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1. Introduction 

Common-value auctions, in which the value of the object being sold is unknown but the 

same to all bidders ex post and each bidder receives a private signal that is correlated with the 

value, have been studied intensively, both theoretically and empirically, since Milgrom and 

Weber (1982; "MW"); see the surveys by McAfee and McMillan (1987, Section X), Milgrom 

(1985, Section 4; 1987, Section 4), Wilson (1992, Section 4.2), and Klemperer (2000, Chapter 1). 

A central problem in this area is explaining the "winner's curse," the frequent tendency for 

winning bidders in common-value auctions to find, on average, that they have bid more than the 

object being sold is worth.2 The curse, as we shall call it, was first noted in oil-lease auctions by 

petroleum engineers (Capen, Clapp, and Campbell (1971)) and studied theoretically by Wilson 

(1969). It has since been detected in many analyses of field data (Hendricks, Porter, and Boudreau 

(1987); Hendricks and Porter (1988); and the papers surveyed in McAfee and McMillan (1987, 

Section XII), Thaler (1988), Wilson (1992, Section 9.2), and Laffont (1997, Section 3)). The 

curse has also been observed in laboratory experiments with precise control of the information 

conditions on which it depends (Bazerman and Samuelson (1983); Kagel and Levin (1986; 

"KL"); Dyer, Kagel, and Levin (1989); Lind and Plott (1991; "LP"); and the papers surveyed in 

Kagel (1995, Section II) and KL (2002)). Finally, curse-like phenomena have been observed in 

non-auction settings that share the informational features of common-value auctions: bilateral 

negotiations in the Acquiring a Company game in Samuelson and Bazerman (1985), Holt and 

Sherman (1994; "HS"), Tor and Bazerman (2003), and Charness and Levin (2005); the Monty 

Hall game in Friedman (1998), Tor and Bazerman (2003), and Palacios-Huerta (2003); zero-sum 

betting with asymmetric information in Sovik (2000) and Sonsino, Erev, and Gilat (2002); and 

voting and jury decisions in Fedderson and Pesendorfer (1996, 1997, 1998). There is also an 

experimental literature on independent-private-value auctions, which documents a widespread 

tendency for subjects to bid higher than in the risk-neutral Bayesian equilibrium—though not 

usually to the point of making losses as in common-value auctions; see Cox, Smith, and Walker 

(1983, 1988); Goeree, Holt, and Palfrey (2002; "GHP"); and the references cited there. 

The curse is often attributed informally to bidders' failure to adjust their value estimates for 

the information revealed by winning. Such adjustments are illustrated by the symmetric Bayesian 

equilibrium of a first- or second-price auction with symmetric bidders, where bidders adjust their 
                                                 
2This definition is the one most often used in the literature. We use the term "common-value" to include MW's (1982) 
general notion of interdependent values with affiliated signals as well as pure common values.  
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expected values for the fact that the winner's private signal must have been more favorable than 

all others' signals, and so overestimates the value based on all available information.3 But despite 

the empirical importance of overbidding in independent-private-value auctions and curse-like 

phenomena in common-value auctions, there have been few attempts to model them formally. 

KL (1986) and HS (1994) formalize the intuition behind the curse in models in which 

"naïve" bidders do not adjust their value estimates for the information revealed by winning, but 

otherwise follow equilibrium logic. Eyster and Rabin's (2002, 2005; "ER") notion of "cursed 

equilibrium" generalizes KL’s and HS’s models to allow intermediate levels of value adjustment, 

ranging from standard equilibrium with full adjustment to "fully-cursed" equilibrium with no 

adjustment. ER also generalize KL’s and HS’s models from auctions and bilateral exchange to 

other kinds of incomplete-information games.4 All three models allow players to deviate from 

equilibrium only to the extent that they do not draw correct inferences from the outcome. Thus 

their predictions coincide with equilibrium in games in which such inferences are not relevant, 

and they do not help to explain non-equilibrium behavior in independent-private-value auctions. 

Other analyses, also assuming equilibrium, seek to explain overbidding in independent-

private-value auctions via various deviations from risk-neutral expected-monetary-payoff 

maximization: risk aversion in Cox, Smith, and Walker (1983, 1988) and HS (2000); the "joy of 

winning" in Cox, Smith, and Walker (1992) and HS (1994); and both of these plus nonlinear 

probability weighting, using McKelvey and Palfrey's (1995) notion of quantal response 

equilibrium ("QRE"), in GHP (2002).5

These explanations all assume the perfect coordination of beliefs about others' strategies that 

is characteristic of equilibrium analysis. Such coordination is plausible when bidders have had 

                                                 
3A bidder's bid should be chosen as if it were certain to win because it affects the bidder's payoff only when it wins.  
4In Samuelson and Bazerman's (1985) experiments with the Acquiring a Company game, both less- and more-
informed subjects tend to choose as if their (more- or less-informed) partner's information was the same as their own. 
In Acquiring a Company, cursed equilibrium would assume this for a less-informed player but not a more-informed 
player. It is unclear how to extend Samuelson and Bazerman's interpretation to auctions in which each player has 
some private information, so that no one is unambiguously less- or more-informed. Neither of the obvious choices—
that a player ignores his own private information, or alternatively assumes that all others share it—seems sensible. 
5QRE is a generalization of equilibrium that allows players' choices to be noisy, with the probability of each choice 
increasing in its expected payoff, given the distribution of others' decisions; a QRE is thus a fixed point in the space 
of players' choice distributions. GHP (2002) use QRE to analyze the results of experiments with independent-private-
value auctions. To our knowledge QRE has not been used to analyze common-value auctions. Risk aversion has been 
applied mainly to explain overbidding in independent-private-value auctions, with the notable exception of HS 
(2000). As LP (1991) note, common-value auctions with risk aversion are not well understood theoretically. 
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ample opportunity to learn from experience with analogous auctions.6 But some auctions that 

have been studied using field data lack enough clear precedents to make equilibrium a plausible 

hypothesis for initial responses; and subjects may learn slowly in auction experiments, especially 

with common values (LP (1991); Ball, Bazerman, and Carroll (1991); Garvin and Kagel (1994); 

Kagel and Richard (2001); and Palacios-Huerta (2003)). The justification for equilibrium then 

depends on strategic thinking rather than learning, but such thinking may not follow the fixed-

point logic of equilibrium. It may then be just as plausible to relax the assumption of equilibrium 

as to relax correct value adjustment or risk-neutral expected-money-payoff maximization.  

Progress via relaxing equilibrium depends on specifying a structural model that accurately 

describes initial responses to games.7 In this paper we reconsider the winner's curse in common-

value auctions and overbidding in independent-private-value auctions using a non-equilibrium 

model of initial responses based on "level-k" thinking, introduced by Stahl and Wilson (1994, 

1995) and Nagel (1995) and developed and further applied by Ho, Camerer, and Weigelt (1998); 

Costa-Gomes, Crawford, and Broseta (2001); Crawford (2003); Camerer, Ho, and Chong (2004; 

"CHC"); Costa-Gomes and Crawford (2004); and Crawford and Iriberri (2005). The level-k 

model has strong experimental support, which should help to allay the common concern that once 

one departs from equilibrium, "anything is possible." We focus on symmetric first- and second-

price auctions, leaving their progressive Dutch and English counterparts for future work. 

The level-k model has the potential to give a unified explanation of overbidding in 

independent-private-value and common-value auctions as well as curse-like phenomena in other 

settings. It also promises to establish a link between empirical auction studies and non-auction 

experiments on strategic thinking, and thereby to bring a large body of auction evidence to bear 

                                                 
6Such experience might justify fully cursed equilibrium, for instance, by teaching bidders the tradeoff between the 
cost of higher bids and their increased probability of winning without also teaching them to avoid the curse. In the 
field bidders seldom observe others' value estimates, which impedes learning about the curse. In most of the relevant 
experiments, subjects' bids and signals were made public after each round, but even experienced subjects may focus 
on the relationship between the winner's signal and bid and the realized value of the object, without looking for 
relationships like the curse. It seems much harder to justify less than fully-cursed equilibrium, because once one 
realizes there may be a relationship to look for, there is no obvious reason to stop at intermediate levels of cursedness.  
7Maintaining common knowledge of rationality but otherwise leaving beliefs unrestricted yields notions like 
rationalizability, which implies some restrictions on behavior in first-price auctions or common-value second-price 
auctions, and duplicates equilibrium in independent-private-value second-price auctions. k-level rationalizability—
consistency with rationality and mutual certainty of (k-1)-level rationalizability—implies bounds on behavior in first-
price auctions characterized in Battigalli and Siniscalchi (2003) and restricts behavior in common-value second-price 
auctions, and also duplicates equilibrium in independent-private-value second-price auctions. By contrast, our 
approach dispenses with common knowledge of rationality (and beliefs) but normally yields unique predictions. 
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on the issue of how best to model initial responses to games. Finally, it allows us to explore the 

robustness of equilibrium auction theory’s conclusions to failures of the equilibrium assumption. 

The level-k model allows behavior to be heterogeneous, but it assumes that each player's 

behavior is drawn from a common distribution over a particular hierarchy of decision rules or 

types. Type Lk for k > 0 anchors its beliefs in a nonstrategic L0 type and adjusts them via thought-

experiments with iterated best responses: L1 best responds to L0, L2 to L1, etc. L1 and L2 have 

accurate models of the game and are rational; they depart from equilibrium only in basing their 

beliefs on simplified models of other players.8 This yields a workable model of others' decisions 

while avoiding much of the cognitive complexity of equilibrium analysis.9 In applications the 

population type distribution is usually translated from previous work or estimated from the 

current dataset. The estimated distribution tends to be stable across games, with most of the 

weight on L1 and L2. Thus the anchoring L0 type exists mainly in the minds of higher types. 

Even so, the specification of L0 is the key to the model's explanatory power and the main 

issue that arises in extending the level-k model from complete- to incomplete-information games. 

