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Abstract: I revisit Myerson and Satterthwaite’s (1983; “MS”) classic analysis of mechanism 

design for bilateral trading, focusing on direct mechanisms and replacing equilibrium with a 

structural nonequilibrium “level-k” model that predicts initial responses to games. Because the 

choice of mechanism influences the correctness of level-k beliefs, requiring level-k-incentive-

compatibility may involve loss of generality. If only level-k-incentive-compatible mechanisms 

are feasible, MS’s characterization of incentive-efficient mechanisms extends qualitatively to 

level-k traders, with one novel feature, “tacit exploitation of predictably incorrect beliefs.” If 

non-level-k-incentive-compatible mechanisms are feasible but people best respond to level-k 

beliefs, level-k-incentive-efficient mechanisms differ in form and detail from equilibrium-

incentive-efficient mechanisms. 
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1. INTRODUCTION 

 This paper revisits Myerson and Satterthwaite’s (1983; “MS”) classic analysis of mechanism 

design for bilateral trading with independent private values. I focus on direct mechanisms and 

replace MS’s assumption that traders will play the desired equilibrium in any game the choice of 

mechanism creates with the assumption that traders will follow a structural nonequilibrium 

model based on level-k thinking. Otherwise I maintain standard behavioral assumptions. 

 Why study nonequilibrium design? Equilibrium analyses of design have enjoyed tremendous 

success; and both theory and experiments support the assumption that players in a game who 

have enough experience with analogous games will have learned to play an equilibrium. Design, 

however, creates new games, which may lack the clear precedents required for learning; yet a 

design may still need to work the first time. Even in settings where learning is possible, design 

may create games too complex for convergence to equilibrium to be behaviorally plausible. 

 In theory, equilibrium assumptions can still be justified via epistemic arguments (Aumann 

and Brandenburger 1995). But in experiments that study initial responses to games, subjects’ 

thinking seldom follows the fixed-point or iterated-dominance reasoning that equilibrium usually 

requires.
2
 Instead their thinking favors level-k decision rules, which anchor beliefs in a naive 

model of others’ initial responses, called L0, and then adjust them via a small number, k, of 

iterated best responses: L1 best responds to L0, L2 to L1, etc. The frequency of L0 is usually 

estimated to be small and subjects’ levels to be heterogeneous, concentrated on L1, L2, and L3. 

 Lk for k > 0 is rational, with an accurate model of the game. It departs from equilibrium only 

in basing its beliefs on an oversimplified model of others’ decisions. Lk’s decisions also respect 

k-rationalizability (Bernheim 1984), so that a level-k model can be viewed as a heterogeneity-

tolerant refinement of it.
3
 As a result, Lk mimics equilibrium decisions in two-person games that 

are dominance-solvable in k rounds, but may deviate systematically in other games. Importantly, 

the fact that a level-k model is structural allows it to predict not only that deviations from 

equilibrium will occur, but also which kinds of game evoke them and what forms they will take. 

                                                 
2 Crawford, Costa-Gomes, and Iriberri (2013) survey the experimental literature on strategic thinking. Maskin (2011) argues that 

“the theoretical and practical drawbacks of Nash equilibrium as a solution concept are far less troublesome in problems of 

mechanism design”, because the game can often be chosen to ensure that equilibrium is unique, or even that it is dominance-

solvable. But the experiments suggest that neither feature assures equilibrium initial responses in general, and this extends to 

many games used in theoretical analyses of implementation (Katok, Sefton, and Yavas 2002; Chen and Ledyard 2008). Some 

researchers argue that using an incentive-compatible mechanism and announcing that truth-telling is an equilibrium avoids the 

complexity of equilibrium thinking, but people may still wish to check such claims using their own ways of strategic thinking.  
3 In Camerer, Ho, and Chong’s (2004) closely related “cognitive hierarchy” model, Lk best responds to a mixture of all lower 

levels. As a result, it may not always respect k-rationalizability when k > 1. 
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 A level-k analysis could add to the usefulness of equilibrium design theory in several ways. 

A level-k model replaces k-rationalizability’s set-valued predictions with a selection specific 

enough to permit an analysis directly comparable to an equilibrium analysis, clarifying the role 

of the equilibrium assumption.
4
 A level-k analysis could identify settings in which equilibrium 

conclusions are robust to likely deviations from equilibrium. It could identify other settings 

where mechanisms that are optimal, assuming equilibrium, are too fragile to perform as well in 

practice as equilibrium-suboptimal but less fragile mechanisms: an evidence-based way to assess 

robustness of mechanisms. Finally, a level-k analysis might reduce the unrealistic sensitivity of 

theoretically optimal mechanisms’ to distributional and knowledge assumptions (Wilson 1987). 

 Section 2 reviews the positive starting point for MS’s analysis, Chatterjee and Samuelson’s 

(1983; “CS”) classic Bayesian equilibrium analysis of bilateral trading with independent private 

values via double auction. CS characterized the equilibria of the double auction for well-behaved 

value densities with overlapping supports. In the case of uniform densities, they identified an 

equilibrium in which traders’ bids are linear in their values, and traders shade their bids so trade 

occurs only if the buyer’s value is sufficiently larger than the seller’s. In this and other equilibria, 

with positive probability some beneficial trades do not occur and trading is inefficient ex post. 

 Section 3 reviews MS’s analysis of design. They asked whether the ex post inefficiency CS 

noted is a flaw of the double auction or a general property of any feasible mechanism that creates 

the incentives traders need to reveal the private information on which efficient trading depends. 

Assuming Bayesian equilibrium, MS argued, via the revelation principle (pp. 267-268), that any 

equilibrium of any feasible mechanism can be viewed as the truthful equilibrium of a direct-

revelation mechanism with the same outcomes, so there is no loss of generality in restricting 

attention to direct mechanisms that are incentive-compatible in the sense that truthful reporting is 

an equilibrium. For well-behaved value densities, MS then characterized incentive-efficient 

trading mechanisms, showing that the ex post inefficiency of the double auction cannot be 

avoided in equilibrium by any feasible mechanism. They also showed that, with uniform value 

densities and symmetric surplus-sharing in the auction, CS’s linear equilibrium, or equivalently 

the incentive-compatible direct mechanism that mimics its outcomes, is incentive-efficient. 

                                                 
4 Until recently the alternatives to equilibrium were limited to adding noise to equilibrium predictions; quantal response 

equilibrium (“QRE”); or rationalizability or k-rationalizability. To my knowledge, equilibrium plus noise has seldom been 

applied to design; see however de Clippel, Saran, and Serrano (2015). QRE has not been applied to design, perhaps because it 

must be solved for numerically and its predictions are driven by its error structure. With some exceptions, noted below, 

rationalizability and k-rationalizability have not been applied to design, because set-valued predictions impede analysis. 
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 Section 4 defines a level-k model for incomplete-information games. I focus on direct 

mechanisms, those in which players’ decisions are conformable to estimates of their values, for 

two reasons, one practical and one analytical. The simplicity of direct mechanisms makes them 

especially well suited to applications. And in more exotic games, level-k models are unlikely to 

describe people’s thinking (Crawford, Kugler, Neeman, and Pauzner 2009); but evidence to 

guide a specification of a reliable model for more general games is lacking. With complete 

information, L0’s decisions are usually taken to be uniform random over the feasible decisions. 

With incomplete information, I take L0’s decisions to be uniform over the feasible decisions and 

independent of its private value. As usual I define L1, L2, etc. via iterated best responses. This 

extended model gives a reliable account of the behavioral issues nonequilibrium mechanism 

design must address: how people’s thinking deviates from equilibrium, and their “informational 

naiveté”, their imperfect attention to how others’ decisions depend on their private information. 

 Section 5 revisits CS’s equilibrium analysis of the double auction using Section 4’s level-k 

model, restricting attention to L1s or L2s, which are empirically the most frequent and illustrate 

my main points. In the double auction L1s’ uniform beliefs over the entire value range make 

them too optimistic about their partners’ bids or asks, relative to equilibrium. That makes L1s bid 

or ask too aggressively, which in the double auction reduces efficiency, driving expected total 

surplus if both traders are L1s well below its level in equilibrium. By contrast, L2s’ beliefs tend 

to be too pessimistic. That makes L2s tend to bid or ask too unaggressively, which increases 

efficiency, raising surplus if both traders are L2s well above its level in equilibrium. 

 These results raise new questions regarding design: For instance, could a designer who 

knows that all traders are L1s improve upon the double auction by designing a mechanism that 

curtails L1s’ aggressiveness in it? And could one who knows that all traders are L2s improve 

upon the double auction by further heightening L2s’ unaggressiveness? Section 6 takes up such 

questions, replacing equilibrium with a level-k model. I assume the population level frequencies 

are known to the designer and, for most of the analysis, concentrated on one level, L1 or L2. 

 I define incentive-efficiency notions for correct beliefs, but derive incentive constraints from 

level-k beliefs. “Level-k-incentive-compatibility” and “level-k-interim-individual-rationality” are 

analogous to the standard notions, which I call “equilibrium-incentive-compatibility” and 

“equilibrium-interim-individual-rationality”. I use “incentive-compatible” in the narrow sense, 

for direct mechanisms in which it is optimal for people to report truthfully, given their beliefs. 
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 Section 6’s first main result, Theorem A, shows that if level-k-incentive-compatibility is 

required, with uniform value densities MS’s equilibrium-incentive-efficient mechanism is 

efficient in the set of level-k-incentive-compatible mechanisms (which is then independent of k) 

for any population of level-k traders with k > 0. In this case MS’s closed-form solution for 

incentive-efficient mechanisms is fully robust to replacing equilibrium with a level-k model.  

 Comparing Theorem A with Section 5’s analysis shows that, unlike in MS’s equilibrium 

analysis, the choice between the symmetric double auction and MS’s equilibrium-incentive-

efficient mechanism is not neutral for level-k traders: With uniform densities MS’s mechanism is 

efficient for L1s in the set of L1-incentive-compatible mechanisms only if implemented not as a 

double auction but in its L1-incentive-compatible direct form. And by contrast, for L2s the non-

L2-incentive-compatible double auction would, if feasible, improve upon the mechanism that is 

efficient in the set of L2-incentive-compatible mechanisms, violating the revelation principle. 

 Why do mechanisms that are equivalent in MS’s equilibrium analysis yield outcomes that 

differ, and in opposite directions, for L1s and L2s? The differences stem from Crawford et al.’s 

(2009) “level-k menu effects”, whereby the choice of mechanism influences the correctness of 

level-k beliefs.
5
 For L1s, such menu effects favor the L1-incentive-compatible direct mechanism 

because it rectifies L1s’ beliefs and counters their aggressiveness. For L2s, the menu effects 

favor the double auction because it preserves L2s’ beneficial unaggressiveness. 

 The influence of menu effects means that it matters whether level-k-incentive-compatibility 

is required (in the narrow truthful-revelation sense), as in Theorem A; or can be relaxed to allow 

direct but non-incentive-compatible mechanisms such as the double auction.
6
 Some analysts of 

design have argued that incentive-compatibility is essential in applications (e.g. Abdulkadiroglu 

and Sönmez 2003 for school choice; Milgrom, Ausubel, Levin, and Segal 2012 for auctions), 

though mostly in equilibrium analyses where there is no theoretical gain from relaxing it. Others 

are willing to consider non-incentive-compatible mechanisms like the Boston Mechanism (Erdil 

and Ergin 2008; Abdulkadiroglu, Che, and Yasuda 2011) or first-price auctions (Myerson 1981). 

I take no position on whether incentive-compatibility is essential, which is mostly an empirical 

question. Instead I require it in most of the analysis, but briefly consider relaxing it at the end. 

