.8182 0.8182 0.7273 0.9091 0.7263 
14 0.6304 0.5217 0.6304 0.5217 0.4783 0.5217 
15 0.6087 0.6087 0.6087 0.6522 0.6522 0.6522 
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Table 4 reports Selten indices, driver by driver, for the models with 
observed reference points with respect to earnings. 
 

 
This time, if all drivers are assumed to form their reference points in the 
same way, the day/night leave-one-out and lagged models are the best, 
with average Selten indices of 0.7501 and 0.7426 respectively. 
 
 
 
Allowing heterogeneity in how drivers form their reference points, looking 
across drivers the day/night lagged model is the best for 6 drivers. 
 
 
 
Overall, allowing heterogeneity in how drivers form reference points and 
choosing the best model for each driver, the average Selten index for 
observed reference points with respect to hours is 0.8122.  
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Table 4: Selten indices with observed reference points with respect to earnings 

  Leave-one-out   Lagged  
Driver  Day/Night Rain/Dry  Day/Night Rain/Dry 

1 0.8462 0.8205 0.8462 0.7179 0.7436 0.7179 
2 0.7350 0.7500 0.7330 0.8350 0.8460 0.8360 
3 0.8250 0.7730 0.8250 0.6750 0.9000 0.7000 
4 0.9275 0.9235 0.9145 0.7706 0.9445 0.7766 
5 0.8947 0.9413 0.8987 0.8323 0.9563 0.8293 
6 0.5946 0.5946 0.5666 0.7297 0.6757 0.7027 
7 0.7175 0.8097 0.5782 0.9004 0.6462 0.9340 
8 0.6667 0.6444 0.7111 0.7333 0.6667 0.7556 
9 0.7150 0.7510 0.7000 0.5034 0.4774 0.4964 

10 0.7135 0.7535 0.6867 0.8095 0.7617 0.7497 
11 0.7286 0.6429 0.7286 0.6571 0.7857 0.6571 
12 0.6528 0.6806 0.5694 0.5833 0.6389 0.5972 
13 0.8162 0.8182 0.8182 0.6970 0.8788 0.6647 
14 0.6957 0.6522 0.6957 0.4783 0.5870 0.4783 
15 0.6957 0.6957 0.6957 0.6087 0.6304 0.6087 
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Table 5 reports Selten indices, driver by driver, for the models with 
observed reference points with respect to both hours and earnings. 
 

If all drivers are assumed to form their reference points in the same way, 
the day/night lagged model is best, with average Selten index of 0.7651. 
 
 
Allowing heterogeneity in how drivers form their reference points, looking 
across drivers the day/night lagged model is the best for 10 drivers. 
 

 
Overall, allowing heterogeneity in how drivers form reference points, the 
average Selten index for observed reference points with respect to both 
earnings and hours is 0.7028, versus 0.7291 for earnings only and 
0.7246 for hours only.  
 
And choosing the best both-hours-and-earnings model for each driver, 
the average Selten index for observed reference points is 0.8069, versus 
0.8139 for earnings only and 0.8122 for hours only.  
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Table 5: Selten indices for observed reference points 

with respect to both earnings and hours 
  Leave-one-out   Lagged  

Driver  Day/Night Rain/Dry  Day/Night Rain/Dry 

1 0.7939 0.7949 0.7949 0.7179 0.7949 0.7179 
2 0.6980 0.6850 0.6580 0.7280 0.7340 0.6530 
3 0.7000 0.6710 0.7230 0.6750 0.8990 0.6990 
4 0.8895 0.8865 0.8785 0.7596 0.9305 0.7626 
5 0.8043 0.9273 0.8043 0.8293 0.9483 0.8263 
6 0.5135 0.4595 0.6727 0.8919 0.9459 0.8649 
7 0.5872 0.7867 0.5652 0.8177 0.8067 0.9130 
8 0.6444 0.6222 0.5990 0.7111 0.6222 0.7111 
9 0.6880 0.7100 0.6810 0.3625 0.3215 0.3485 

10 0.6467 0.7255 0.7245 0.7885 0.8464 0.7785 
11 0.6857 0.6429 0.6857 0.8286 0.8429 0.8286 
12 0.6389 0.6389 0.5833 0.6111 0.7222 0.6389 
13 0.7516 0.7566 0.7566 0.6960 0.9091 0.7253 
14 0.5000 0.4783 0.5000 0.4565 0.5217 0.4565 
15 0.5870 0.6739 0.5870 0.5870 0.6304 0.5870 
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Summing up, reference-dependence allows a parsimonious 
nonparametric rationalization of most drivers’ labor supply decisions, and 
identifies the key elements of such a rationalization. 
 
 
Comparing models’ Selten indices, the neoclassical reference-
independent model is best only 4 drivers, while some form of reference-
dependence does best for 11 drivers. 
 
 
Among the alternative reference-dependent models, ones with one target 
two-regimes but reference unspecified is best for 6 drivers. 
 
 
For the other drivers, the day/night lagged model is best.  

 