We compare two specifications, both nonstrategic as is usual in level-k analyses. A random L0 

bids uniformly randomly over the feasible range, as in the complete-information level-k analyses 

of Stahl and Wilson (1994, 1995); Costa-Gomes, Crawford, and Broseta (2001); CHC (2004); and 

Costa-Gomes and Crawford (2004).10 A truthful L0 bids the value that its own private information 

                                                 
8Charness and Levin (2005) conduct an interesting experimental test of "simplified models of others" explanations of 
the curse like the one proposed here, in an Acquiring a Company design with a "robot" treatment in which a single 
decision-maker faces an updating problem that is cognitively the same as the one that underlies the curse. They find 
that the curse persists in their treatment, and suggest that their results favor explanations based on limited cognition in 
Bayesian updating or understanding the problem rather than simplified models of others. Their results suggest that 
the curse is due to some form of limited cognition rather than strategic uncertainty; but their analysis leaves open the 
possibility that something like the level-k model accurately describes initial responses to environments, interactive or 
not, that pose cognitive difficulties that are isomorphic to those of predicting other players' strategic decisions.  
9In Selten's (1998) words: "Basic concepts in game theory are often circular in the sense that they are based on 
definitions by implicit properties…. Boundedly…rational strategic reasoning seems to avoid circular concepts. It 
directly results in a procedure by which a problem solution is found. Each step of the procedure is simple, even if 
many case distinctions by simple criteria may have to be made." Costa-Gomes and Crawford (2004) summarize the 
evidence for the level-k model and give support for our assumptions that L2 best responds to an L1 without decision 
errors, unlike in Stahl and Wilson (1994, 1995); and to L1 alone rather than a mixture of L1 and L0, unlike Worldly in 
Stahl and Wilson (1995) and L2 in CHC (2004). We confine attention to L0, L1, and L2 because they well illustrate 
the model's potential to explain auction behavior and the evidence suggests that higher types are comparatively rare. 
10In the only other incomplete-information level-k model of which we are aware, CHC (2004, Section VI.A) use their 
closely related "cognitive hierarchy" model, with a random L0, to explain curse-like phenomena in Sonsino, Erev, 
and Gilat's (2002) and Sovik's (2000) experimental results on zero-sum betting with asymmetric information. One 
could easily imagine other possible specifications of random L0, for example restricting the range of variation to bids 
that can be rational, given one's own information. But bearing in mind that L0 is only the starting point for a player's 
analysis of others' behavior, simplicity is a virtue. Ultimately the "correct" specification is an empirical question. 
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suggests, taken by itself. Although truthfulness has no natural meaning in most settings for which 

level-k analyses have been conducted, in auctions it is both meaningful and plausible, given that 

L0 is only the starting point for a strategic analysis.11 We call the L1 and L2 types based on a 

random L0, random L1 and L2 types, with analogous terms for the truthful L1 and L2 types based 

on a truthful L0. We stress that these L1 and L2 types need not be random or truthful themselves. 

Although a level-k model's predictions coincide with equilibrium in many simple games, in 

games as complex as auctions they may deviate systematically from equilibrium. The deviations 

are determined by the same two factors that determine an equilibrium bidder's bidding strategy—

value adjustment for the information revealed by winning and the bidding trade-off between a 

higher bid's cost and its increased probability of winning—but the influences of these factors are 

altered by a level-k type's non-equilibrium beliefs. The pattern of L1’s and L2’s deviations across 

first- and second-price common- and independent-private-value auctions determines the extent to 

which a level-k model with an empirically plausible type distribution allows a unified explanation 

of the systematic, heterogeneous deviations from equilibrium such auctions often evoke. 

Our analysis yields two main conclusions. First, many of the insights of equilibrium auction 

theory extend, suitably interpreted, to level-k auction theory.12 Second, a random level-k model 

(but not a truthful level-k model) can yield an empirically plausible explanation of both the 

winner’s curse in common-value auctions and overbidding in those independent-private-value 

auctions without the uniform value distributions used in most experiments. 

In common value auctions, because a random L0's bids are independent of its private signal, 

a random L1 completely ignores the information revealed by winning, just as ER's fully-cursed 

equilibrium bidders do. In a second-price auction the bidding trade-off is neutral and a random 

L1's failure to adjust the value makes its bids coincide with a fully-cursed equilibrium bidder's, so 

that it normally overbids relative to equilibrium. In a first-price auction a random L1 differs from 

                                                 
11Our truthful L0 is equivalent to LP's (1991) "naive model" and our random L1 is close to their "private-value" 
model. Our truthful L0 is also reminiscent of the truthful sender type W0 in Crawford's (2003) level-k analysis of 
strategic deception via cheap talk, which also appears frequently in the informal literature on deception and receives 
some support in communication experiments (Crawford (1998), Cai and Wang (2005), and the references cited 
there). Models that adapt L0 to the setting in other ways include Ho, Camerer, and Weigelt's (1998) analysis of 
guessing games, where L0 is random with an estimated central tendency; and Crawford and Iriberri's (2005) analysis 
of Hide-and-Seek games, where L0 responds to the non-neutral framing of locations. By contrast, the level-k model's 
other main assumption, the adjustment of higher-level types' beliefs via iterated best responses, appears to allow a 
satisfactory account of initial responses to many different kinds of games. 
12To the extent that equilibrium insights do not generalize, it is mainly because level-k types, by best responding to 
level-(k-1) types, break the symmetry of a standard equilibrium analysis, which creates difficulties like those in 
equilibrium analyses of asymmetric auctions (McAfee and McMillan (1987, Section VII), Maskin and Riley (2000)). 

 5



a fully-cursed-equilibrium bidder in using its non-equilibrium beliefs to evaluate a non-neutral 

bidding trade-off. In general a random L1 overbids relative to equilibrium but may either overbid 

or underbid relative to or coincide with fully-cursed equilibrium. In the leading example that has 

been studied experimentally, KL's, a random L1 coincides with fully-cursed equilibrium with 

common values; and coincides with it and equilibrium with uniform, independent private values. 

Without uniformity, in general, a random L1 may underbid, overbid, or coincide with equilibrium. 

A random L1 coincides with equilibrium except for one possible valuation in one of GHP's (2002) 

independent-private-value treatments with discrete, slightly non-uniform values.  

In a second- or first-price auction, a random L1's bidding strategy is increasing in its signal, 

and so in common-value auctions a random L2 does adjust its value estimate for the information 

revealed by winning. Its value adjustment reflects the same logic as the second-price equilibrium 

bidding strategy, in that it bids according to the expected value given its own signal, conditional 

on just winning; but its non-equilibrium beliefs do not anticipate winning if and only if it has the 

highest signal, which leads to a different adjustment. In general, value adjustment tends to make 

bidders' bids strategic substitutes, because higher others' bids make a bidder believe that winning 

means others' signals are (stochastically) lower, which makes the curse seem worse and lowers 

the expected value conditional on winning, and so tends to lower the bidder's optimal bid. In a 

second-price auction, to the extent that a random L1 overbids relative to equilibrium, the strategic 

substitutability of value adjustment makes a random L2 underbid. This effect is also present in a 

first-price auction, but there the bidding trade-off may either reinforce or work against this 

tendency to underbid. In KL's example the bidding trade-off works against it, and with common 

values a random L2 coincides with equilibrium. With uniform, independent private values, a 

random L2 coincides with equilibrium, like a random L1. With non-uniform independent private 

values a random L2 may underbid, overbid, or coincide with equilibrium. In both of GHP's (2002) 

treatments, a random L2 tends to underbid. 

For empirically plausible type distributions, with L1 more frequent than L2, these patterns of 

variation in bidding behavior allow a random level-k model to fit experimental data for common-

value auctions significantly better than equilibrium or cursed equilibrium; and to fit GHP's data 

for non-uniform independent-private-value auctions significantly better than equilibrium and 
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cursed equilibrium.13 A level-k model has additional advantages over cursed equilibrium, in that it 

uses more general strategic principles to give a structural account of subjects’ heterogeneous 

bidding behavior, with behavioral parameters linked to other bodies of evidence; and it has the 

potential to explain non-equilibrium bidding in some other independent-private-value auctions.14

The rest of the paper is organized as follows. In Section 2 we introduce MW's (1982) 

general model with interdependent values and affiliated signals and review the theories of 

equilibrium and cursed-equilibrium bidding. In Section 3 we discuss the specification of a level-k 

model for auctions and derive its implications for random and truthful type hierarchies. In Section 

4 we compare equilibrium, cursed equilibrium, and the level-k model's implications with regard to 

explaining the curse and overbidding in independent-private-value auctions. We start with the two 

leading examples that were the basis of the auction experiments ER (2002, 2005) considered, the 

first-price auctions of KL (1986) and Garvin and Kagel (1994) and the second-price auctions of 

Avery and Kagel (1997; "AK"). We also analyze second-price auctions in KL's example (for 

which ER (2002) but not ER (2005) discuss KL's results). Further, since independent-private-

value auctions are especially useful for separating cursed equilibrium from level-k decision rules, 

we analyze GHP’s (2002) experimental design with discrete, slightly non-uniform values, in 

which level-k decision rules are separated from equilibrium. In Section 5 we reconsider the 

experimental data in the light of Section 4's analysis, comparing the models' abilities to account 

for the individual initial responses of inexperienced subjects, which allow the cleanest tests of our 

model, in settings like KL's, AK's, and GHP’s. Section 6 is the conclusion. 

2. Equilibrium and Cursed Equilibrium 

In this section we review the theories of equilibrium and cursed-equilibrium bidding in 

first- and second-price auctions. We use MW's (1982, Section 3) general model with 

interdependent values and affiliated signals, which includes independent private values, pure 

common values, and intermediate cases in which bidders observe affiliated private signals that are 

informative about their interdependent values. Although ER's (2005) cursed equilibrium includes 

                                                 
13In common-value auctions a truthful L1 tends to underbid relative to equilibrium or coincide with it in the 
examples, which makes it difficult for a truthful level-k model to reconcile the data with a plausible type distribution. 
However, our estimates for GHP's treatments also include a small but significant fraction of truthful L1 subjects. 
14Cursed equilibrium, by contrast, can accommodate subjects' heterogeneous bidding behavior only by estimating 
subject-specific cursedness parameters as in ER (2005, Section 4).   
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equilibrium as a special case, we begin with equilibrium and generalize to cursed equilibrium. 