                                                 
5 Such an influence is possible because level-k beliefs are anchored on L0 and not rectified by strategic thinking, as equilibrium 

beliefs are. Because the influence is on beliefs, not preferences, it is not inconsistent per se with rational individual decisions. 
6 By “relaxing level-k-incentive-compatibility” I mean allowing direct mechanisms that create incentives to lie for level-k beliefs, 

not dropping optimality. I call the level-k notion of incentive-efficiency “efficiency in the set of level-k-incentive-compatible 

mechanisms” when level-k-incentive-compatibility is required, and “level-k-incentive-efficiency” when it is relaxed.        
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 Theorems B and C adapt MS’s (Theorems 1-2) characterization of equilibrium-incentive-

efficient mechanisms for well-behaved value densities to characterize mechanisms that are 

efficient in the set of level-k-incentive-compatible mechanisms for a known population of traders 

concentrated on one level, either L1 or L2. MS’s characterization is in this case fully robust to 

replacing equilibrium with a level-k model, even though their analysis relies on the behaviorally 

strong assumption that traders play an equilibrium that is a fixed-point in a high-dimensional 

strategy space. It follows that the design features that favor incentive-efficiency in MS’s 

equilibrium analysis also favor it in the level-k analysis, with different weights due to level-k 

beliefs. However, MS’s Corollary, that no incentive-compatible, interim individually rational 

mechanism is ex post efficient with probability one, does not fully extend to the level-k analysis.   

 Theorems B and C also reveal an efficiency-enhancing design feature that can only arise in a 

structural nonequilibrium analysis, tacit exploitation of predictably incorrect beliefs (“TEPIB”): 

“predictably incorrect” in that the level-k model predicts the distribution of traders’ deviations 

from equilibrium; “exploitation” in the benign sense of using traders’ nonequilibrium responses 

for their own benefit; and “tacit” in that the mechanism does not actively mislead traders. 

 As in MS’s analysis, mechanisms that are efficient in the set of level-k-incentive-compatible 

mechanisms can be solved for in closed form only with uniform value densities, for which they 

happen to induce level-k beliefs that are correct, neutralizing TEPIB. To assess TEPIB’s 

influence and importance, I compute such mechanisms for L1s, for representative combinations 

of linear value densities. Such mechanisms exploit TEPIB but are otherwise similar in most 

respects to equilibrium-incentive-efficient mechanisms. When buyers’ true densities make L1s’ 

beliefs pessimistic, such mechanisms tend to implement larger trading regions and more efficient 

outcomes than equilibrium-incentive-efficient mechanisms. When L1s’ beliefs are optimistic, 

such mechanisms tend to implement smaller trading regions.    

 I next briefly consider relaxing the assumption that the population is concentrated on one 

level, still assuming the designer knows the population mixture of levels and requiring level-k-

incentive-compatibility. If the designer is allowed to offer only a single, direct mechanism, rather 

than a menu, only trivial mechanisms can fully screen traders’ levels and values simultaneously. 

That is normally suboptimal; and there appears to be no simple structure on which levels and 

values should be screened. If L1s (respectively L2s) predominate, it is likely that a mechanism 

that is efficient in the set of level-k-incentive-compatible mechanisms for a known population 
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concentrated on L1 (respectively L2), is then optimal for the nearly homogeneous mixture of 

levels. For less extreme distributions, the picture is unclear. 

 Finally, I briefly consider relaxing level-k-incentive-compatibility, returning to the 

assumption of a known population of traders concentrated on one level, L1 or L2. As a tractable 

approximation of what is achievable via any feasible direct mechanism, I study double auctions 

with reserve prices chosen by the designer and assume uniform value densities. If level-k traders 

anchor their beliefs on the menu of possible bids as restricted by the reserve prices, instead of on 

the full range of possible values, for L1s such an auction can improve upon a mechanism that is 

efficient in the set of L1-incentive-efficient mechanisms, by taking fuller advantage of TEPIB. 

For L2s Section 5’s analysis already shows that a double auction can improve upon a mechanism 

that is efficient in the set of L2-incentive-efficient mechanisms without reserve prices; and 

calculations show that reserve prices allow more improvement. Overall, relaxing level-k-

incentive-compatibility allows level-k-incentive-efficient mechanisms to differ from equilibrium-

incentive-efficient mechanisms in form as well as detail, sometimes with large efficiency gains. 

 In addition to CS’s and MS’s analyses and Crawford and Iriberri’s (2007) level-k analysis of 

sealed-bid auctions, this paper builds on Crawford et al.’s (2009) level-k analysis of optimal 

independent-private-value auctions, which builds in turn on Myerson’s (1981) classic 

equilibrium analysis. Crawford et al. (2009) showed for auctions, as I show here for trading, that 

level-k design involves more than implementing equilibrium outcomes under weaker behavioral 

assumptions: A second-price auction may seem superior to a first-price auction because it yields 

the equilibrium outcome for any population of level-k bidders. But revenue-equivalence fails for 

level-k bidders, and TEPIB may allow a first-price auction to yield higher expected revenue.  

 Kneeland (2013), Gorelkina (2015), and de Clippel, Saran, and Serrano (2015) use level-k 

models to study design in settings including bilateral trading. Saran (2011a) studies MS’s design 

problem when some traders report truthfully without regard to incentives. Hagerty and Rogerson 

(1987) and Bulow and Roberts (1989) study dominant-strategy implementation in MS’s trading 

environment, the latter achieving positive results by giving up ex post budget balance. In more 

abstract settings, Mookherjee and Reichelstein (1992) study dominant-strategy implementation; 

and Matsushima (2007, 2008) studies implementation via finitely iterated dominance.  

 Finally, Glazer and Rubinstein (1998), Neeman (2003), Eliaz and Spiegler (2006, 2007, 

2008), and Wolitzky (2014) study design with “behavioral” individual decisions or judgment. 



7 

 

2. EQUILIBRIUM BILATERAL TRADING VIA DOUBLE AUCTION 

 Following CS and MS, I consider bilateral trading between a potential seller and buyer of an 

indivisible object, in exchange for an amount of money to be determined. The traders’ von 

Neumann-Morgenstern utility functions are quasilinear in money, so they are risk-neutral and 

have well-defined money values for the object. Denote the buyer’s value V and the seller’s C (for 

“cost”; but I sometimes use “value” generically for C as well as V). V and C are independently 

distributed, with probability densities f(V) and g(C) that are strictly positive on their supports, 

and probability distribution functions F(V) and G(C). CS and MS allowed traders’ value 

distributions to have any bounded overlapping supports, but for simplicity and with no important 

loss of generality, I take their supports to be identical and normalize them to [0, 1].  

 CS study a double auction, in which traders make simultaneous money offers. If the buyer’s 

offer b (for “bid”) exceeds the seller’s offer a (“ask”), they exchange the object for a price that is 

a weighted average of a and b. CS allowed weights from 0 to 1, but as in MS’s analysis I focus 

on the symmetric case with weights ½. Then, if b ≥ a, the buyer acquires the object at price (a + 

b)/2, the seller’s utility is (a + b)/2, and the buyer’s is V - (a + b)/2. If b < a, the seller retains the 

object, no money changes hands, the seller’s utility is C, and the buyer’s is 0. 

 As CS noted, this game has many Bayesian equilibria. I follow them and the subsequent 

literature in focusing on equilibria in which trade occurs with positive probability, and traders’ 

strategies are bounded above and below, strictly increasing, and (except possibly at the 

boundaries) differentiable. Denote the buyer’s bidding strategy b(V) and the seller’s asking 

strategy a(C). An equilibrium buyer’s bid       must maximize, over b ϵ [0, 1] 

     
   

 
      

           
 

 

  
 

 

  

where     
       is the density of an equilibrium seller’s ask       induced by the seller’s value 

density g(C). Similarly, an equilibrium seller’s ask       must maximize, over a ϵ [0, 1] 

  
   

 
     

           
 

 

 

 

    
          

where     
       is the density of an equilibrium buyer’s bid       given the value density f(V). 

 In the leading case where traders’ value densities f(V) and g(C) are uniform, CS gave a 

closed-form solution for a linear equilibrium, which was also important in MS’s analysis. Given 

my normalization of the supports of f(V) and g(C) to [0, 1], in this equilibrium              
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      unless V <    , in which case       can be anything that does not lead to trade; and 

                  unless C > 3  , when       can be anything that does not lead to trade. 

 With those strategies, trade takes place if and only if 2V/3 + 1/12 ≥ 2C/3 +    , or     

   , at price (V + C)/3 + 1/6. Thus with positive probability the outcome is ex post inefficient. 

Even so, MS showed that in this case the double auction implements an ex ante incentive-

efficient outcome, by showing that, assuming Bayesian equilibrium, no mechanism can ex ante 

Pareto-dominate the linear equilibrium of the double auction (MS’s p. 277 or Section 3.3 below). 

The linear equilibrium yields ex ante probability of trade 9/32 ≈ 28% and expected surplus 9/64 

≈ 0.14, less than the maximum interim (after traders observe own values, before they observe the 

outcome) individually rational probability of trade of 50% and expected total surplus 1/6 ≈ 0.17.  

3. EQUILIBRIUM MECHANISM DESIGN FOR BILATERAL TRADING 

 Assuming Bayesian equilibrium, MS characterized ex ante incentive-efficient mechanisms in 

CS’s trading environment, allowing any feasible mechanism and taking into account the need to 

ensure interim individual rationality. I now review MS’s analysis, using my notation. 

3.1 The revelation principle 

 In a direct mechanism traders make simultaneous reports of their values, which I denote v 

and c to distinguish them from traders’ true values V and C, and those reports then determine the 

outcome. MS’s assumption that traders will play the desired equilibrium in any game the 

designer’s choice of mechanism creates allows an important simplification of their analysis via 

the revelation principle. Because that simplification must be reconsidered in the level-k analysis, 

I quote MS’s (pp. 267-268) equilibrium argument for the revelation principle here: 

We can, without any loss of generality, restrict our attention to incentive-compatible direct 

mechanisms. This is because, for any Bayesian equilibrium of any bargaining game, there is 

an equivalent incentive-compatible direct mechanism that always yields the same outcomes 

(when the individuals play the honest equilibrium)….[w]e can construct [such a] mechanism 

by first asking the buyer and seller each to confidentially report his valuation, then 

computing what each would have done in the given equilibrium strategies with these 

valuations, and then implementing the outcome (transfer of money and object) as in the given 

game for this computed behavior. If either individual had any incentive to lie to us in this 

direct mechanism, then he would have had an incentive to lie to himself in the original game, 

which is a contradiction of the premise that he was in equilibrium in the original game. 
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3.2 Equilibrium-incentive-compatible direct trading mechanisms 

 When traders are risk-neutral, the payoff-relevant outcomes of a direct mechanism are 

completely described by two outcome functions, p(∙, ∙) and x(∙, ∙), where if the buyer and seller 

report values v and c, then p(v, c) is the probability the object is transferred from seller to buyer 

and x(v, c) is the expected monetary payment from buyer to seller. For a direct mechanism p(∙, ∙) 

and x(∙, ∙), define the buyer’s and seller’s expected monetary payments, probabilities of trade, 

and utilities as functions of their value reports v and c (hats denote variables of integration):   

                                               
 

 

 
 

 

 

(3.1)                            
 

 
                                 

 

 
 

                                                 

 Although the outcome functions take only on traders’ reported values as arguments, traders’ 

expected utilities also depend on their true values. Thus the mechanism p(∙, ∙), x(∙, ∙) (with the 

qualification “direct” omitted from now on) is incentive-compatible if and only if truthful 

reporting is an equilibrium; that is, if for every V, v, C, and c in [0, 1], 

(3.2)                                                    

Similarly, p(∙, ∙), x(∙, ∙) is interim individually rational if and only if for every V and C in [0, 1], 

(3.3)                                                         

MS’s Theorem 1. For any incentive-compatible mechanism, 

(3.4)                                                  

       
      

    
     

    

    
  

 

 

                   
 

 

 

Furthermore, if p(∙, ∙) is any function mapping [0, 1]×[0, 1] into [0, 1], then there exists a 

function x(∙, ∙) such that (p, x) is incentive-compatible and interim individually rational if and 

only if       is weakly increasing,       is weakly decreasing, and  

(3.5)           
      

    
     

    

    
  

 

 
                   

 

 
 

Proof. MS (pp. 269-270) showed that (3.2) implies that       is weakly increasing and       is 

weakly decreasing, and yields necessary and sufficient conditions for incentive-compatibility: 
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(3.6)                        
 

 
                                

 

 
 

(3.6) implies that       is weakly increasing and       is weakly decreasing, so         and 

        suffice for interim individual rationality as in (3.3). MS (p. 270) next showed that 

(3.7)                 
 

 
                  

 

 
 

                                      
 

 

           
 

 

 

(3.7) implies (3.4) and, given (3.3), (3.5).  Finally, given (3.5) and that       is weakly increasing 

and       is weakly decreasing, it is always possible, following MS (pp. 270-271), to construct a 

transfer function x(∙, ∙) such that (p, x) is an incentive-compatible and interim individually 

rational mechanism. Q.E.D. 

3.3 Equilibrium-incentive-efficient trading mechanisms 

 Given that ex post efficiency cannot be guaranteed for an incentive-compatible, interim 

individually rational mechanism, it is natural to consider the extent to which incentive-

compatibility limits efficiency. MS’s Theorem 2 addresses this question. To state it, they define 

(3.8)                
      

    
                   

    

    
 , 

                                , and                                 . 

MS’s Theorem 2. If there exists an incentive-compatible mechanism (p, x) such that       

        and           for some        , then that mechanism maximizes the expected 

gains from trade among all incentive-compatible, interim individually rational mechanisms. 

Furthermore, if        and        are increasing on [0, 1], then such a mechanism must exist. 

Proof. Note that         would yield an ex post efficient allocation, and         would 

maximize the slack in (3.5), which functions as a kind of “incentive budget constraint”.         

wastes surplus, and MS’s Corollary 1 (restated below) shows that         is unaffordable. The 

goal is an optimal compromise between those extremes, choosing the (V, C) combinations on 

which to trade that yield the largest expected gains per unit of incentive cost. Thus, consider the 

problem of choosing the function p(∙, ∙) to maximize the expected gains from trade 

       
 

 

                  
 

 

 

subject to (3.5). If the solution to this problem happens to yield functions       and       that 

are monotone increasing and decreasing, respectively, then by MS’s Theorem 1, the solution 
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p(∙, ∙) is associated with a mechanism that maximizes the expected gains from trade among all 

incentive-compatible, interim individually rational mechanisms. Optimality plainly requires 

            = 0, and that (3.5) holds with equality at the solution. Further, if        and 

       are increasing in V and C respectively, then        and        are similarly increasing 

for all          Thus        , which is defined so that varying α selects the trades that make 

the greatest contribution to expected gains from trade relative to their unit incentive cost in (3.5), 

is increasing in V and decreasing in C, and the associated       and       functions have the 

required monotonicity properties. Finally, MS (p. 276) show that there always exists an α such 

that (3.5) holds with equality and         yields an incentive-compatible mechanism. Q.E.D. 

MS’s Corollary 1. If traders have positive value densities with overlapping supports, no 

incentive-compatible, interim individually rational mechanism can be ex post efficient with 

probability one. 

Proof. Computations that are a special case of those in Section 6.3’s level-k analysis of this issue 

show that the conditions for ex post efficiency with probability one violate (3.5). Q.E.D. 

 With uniform value densities, MS’s Theorem 2 allows a closed-form solution for the 

incentive-compatible, individually rational mechanism that maximizes expected total surplus. 

With uniform densities, (3.8)’s criterion for                           reduces to  

(3.9)                 
 

   
 

and (3.4) with equality reduces to 

(3.10)                    
  

 

   
 

     
 
 

   

    

       
   

which implies that       (MS, p. 277).The incentive-efficient direct mechanism then transfers 

the object if and only if traders’ reported values satisfy        , at price (v + c)/3 + 1/6. 

With truthful reporting, this outcome function is identical to that of CS’s linear double-auction 

equilibrium: Although the double auction is not incentive-compatible, traders shade their bids in 

equilibrium to mimic the outcomes of MS’s incentive-efficient direct mechanism.
7
 The resulting 

ex ante probability of trade is 9/32 ≈ 28% and the expected total surplus is 9/64 ≈ 0.14. 

                                                 
7 However, Satterthwaite and Williams (1989, Theorem 5.1) showed that for generic value densities CS’s double auction 

equilibria are incentive-inefficient. Thus MS’s remarkable result for the case of uniform value densities is a coincidence. 
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4. A LEVEL-K MODEL FOR INCOMPLETE-INFORMATION GAMES 

 This section specifies a level-k model for CS’s and MS’s trading environment. I focus on 

direct mechanisms, in which players’ decisions are conformable to value estimates, for two 

reasons. The simplicity of direct mechanisms makes them especially well suited to applications. 

And in more exotic games, level-k models are unlikely to describe people’s thinking (Crawford 

et al. 2009); but evidence to guide a specification of a model for general games is lacking. 

 Recall that a level-k player anchors its beliefs in an L0 that represents a naive model of other 

players’ responses, with which it assesses the payoff implications of its own decisions before 

thinking about others’ incentives (Crawford et al. 2013, Sections 2.4 and 3). Lk then adjusts its 

beliefs via iterated best responses: L1 best responds to L0, L2 to L1, and so on. 

 In complete-information games L0 is usually taken to be uniformly randomly distributed over 

the range of feasible decisions. With incomplete information, following Camerer et al. (2004), 

Crawford and Iriberri (2007), and Crawford et al. (2009), I take L0’s decisions as uniform over 

the feasible decisions and independent of its own value. As usual I define L1, L2, etc. via iterated 

best responses. I also assume that a player’s level is independent of its value, a plausible 

provisional assumption. The resulting level-k model dates from Milgrom and Stokey’s (1982) 

notions of “Naïve Behavior” (equivalent to an L1 best responding to such an L0) and “First-

Order Sophistication” (L2), which they speculated might explain zero-sum trades despite their 

equilibrium no-trade/”Groucho Marx” theorem.
8
  

 There is a growing body of evidence that this extended level-k model gives a reliable account 

of the main patterns of people’s non-equilibrium thinking and informational naiveté, or imperfect 

attention to how others’ decisions depend on their private information, as often observed in 

experiments and in the field. For instance, Crawford and Iriberri (2007) showed that the model 

gives a coherent econometric account of subjects’ overbidding and vulnerability to the winner’s 

curse in their initial responses in the classic auction experiments.
9
 Camerer et al. (2004) 

                                                 
8 It is easy to imagine alternative specifications. For instance, an L0 buyer’s bid or seller’s ask might be assumed to be uniformly 

distributed below (above) its value, eliminating weakly dominated bids. But L0 represents not a real player but his naïve 

model of others, whose values he has not observed. Such a model could involve reasoning contingent on others’ values, but 

the experiments mentioned next strongly suggest that most people are averse to such contingent reasoning. Another alternative 

would be to assume that L0 optimizes given its true value, which is a well-defined notion for direct-revelation games. Such a 

“truthful” L0 would make level-k-incentive-compatibility identical to equilibrium-incentive-compatibility. My analysis goes 

through unchanged if the value densities have overlapping but not identical supports, if L0 anchors on the overlapping part. 
9 In a detailed econometric horse race, Crawford and Iriberri found that with minor exceptions, this level-k model fits better than 

equilibrium plus noise; Eyster and Rabin’s (2005) “cursed equilibrium”; QRE; or Kagel and Levin’s (1986) “naïve” bidders. 

Crawford and Iriberri (2007) also allowed Lks that best respond to a truthful L0, but they fit most subjects’ behavior poorly. 
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suggested that a cognitive hierarchy analogue of this model could explain zero-sum betting, and 

Brocas et al. (2014) reported experimental evidence in which the level-k version of the model 

explains both the patterns by which subjects’ betting deviates from equilibrium and their 

searches for hidden but freely accessible payoff information (which the level-k model predicts). 

Finally, Brown, Camerer, and Lovallo (2012) use this model to explain film-goers’ failure to 

draw negative inferences from studios’ withholding weak movies from critics before release. 

5. LEVEL-K BILATERAL TRADING VIA DOUBLE AUCTION 

 This section considers bilateral trading via the double auction using the level-k model, 

restricting attention for simplicity to homogeneous populations of L1s or L2s, which are 

empirically the most frequent and illustrate my main points. For L1s the analysis applies to 

general value densities, except that I assume that a trader’s level is independent of his value. For 

L2s I focus on the leading case of uniform value densities, which illustrates my main points. 

Denote the buyer’s bidding strategy bi(V) and the seller’s asking strategy ai(C), for levels i = 1, 2. 

5.1 L1 traders 

 An L1 buyer believes that the seller’s L0 ask is uniformly distributed on [0, 1]. Thus an L1 

buyer’s bid b1(V) must maximize, over b ϵ [0, 1] 

      
   

 
 

 

 

     
 

 

    

The optimal L1 strategies are increasing, so the event a = b can again be ignored; and the second-

order condition for L1’s problem is always satisfied. Solving the first-order condition yields, for 

any value densities, b1(V) = 2V/3, with range [0, 2/3]. Thus, boundaries aside, an L1 buyer bids 

1/12 more aggressively (bids less) than an equilibrium buyer with uniform value densities: An L1 

buyer’s naïve model of the seller systematically underestimates the distribution of the seller’s 

upward-shaded ask, relative to equilibrium, inducing the buyer to underbid.
10

 

 Similarly, an L1 seller’s ask a1(C) must maximize, over a ϵ [0, 1] 

 
   

 
     

 

 

 

 

    

                                                 
10 Here and in Section 5.2, compare Crawford and Iriberri’s (2007) analysis of L1 and L2 bidding in first-price auctions. These 

conclusions can be reversed if the seller’s value density slopes downward sufficiently steeply. Despite the multiplicity of 

equilibria in the double auction, the level-k model makes generically unique predictions, conditional on the frequencies of 

traders’ rules. An L1 buyer’s or seller’s optimal bidding strategy is independent of the value densities—unlike an L2’s, which 

depends on its partner’s density, or an equilibrium trader’s, which depends on both traders’ densities. Despite the multiplicity 

of equilibria in the double auction, the level-k model makes generically unique predictions conditional on the level frequencies. 



14 

 

The first-order condition yields, for any densities, a1(C) = 2C/3 + 1/3, with range [1/3, 1]. An L1 

seller asks 1/12 more aggressively (asks more) than an equilibrium seller with uniform densities. 

 To sum up, with uniform value densities, L1 traders’ bidding strategies have the same slopes 

as equilibrium traders’ strategies, but are 1/12 more aggressive. When an L1 buyer meets an L1 

seller, trade takes place if and only if V ≥ C + 1/2, so the value gap needed for trade is 1/4 larger 

than for equilibrium traders, and ex post efficiency is lost for more value combinations. An L1 

buyer’s and seller’s ex ante probability of trade is 1/8 = 12.5%, less than the equilibrium 

probability 9/32 ≈ 28% and the maximum (interim) individually rational probability 50%. 

5.2 L2 traders 

 An L2 buyer’s bid b2(V) must maximize, over b ϵ [0, 1] 

      
   

 
     

      
 

 

     
 

 

    

where     
       is the density of an L1 seller’s ask a1(C) induced by the value density g(C). 

 If, for instance, g(C) is uniform, an L2 buyer believes that the seller’s ask a1(C) = 2C/3 + 1/3 

is uniformly distributed on [1/3, 1], with density 3/2 there and 0 elsewhere. It thus believes that 

trade requires b > 1/3. For V ≤ 1/3 it is therefore optimal to bid anything it thinks yields 0 

probability of trade. In the absence of dominance among such strategies, I set b2(V) = V for V ϵ 

[0, 1/3]. For V > 1/3, if g(C) is uniform, an L2 buyer’s bid b2(V) must maximize over b ϵ [1/3, 1] 

      
   

 
 

 

   

         

The optimal L2 strategies are increasing, so the event a = b can again be ignored. The second-

order condition is again satisfied. Solving the first-order condition (3/2)(V - b) - (3/4)(V - 1/3) = 0 

yields b2(V) = 2V/3 + 1/9 for V ϵ [1/3, 1], with range [1/3, 7/9].  

 Comparing an L2 buyer’s optimal strategy to an equilibrium or L1 buyer’s optimal strategy, 

boundaries aside, with uniform value densities an L2 buyer bids 1/36 less aggressively (bids 

more) than an equilibrium buyer, and 1/9 less aggressively than an L1 buyer: An L2 buyer’s 

model of the seller systematically overestimates the distribution of the seller’s upward-shaded 

ask, relative to equilibrium, inducing the buyer to overbid. 