Here and below, we assume risk-neutral, symmetric bidders and focus on symmetric equilibria. 

2a. Milgrom and Weber's general model with interdependent values and affiliated signals  

 Milgrom and Weber's general model with interdependent values and affiliated signals has 

N bidders, indexed i = 1,…,N, bidding for a single, indivisible object. Bidder i observes a private 

signal Xi that is informative about his value of the object, with ),...,,( 21 NXXXX = . The vector 

includes additional random variables that may be informative about the value 

of the object. In general, bidder i's value 

),...,,( 21 MSSSS =

),( XSuVi = , and the variables in S and X are affiliated 

(positively associated) as defined in MW (1982, Assumption 5 and Appendix). This general 

model includes three leading special cases that are important in our analysis: the pure 

independent-private-value model, in which M = 0 and )( ii XuV = ; the pure common-value model 

(used in KL (1986) and LP (1991)), in which M = 1 and )(SuVi = ; and an alternative common-

value model (used in AK (1997)), in which . ∑
=

==
N

n
ni XXuV

1

)(

Because bidders are risk-neutral, if bidder i wins the auction and pays price p for the 

object his payoff is . Without loss of generality, we focus on bidder 1 with value  and 

signal . LetY denote the highest estimate among other bidders' private signals .Y  

has distribution function and density function, conditional on the realization, x, of X

pVi − 1V

1X NXXX ,...,, 32

1,  

and ; in cases where the signals are independent, we suppress the conditioning and 

write and . It is also useful to define two expected value functions, which as functions 

are the same for all i: the expected value conditional on winning

)|( xyFY

)|( xyfY

)(yFY )(yfY

[ ]yYxXVEyxv ii ==≡ ,|),( , 

and the unconditional expected value [ ]xXVExr ii == |)( . 

2b. Equilibrium in first- and second-price auctions 

Our equilibrium analysis closely follows MW's analysis of their general affiliated-signals 

and interdependent-values model; readers who are familiar with their analysis can skip ahead to 

Section 2.c's review of cursed equilibrium. 

In equilibrium, bidders correctly predict and best respond to the distribution of other 

bidders' bids, taking into account the information to be revealed because in a symmetric 

equilibrium, the winner's estimate must be more favorable than others' estimates. In this 
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subsection we assume other bidders use their equilibrium bidding strategies, in a first-price 

or in a second-price auction, which are both increasing, with inverses and . 

)(* xa

)(* xb )(1
* aa− )(1

* bb−

In a first-price auction, bidder i's optimal bidding strategy solves (for each x) 

(1)  ( )[ ] ( )∫
−

−==− <

)(

})({

1
*

*
)|(),(|1max

aa

x
YiaYaia dsxsfasxvxXaVE , 

where 1{·} is the indicator function. Taking the partial derivative with respect to a yields a first-

order differential equation that determines a as a function a(x) of x, which characterizes the first-

price equilibrium bidding strategy:15

(2)    ( )
)|(
)|()(),()('

xxF
xxfxaxxvxa

Y

Y−= . 

Solving (2) for the equilibrium bidding strategy and using the boundary condition )(* xa

),()(* xxvxa = to determine the constant of integration yields a general expression for the first-

price equilibrium bidding strategy (MW (1982, p. 1107)): 

(3)      .)),((
)|(
)|(exp),()(* ∫ ∫ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=

x

x

x

s Y

Y ssvddt
ttF
ttfxxvxa  

)(* xa reflects both the value adjustment for the information revealed by winning, via , and 

the bidding trade-off, via the range of integration. The logic of value adjustment is that the bidder 

should bid according to the expected value given his own signal, conditional on just winning, 

which in equilibrium happens when his signal just exceeds the highest of the others' signals. 

),( xxv

With independent private values, xxxv =),( and the functions  and  no 

longer depend on x, so the interior integral on the right-hand side of (3) reduces to 

)|( xyfY )|( xyFY

)(
)(

xF
sF

Y

Y  and the 

first-price equilibrium bidding strategy becomes: 

(4)    ].|[
)(
)()(* XYYEds

xF
sFxxa

x

x Y

Y <≡−= ∫  

In a second-price auction, bidder i's optimal bidding strategy solves (for each x): 

                                                 
15MW (1982, p. 1107-1108) show that the objective function in (1) is quasiconcave, so that the first-order conditions 
characterize the equilibrium strategies. MW's quasiconcavity argument breaks down for some of the optimization 
problems considered below, and level-k types' non-equilibrium beliefs can in general lead to boundary optima. In 
Section 4's examples the first-order conditions characterize the optimum except for the random L2 and truthful L1 
types in AK's example, in which the objective function is linear and so either the upper or lower bound is optimal. 
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(5)  ( )[ ] ( )∫
−

−=− <

)(

})({*

1
*

*
)|(),(),(|1)(max

bb

x
YibYbib dsxsfssvsxvXYbVE . 

Because is increasing in x,),( yxv 0),(),( >− ssvsxv for all xs < and  for all 

. Thus the second-price equilibrium bidding strategy (MW (1982, pp. 1100-1101)) is: 

0),(),( <− ssvsxv

xs >

(6)     ),()(* xxvxb = . 

 With independent private values, (6) becomes:  

(7)      xxb =)(* . 

In a second-price auction a bidder's bid determines only when he wins, not what he pays, so the 

bidding trade-off is neutral and truthful bidding given correct value adjustment ensures that he 

wins if and only if it appears profitable, given his information. Comparing (3) to (4) and (6) to (7), 

the only differences between the common- and independent-private-value equilibrium bidding 

strategies are value adjustment and the affiliation of signals . Although the independent-

private-value equilibrium is a weakly dominant strategy and the common-value equilibrium 

is also truthful, it is not weakly dominant because optimal value adjustment depends on 

others' bidding strategies, as Section 3's level-k analysis shows more concretely.  

)|( xyfY

)(* xb

)(* xb

Comparing (4) and (7) and recalling that in symmetric equilibrium a bidder wins if and 

only if he has the highest value yields the part of the revenue-equivalence theorem that is relevant 

to our analysis: With independent private values, in a first-price auction the winning bidder pays 

 while in a second-price auction he pays Y. Because Y < X for the winner in either 

case, first- and second-price auctions yield the same expected revenue: random for second-price 

auctions, deterministic for first-price (Vickrey (1961)). By contrast, comparing (3) and (6) shows 

that with affiliated signals, a second-price auction yields at least as much expected revenue as a 

first-price auction (MW (1982, Theorem 15), McAfee and McMillan (1987, Sections V and X).  

]|[ XYYE <

2c. Cursed equilibrium in first- and second-price auctions 

Our cursed-equilibrium analysis follows ER's (2002, 2005) analysis; readers who are 

already familiar with it can skip ahead to Section 3's discussion of the level-k model. 

In cursed equilibrium, as in equilibrium, bidders correctly predict and best respond to the 

distribution of others' bids. The only difference is that in cursed equilibrium bidders do not 

correctly perceive how others' bids depend on their signals. Instead they believe that with 

probability χ, ER's (2005) level of "cursedness," each other bidder bids the average of others' bids 
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over all signals rather than the bid his strategy specifies for his own signal. The parameter χ 

ranges from 0 to 1, and cursed equilibrium for a given χ is called "χ-cursed" equilibrium. χ = 0 

yields standard equilibrium and χ = 1 yields "fully-cursed" equilibrium, in which bidders assume 

there is no relation between others' bids and signals, so that each takes the expected value of the 

object conditional on his own signal, ignoring the information revealed by winning.16  

ER (2005, proof of Proposition 1, Proposition 5) simplify their analysis by showing that χ–

cursed equilibrium is the same as equilibrium in a hypothetical "χ-virtual game," in which players 

believe that with probability χ others' bids are type-independent, in which case they learn nothing 

about the value of the object from winning. In the χ-virtual game, bidder i's expected payoff from 

winning and paying price p when the value of the object is is: ),( XSu

(8) )(),()1(]|[],|[)1( xrxxvxXVExYxXVE iiii χχχχ +−==+==− . 

The χ-cursed-equilibrium bidding strategy can then be obtained from the χ-virtual game in exactly 

the same way that the equilibrium bidding strategy was obtained from the original game. 

With independent private values, xxrxxv == )(),( , the χ-virtual game reduces to the 

original game, and cursed equilibrium coincides with equilibrium. But with common values, 

v(x,x) differs from r(x), and cursed equilibrium differs from equilibrium. In this subsection we 

assume that other bidders use their χ-cursed-equilibrium bidding strategy, in a first-price or 

in a second-price auction, which are both increasing, with inverses and . 

)(xaχ

)(xbχ )(1 aa−
χ )(1 bb−

χ

In a first-price auction bidder i's optimal bidding strategy solves (for each x): 

(9)   ( )∫
−

−+−
)(1

)|()(),()1(max
aa

x
Ya dsxsfaxrsxv

χ

χχ . 

Taking the partial derivative yields a first-order differential equation that determines a as a 

function a(x), which characterizes the first-price χ-cursed-equilibrium bidding strategy: 

(10)   ( )
)|(
)|()())(),()1()('

xxF
xxfxaxrxxvxa

Y

Y−+−= χχ . 

Solving (10) yields: 

                                                 
16The implicit assumption that a player thinks he is more sophisticated than other players is often seen in other forms, 
for which it has considerable experimental support; see for example Weizsäcker (2003). As ER (2005, footnote 6) 
note, cursed equilibrium allows certain kinds of differences in beliefs about others' type-contingent strategies. 
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(11) [ ] [ ]∫ ∫ +−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+−=

x

x

x

s Y

Y srssvddt
ttF
ttfxrxxvxa )(),()1(
)|(
)|(exp)(),()1()( χχχχχ . 

Like the first-price equilibrium bidding strategy , reflects both value adjustment and 

the bidding trade-off. Cursed equilibrium differs from equilibrium only in underestimating the 

correct value adjustment to an extent determined by χ. 

)(* xa )(xaχ

Given a cursed-equilibrium bidder's value estimate and its anticipation of others' 

estimates, he responds to the bidding trade-off just as an equilibrium bidder would. The effect of 

its cursedness is determined by the difference between the unconditional expected value and 

the expected value conditional on winning . Normally  > , so that cursed-

equilibrium bidders overbid, relative to equilibrium, as in KL's example (Section 4). But there are 

some cases in which  > for some values of x, so that some (in extreme cases, nearly 

all) cursed-equilibrium bidders underbid, as in AK's example (Section 4; ER (2005, p. 22)). 

)(xr

),( xxv )(xr ),( xxv

),( xxv )(xr

In a second-price auction, bidder i's optimal bidding strategy solves (for each x): 

(12)  ( )∫
−

−−−+−
)(1

)|()(),()1()(),()1(max
bb

x
Yb dsxsfsrssvxrsxv

χ

χχχχ , 

which (following the same reasoning as for equilibrium, because both v(x,y) and r(x) are 

increasing in x) yields the second-price χ-cursed-equilibrium bidding strategy: 

(13)    )(),()1()( xrxxvxb χχχ +−= . 

Like the second-price equilibrium bidding strategy , reflects only the value adjustment 

for the information revealed by winning, which it underestimates just as in a first-price auction. 

)(* xb )(xbχ

 Assuming χ is the same in first- and second-price auctions, the revenue implications are 

qualitatively the same for cursed equilibrium as for equilibrium: With independent private values, 

first- and second-price auctions yield the same expected revenue; but with affiliated signals, a 

second-price auction yields at least as much expected revenue as a first-price auction. 

3. The Level-k Model 

3a. The model 

In this section we generalize the level-k model to common- and independent-private-value 

auctions. As explained in the Introduction, the level-k model allows behavior to be heterogeneous 

across bidders, but assumes that each bidder's behavior is drawn from a common distribution over 
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a hierarchy of types, in which L1 best responds to a nonstrategic anchoring type L0, L2 best 

responds to L1, etc. In this section we derive types’ implications in general; and in Section 4 we 

specialize them to the examples used in experiments and discuss aggregate implications. We 

consider two alternative specifications of L0: a random L0 that bids uniformly randomly, 

independent of its own private signal, over the range determined by the range of its signal and the 

value function ; and a truthful L0 that bids the value its own signal suggests, taken by 

itself. We assume that each player follows type L0, L1, or L2 (footnote 9), random or truthful. 

(Recall that we call the L1 and L2 types associated with a random L0, random L1 and L2 types, 

with analogous terms for the truthful L1 and L2 types associated with a truthful L0; and that 

random or truthful L1 and L2 types need not be random or truthful themselves.) 

),( XSuVi =

3b. Random L1 and L2 bidding strategies in first- and second-price auctions 

 A random L1 bidder assumes other bidders are random L0, hence with bids independently 

and identically distributed (henceforth "i.i.d.") uniformly over the range ],[ zz determined by the 

range of its private signal and the value function ),( XSuVi = . A random L1 therefore believes 

that winning conveys no information about the value of the object, even with common values and 

affiliated signals. Its optimal bid is determined by its own signal; the price it pays if it wins; and 

its beliefs about the highest bid among the others, Z1, described by the distribution function 
1

)(
1

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
N

Z zz
zzzF  and density

zzzz
zzNzf

N

Z −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−=
−

1)1()(
2

1
. Note that these do not depend on 

the bidder's own signal , which is uninformative about Z1X 1; or the distribution of others' signals. 

In a first-price auction a random L1 bidder i's optimal bidding strategy solves (for each x): 

(14)  ( )[ ] ( ) ( ) )()()()(|1max
111 }{ aFaxrdssfaxrXaVE Z

a

z
ZiaZia −≡−≡− ∫< . 

A random L1's first-price bidding strategy, , is characterized by the first-order condition: )(1 xar

(15)    0)()())((
11

=−− aFafaxr ZZ . 

This problem and first-order condition differ from those for first-price equilibrium in (1) and (2) 

in two ways: r(x) replaces , and the integral in (14) and density and distribution function in 

(15) refer to a random L1's beliefs about the highest of L0 others' bids Z

),( xxv

1, rather than the highest 

of others' signals Y that determines the highest others' bid in a symmetric equilibrium. The first 
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difference reflects the fact that because a random L0's bids are independent of its private s al, a

 L1 ignores the information revealed by winning. Given the normal tendency for )(xr  > 

),( xxv , this tends to make a random L1 overbid relative to equilibrium, just as a fully-cursed 

equilibrium bidder does. The second difference reflects a random L1's use of its non-equilibrium 

beliefs to evaluate the bidding trade-off between a higher bid's cost and increased probability of 

winning. Comparing (10) with χ = 1 and (15) shows that this difference can either raise or lower 

its first-price bidding strategy relative to the fully-cursed equilibrium bidding strategy. Combini

ign  

random

ng 

. 

In a second-price auction, a random L1 bidder i's optimal bidding strategy solves:  

the two tendencies, a random L1 seems more likely than not to overbid relative to equilibrium

( )[ ] ( )∫ −− <
z

ZbZib dssfsxrZVE )()(|1max
11 }{1  (16)    =

b

iX

's ond-price bidding stratA random L1  sec egy, )(1 xbr , is characterized by the first-order condition: 

(17)   ( ) 0)()(
1

=− bfbxr Z  or, solving for b, )()(1 xrxbr = . 

This problem and first-order condition differ from those for second-price equilibrium in (5) and 

(6) in that r(x) replaces ),( xxv and in the use of a random L1's non-equilibrium beliefs. But given 

a random L1's "cursed" value adjustment, truthful bidding is optimal just as it is in an equilibri

analysis.

um 

 

till 

 

s 

vel-k types with k > 0, which 

all best

by winning, because a random L1's bidding strategy is an increasing function of its private signal 
                                                

17 This important insight from an equilibrium analysis remains valid here and below, 

even though the truthful equilibrium bidding strategy in (6) is not weakly dominant and random

L1 beliefs differ from equilibrium beliefs, because a bidder's bid in a second-price auction s

determines only when he wins, not what he pays; and truthful bidding, given correct value 

adjustment taking others' anticipated bidding strategies into account, still ensures that he wins 

when it appears profitable, given his beliefs. A random L1's bidding strategy therefore coincides

with the second-price fully-cursed equilibrium bidding strategy in (13) with χ = 1, so that it ha

the same tendency to overbid in common-value auctions. But it coincides with equilibrium in 

second-price independent-private-value auctions, where like other le

 respond to beliefs, it follows the weakly dominant strategy. 

Unlike a random L1, a random L2 adjusts its value estimate for the information revealed 

 
17Fully-cursed equilibrium and random L1 are readily comparable because both are determined by the unconditional 
expected value r(x) instead of the value conditional on just winning v(x,x), and so differ only in their beliefs. Even so, 
in first-price auctions random L1 and fully-cursed equilibrium are not directly comparable, because random L1's and 
equilibrium beliefs can differ considerably, depending on the specific distribution of the signals. 
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in either kind of auction.18 We derive the optimal bids more generally, because the results will 

determine the truthful L1 and L2 bidding strategies as well as the random L2 bidding strategy. 

Suppose that in a first-price auction, a level-k bidder (random or truthful) expects others to 

bid according to the monotonically increasing bidding strategy , with inverse . The 

bidder's optimal bidding strategy with value V

)(1 xak− )(1
1 aak

−
−

i and signal Xi then solves (for each x): 

(18) ( )[ ] ( )[ ] ( )∫
−
−

−
−−

−=−=−
<<

)(

)}({})({

1
1

1
11

)|(),(|1|1max
aa

x
YiaaYiiaYaia

k

kk
dsxsfasxvXaVEXaVE . 

Taking the partial derivative with respect to a, the first-order condition can be written: 

(19)  0)|)(()()|)(()))(,(( 1
1

1
11

1
1
1 =−

∂
∂

− −
−

−
−−

−
−
− xaaF

a
aaxaafaaaxv kY

k
kYk . 

With independent private values xxxv =),( and the functions  and  no longer 

depend on x, so that (19) reduces to: 

)|( xyfY )|( xyFY

(20) 0))(()())(()( 1
1

1
11

1 =−
∂

∂
− −

−

−
−−

− aaF
a

aaaafax kY
k

kY  or 
a

aa
aaf
aaFax k

kY

kY

∂
∂

=−
−
−

−
−

−
− )(

))((
))(()(

1
1

1
1

1
1 . 

Now suppose that in a second-price auction, a level-k bidder expects others to follow the 

monotonic bidding strategy , with inverse . The bidder's optimal bidding strategy 

with value V

)(1 xbk− )(1
1 bbk

−
−

i and signal Xi then solves (for each x): 

(21)   ( )[ ] ( )∫
−
−

− −<− −=−
)(

1})({1

1
1

1
)|()(),(|1)(max

bb

x
YkibYbkib

k

k
dsxsfsbsxvXYbVE . 

Taking the partial derivative with respect to b, the first-order condition can be written: 

(22)  0)()|)(()))(,((
1
11

1
1
1 =

∂
∂

−
−
−−

−
−
− b

bbxbbfbbbxv k
kYk  or . 0))(,( 1

1 =−−
− bbbxv k

With independent private values (22) reduces to the weakly dominant strategy in (7). 

Comparing the second-price level-k bidding strategy from (22) with the second-price 

equilibrium bidding strategy from (6) isolates the effects of value adjustment. The logic of value 

adjustment is the same for both: Each bids according to the expected value given its own signal, 

conditional on just winning. The only difference is that a level-k bidder's beliefs do not anticipate 

winning if and only if it has the highest signal, as a (symmetric) equilibrium bidder's do. A level-k 

                                                 
18This is easily verified from (15) for first-price auctions and (17) for second-price auctions.     
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bidder believes it wins if and only if it bids at least , which depending on others' 

anticipated bidding strategy may be more or less stringent than having the highest signal.  