 An L2 seller’s ask a2(C) must maximize over a ϵ [0, 1] 
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where     
       is the density of an L1 buyer’s bid b1(V) induced by the value density f(V). 

 If, for instance, f(V) is uniform, an L2 seller believes that the buyer’s bid b1(V) = 2V/3 is 

uniform on [0, 2/3], with density 3/2 there and 0 elsewhere. It thus believes trade requires a < 

2/3. For C ≥ 2/3 it is therefore optimal for an L2 seller to bid anything it thinks yields zero 

probability of trade. In the absence of dominance among such strategies, I set a2(C) = C for C ϵ 

[2/3, 1]. For C < 2/3, an L2 seller’s ask a2(C) must maximize over a ϵ [0, 2/3]   

 
   

 

 
 

 

          
 

 

         

The second-order condition is satisfied, and the first-order condition (3/2)(a-C) + (3/2)(2/3 - C)/2 

= 0 yields a2(C) = 2C/3 + 2/9 for C ϵ [0, 2/3], with range [2/9, 2/3].  

 Comparing an L2 seller’s optimal strategy to an equilibrium or L1 seller’s optimal strategy, 

boundaries aside, with uniform value densities an L2 seller asks 1/36 less aggressively (asks less) 

than an equilibrium seller, and 1/9 less aggressively than an L1 seller. 

 To sum up, with uniform value densities L2 traders’ strategies again have the same slope as 

equilibrium traders’ strategies, but are 1/36 less aggressive. When an L2 buyer meets an L2 

seller, trade takes place if and only if V ≥ C + 1/6, so the value gap needed for trade is 1/12 less 

than for equilibrium traders (1/3 less than for L1s), and ex post efficiency is lost for fewer values. 

The ex ante probability of trade is 25/72 ≈ 35%, higher than the equilibrium probability 9/32 ≈ 

28% but still well below the maximum (interim) individually rational probability 50%.
11

 

6. MECHANISM DESIGN FOR LEVEL-K BILATERAL TRADING 

 Section 5’s analysis shows that with uniform value densities, in the double auction L1 traders 

are too optimistic about their partners’ bids or asks, relative to the correct beliefs of CS’s linear 

equilibrium. That makes L1s bid or ask too aggressively, which drives expected total surplus if 

both traders are L1s well below its equilibrium level. By contrast, L2s are too pessimistic and bid 

too unaggressively, which raises surplus if both traders are L2s well above its equilibrium level.  

 Could a designer who knows all traders are L1s design a mechanism that improves upon the 

double auction by curtailing their aggressiveness in it? And could one who knows all traders are 

L2s design a mechanism that improves upon the double auction by further heightening their 

                                                 
11 With uniform value densities, when an L2 buyer meets an L1 seller, or vice versa, trade takes place when V ≥ C + 1/3, so the 

necessary value gap is 1/12 more than for a pair of equilibrium traders, 1/6 more than for a pair of L2s, but 1/6 less than for a 

pair of L1s. Assuming that the distribution of levels is the same for buyers and sellers, the expected frequency of trade is 

determined by the population’s average level because traders’ contributions to the value gap are additive in these examples. 
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unaggressiveness? This section takes up such questions, reconsidering MS’s design problem, 

focusing on direct mechanisms and replacing equilibrium with a level-k model. I assume the 

designer knows the population level frequencies, and for most of the analysis that they are 

concentrated on either L1 or L2. As in MS’s and most analyses of design, I ignore decision noise.  

 I define incentive-efficiency notions for correct beliefs, but derive incentive constraints from 

level-k beliefs. I use “incentive-compatible” in the narrow sense, for direct mechanisms in which 

it is optimal for people to report truthfully, given their beliefs. “Level-k-incentive-compatibility” 

and “level-k-interim-individual-rationality” are analogous to the standard notions, which I call 

“equilibrium-incentive-compatibility” and “equilibrium-interim-individual-rationality”.  

6.1 Mechanisms that are efficient in the set of level-k-incentive-compatible mechanisms 

with uniform value densities 

 First suppose that level-k-incentive-compatibility is required, and consider the leading special 

case of uniform value densities. Theorem A shows that MS’s equilibrium-incentive-efficient 

direct mechanism, which then mimics CS’s linear double-auction equilibrium, is efficient in the 

set of level-k-incentive-compatible mechanisms (which is then independent of k) for any 

population of level-k traders with k > 0. In this case MS’s closed-form solution for the incentive-

efficient mechanism is fully robust to relaxing equilibrium in favor of a level-k model.
12

 

Theorem A. With uniform value densities, MS’s equilibrium-incentive-efficient direct 

mechanism is efficient in the set of level-k-incentive-compatible mechanisms for any population 

of levels with k > 0, known or concentrated on one level or not. 

Proof. This result follows from Theorem B below, but I give a more direct proof here. With 

uniform value densities, in the truthful equilibrium of MS’s equilibrium-incentive-efficient direct 

mechanism, each trader faces a uniform distribution of the other’s reports. For a different reason, 

L1 traders best respond to L0s that also imply uniform distributions. L1 traders’ conditions for 

individual rationality and incentive-compatibility ((6.2)-6.3) and (6.5)-(6.6) below) then coincide 

with the analogous conditions for equilibrium traders ((3.2)-(3.3) and (3.5)-(3.6); MS’s (2)-(4)). 

The equilibrium-incentive-efficient mechanism is therefore efficient in the set of L1-incentive-

compatible mechanisms, both defined for correct beliefs. Further, because the latter mechanism 

makes L1s report truthfully, L2s’ incentive conditions coincide with L1s’, as do Lks’ ad 

                                                 
12 Theorem A’s conclusion holds trivially for any nonequilibrium model in which all players best respond to correct beliefs. 
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infinitum. Thus the equilibrium-incentive-efficient mechanism is efficient in the set of level-k-

incentive-compatible direct mechanisms for any distribution of level-k traders with k > 0. Q.E.D. 

 6.2 Level-k menu effects 

 Comparing Theorem A with Section 5’s analysis shows that, unlike in the equilibrium 

analysis, the choice between the symmetric double auction and MS’s equilibrium-incentive-

efficient mechanism is not neutral for level-k traders: With uniform densities MS’s mechanism is 

efficient for L1s in the set of L1-incentive-compatible mechanisms only if implemented not as a 

double auction but in its L1-incentive-compatible direct form. And by contrast, for L2s the non-

L2-incentive-compatible double auction would, if feasible, improve upon the mechanism that is 

efficient in the set of L2-incentive-compatible mechanisms, violating the revelation principle. 

 Why do mechanisms that are equivalent via the revelation principle in the equilibrium 

analysis yield outcomes that differ, and in opposite directions, for L1s and L2s? The differences 

stem from Crawford et al.’s (2009) level-k menu effects, whereby the choice of mechanism 

influences the correctness of level-k beliefs. For L1s such menu effects favor the L1-incentive-

compatible direct mechanism, because it rectifies L1s’ beliefs and counters their aggressiveness. 

For L2s they favor the double auction, because it preserves L2s’ beneficial unaggressiveness. 

 With menu effects, it matters whether level-k-incentive-compatibility is required (in the 

narrow truthful-revelation sense; see footnote 6) as in Theorem A, or can be relaxed to allow 

direct non-incentive-compatible mechanisms such as the double auction. Sections 6.1-6.4 assume 

that level-k-incentive-compatibility is required, and Section 6.5 relaxes it. When incentive-

compatibility is required, I call the associated incentive-efficiency notion “efficiency in the set of 

level-k-incentive-compatible mechanisms”; and when not, I call it “level-k-incentive-efficiency”.  

6.3 Mechanisms that are efficient in the set of level-k-incentive-compatible mechanisms 

with general value densities and known populations concentrated on one level 

 This section extends Section 6.1’s analysis to general well-behaved value densities and 

known populations of L1s or L2s concentrated on one level. As in MS’s analysis, the payoff-

relevant outcomes of a direct mechanism are p(v, c), the probability the object is transferred, and 

the expected payment x(v, c), where v and c are the buyer’s and seller’s reported values. 

 For any mechanism (p, x), let           and           denote the density and distribution 

function of an Lk seller’s beliefs, and           and           the density and distribution 

function of an Lk buyer’s. With L0 uniform random on [0, 1],             and           
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 . If           is an L1 buyer’s response to (p, x) with value V and           is an L1 seller’s 

response to (p, x) with cost C,               
           and               

          . I 

sometimes suppress the dependence of           and           on (p, x) when it is fixed. 

 Write the buyer’s and seller’s expected monetary payments, probabilities of trade, and 

utilities as functions of their value reports v and c: 

  
                         

                       
 

 

 
 

 

 

(6.1)        
                       

 

 
            

                       
 

 
 

  
        

       
              

       
        

      

 For a given k, the mechanism p(∙, ∙), x(∙, ∙) is Lk-incentive-compatible if and only if truthful 

reporting is optimal given Lk beliefs; that is, iff for every V, v, C, and c in [0, 1], 

(6.2)        
        

       
              

       
        

       

The mechanism p(∙, ∙), x(∙, ∙) is (interim) Lk-individually rational iff for every V and C in [0, 1], 

(6.3)             
              

        

 Theorems B and C extend MS’s (Theorems 1-2) characterization of equilibrium-incentive-

efficient mechanisms to level-k models with known, homogeneous populations of L1s or L2s, 

showing that in this case MS’s characterization is qualitatively fully robust to level-k thinking.
13

 

Theorem B. For any known population of L1 or L2 traders concentrated on one level, k, and   

any level-k-incentive-compatible mechanism, 

(6.4)         
        

                 
                   

     

       
      

    
  
         

    
     

    

    
  
         

    
  

 

 

                   
 

 

 

Furthermore, if p(∙,∙) is any function mapping [0, 1]×[0, 1] into [0, 1], there exists a function 

x(∙,∙) such that (p, x) is level-k-incentive-compatible and level-k-interim-individually rational if 

and only if   
     is weakly increasing for all (p, x),   

     is weakly decreasing for all (p, x), and 

                                                 
13 This robustness may be surprising because MS’s analysis relies on the behaviorally strong assumption that traders play an 

equilibrium that is a fixed-point in a high-dimensional strategy space, while level-k models avoid fixed-point reasoning. 

Theorems B’s and C’s conclusions hold for any nonequilibrium model in which players have homogeneous decision rules that 

are continuous and best respond to some decoupled beliefs, as long as the corresponding monotonicity conditions are satisfied. 
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(6.5)          
      

    
  

         

    
     

    

    
  

         

    
  

 

 
                  

 

 
.14 

Proof. The proof follows MS’s, with adjustments for traders’ nonequilibrium beliefs. By (6.1), 

  
     is weakly increasing and   

     is weakly decreasing for any given (p, x), which as in MS’s 

proof (pp. 269-270) yields necessary and sufficient conditions for incentive-compatibility: 

(6.6)   
       

        
      

 

 
       

       
        

      
 

 
 for all V and C. 

(6.6) implies that   
     is weakly increasing and   

     is weakly decreasing, and shows that 

  
       and   

       suffice for individual rationality for all V and C as in (6.3).
15

 

 To derive the incentive budget constraint (6.5), the level-k analogue of the equilibrium (3.5) 

or MS’s (2), note that, given that each trader knows the true value densities and reports his value 

truthfully (but does not in general expect his partner to report truthfully), 
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Equating the first and last expressions in (6.7) (with a change of variables of integration) yields 

(6.4), which implies (6.5) when the mechanism is individually rational. And given (6.3) and that 

  
     is weakly increasing and   

     is weakly decreasing, MS’s (pp. 270-271) transfer function 

(6.8)             
 

 
    

        
 

 
     

      +          
 

 
     

      

makes (p, x) level-k-incentive-compatible and level-k-interim individually rational. Q.E.D. 

 Theorem C, the level-k analogue of MS’s Theorem 2, characterizes mechanisms that are 

efficient in the set of level-k-incentive-compatible mechanisms. 

                                                 
14 With correct beliefs,                and                 (6.5) is equivalent to MS’s (2) incentive budget constraint, 

 (3.5). Because level-k beliefs happen to be correct for uniform value densities (for all k), that equivalence implies Theorem A. 
15 This characterization is possible in MS’s equilibrium-based analysis because the revelation principle decouples the problems 

 that determine whether truth-telling is a best response. Level-k best responses decouple even without the revelation principle. 
16 (6.4) and (6.5) “add apples and oranges” because the buyer’s and the seller’s beliefs differ. This is not a problem because Lk 

traders’ incentive constraints decouple, and the transfer function compensates each trader according to his own beliefs.     
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Theorem C. For any known population of L1 or L2 traders concentrated on one level, if there 

exists a mechanism (p, x) that is level-k-incentive-compatible and maximizes traders’ ex ante 

expected total surplus        
 

 
                  

 

 
s.t.   

       
       and (6.5), and 

(6.9)          
      

    
  

         

    
     

    

    
  

         

    
  

is increasing in V and decreasing in C for any given (p, x), then that mechanism is efficient in the 

set of level-k-incentive-compatible and level-k-interim-individually-rational mechanisms.  

Proof. The proof adapts MS’s proof of Theorem 2 (pp. 275-276). Consider the problem of 

choosing p(∙, ∙) to maximize ex ante expected total surplus subject to 0 ≤ p(∙, ∙) ≤ 1,   
     

  
      , and (6.5). That problem is like a consumer’s budget problem, with a continuum of 

trade probabilities       , which are analogous to linearly priced goods.
17

 Form the Lagrangean 

(for ease of notation, without separately pricing out the          constraints): 
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The objective function and the constraint are linear in the       , so the solution is “bang-

bang”, with        = 0 or 1 almost everywhere. The Kuhn-Tucker conditions require    , 

(6.11)            
      

    
  

         

    
     

    

    
  

         

    
   ≤ 0 when         , and 

(6.12)            
      

    
  

         

    
     

    

    
  

         

    
   ≥ 0 when           

In the analogy, (6.11)-(6.12) say that it is optimal to buy the goods with the highest (positive) 

marginal-utility-to-price ratios, until the incentive budget constraint (6.5) binds. Because V and C 

are continuously distributed, (6.5) holds with equality at the solution. If (6.9) is increasing in V 

and decreasing in C for any (p, x), then        and thus   
     and   

     in (6.1) are 

respectively increasing and decreasing. Then (and generally only then) by Theorem B, the 

solution of the problem is associated with a mechanism that maximizes expected total surplus 

among all level-k-incentive-compatible and level-k-individually-rational mechanisms. Q.E.D. 

                                                 
17 Some of the prices are negative; but by the logic of the incentive constraints, there is no free disposal. A solution exists (even if 

k = 2, despite the two-way recursion between (p, x) and           and            because continuity of the value densities 

ensures continuity of the objective function and the constraint function, and the feasible region is compact. 
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Theorem C’s condition that (6.9) is increasing in V and decreasing in C for all (p, x) is the 

level-k analogue of MS’s (Theorem 2) equilibrium condition for          that (in my (3.8)’s 

notation) both        and        are increasing on [0, 1]. Theorem C’s condition on (6.9) with 

the true densities      and      replacing the level-k beliefs           and           

reduces to MS’s condition that               is increasing in V and decreasing in C. That 

condition is satisfied when the true densities fit into Myerson’s (1981) “regular case”, which 

rules out strong hazard rate variations in the wrong direction. Theorem C’s level-k version of the 

condition, on (6.9), jointly restricts the true densities and level-k beliefs in a similar way.  

Comparing the level-k incentive budget constraint (6.5) with MS’s equilibrium incentive 

budget constraint (MS’s (2); my (3.5)) and comparing the level-k Kuhn-Tucker condition (6.12) 

with the equilibrium-based condition (MS, p. 274; my (3.8)) shows that the design features that 

foster equilibrium-incentive-efficiency in MS’s analysis also foster efficiency in the set of level-

k-incentive-compatible mechanisms, although level-k beliefs give them different weights.  

 However, there are important differences in the level-k analysis. First, it is possible that the 

optimal λ = 0, so that from (6.12)          iff V ≥ C (ignoring ties); (6.5) is satisfied then; 

and the mechanism that is efficient in the set of level-k-incentive-compatible mechanisms is ex 

post efficient with probability 1, contra MS’s Corollary 1. To see this, adapt MS’s proof of 

Corollary 1 (pp. 271-273) for a population concentrated on level k. With value densities 

supported on [0, 1] and          iff V ≥ C, the incentive budget constraint (6.5) reduces to: 

        
      

    
  
         

    
     

    

    
  
         

    
  

 

 

                  
 

 

 

                                                            
 

 

 

 

 

 

 

 
 

(6.13)                                         
 

 
                   

 

 
 

                         
 

 
                                     

 

 

 

 
 

With equilibrium beliefs, the last two terms on the last line exactly offset each other as in MS’s 

proof, and the fact that the first term is negative proves MS’s Corollary 1. However, for level-k 

beliefs, in extreme cases the middle term could in theory outweigh the others, allowing perfect 

ex post efficiency. (I have been unable to find a tractable example to illustrate this possibility.)  

 Second, there is another design feature that fosters efficiency in the set of level-k-incentive-

compatible mechanisms, with no counterpart in the equilibrium analysis. Unless such a 



22 

 

mechanism happens to induce correct beliefs (as with uniform value densities by Theorem A), it 

must benefit from tacit exploitation of predictably incorrect beliefs (“TEPIB”): “predictably 

incorrect” in that the level-k model predicts traders’ deviations from equilibrium; “exploitation” 

in the benign sense of using traders’ nonequilibrium responses for their own benefit; and “tacit” 

in that the mechanism does not actively mislead traders.  

 A thought-experiment clarifies the influence of TEPIB: Suppose one could exogenously 

increase the pessimism of traders’ level-k beliefs relative to the truth, in the sense of first-order 

stochastic dominance (moving probability mass higher in the seller’s beliefs           and/or 

lower in the buyer’s beliefs          ). Then substituting (6.1) into (6.6) shows that, other 

things equal, that would loosen the incentive budget constraint (6.5). Because traders’ beliefs 

enter the problem only through (6.5), that would increase maximized expected total surplus. 

 In the model it is not possible to exogenously change traders’ beliefs, but the tradeoffs in 

(6.5) reflect the influence of traders’ pessimism or optimism. Relative to the equilibrium 

incentive-efficient mechanism, TEPIB favors trade at (V, C) combinations for which 
         

    
    

and/or  
         

    
  , so that traders’ non-equilibrium beliefs make the “prices” in curly brackets in 

(6.11)-(6.12) more favorable. And for k = 2 (only, because L1s’ beliefs do not depend on the 

mechanism), TEPIB also favors mechanisms that increase the advantages of such trades. 

 Note however that, even if both traders’ level-k beliefs are more pessimistic than equilibrium 

beliefs, so their maximized expected total surplus is higher, the possibility of negative prices in 

(6.5) means that a mechanism that is efficient in the set of level-k-incentive-compatible 

mechanisms might not have a trading region uniformly larger than that of an equilibrium-

incentive-efficient mechanism. (The examples in Figure 1 generally confirm the intuition that 

pessimism favors more efficient trading, but also reflect this possibility.)   

 Finally, Theorem C and the Kuhn-Tucker condition (6.12) show that a mechanism that is 

efficient in the set of level-k-incentive-compatible mechanisms may involve trade at some value 

combinations with V < C: “perverse” ex post, though consistent with level-k-interim-individual-

rationality. By MS’s Theorem 2 (my (3.8)), ex-post-perverse trade cannot occur in an 

equilibrium-incentive-efficient mechanism, although MS note (p. 271) that their transfer function 

sometimes violates ex-post individual rationality by requiring payment from buyers who do not 

get the object. In the level-k analysis some of the prices in the incentive budget constraint (6.5) 
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are negative (with no free disposal; fn 17). That makes (6.12) consistent with some ex-post-

perverse trade, which can loosen (6.5) enough to compensate for the local loss in surplus by 

enabling trade for other value combinations. (Figure 1’s examples confirm that this can happen.) 

 As in MS’s analysis, closed-form solutions are possible only for uniform value densities; but 

for them the mechanism that is efficient in the set of level-k-incentive-compatible mechanisms 

induces correct beliefs (Theorem A), so that TEPIB has no influence. To illustrate TEPIB’s 

influence, Figure 1 reports the trading regions for mechanisms that are efficient in the set of L1-

incentive-compatible mechanisms for representative combinations of linear value densities, with 

the regions for the corresponding equilibrium-incentive-efficient mechanisms for comparison.
18

 

 Such mechanisms are similar to equilibrium-incentive-efficient mechanisms in most respects. 

For true (e.g. upward-sloping) densities that make L1 traders’ uniform beliefs pessimistic, 

mechanisms that are efficient in the set of L1-incentive-compatible mechanisms usually have 

trading regions that are supersets of equilibrium-incentive-efficient mechanisms regions, with 

overlapping regions for a few such combinations (e.g. “0.75, 1.75”).
19

 By contrast, for true (e.g. 

downward-sloping) densities that make L1 traders’ beliefs optimistic, TEPIB still has an 

influence, but the equilibrium-incentive-efficient trading regions are usually supersets of the 

regions for L1s (with some overlaps, e.g. “1.0, 0.25”, “1.5, 0.25”, and “1.5, 0.50”). In two 

combinations with densities that are extreme in opposite directions (“0.25, 1.5” and “0.25, 

1.75”), L1 mechanisms require ex post perverse trade for very high values of V and C.  

6.4 Mechanisms that are efficient in the set of level-k-incentive-efficient mechanisms 

with general value densities and heterogeneous levels 

 This section discusses relaxing the assumption that the population is concentrated on one 

level, continuing to require level-k-incentive-compatibility, and assuming that there is a known 

mixture of L1 and L2 traders. I restrict attention to a single direct mechanism on the grounds that 

there is no evidence on which to base a specification of a level-k model for more complex 

menus. Suppose for the sake of argument (with heterogeneous levels it may not follow from 

optimization) that level-k incentive-efficient mechanisms set   
       

       for k = 1, 2. 

                                                 
18 The density combinations are a comprehensive coarse subset of all possible linear density combinations, with a few extreme 

combinations excluded because they violate the monotonicity conditions that, by Theorems B-C, are needed for the 

mechanism to be truly optimal. The computations are infeasible for L2s, because with           
           and       

    
          , (6.5) and (6.12) depend on the transfer function x(∙, ∙) as well as on p(∙, ∙), and the dimensionality of search is 

too high. The online appendix provides the MATLAB code for L1s, written by Rustu Duran.         
19 Surprisingly, pessimism for L1 sellers tends to be somewhat more beneficial than pessimism for L1 buyers. Because trade does 

not always occur when V > C, initial ownership of the object breaks the symmetry between buyer and seller; and even (3.5) 

and the associated equilibrium trading regions are not symmetric across cases with buyer’s and seller’s densities interchanged.          
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Even then, conditions like (6.5) require different transfers for different levels, but traders of any 

level would select the higher transfer, so only trivial mechanisms can completely screen traders’ 

values and levels.
20

 As a result, complete screening is normally suboptimal. 

 If the population contains mostly L1s (respectively L2s), it is likely that mechanisms that are 

efficient in the set of level-k-incentive-compatible mechanisms are optimized for L1s (L2s) as in 

Section 6.3, ignoring the rarer level but still getting some expected surplus from it. For less 

extreme level distributions, screening levels interacts with screening values, and I can identify no 

structure on which levels and values should be screened. I leave that for future work. 

6.5 Mechanisms that are level-k-incentive-efficient, relaxing level-k-incentive-compatibility to 

allow any direct mechanism, with known populations concentrated on one level 

 This section returns briefly to a known population of L1 or L2 traders concentrated on one 

level, while relaxing the assumption that only level-k-incentive-compatible mechanisms are 

feasible, instead allowing any direct mechanism, incentive-compatible or not (see footnote 6). 

 Here one can still define a general class of feasible direct mechanisms, with payoff-relevant 

outcomes p(v, c) and x(v, c). However, a direct mechanism’s incentive effects can no longer be 

tractably captured via constraints like (6.2) and (6.6), but must be modeled directly via level-k 

traders’ responses to it. I call a mechanism “level-k-incentive-efficient” if its outcomes cannot be 

improved upon by any feasible direct mechanism, given traders’ level-k responses. 