)(1 Ybk−

Value adjustment tends to make bidders' bids strategic substitutes. Suppose that a level-k 

bidder believes others' bids are higher than in equilibrium, so winning means others' signals are 

(stochastically) lower than it would mean in equilibrium. Comparing (22) and (6) and noting 

that is increasing in y (MW (1982, Theorems 2-5)), this belief lowers his value conditioned 

on winning, making the curse seem worse and lowering his optimal bid, other things equal.  

),( yxv

Comparing the first-price level-k bidding strategy determined by (19) with the first-price 

equilibrium bidding strategy determined by (2) reveals that both involve exactly the same kind of 

value adjustment as in the second-price bidding strategies. In first-price auctions, however, the 

value adjustment interacts with the bidding trade-off. We now investigate this interaction in more 

detail, in preparation for Section 4's analysis of examples. 

First, isolate the bidding trade-off by considering the level-k bidding strategy with 

independent private values determined by (20), which balances the marginal benefit of increasing 

its bid (the value minus the bid times the increased probability of winning) against the marginal 

cost (the higher bid times the probability of winning).19

Now write as a function of a parameter q, where increasing q shifts up 

for all x, and so shifts  down for all a. With independent private values, (18) becomes:  

),(1 qxak− ),(1 qxak−

),(1
1 qaak

−
−

(23)     . )),(()(max 1
1 qaaFax ka

−
−−

The first-price level-k bidding strategy is then: 

(24)   ≡ , )),(()(maxarg 1
1 qaaFax ka

−
−− ))]},((log[){log(maxarg 1

1 qaaFax ka
−
−+−

where log is the natural logarithm and F(·) > 0 near the optimum. Because q enters only the 

second term of the right-hand maximand, the optimal bid a is everywhere increasing in q iff: 

(25)  0

),(
)),((
)),((

/))],((log[

1
1

1
1

1
1

1
1

2 ≥
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
∂

≡∂∂∂

−
−

−
−

−
−

−
− q

a
qaa

qaaF
qaaf

qaqaaF

k

k

k

k for all a and q, 

or equivalently (given that all terms are positive) iff: 

                                                 
19Private values are enough to isolate the bidding trade-off; we add independence for convenience.   
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(26)   0

),(
)),((
)),(( 1

1
1
1

1
1

≤
∂

⎥
⎦

⎤
⎢
⎣

⎡

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

−
−

−
−

−
−

q
a

qaa
qaaf
qaaF k

k

k

 for all a, x, and q, 

with an analogous condition for the optimal bid to be everywhere decreasing in q. The numerator 

in the square brackets on the left-hand side of (26) is decreasing in q for most well-behaved 

distributions; but the denominator is also likely to be decreasing in q. Thus, neither the condition 

in (26) nor its converse are satisfied for all plausible specifications of F(·) and ; and the 

condition is likely to be satisfied for some values of a but not others: In general the bidding trade-

off may make bidders' bids strategic complements, strategic substitutes, or a mixture of both. 

),(1 qak ⋅−

To see what determines the effect of the bidding trade-off more clearly, assume that 

δγ +≡− xxak )(1 with γ > 0 as in KL's and AK's examples, so that
γ
δ−

≡−
−

aaak )(1
1 and 

γ
1)(1

1 =
∂

∂ −
−

a
aak . Given this and (26), increasing γ increases the optimal bid a iff it 

decreases )(/)(
γ
δ

γ
δγ −− afaF , which will be the case, given 0)( =xF , iff 

)(
)(

yf
yF

Y

Y is convex in y. 

But an increase in δ will increase the optimal bid a iff it decreases )(/)(
γ
δ

γ
δ −− afaF , which is 

the case for most well-behaved distributions. Thus, upward shifts in the slope of others' 

anticipated bidding strategy tend to make bidders' bids strategic complements (respectively 

substitutes) iff 
)(
)(

yf
yF

Y

Y is convex (concave) in y, while upward shifts in the level tend to make 

bidders' bids strategic complements in either case. With an unconditionally uniform signal 

distribution, as in most independent-private-value examples, 
)(
)(

yf
yF

Y

Y is linear, and the bidding 

trade-off is neutral with respect to shifts in the slope. 

 The ambiguity just demonstrated for the independent-private-value case plainly persists in 

the common-value case, where the bidding trade-off interacts with value adjustment: In general, 

comparing (19) with (2), the first-price level-k bidding strategy can be either higher than the first-

price equilibrium bidding strategy, lower, or a mixture of both. 
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Now consider how a random L2's first-price bidding strategy, , is determined by (19) 

with  replacing , hence by: 

)(2 xar

)(1
1 aar − )(1

1 aak
−
−

(27)   0)|)(()()|)(()))(,(( 1
1

1
11

1
1

1 =−
∂

∂
−

−
−

−− xaaF
a

aaxaafaaaxv r
Y

r
r

Y
r . 

In a first-price auction, a random L2 bidder, like a random L1 bidder, deviates from equilibrium 

both in value adjustment and in using its non-equilibrium beliefs to evaluate the bidding trade-off. 

A random L2's value adjustment reflects the same logic as an equilibrium bidder's, but its beliefs 

generally lead to a different adjustment. To the extent that a random L1 overbids relative to 

equilibrium, because a random L2 believes that to win it must bid higher than all others' random 

L1 bids, not just higher than their equilibrium bids, given the strategic substitutability of value 

adjustment a random L2 believes that the curse is more severe than in equilibrium, and so tends to 

underbid. In general the bidding trade-off may tend to raise or lower a random L2's bids relative 

to equilibrium or cursed equilibrium. On balance, a random L2 seems more likely to underbid. 

A random L2's second-price bidding strategy, , is determined by (22) with  

replacing , hence by: 

)(2 xbr )(1
1 bbr−

)(1
1 bbk

−
−

(28)  0)()|)(()))(,((
1

11
1

1
1 =

∂
∂

−
−

−−

b
bbxbbfbbbxv

r
r

Y
r  or . ))(,( 1

1 bbxvb r−=

The second-price random L2 bidding strategy is again truthful, but to the extent that a random L1 

overbids relative to equilibrium, the strategic substitutability of value adjustment makes a random 

L2 underbid because it believes the curse is more severe than in equilibrium. 

3c. Truthful L1 and L2 bidding strategies in first- and second-price auctions 

A truthful L1 bidder's bid is a best response to a truthful L0, and thus assumes that others 

follow the monotonic bidding strategy , with inverse . ]|[)()(0 xXVExrxa ii
t ==≡ )()( 11

0 araat −−
≡

In a first-price auction, a truthful L1 bidder's optimal bidding strategy, , solves a 

problem (for each x) that is a special case of the general first-price monotonic problem (18). 

is then determined by the first-order condition (19) with  (because 

) replacing :    

)(1 xat

)(1 xat )()( 11
0 araat −−

≡

)()(0 xrxat ≡ )(1
1 aak

−
−

(29)    0)|)(()()|)(()))(,(( 1
1

11 =−
∂

∂
− −

−
−− xarF

a
arxarfaarxv YY . 
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Thus, in a first-price auction, a truthful L1 bidder deviates from equilibrium in its use of 

its non-equilibrium beliefs to evaluate the bidding trade-off, like a random L1; but its different 

beliefs imply a different value adjustment.20 A truthful L0 overbids relative to the first-price 

equilibrium bidding strategy, because it neither adjusts for the curse nor shades its bids. Hence a 

truthful L1, which believes that to win it must bid higher than all others' truthful bids, not just 

higher than their first-price equilibrium bids, believes that the curse is even more severe than in 

equilibrium. Thus the strategic substitutability of value adjustment makes a truthful L1 tend to 

underbid. The bidding trade-off, by contrast, may in general either raise or lower a truthful L1's 

bids relative to equilibrium. On balance, a truthful L1 seems more likely to underbid. 

In a second-price auction, a truthful L1 bidder's optimal bidding strategy, , solves a 

special case of the general monotonic problem (21) (for each x). The bidder's optimal second-

price bidding strategy, , is then determined by (22) with replacing : 

)(1 xbt

)(1 xbt )()( 11
0 brbbt −−

≡ )(1
1 bbk

−
−

(30)  0)()|)(()))(,((
1

11 =
∂

∂
−

−
−−

b
brxbrfbbrxv Y or . ))(,( 1 brxvb −=

Thus, bidding is truthful as in the previous second-price analyses. A truthful L0 normally overbids 

relative to second-price equilibrium because it does not adjust for the curse, hence the strategic 

substitutability of value adjustment normally makes a truthful L1 underbid. In a common-value 

second-price auction, a truthful L1's bidding strategy is identical to a random L2's, because a 

random L1 bids the expected value of the item based on its own signal, just as a truthful L0 does. 

In a first-price auction, a truthful L2 bidder expects other bidders to bid according to the 

monotonic bidding strategy , with inverse . Its optimal first-price bidding 

strategy, , is then determined by problem (18) with replacing : 

)(1 xat )(1
1 aat−

)(2 xat )(1
1 aat− )(1

1 aak
−
−

(31)  0)|)(()()|)(()))(,(( 1
1

1
11

1
1

1 =−
∂

∂
−

−
−

−− xaaF
a

aaxaafaaaxv t
Y

t
t

Y
t . 

Thus, to the extent that a truthful L1 underbids, the strategic substitutability of value 

adjustment tends to make a truthful L2 overbid. But the bidding trade-off can again either raise or 

lower its bids relative to equilibrium. On balance, a truthful L2 seems likely to overbid. 

                                                 
20Because truthful types' bidding strategies are determined by v(x,y), like equilibrium strategies, they are more readily 
compared to equilibrium than to cursed-equilibrium strategies, which are influenced by r(x) as well as v(x,y). 
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In a second-price auction, a truthful L2 bidder expects other bidders to bid according to 

the monotonic bidding strategy , with inverse . Its optimal second-price bidding 

strategy, , is again determined by (22), now with  replacing : 

)(1 xbt )(1
1 bbt−

)(2 xbt )(1
1 bbt − )(1

1 bbk
−
−

(32)  0)()|)(()))(,((
1

11
1

1
1 =

∂
∂

−
−

−−

b
bbxbbfbbbxv

t
t

Y
t  or .  ))(,( 1

1 bbxvb t −=

To the extent that a truthful L1 underbids, the strategic substitutability of value adjustment again 

tends to make a truthful L2 overbid. 

4. Can a Level-k Model Explain the Curse and Other Kinds of Overbidding? 

The auction experiments whose data we analyze are based on two leading common-value 

examples, which differ mainly in the form of the value function ),( XSuVi =  (Section 2); and one 

independent-private-value example. In this section we review the implications of equilibrium, 

cursed equilibrium, and the level-k model in general and discuss them in detail in the examples, to 

assess the level-k model's potential to improve upon cursed-equilibrium explanations of the curse 

in common-value auctions and other kinds of overbidding in independent-private-value auctions. 

4a. Kagel and Levin's; Avery and Kagel's; and Goeree, Holt, and Palfrey's examples 

In the first example, used in KL's analyses of first-price auctions and in LP's follow-up 

experiments, N ≥ 3, , S is uniformly distributed on a subset of the real line SXSuVi == ),( ],[ ss , 

and X|S is conditionally uniformly i.i.d. on the interval ]
2

,
2

[ asas +−  with dispersion a > 0, with 

minor adjustments due to truncation near s  or s . The density, distribution function, and expected 

value of X|S are:
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Thus xxr
N
aaxxxv =≤+−= )(

2
),( , with strict inequality for N > 2, and cursed-equilibrium 

bidders overbid relative to equilibrium or coincide with it for any χ or x. 

In the second example, used in AK's analysis of second-price auctions, 

, and X∑
=

==
N

i
ii XXSuV

1
),( i is i.i.d. uniformly distributed on the interval ],[ xx . Thus, in general, 

2
)1(]|[)(

1

xxNxxXXExr i

N

k
k
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−+==≡ ∑

=

, xNNyxyxv
2

)2(
2

),( −
++= , and 

xNNxxxxv
2

2
2

),( −
++=  > (<) r(x) if and only if 

N
xxNx +−

<>
)1()( , so that v(x,x) > r(x) for 

bidders with high signals and v(x,x) < r(x) for bidders with low signals: Cursed-equilibrium 

bidders underbid relative to equilibrium for high signals (because they implicitly assume that 

others' signals take their average values, when their own signal makes others' more likely to be 

high) and overbid for low signals.21 When N = 2 and ]4,1[],[ =xx , as in AK's experiments, 

2
5)( += xxr  and , so that xxxv 2),( = ),()( xxvxr < when

2
5

>x and when ),()( xxvxr >
2
5

<x .  

In the third example, used in GHP's (2002) analysis of first-price independent-private- 

value auctions, N = 2, , and there are two treatments, each with bids restricted to 

integer values and discrete, slightly non-uniform (because of spacing) values—equal probabilities 

on {0, 2, 4, 6, 8, 11} in a low-value treatment and on {0, 3, 5, 7, 9, 12} in a high-value treatment. 

ii XXSuV == ),(

4b. Equilibrium and cursed equilibrium versus level-k models in second-price auctions 

We now describe and discuss the relationships among equilibrium, cursed-equilibrium, 

and random and truthful L1 and L2 bidding strategies in these examples. Table 1 summarizes the 

conclusions of Section 2's and Section 3's general analyses and records the models' implications 

in the examples. 

First consider second-price auctions with independent private values. Here random and 

truthful L1 and L2 all bid truthfully, just as they do in equilibrium and cursed equilibrium, 

because level-k types follow weakly dominant strategies when they exist.22 Thus neither kind of 

                                                 
21This corrects a typographical error in ER (2005, p. 1642), where they say that bidders with high signals overbid 
relative to equilibrium while those with low signals underbid. 
22In this case a truthful L0 (but not a random L0) also coincides with equilibrium when a player's signal reveals the 
actual value with certainty. 
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level-k model can improve upon an equilibrium explanation of overbidding in second-price 

auctions with independent private values. 

Now consider second-price auctions with common values. In this case, a random L1 bids 

the value its own signal suggests, taken by itself, so its bidding strategy coincides with fully-

cursed equilibrium and it has the same general tendency to overbid relative to equilibrium 

(Section 3b).23 In KL's example, a random L1 coincides with equilibrium for N = 2 and, like fully-

cursed equilibrium, overbids relative to equilibrium for N > 2, to an extent that increases with N 

and the dispersion a of its signal. In AK's example, a random L1 with a low (high) signal overbids 

(underbids), again like fully-cursed equilibrium. 

To the extent that a random L1 overbids relative to equilibrium in a second-price 

common-value auction, the strategic substitutability of value adjustment make a random L2 

underbid. In KL's example, a random L2, like a fully-cursed equilibrium bidder, coincides with 

equilibrium for N = 2 and underbids for N > 2, to an extent that decreases with N and increases 

with a. In AK's example, a random L2 with a low (high) signal matches the bid of a random L1 

with the lowest (highest) possible signal (with only weak strategic substitutability because the 

solutions are on the boundary). 

In a second-price auction with common values, a truthful L0 generally overbids relative to 

equilibrium, because it does not adjust its value for the curse. Given this, the strategic 

substitutability of value adjustment makes a truthful L1 underbid relative to equilibrium or, a 

fortiori, cursed equilibrium. In KL's example, because a random L1 bids the value its own signal 

suggests, like a truthful L0, a truthful L1 coincides with a random L2, and so underbids relative to 

equilibrium, to an extent that decreases with N and increases with a. In AK's example with N = 2, 

a truthful L1 coincides with a random L2 (Section 3c), and therefore a truthful L1 with a low 

(high) signal matches the bid of a truthful L0 with the lowest (highest) possible signal (with only 

weak strategic substitutability because the solutions are on the boundary). 

Given that a truthful L1 underbids, a truthful L2 overbids. We have not derived a closed-

form solution for a truthful L2 in KL's or AK's example. Computations confirm that it overbids in 

                                                 
23Recall that the effect of cursedness is determined by the difference between the unconditional expected value of the 
item r(x) and the expected value of the item conditional on just winning v(x,x) (Section 2c). Normally r(x) > v(x,x), so 
that cursed-equilibrium bidders overbid, relative to equilibrium; but there are cases in which v(x,x) > r(x) for some x, 
so that some cursed-equilibrium bidders underbid.  
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KL's example by even more than a fully cursed-equilibrium bidder, to an extent that increases 

with N; and that in AK's example with N = 2 it overbids for some values and underbids for others. 

To sum up for second-price auctions, with independent private values level-k types of 

either kind coincide with equilibrium and cursed equilibrium, and so cannot improve upon their 

explanations. With common values a random L1 coincides with fully-cursed equilibrium, and so 

has a general tendency to overbid relative to a less-than-fully-cursed-equilibrium (or equilibrium) 

bidder; and a random L2 has a general tendency to underbid relative even to equilibrium. Thus a 

random level-k model has the potential to improve upon χ-cursed-equilibrium explanations of the 

curse in second-price common-value auctions; but this depends on whether its mixture of L1 and 

L2 bidders gives a better account of subjects' heterogeneous bidding behavior, with empirically 

plausible type frequencies, than χ-cursed-equilibrium with a mixture of cursed-equilibrium 

bidders with different χ "types" with a comparable number of parameters.24

By contrast, a truthful L1 has a general tendency to underbid; and a truthful L2 to overbid, 

sometimes by even more than a fully-cursed-equilibrium bidder. Given the prevalence of L1 over 

L2 types in experimental subject populations (see Costa-Gomes and Crawford (2005) and the 

papers mentioned there), this makes it difficult to reconcile a truthful level-k model with the 

frequency with which bidders fall into the curse. 

4c. Equilibrium and cursed equilibrium versus level-k models in first-price auctions 

We now discuss the relationships among equilibrium, cursed-equilibrium, and random and 

truthful L1 and L2 bidding strategies for first-price auctions. Here, with independent private 

values, value adjustment is irrelevant, and in general the bidding trade-off may make a random or 

truthful L1 or L2 either underbid or overbid. 

To date, most independent-private-value experiments have used values uniformly i.i.d. on 

[ xx, ]. In this case the equilibrium bidding strategy xxx
n

nxa +−
−

= )(1)(* is a best response to 

any beliefs derived from others' bidding strategies xxxa +− )( , as long as 0 < a ≤ 1. A random or 

truthful L1, and therefore a random or truthful L2, then coincides with equilibrium; and the level-k 

model cannot improve upon an equilibrium explanation of overbidding. But for more general 

value distributions a level-k model may be able to explain non-equilibrium bidding with 

                                                 
24In KL's example, for instance, random L2's or truthful L1's below-equilibrium bids could only be duplicated by the 
deterministic part of an econometric specification of χ-cursed equilibrium if χ < 0; and truthful L2's above-signal bids 
could only be duplicated if χ >1. 
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independent private values. In GHP (2002), a random L1 or L2 coincides with equilibrium except 

for the highest valuation in the high-value treatment, where a random L1 overbids and a random 

L2 underbids (Appendix).25 By contrast, a truthful L1 underbids in the low-value treatment and 

overbids in the high-value treatment, and a truthful L2 underbids for both. Random and truthful 

specifications do not coincide here, even though both the ex ante value distribution and a random 

L0 are uniformly distributed over the possible values, because the possible values are not evenly 

spaced and the allowed integer bids include some between the values. 

Now consider first-price common-value auctions.26 Value adjustment follows the same 

principle as in second-price auctions, and tends to make a random L1 overbid relative to 

equilibrium because it does not adjust for the curse. But now the bidding trade-off may either 

reinforce or offset this tendency. In general a random L1 may underbid or overbid; but on balance 

it seems more likely to overbid. In KL's example when N = 2, equilibrium and fully-cursed 

equilibrium coincide and a random L1 bids slightly lower than but approximately coincides with 

them.27 When N > 2, a random L1 (approximately) coincides with a fully-cursed equilibrium 

bidder; but both overbid relative to equilibrium, by an amount that increases with N and the 

dispersion parameter a. 