 As a tractable proxy for what is theoretically achievable via any feasible direct mechanism, I 

focus on double auctions with reserve prices chosen by the designer, assuming uniform value 

densities. Reserve prices have no benefits if Lk traders continue to anchor their beliefs with L0 

uniform random on the full range of possible values [0, 1]. But a double auction with a restricted 

menu of bids or asks may make Lk traders anchor on the restricted menu instead of [0, 1], and 

such anchoring can make reserve prices useful in trading mechanisms.
21

 

 For example, in the double auction with uniform value densities, L1 traders believe they face 

bids or asks uniformly distributed on [0, 1], which leads to L1-incentive-inefficient outcomes. To 

implement the outcome of MS’s equilibrium-incentive-efficient direct mechanism via the double 

auction, L1 traders must believe that they face bids or asks uniform on [1/4, 3/4], the range of 

                                                 
20 I treat the differences in traders’ levels as pure differences of opinion, as in Eliaz and Spiegler (2008): Traders neither believe 

 their partners are better or worse informed, nor draw inferences about levels from each other’s decision or the mechanism. 
21 I know of no evidence for or against such an L0 specification, but in marketing such menu effects are commonplace. Crawford 

 et al. (2009) showed that in auctions, such anchoring can make reserve prices useful even if they are useless with equilibrium 

bidders. Saran (2011b) studies how menu-dependent preferences affect the revelation principle. 
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“serious” bids or asks in CS’s linear double-auction equilibrium. If L1 traders anchor on the 

restricted menu, those beliefs can be induced by restricting bids to [1/4, 3/4] and asks to [1/4, 

3/4].
22

 Thus with uniform value densities, for L1s a double auction with reserve prices can use 

TEPIB to mimic the outcomes of MS’s equilibrium-incentive-efficient mechanism, whose direct 

form is then efficient in the set of L1-incentive-compatible mechanisms.
23

 Tedious computations 

suggest that more stringent reserve prices can further improve upon the mechanism that is 

efficient in the set of L1-incentive-compatible mechanisms, by taking fuller advantage of TEPIB. 

 For L2s with uniform value densities, Section 5’s analysis already shows that a double 

auction without reserve prices can improve upon a mechanism that is efficient in the set of L2-

incentive-efficient mechanisms, or upon MS’s equilibrium-incentive-efficient mechanism. 

Again, computations suggest that reserve prices allow even more improvement, via TEPIB.  

 More generally, relaxing the restriction to level-k-incentive-compatible mechanisms can 

yield level-k-incentive-efficient mechanisms that differ qualitatively as well as quantitatively 

from equilibrium-incentive-efficient mechanisms, with substantial gains in incentive-efficiency. 

7. CONCLUSION 

 The level-k model I use to study mechanism design for bilateral trading makes predictions 

specific enough to allow an analysis with power comparable to an equilibrium analysis. The 

results clarify the role of MS’s equilibrium assumption in several ways. First, the choice of 

mechanism has menu effects that influence the correctness of level-k beliefs. Sometimes such 

effects allow direct mechanisms that are not level-k-incentive-compatible (in the narrow truthful-

revelation sense) such as the double auction, if feasible, to yield more efficient outcomes than 

those achievable via any level-k-incentive-compatible mechanism; and sometimes vice versa. 

 Either way, it matters whether level-k-incentive-compatibility is required. If it is, MS’s result 

that with uniform value densities, the equilibrium-incentive-efficient direct mechanism mimics 

CS’s linear double-auction equilibrium, is completely robust to replacing equilibrium with a 

level-k model. Further, for known populations concentrated on one level, MS’s characterization 

of incentive-efficient mechanisms for general value densities is fully robust to level-k thinking. 

As a result, the design features that foster equilibrium-incentive-efficiency in MS’s analysis also 

                                                 
22 The upper limit 3/4 of asks could be raised to 1 without altering an L1 buyer’s bids, and the lower limit 1/4 of bids could be 

lowered to 0 without altering an L1 seller’s asks. 
23 MS’s general specification of feasible mechanisms implicitly allows reserve prices, and their analysis therefore shows that if 

equilibrium is assumed, reserve prices are not useful in this setting.   
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foster incentive-efficiency in the level-k analysis, although level-k beliefs give them different 

weights. The level-k analysis also reveals another design feature that fosters incentive-efficiency, 

TEPIB (tacit exploitation of predictably incorrect beliefs), whereby mechanisms that are efficient 

in the set of level-k-incentive-compatible mechanisms exploit traders’ nonequilibrium beliefs, in 

the benign sense of implementing outcomes that increase their welfares, without deception. 

 Computations suggest that mechanisms that are efficient in the set of L1-incentive-

compatible mechanisms are similar to equilibrium-incentive-efficient mechanisms in most 

respects. When the true value densities make L1 traders’ uniform beliefs pessimistic (that is, 

when the buyer’s true density is upward-sloping and/or the seller’s is downward-sloping), then 

such mechanisms use TEPIB to implement trading regions that are usually supersets of those of 

equilibrium-incentive-efficient mechanisms. When the true densities make L1 traders’ beliefs 

optimistic, such mechanisms still use TEPIB, but implement trading regions that are usually 

subsets of those of equilibrium-incentive-efficient mechanisms. Finally, for some extreme value 

densities, such mechanisms require ex-post-perverse trade for high values of V and C. 

 However, despite the theoretical possibility that level-k anchoring on a uniform L0 could 

reduce incentive-efficient mechanisms’ sensitivity to distributional and knowledge assumptions, 

as advocated by Wilson (1987), mechanisms that are efficient in the set of level-k-incentive-

compatible mechanisms are just as sensitive as equilibrium-incentive-efficient mechanisms. 

 The level-k analysis yields some examples of non-robustness of the equilibrium analysis. 

Even if level-k-incentive-compatibility is required, MS’s Corollary 1, that no incentive-

compatible, interim individually rational mechanism is ex-post efficient with probability one, 

need not extend to level-k models. Sorting traders’ levels along with their values poses new and 

formidable analytical problems. And if non-level-k-incentive-compatible direct mechanisms are 

feasible, then level-k-incentive-efficient mechanisms may differ qualitatively from equilibrium-

incentive-efficient mechanisms, with the theoretical possibility of large efficiency gains. 

 It is my hope that this paper’s analysis, incomplete as it is, will show that further progress in 

mechanism design is possible without assuming equilibrium, and so encourage further study. 

  



27 

 

REFERENCES 

Abdulkadiroglu, Atila, Yeon-Koo Che, and Yosuke Yasuda (2011): “Resolving Conflicting 

 Preferences in School Choice: The ‘Boston Mechanism’ Reconsidered,” American Economic 

Review, 101, 1–14. 

Abdulkadiroglu, Atila, and Tayfun Sönmez (2003): “School Choice: A Mechanism Design 

 Approach,” American Economic Review, 93, 729-747. 

Aumann, Robert J., and Adam Brandenburger (1995): “Epistemic Conditions for Nash 

 Equilibrium,” Econometrica, 63, 1161-1180. 

Bernheim, B. Douglas (1984): “Rationalizable Strategic Behavior,” Econometrica, 52, 1007- 

 1028. 

Brocas, Isabelle, Juan D. Carrillo, Colin F. Camerer, and Stephanie W. Wang (2014): “Imperfect 

Choice or Imperfect Attention? Understanding Strategic Thinking in Private Information 

Games,” Review of Economic Studies, 81, 944-970. 

Brown, Alexander, Colin F. Camerer, and Dan Lovallo (2012): “To Review or Not To Review? 

Limited Strategic Thinking at the Movie Box Office.” American Economic Journal: 

Microeconomics, 4, 1-28. 

Bulow, Jeremy, and John Roberts (1989): “The Simple Economics of Optimal Auctions,” 

 Journal of Political Economy, 97, 1060-1090. 

Camerer, Colin F., Teck-Hua Ho, and Juin Kuan Chong (2004): “A Cognitive Hierarchy Model 

 of Games,” Quarterly Journal of Economics, 119, 861-898. 

Chatterjee, Kalyan, and William Samuelson (1983): “Bargaining under Incomplete Information,” 

 Operations Research, 31, 835-851.  

Chen, Yan, and John O. Ledyard (2008): “Mechanism Design Experiments,” in The New 

 Palgrave Dictionary of Economics, Second Edition, ed. Steven Durlauf and Lawrence 

 Blume. London: Macmillan. 

Crawford, Vincent P., Miguel A. Costa-Gomes, and Nagore Iriberri (2013): “Structural Models 

of Nonequilibrium Strategic Thinking: Theory, Evidence, and Applications,” Journal of 

Economic Literature, 51, 5-62. 

Crawford, Vincent P., and Nagore Iriberri (2007): “Level-k Auctions: Can a Nonequilibrium 

Model of Strategic Thinking Explain the Winner’s Curse and Overbidding in Private-Value 

Auctions?,” Econometrica, 75, 1721-1770. 



28 

 

Crawford, Vincent P., Tamar Kugler, Zvika Neeman, and Ady Pauzner (2009): “Behaviorally 

 Optimal Auction Design: An Example and Some Observations,” Journal of the European 

 Economic Association, 7, 365-376. 

de Clippel, Geoffroy, Rene Saran, and Roberto Serrano (2015): “Mechanism Design with 

Bounded Depth of Reasoning and Small Modeling Mistakes”; 

https://drive.google.com/file/d/0B8Sv4TBdx30Jc0JRRUpkb3EzVTQ/edit?usp=sharing . 

Eliaz, Kfir, and Ran Spiegler (2006): “Contracting with Diversely Naïve Agents,” Review of 

 Economic Studies, 73, 689–714. 

Eliaz, Kfir, and Ran Spiegler (2007): “A Mechanism-Design Approach to Speculative Trade,” 

 Econometrica, 75, 875–884. 

Eliaz, Kfir, and Ran Spiegler (2008): “Consumer Optimism and Price Discrimination,” 

 Theoretical Economics, 3, 459–497. 

Erdil, Aytek, and Haluk Ergin (2008): “What's the Matter with Tie-Breaking? Improving 

 Efficiency in School Choice,” American Economic Review, 98, 669-689. 

Eyster, Erik, and Matthew Rabin (2005): “Cursed Equilibrium,” Econometrica, 73, 1623-1672. 

Glazer, Jacob, and Ariel Rubinstein (1998): “Motives and Implementation: On the Design of 

 Mechanisms to Elicit Opinions,” Journal of Economic Theory, 79, 157–173. 

Gorelkina, Olga (2015): “The Expected Externality Mechanism in a Level-k Environment,” 

 working paper, Max Planck Institute, Bonn; http://ssrn.com/abstract=2550085  

Hagerty, Kathleen M., and William P. Rogerson (1987): “Robust Trading Mechanisms,” Journal  

 of Economic Theory, 42, 94-107. 

Kagel, John H., and Dan Levin (1986): “The Winner’s Curse and Public Information in Common

 Value Auctions,” American Economic Review, 76, 894-920. 

Katok, Elena, Martin Sefton, and Abdullah Yavas (2002): “Implementation by Iterative 

Dominance and Backward Induction: An Experimental Comparison,” Journal of Economic 

Theory, 104, 89–103.  

Kneeland, Terri (2013): “Mechanism Design with Level-k Types,” manuscript. 

Maskin, Eric (2011): “Commentary: Nash Equilibrium and Mechanism Design,” Games and 

 Economic Behavior, 71, 9-11. 

Matsushima, Hitoshi (2007): “Mechanism Design with Side Payments: Individual Rationality 

 and Iterative Dominance,” Journal of Economic Theory, 133, 1– 30. 

https://drive.google.com/file/d/0B8Sv4TBdx30Jc0JRRUpkb3EzVTQ/edit?usp=sharing
http://ssrn.com/abstract=2550085


29 

 

Matsushima, Hitoshi (2008): “Detail-free Mechanism Design in Twice Iterative Dominance: 

 Large Economies,” Journal of Economic Theory, 141, 134–151. 

Milgrom, Paul, Lawrence Ausubel, Jon Levin, and Ilya Segal (2012). “Incentive Auction Rules 

Option and Discussion,” report submitted to the Federal Communications Commission by 

Auctionomics and Power Auctions; https://apps.fcc.gov/edocs_public/attachmatch/FCC-12-

118A2.pdf 

Milgrom, Paul R., and Nancy Stokey (1982): “Information, Trade and Common Knowledge,” 

 Journal of Economic Theory, 26, 17-26. 

Milgrom, Paul, and Robert Weber (1982): “A Theory of Auctions and Competitive Bidding,” 

 Econometrica, 50, 1089-1122. 

Mookherjee, Dilip, and Stefan Reichelstein (1992): “Dominant Strategy Implementation of 

 Bayesian Incentive Compatible Allocation Rules,” Journal of Economic Theory, 56, 378- 

 399. 

Myerson, Roger B. (1981): “Optimal Auction Design,” Mathematics of Operations Research, 6, 

 58-73. 

Myerson, Roger B., and Mark A. Satterthwaite (1983): “Efficient Mechanisms for Bilateral

 Trading,” Journal of Economic Theory, 29, 265–81. 

Neeman, Zvika (2003): “The Effectiveness of English Auctions,” Games and Economic 

 Behavior, 43, 214–238. 

Saran, Rene (2011a): “Bilateral Trading with Naive Traders,” Games and Economic Behavior, 

 72, 544–557. 

Saran, Rene (2011b): “Menu-dependent Preferences and Revelation Principle,” Journal of  

 Economic Theory, 146, 1712-1720. 

Satterthwaite, Mark, and Steven R. Williams (1989): “Bilateral Trade with the Sealed Bid k- 

 Double Auction: Existence and Efficiency,” Journal of Economic Theory, 48, 107–133. 

Wilson, Robert B. (1987): “Game-Theoretic Analyses of Trading Processes,” in: Advances in 

Economic Theory: Fifth World Congress, Truman Bewley (ed.); Chapter 2, 33-70, 

Cambridge UK: Cambridge University Press. 

Wolitzky, Alexander (2014): “Mechanism Design with Maxmin Agents: Theory and an 

Application to Bilateral Trade,” manuscript, Stanford University; 

http://www.stanford.edu/~wolitzky/research/working_papers_pdf/maxmin%20April%202014%20v1.pdf 

https://apps.fcc.gov/edocs_public/attachmatch/FCC-12-118A2.pdf
https://apps.fcc.gov/edocs_public/attachmatch/FCC-12-118A2.pdf
http://www.stanford.edu/~wolitzky/research/working_papers_pdf/maxmin%20April%202014%20v1.pdf


30 

 

Figure 1. Trading regions (in black) for equilibrium-incentive-efficient mechanisms and 

mechanisms that are efficient in the set of L1-incentive-compatible mechanisms
24
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Buyer (—) and seller (···)    

 

L1: 0.25, 0.25 

 
Equilibrium: 0.25, 0.5 
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L1: 0.25, 0.5 

 
Equilibrium: 0.25, 0.75 

 

Buyer (—) and seller (···) 

 

L1: 0.25, 0.75 

 
Equilibrium: 0.25, 1.0 

 

Buyer (—) and seller (···) 

 

L1: 0.25, 1.0 

 
   

 

  

                                                 
24 Buyer’s value V is on the vertical axis; seller’s value C is on the horizontal axis. All value densities are linear; “x, y” means the 

 buyer’s density f(V) satisfies f(0) = x and f(1) = 2-x, and the seller’s density g(C) satisfies g(0) = y and g(1) = 2-y. 
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Figure 1 (cont.). Trading regions (in black) for equilibrium-incentive-efficient mechanisms 

and mechanisms that are efficient in the set of L1-incentive-compatible mechanisms 

Equilibrium: 0.25, 1.25 

 

Buyer (—) and seller (···) 

 

L1: 0.25, 1.25 

 
Equilibrium: 0.25, 1.5 

 

Buyer (—) and seller (···) 

 

L1: 0.25, 1.5 

 
Equilibrium: 0.25, 1.75 

 

Buyer (—) and seller (···) 

 

L1: 0.25, 1.75 

 
Equilibrium: 0.5, 0.25 

 

Buyer (—) and seller (···) 

 

L1: 0.5, 0.25 

 
Equilibrium: 0.5, 0.5 

 

Buyer (—) and seller (···) 

 

L1: 0.5, 0.5 

 



32 

 

Figure 1 (cont.). Trading regions (in black) for equilibrium-incentive-efficient mechanisms 

and mechanisms that are efficient in the set of L1-incentive-compatible mechanisms 
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Figure 1 (cont.). Trading regions (in black) for equilibrium-incentive-efficient mechanisms 

and mechanisms that are efficient in the set of L1-incentive-compatible mechanisms 
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Figure 1 (cont.). Trading regions (in black) for equilibrium-incentive-efficient mechanisms 

and mechanisms that are efficient in the set of L1-incentive-compatible mechanisms 
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Figure 1 (cont.). Trading regions (in black) for equilibrium-incentive-efficient mechanisms 

and mechanisms that are efficient in the set of L1-incentive-compatible mechanisms 
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Figure 1 (cont.). Trading regions (in black) for equilibrium-incentive-efficient mechanisms 

and mechanisms that are efficient in the set of L1-incentive-compatible mechanisms 
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Figure 1 (cont.). Trading regions (in black) for equilibrium-incentive-efficient mechanisms 

and mechanisms that are efficient in the set of L1-incentive-compatible mechanisms 
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Figure 1 (cont.). Trading regions (in black) for equilibrium-incentive-efficient mechanisms 

and mechanisms that are efficient in the set of L1-incentive-compatible mechanisms 
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Online appendix: MATLAB code, developed by Rustu Duran, University of Oxford, for 

computation of mechanisms that are efficient in the set of L1-incentive-compatible 

mechanisms with a homogenous L1 population, or that are equilibrium incentive-efficient. 

  

 The code assumes a homogeneous population of L1s and full-support linear densities of 

values V and C, each characterized by the value of f(0) or g(0), which, given linearity, range 

from 0 to 2, with f(0) = 1 or g(0) = 1 corresponding to uniform densities. f(0) and g(0) are 

represented by categorical index variables called fbar and gbar as follows. The interval [0, 2] is 

discretized into nine points, 0, 0.25, 0.50,…, 2.0, with index i representing the ith point. For 

instance, fbar = 2 means f(0)= 0.25 and gbar = 3 means g(0) = 0.5.  

Solution algorithm 

 For L1s, the algorithm fixes a pair of value densities. For each given value of λ (“alfa” in the 

code) starting from 0.05, the code first uses the Kuhn-Tucker condition (6.12) to determine for 

which (v, c) combinations p(v, c) = 1. It then integrates the incentive budget constraint (6.5) 

(with              and             for L1s) for that λ. It then iterates these operations, 

increasing λ by increments of 0.05, until it finds the λ that makes the value on the right-hand side 

of (6.5) smallest; and checks how often that value changes sign (never more than once in the 

calculations). Finally, it chooses the value of λ that makes the value of the right-hand side as 

close to 0 as possible from above. This entire operation is done separately for pair of value 

densities. Figure 1 is based on all possible discretized combinations of linear value densities. 

 For equilibrium traders, the algorithm works in a completely analogous fashion. 

Using the code to implement the algorithm 

 To implement the algorithm, first run the program main.m.  

surf(exanteprobtrade) then shows how the ex ante probability of trade varies with the indices 

fbar (on the left axis) and gbar (on the right). 

surf(expectedtotalsurplus) shows how the expected total surplus varies with fbar and gbar. 

blackandwhite(fbar, gbar, pi) shows the trading region, with the area where p(v, c) = 1 in black.  

 To do the analogous computations for equilibrium traders, add “s” to the end of the 

arguments; e.g. surf(exanteprobtrades) instead of surf(exanteprobtrade). 

 sidebyside(fbar1,gbar1,pi,pis,fbar,gbar) shows both the equilibrium and L1 trading regions. 

comparetradearea (fbar1,gbar1,fbar2,gbar2,pi) compares the two trade areas, with a value of 0 

meaning no trade in either case; 1 (2) only in the second (first) case; and 3 in both cases. 
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blackandwhites.m 
%this is the function for visualising trade zone in eqm model 

 

function blackandwhite= blackandwhites (fbar,gbar,pis) 

 

figure; 

minuspis=1-pis(:,:,fbar,gbar); 

 

blackandwhite=imagesc(minuspis); 

 

set( gca,'XTick',0:50:450,'XTickLabel',{'0','0.1', '0.2','0.3', '0.4',... 

    '0.5',  '0.6', '0.7', '0.8', '0.9', '1'},'YTick',0:50:450,... 

    'YTickLabel',{'1','0.9','0.8', '0.7','0.6', '0.5', '0.4',  '0.3',... 

    '0.2', '0.1'} ); 

 

colormap gray; 

 

end 

 

comparetradearea.m 
% this function compares the trading areas.   

% if the value of the function is 3, then it is a common trading area.  

% if 2, then the first one trades but not the second one.  

% if 1, only the second one trades. if 0, nobody trades.  

 

function comparetradeareas = comparetradearea( fbar1,gbar1,fbar2,gbar2,pi) 

 

  first= pi(:,:,fbar1,gbar1); 

  second= pi(:,:,fbar2,gbar2); 

   

  result= first*2+second; 

   

  comparetradeareas=mesh(result); 

 

end 

 

fcdf.m 
% cdf of buyers valuation, characterised by fbar 

 

function fcdfc= fcdf (fbar,v) 

 

fcdfc=fbar*v+v^2*(1-fbar); 

 

end 

 

fpdf.m 
% pdf of buyers valuation, characterised by fbar 

 

function fpdfc= fpdf(fbar,v) 

fpdfc= fbar+v*2*(1-fbar); 

end 

 

gcdf.m 
% cdf of sellers valuation, characterised by gbar 



41 

 

 

function gcdfc= gcdf (gbar,c) 

gcdfc=gbar*c+c^2*(1-gbar); 

end 

 

gpdf.m 
% pdf of seller's valuation, characterised by gbar 

 

function gpdfc= gpdf(gbar,c) 

gpdfc= gbar+c*2*(1-gbar); 

end 

 

main.m 
clear all;  

 

tic;            % chronometer mini-code for the elapsed time - toc is the  

                % second part; at the end of the document. 

                 

beg= 0.001;     % beginning value for the discretised value range of seller 

                % and buyer 

fin= 0.999;     % ending value for the discretised value range of seller  

                % and buyer 

incr= 0.002;    % increment value for the discretised value range of the  

                % seller and buyer 

                 

                % this value of the increment creates intervals each of  

                % which is 0.002 unit lenght. 

                      

charbeg= 0.25;  % beginning value for the discretised characterising value  

                % range of linear distributions 

charfin= 1.75;  % ending value for the discretised characterising value  

                % range of linear distributions   

charincr= 0.25; % increment value for the discretised characterising value 

                % range of linear distributions 

                 

                % characterising values represent the y-intercept of pdf. 

                 

                % I use alfa in order to refer lambda in the paper. 

alfabeg=0.05;   % beginning value for the discretised value range of lambda 

alfafin=2;      % ending value for the discretised value range of lambda 

alfaincr=0.05;  % increment value for the discretised value range of lambda 

 

 

 

v=beg:incr:fin; % generation of dicretised values of buyer 

c=beg:incr:fin; % generation of dicretised values of seller 

 

fbar=charbeg:charincr:charfin; % generation of dicretised characterising 

                               % values of buyer's value distribution 

gbar=charbeg:charincr:charfin; % generation of dicretised characterising 

                               % values of seller's value distribution 

 

alfa=alfabeg:alfaincr:alfafin; % generation of discretised lambdas 

 

sumvecc= zeros (size(fbar,2), size (gbar,2), size (alfa,2));  

% the vector I have created for integration (incentive-budget constraint) 
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sumvekk= zeros (size(fbar,2), size (gbar,2), size (alfa,2)); 

% the vector I have created for integration (incentive-budget constraint) 

% - for equilibrium counterpart 

 

 counter= size(fbar,2)*size(gbar,2)*size(alfa,2);  

% I use counter in order to be able to monitor the duration of the progress 

 

norm=(1/((size(v,2))^2)); % normalisation for integration 

 

 for fbars=1:size(fbar,2) 

     for gbars=1: size(gbar,2)                           

          for alfas= 1:1:size(alfa,2) 

                                 counter=counter-1   

             for vs=1:size(v,2) 

                for cs=1:size(c,2) 

                     

pi=pfunction(vs,cs,fbars,gbars,alfas,alfa,fbar,gbar,v,c); 

% p(v,c) in the notes 

pieq=pfunctioneq(vs,cs,fbars,gbars,alfas,alfa,fbar,gbar,v,c); 

% p(v,c) in the notes 

 

fdist=fpdf(fbar(fbars),v(vs)); % value of pdf of v.  

gdist=gpdf(gbar(gbars),c(cs)); % value of pdf of c. 

fcum=fcdf(fbar(fbars),v(vs));  % value of cdf of f. 

gcum=gcdf(gbar(gbars),c(cs));  % value of cdf of c. 