To the extent that a random L1 overbids in a first-price common-value auction, value 

adjustment makes a random L2 tend to underbid; but the bidding trade-off may either reinforce or 

offset this tendency. On balance it seems more likely to underbid. In KL's example when N = 2, a 

random L2 (approximately) coincides with equilibrium and fully-cursed equilibrium. When N > 2, 

a random L2 (approximately) coincides with equilibrium, but it underbids relative to fully-cursed 

equilibrium, by an amount that increases with N and a.28  

                                                 
25Although random L1 approximately coincides with equilibrium here, their different beliefs imply different costs of 
deviation, which plays an important role in the econometric analysis. In Palfrey's (1985) and Chen and Plott's (1998) 
designs, a level-k model also deviates from equilibrium, in different ways; we do not consider their designs here 
because the data from those experiments are not available.  
26Although in independent-private-value auctions, random types are equivalent to the analogous truthful types when 
the distribution of private signals is unconditionally uniform; in common-value auctions random and truthful types 
are never equivalent, because they differ in value adjustment. 
27"Approximately coincides" means that the bidding strategies differ only by the exponential part of KL’s example's 
first-price equilibrium bidding strategy, which is positive but negligible for all x not very close to x ; KL and all other 
analysts have ignored this exponential part and we will follow them in this from now on, for cursed equilibrium as 
well as equilibrium. Our solution for KL's example differs from KL's, LP's (1991), and ER's, in that they have 
a/(N+1) in the third term in place of our a/N (Appendix). We believe that our version is correct, but the discrepancy 
makes little difference because the exponential term is negligible. 
28In this example the bidding trade-off tends to make bids strategic complements because it increases the intercept δ 
but not the slope γ (Section 3b), which offsets the strategic substitutability of value adjustment. 
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In first-price common-value auctions, a truthful L0 overbids relative to equilibrium, more 

than in a second-price auction, other things equal, because it neither adjusts its value for the curse 

nor shades its bid as the bidding trade-off requires. Because a truthful L0 overbids, with common 

values the strategic substitutability of value adjustment tends to make a truthful L1 underbid 

(Section 3.c); but the bidding trade-off may either reinforce or offset this tendency. In general a 

truthful L1 may either underbid or overbid. On balance, it seems more likely to underbid. In KL's 

example value adjustment and the bidding trade-off offset each other, and a truthful L1 

(approximately) coincides with equilibrium. 

To the extent that a truthful L1 underbids in a first-price auction with common values, 

value adjustment makes a truthful L2 tend to overbid; but the bidding trade-off may either 

reinforce or offset this tendency. In general a truthful L2 may either underbid or overbid. On 

balance, it seems more likely to overbid. In KL's example, a truthful L2 (approximately) coincides 

with equilibrium because L1 does. 

To sum up for first-price auctions, with independent private values level-k types of either 

kind coincide with equilibrium and cursed equilibrium in the examples that have most often been 

studied experimentally, where the value distribution is uniform, and so cannot improve upon their 

explanations of subjects' bidding behavior. But for more general value distributions, as in GHP 

(2002), a random (or truthful) L1 coincides with equilibrium (or underbids) in the low-value 

treatment and both overbid in the high-value treatment, and a random (or truthful) L2 coincides 

with equilibrium (or underbids) for both treatments. Thus a level-k model is clearly separated 

from equilibrium and cursed equilibrium, and may be able to explain non-equilibrium bidding. 

With common values, a random L1 or L2 may either underbid or overbid in general. In 

KL's example when N = 2, a random L1 and L2 both (approximately) coincide with equilibrium 

and fully-cursed equilibrium; and when N > 2, a random L1 (approximately) coincides with fully-

cursed equilibrium but overbids relative to equilibrium, and a random L2 (approximately) 

coincides with equilibrium and underbids relative to fully-cursed equilibrium. This gives a 

random level-k model the potential to improve upon χ-cursed-equilibrium explanations of the 

curse in first-price auctions with common values; but this depends on whether its mixture of L1 

and L2 bidders gives a better account of subjects' heterogeneous bidding behavior than χ-cursed-

equilibrium. By contrast, in the only first-price common-value design for which data are 

 25



available, KL's, truthful L1 and L2 bidders coincide with equilibrium, which makes it difficult to 

reconcile a truthful level-k model with observed bidding behavior. 

4d. Cross-treatment implications of cursed-equilibrium versus level-k models 

Cursed equilibrium and level-k models also have cross-treatment and aggregate 

implications, some of which can be tested via between- or within-subjects comparisons using 

existing experimental data, and some of which are potentially testable in new experiments. We 

focus on the random level-k model because the truthful level-k model appears to have little 

potential to explain behavior. We start by discussing the implications type by type, and then 

translate them into hypotheses about the population type frequencies. 

First, a random level-k model predicts more "as-if-equilibrium" play in the aggregate in 

settings where either more, or more frequent, types' bidding strategies coincide with equilibrium. 

In KL's example, for instance, a level-k model gives a structural explanation of the heterogeneity 

of subjects' responses, predicting a stable mixture of as-if-equilibrium (L2) and as-if-fully-cursed 

equilibrium (L1) bidders, normally with more of the latter because L1 is more prevalent (Costa-

Gomes and Crawford (2005)). In KL's example, unlike cursed equilibrium, a random level-k 

model predicts more as-if-equilibrium play in first- than in second-price common-value auctions 

because a random L2 coincides with equilibrium in the former but not the latter.29

A random level-k model also has different revenue implications than χ-cursed equilibrium, 

which allows further tests using existing data or data from new experiments. The theoretical 

prediction for equilibrium and cursed equilibrium is based on MW's equilibrium result that with 

affiliated signals a second-price auction always yields expected revenue at least as high as a first-

price auction (MW, Theorem 15). Assuming χ is the same in first- and second-price auctions, 

equilibrium's qualitative revenue rankings extend unchanged to χ-cursed equilibrium for any χ: If 

signals are independent as in AK's example, first- and second-price auctions yield the same 

expected revenue; and if signals are affiliated as in KL's example, a second-price auction yields 

expected revenue at least as high (strictly higher in KL's example) as a first-price auction. 

By contrast, a random level-k model has revenue implications that depend on type, which 

for some population type frequencies can weaken or reverse the equilibrium and cursed-

equilibrium revenue ranking. For a random L1 bidder, a second-price auction yields expected 

revenue higher than a first-price auction. (This is as expected for KL's example, where a random 
                                                 
29Cursed equilibrium could replicate such a prediction by estimating subject-specific χ parameters with χ = 0 or 1 for 
individual subjects; but this would give it many more free parameters than a level-k model. 
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L1 coincides with fully-cursed equilibrium, which implies the same revenue ranking as 

equilibrium.) But for a random L2 bidder, this ranking is reversed when N > 2: In a second-price 

auction, L2 bidders then underbid relative to equilibrium; but in a first-price auction they coincide 

with equilibrium, and so yield higher expected revenue. Thus, if the population has a roughly 

equal mix of L1 and L2 bidders, which is empirically plausible, a random level-k model will tend 

to predict a weaker revenue ranking than equilibrium or even fully-cursed equilibrium; and if 

there are more L2 than L1 bidders, which is not implausible for experienced bidders, a random 

level-k model will reverse the equilibrium and cursed-equilibrium ranking. 

Finally, a random level-k model, like cursed equilibrium, can explain why the curse gets 

worse and expected revenue increases with higher N (ER (2005, Proposition 6)). In a second-price 

auction a random L1 coincides with a fully-cursed equilibrium bidder, so to the extent that L1 

predominates a level-k model will have similar implications about the effects of increasing N. ER 

(2005, Propositions 7 and 8) show that when r(x) is a symmetric random variable then bidders 

will have negative expected payoffs in a second-price auction as long as N > 3, and that the effect 

of N on expected revenue increases with χ. Because in a second-price auction a random L1's bids 

coincide with fully-cursed equilibrium bids, these results hold for L1 decisions too. 

5. Comparing the Models in Auction Experiments 

With the exception of equilibrium, all the models compared here depend on behavioral 

parameters: population type frequencies for level-k models, one or more cursedness parameters 

for cursed equilibrium, and one or more logit precisions for QRE. This section makes our analysis 

more concrete by using data from auction experiments previously gathered by others to estimate 

these parameters econometrically, and then using the results to compare the models' abilities to 

account for observed behavior in the experiments. Our goal in using econometric estimates is to 

constrain our discretion in calibrating the models and to obtain likelihoods that provide an 

objective criterion for comparing them; not to take a definitive position on the parameters. 

Table 2 summarizes the data used in our analysis. The data were chosen with two goals in 

mind. First, because learning can lead even unsophisticated subjects to equilibrium, strategic 

thinking appears most clearly before subjects have seen other subjects' responses; we therefore 

use data from inexperienced subjects. Given this, we maximize comparability with ER's analysis 

of common-value auction data from KL (1986) for first-price auctions and AK (1997) for second-

price auctions. However, KL had only experienced subjects (defined as those who had 
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participated in at least one prior auction series); and while AK had some inexperienced subjects, 

ER's analysis focused mainly on their experienced subjects. For common-value second-price 

auctions we use AK's data for inexperienced subjects and the unpublished data for inexperienced 

subjects in a second-price version of KL's design mentioned in the Appendix to Kagel, Levin, 

Battalio, and Meyer (1989) as reprinted in KL (2002, Chapter 2). For common-value first-price 

auctions we use Garvin and Kagel's (1994) data for inexperienced subjects in KL's design. 

Further, instead of pooling the data from all periods and usually all subjects as ER did, we focus 

on individual subjects' initial responses, interpreted as the first 5 periods (in which a subject 

typically had 5 different realizations of his value signal) to compensate for the small sample size. 