                   

phis=(v(vs)/gdist)-((1-fcum)/(fdist*gdist)); 

%phi function in the paper 

phiss=v(vs)-((1-fcum)/fdist);  

%phi function in the paper-for eqm counterpart 

 

                   

gammas=(c(cs)/fdist)+((gcum)/(fdist*gdist));   

%gamma function in the paper.        

gammass=c(cs)+((gcum)/gdist);    

%gamma function in the paper.-for eqm counterpart 

 

sumvecc (fbars,gbars,alfas)=sumvecc(fbars,gbars,alfas)... 

                            +(phis-gammas)*pi*fdist*gdist*norm ; 

                            % integration 

 

sumvekk (fbars,gbars,alfas)=sumvekk(fbars,gbars,alfas)... 

                            +(phiss-gammass)*pieq*fdist*gdist*norm ;  

                            % integration-for eqm counterpart 

                      

                end 

             end 

         end 

     end 

 end 

 

 % the following loop is in order to see how many times the integration 

 % (as a function of lambda) intersects with the horizontal axis. 

  

 maximand=zeros(size(fbar,2), size (gbar,2)); 
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 for fbars=1:size(fbar,2) 

     for gbars=1: size(gbar,2) 

          for alfas= 2:1:size(alfa,2) 

               

          if sumvecc(fbars,gbars,alfas-1)>0 && sumvecc(fbars,gbars,alfas)<0 

             maximand(fbars,gbars)=maximand(fbars,gbars)+1; 

          end 

              

          if sumvecc(fbars,gbars,alfas-1)<0 && sumvecc(fbars,gbars,alfas)>0 

             maximand(fbars,gbars)=maximand(fbars,gbars)+1; 

          end 

              

          end 

     end 

 end 

  

 % now we find the lambda which makes the integration closest to zero 

 % for each fbar and gbar. 

 

 [minimisedvalues, indicesofbestalfas]=min(abs(sumvecc),[],3); 

  

 [minimisedvaluess, indicesofbestalfass]=min(abs(sumvekk),[],3); 

  

 

  

  

  

  

 % this following step generates the pi matrices, which will be employed 

 % for 2-dimensional graphs for trading regions for each fbar&gbar.  

  

 pi=zeros(size(v,2),size(c,2),size(fbar,2),size(gbar,2)); 

  

 pis=zeros(size(v,2),size(c,2),size(fbar,2),size(gbar,2)); 

 % for eqm counterpart 

  

 for fbars=1:size(fbar,2) 

     for gbars=1: size(gbar,2) 

          for vs=1:size(v,2) 

                for cs=1:size(c,2) 

                     

  % for lk thinking 

  bestalfa=indicesofbestalfas(fbars,gbars); 

  

  pi(size(v,2)-vs+1,cs,fbars,gbars)=... 

  pfunction(vs,cs,fbars,gbars,bestalfa,alfa,fbar,gbar,v,c); 

   

  % and for eqm counterpart 

  bestalfas=indicesofbestalfass(fbars,gbars); 

   

  pis(size(v,2)-vs+1,cs,fbars,gbars)=... 

  pfunctioneq(vs,cs,fbars,gbars,bestalfas,alfa,fbar,gbar,v,c); 

   

                end 

          end 

   

     end 
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 end 

  

% now we find ex-ante probability of trade and expected total surplus for 

% each binary of fbar and gbar; for lk model 

 

exanteprobtrade=zeros(size(fbar,2),size(gbar,2)); 

expectedtotalsurplus=zeros(size(fbar,2),size(gbar,2)); 

 

                          % and for eqm. 

 

exanteprobtrades=zeros(size(fbar,2),size(gbar,2)); 

expectedtotalsurpluss=zeros(size(fbar,2),size(gbar,2)); 

 

for fbars=1:size(fbar,2) 

     for gbars=1: size(gbar,2) 

          for vs=1:size(v,2) 

                for cs=1:size(c,2) 

                   

bestalfa=indicesofbestalfas(fbars,gbars);  

bestalfas=indicesofbestalfass(fbars,gbars); 

                   

ppi=pfunction(vs,cs,fbars,gbars,bestalfa,alfa,fbar,gbar,v,c); 

% p(v,c) in the paper. 

ppis=pfunctioneq(vs,cs,fbars,gbars,bestalfas,alfa,fbar,gbar,v,c); 

% p(v,c) in the paper. 

                   

fdist=fpdf(fbar(fbars),v(vs)); % value of pdf of v.  

gdist=gpdf(gbar(gbars),c(cs)); % value of pdf of c. 

                  

exanteprobtrade(fbars,gbars)=... 

   exanteprobtrade(fbars,gbars)+fdist*gdist*ppi*norm; 

expectedtotalsurplus(fbars,gbars)=... 

   expectedtotalsurplus(fbars,gbars)+ fdist*gdist*ppi*(v(vs)-c(cs))*norm; 

                  

exanteprobtrades(fbars,gbars)=... 

   exanteprobtrades(fbars,gbars)+fdist*gdist*ppis*norm; 

expectedtotalsurpluss(fbars,gbars)=... 

   expectedtotalsurpluss(fbars,gbars)+ fdist*gdist*ppis*(v(vs)-c(cs))*norm; 

                   

                end 

          end 

     end 

end 

    

% this last piece of code is for saving trading regions, 

% distribution functions and publishing the code 

  

for fbars=1:size(fbar,2) 

     for gbars=1: size(gbar,2) 

          

         ef=100*fbar(fbars); 

         gi=100*gbar(gbars); 

          

         name1= num2str(ef); 

         name2= num2str(gi); 

         namel1 = strcat(name1,name2,'L1'); 

         nameeqm = strcat(name1,name2,'eqm'); 
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         l1= blackandwhite(fbars,gbars,pi); 

         eqm=blackandwhites(fbars,gbars,pis); 

          

         

         saveas(l1,namel1,'png'); 

         saveas(eqm,nameeqm,'png'); 

         yeni (fbars,gbars,fbar,gbar) 

          

     end 

end 

 

toc; 

 

pfunction.m 
% this is the value of a p(v,c), in lk model, for particular values of 

% v,c,fbar,gbar,alfa 

 

function pfuncc=pfunction (vs,cs,fbars,gbars,alfas,alfa,fbar,gbar,v,c) 

 

fdist=fbar(fbars)+v(vs)*2*(1-fbar(fbars));         % pdf of v.  

gdist=gbar(gbars)+c(cs)*2*(1-gbar(gbars));         % pdf of c. 

fcum=fbar(fbars)*v(vs)+v(vs)^2*(1-fbar(fbars));    % cdf of f. 

gcum=gbar(gbars)*c(cs)+c(cs)^2*(1-gbar(gbars));    % cdf of c.  

                   

      

               x=  v(vs)-c(cs) ; 

                  

               y= (v(vs)/gdist)-((1-fcum)/(fdist*gdist)); 

                  

               z= (c(cs)/fdist)+(gcum/(fdist*gdist)); 

                  

                  

               r= x+(alfa(alfas))*(y-z); 

                  

                  if r>=0 

                      pfuncc=1; 

                  else 

                      pfuncc=0; 

                  end 

                      

end 

 

pfunctioneq.m 
% this is the value of a p(v,c), in usual model, for particular values of 

% v,c,fbar,gbar,alfa 

 

function pfuncc=pfunctioneq (vs,cs,fbars,gbars,alfas,alfa,fbar,gbar,v,c) 

 

fdist=fbar(fbars)+v(vs)*2*(1-fbar(fbars));         % pdf of v.  

gdist=gbar(gbars)+c(cs)*2*(1-gbar(gbars));         % pdf of c. 

fcum=fbar(fbars)*v(vs)+v(vs)^2*(1-fbar(fbars));    % cdf of f. 

gcum=gbar(gbars)*c(cs)+c(cs)^2*(1-gbar(gbars));    % cdf of c.  
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               x=  v(vs)-c(cs) ; 

                  

               y= (v(vs))-((1-fcum)/(fdist)); 

                  

               z= (c(cs))+(gcum/(gdist)); 

                  

               r= x+(alfa(alfas))*(y-z); 

                  

                  if r>=0 

                      pfuncc=1; 

                  else 

                      pfuncc=0; 

                  end 

                   

end 

 

sidebyside.m 
%this is the function for visualisizng trade zone in lk model side by side 

 

function [blackandwhite middle blackandwhites]=... 

    sidebyside (fbars,gbars,pi, pis,fbar,gbar) 

 

figure; 

minuspi=1-pi(:,:,fbars,gbars); 

minuspis=1-pis(:,:,fbars,gbars); 

 

subplot(1,3,1); 

 

blackandwhite=imagesc(minuspi); 

title('trade zone in L1 model'); 

 set( gca,'XTick',0:50:450,'XTickLabel',{'0','0.1', '0.2','0.3', '0.4',... 

     '0.5',  '0.6', '0.7', '0.8', '0.9',},'YTick',0:50:450,'YTickLabel',... 

     {'1','0.9','0.8', '0.7','0.6', '0.5', '0.4',  '0.3', '0.2', '0.1'} ); 

 

axis image; 

 

subplot(1,3,3); 

 

blackandwhites=imagesc(minuspis); 

 set( gca,'XTick',0:50:450,'XTickLabel',{'0','0.1', '0.2','0.3', '0.4',... 

     '0.5',  '0.6', '0.7', '0.8', '0.9',},'YTick',0:50:450,'YTickLabel',... 

     {'1','0.9','0.8', '0.7','0.6', '0.5', '0.4',  '0.3', '0.2', '0.1'} ); 

 

title('trade zone in equilibrium'); 

 

axis image; 

 

subplot(1,3,2); 

i = linspace(0,1); 

buyer= fbar(fbars)+i*2*(1-fbar(fbars)); 

seller= gbar(gbars)+i*2*(1-gbar(gbars)); 

 

middle=plot(i,buyer,'-',i,seller,':'); 

title(' buyer (-) and seller (..) '); 

axis image; 
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colormap gray; 

 

end 

 

yeni.m 
%this is the function for visualising distributions 

 

function [middle]= yeni (fbars,gbars,fbar,gbar) 

 

h=figure; 

 

         ef=100*fbar(fbars); 

         gi=100*gbar(gbars); 

          

         name1= num2str(ef); 

         name2= num2str(gi); 

          

         f=fbar(fbars); 

         g=gbar(gbars); 

          

         namedensity=strcat(name1,name2,'density'); 

 

i = linspace(0,1); 

buyer= f+i*2*(1-f); 

seller= g+i*2*(1-g); 

 

middle=plot(i,buyer,'-',i,seller,':','linewidth',3); 

 

title(' buyer (-) and seller (..) '); 

 

ylim([0,2]); 

 

colormap gray; 

 

saveas(h,namedensity,'png'); 

 

end 

 

blackandwhite.m 
%this is the function for visualisizng trade zone in lk model 

 

function blackandwhite= blackandwhite (fbar,gbar,pi) 

 

figure; 

minuspi=1-pi(:,:,fbar,gbar); 

 

blackandwhite=imagesc(minuspi); 

 

 set( gca,'XTick',0:50:450,'XTickLabel',{'0','0.1', '0.2','0.3', '0.4',... 

     '0.5',  '0.6', '0.7', '0.8', '0.9',},'YTick',0:50:450,... 

     'YTickLabel',{'1','0.9','0.8', '0.7','0.6', '0.5', '0.4',... 

     '0.3', '0.2', '0.1'} ); 

 

colormap gray; 

 

end 