Finally, because cursed equilibrium coincides with equilibrium in independent-private-value 

auctions, they are particularly important in assessing the predictive value of the level-k model's 

more general view of strategic behavior. But with independent private values, all level-k types 

(truthful or random) coincide with equilibrium in second-price auctions; and with the i.i.d. 

uniform values used in most designs, in first-price auctions as well (Section 4). We therefore use 

GHP's (2002) data from independent-private-value first-price auctions with discrete, slightly non-

uniform values, in which level-k types are separated from equilibrium.30

Our econometric specification follows the models with mixtures of decision rules or types of 

Stahl and Wilson (1994, 1995), Costa-Gomes, Crawford, and Broseta (2001), Camerer, Ho, and 

Chong (2004), Costa-Gomes and Crawford (2004), and Crawford and Iriberri (2005). Index Table 

2's experimental treatments (or "games") g = 1, 2, 3, 4; and game g's subjects . gNi ,...2,1=

For our level-k plus equilibrium model we allow random L0 and both random and truthful 

L1 and L2 as well as Equilibrium, treating each as a separate type with its own beliefs as specified 

in Section 2 or 3, indexing them k = 1,2,…K.31 For our cursed-equilibrium model we allow levels 

of cursedness χ that vary across subjects (as in part of ER's analysis of AK's data); but we 

constrain χ to multiples of 0.1 in the interval [0, 1] and in some cases to an estimated subset of 

                                                 
30Other common-value settings whose data would enrich our analysis include LP's (1991) and HS's (2000), but 
despite their authors' generous efforts, those data are not yet available. We define payoffs as payments for 
performance, exclusive of show-up fees, etc.; and express all payoffs in 1989 dollars. Following AK and GHP, we 
edited a small number of "crazy" bids (6 in AK (1997), 11 in KL (1986) first-price, 3 in KL (1986) second-price, and 
12 in GHP), replacing bids above or below the highest or lowest rationalizable bid with the highest or lowest 
rationalizable bid, respectively. 
31We omit truthful L0 in the econometric analysis because consistently truthful bidding is very rare in the data for the 
first-price treatments (6/255 observations in KL and 6/400 in GHP, with no individual subject making more than two 
truthful bids); and because there is no way to assign beliefs that makes truthful bidding optimal in first-price auctions, 
where it is dominated, which makes it difficult to specify logit errors like those we use for the other types. 
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possible χ’s in the interval [0, 1] (with no constraint to multiples of 0.1), whose size is chosen to 

make the model's number of parameters more comparable to that of our level-k plus equilibrium 

model.32 We then treat each possible level of χ as a separate type with its own beliefs as specified 

in Section 2, indexed k = 1,2,…K. Either way, kπ denotes the proportion of type k in the 

population, with . Thus each model includes an Equilibrium type (χ = 0 for cursed 

equilibrium), which allows a fair comparison of how well they explain subjects' deviations from 

equilibrium. Our formal discussion covers both models. 

1=∑
k

kπ

Type k implies a bidding strategy in game g (whether it is first- or second-price) denoted 

; and we write)(xcg
k

g
itc for subject i's observed bid in game g at time t. We assume that a subject 

of type k normally follows k's prescribed bidding strategy , but subject to logistic errors, 

which are independent across the five periods in which he plays. Let the density  represent 
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Thus, the costlier an error is ex ante, given type-k beliefs, the lower the probability of 

making it, with the cost-sensitivity tuned by the precision parameter λ and bids approaching 

uniform randomness as 0→λ or the error-free bid specified by as )(xcg
k ∞→λ .  

With errors independent, conditional on type, the likelihood of observing the 5-observation 

sample for subject i of type k with signal x and precision λ in game g is: ),,,,( 54321
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32ER (2005, Table II), by contrast, allow χ to take any real value and report many estimates for AK's inexperienced 
subjects outside [0, 1], despite χ's interpretation as the probability a player assigns to others playing their average 
distribution of actions irrespective of type rather than their type-contingent strategies. 
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Given (35), the likelihood in (37) treats a bid as stronger evidence for a type the closer it is 

to the type's optimal bid or the better the deviations are explained given the type’s beliefs, 

because the payoff function is quasiconcave and the logit term increases with payoff. In most 

cases the types are well separated and the first factor is the dominant one, but in GHP random L1 

and Equilibrium bids are separated only for v = 12 in the high-value treatment, and subjects are 

separated mainly by the differences in deviation costs implied by their beliefs.     

To allow for subject heterogeneity, we compare three specifications of how the precision λ 

varies by subject and/or type. Let the matrix Λ ≡ ][ ikλ  denote the precisions indexed by subject i 

and type k. Subject-specific error precisions, the most flexible specification, places no restrictions 

on how λ varies with i and k. Type-specific error precisions restricts ikλ to be independent of i for 

any given k. Constant error precisions restricts ikλ to be independent of i and k. In each case, the 

precision is the same for all of a given subject's bids, so that (35)-(37) are well-defined as written.     

Letting , from (37) we can now write the likelihood and log-likelihood 

functions for game g:  
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As explained above, (34)-(38) define our cursed-equilibrium model as well as our level-k 

plus equilibrium model, interpreting each type k as a different level of the cursedness parameter χ. 

The levels of cursedness are sometimes fixed and sometimes estimated, as explained below. To 

assure comparability with our level-k model, cursed types are assumed to make logit errors with 

analogous specifications of how their precisions vary by subject and/or type.  

Tables 3a-d summarize treatment-by-treatment parameter estimates and likelihoods for the 

level-k plus equilibrium and cursed-equilibrium models and, in Table 3d, QRE for GHP.33 For the 

                                                 
33We have not tried to estimate the models for all treatments together due to widely differing subject pools and 
conditions. In GHP we define random L0 with equal probabilities for the possible values in each treatment.    
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level-k plus equilibrium model we include all the types discussed in Section 3, with those that are 

not separated in a given treatment included in the table and indicated by a tilde (~). 

Individual subjects' precisions are highly heterogeneous. Likelihood-ratio tests for the level-

k plus equilibrium model, for which our three alternative specifications are nested, strongly reject 

constant or type-specific error precisions in all four treatments, with p-values of 0.001 or lower. 

The Akaike and Bayesian Information Criteria both favor a specification with subject-specific 

precisions, except for GHP where they favor a model with constant precisions. For our cursed-

equilibrium model the alternative specifications are not nested, but the Information Criteria both 

favor a specification with subject-specific precisions. For simplicity, we focus on the results with 

subject-specific precisions for both models. The estimation in (38) is then equivalent to estimating 

subject-by-subject, and the possible dependence of precision on type is redundant. 

The estimated population type frequencies for the level-k plus equilibrium model are 

generally behaviorally plausible. As in other settings, the estimated frequency of random L0 is 0 

in three treatments and negligible in the fourth, suggesting that the non-strategic anchoring type 

exists mainly in the minds of random L1 and random L2; and that subjects' behavior, while not 

usually conforming to equilibrium, is nonetheless strategic. The estimates for KL first-price, AK 

second-price, and GHP, particularly with subject-specific precisions, are very close to each other 

and (identifying Equilibrium with random L2 in KL first-price) close to previous estimates from 

other settings (Stahl and Wilson (1995), Costa-Gomes, Crawford, and Broseta (2001), Camerer, 

Ho, and Chong (2004), Costa-Gomes and Crawford (2004), and Crawford and Iriberri (2005)). 

The estimates for KL second-price are quite different, and to us less plausible. In that 

treatment Equilibrium shades its bid below the value suggested by its signal to adjust for the 

curse, random L1 bids the value suggested by its signal, random L2 shades more than equilibrium, 

and random L3 or truthful L2 (which are not separated) bid above the value suggested by their 

signal. There are two main patterns in the data: First, some subjects shade their bids, but less than 

in equilibrium; in our model this is best captured by Equilibrium or random L1. Second, other 

subjects bid above the value suggested by their signal, which is best captured by random L3 or 

truthful L2. We suspect that these subjects bid so high not because they believe others are shading 

their bids more than they would in equilibrium (as random L3 and truthful L2 believe); but rather 

because they don't fully process the subtle implications of the second-price auction for their 

optimal bidding strategy: Because they know they will not have to pay their own bid, they 
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underestimate its indirect cost, which may be less salient to them than what they will pay. If the 

random L3/truthful L2 type is omitted, these subjects are best described by random L1. 

Turning to cursed equilibrium, for the three common-value treatments we begin with the 

model in which χ is constrained to multiples of 0.1 in the interval [0, 1], and again focus on the 

estimates with subject-specific precisions. Although this model has many more parameters than 

the corresponding level-k plus equilibrium model, it is useful for diagnostic purposes.34

Despite our different specification and our use of data from inexperienced subjects, our 

cursed-equilibrium estimates for KL's and AK's designs are generally consistent with ER's 

estimates for KL's and AK's subjects, particularly AK's inexperienced subjects.35 And our cursed-

equilibrium estimates are very close to our estimates for the level-k plus equilibrium model: In the 

cursed-equilibrium estimates for all three common-value treatments, there are two spikes in the 

distribution of individual estimates, one at χ = 0 (Equilibrium) and one at χ = 1 (fully-cursed 

equilibrium or random L1), with comparatively little probability mass in between (with minor 

exceptions at χ = 0.2 in KL second-price and χ = 0.7 in AK second-price). Intermediate cursed 

types add little explanatory power over level-k types. 

Even when χ is allowed to take any value that is a multiple of 0.1 in the interval [0, 1], with 

subject-specific precisions the level-k plus equilibrium model has a likelihood advantage over the 

cursed-equilibrium model for KL and AK second-price; but in this case the cursed-equilibrium 

model has a likelihood advantage for KL first-price. In each case, the cursed-equilibrium model 

has many more parameters, so we also do the comparisons with a cursed-equilibrium model 

whose number of parameters equals that of the level-k plus equilibrium model. If we allow two 

cursed-equilibrium types in KL first-price, say χ = 0 and χ = 1 as the estimates when χ is 

constrained to multiples of 0.1 in [0, 1] suggest, then with subject-specific precisions the level-k 

model (-1660.52) has a small likelihood advantage over the cursed-equilibrium model (-1663.85). 

Since in this case both models’ types have the same optimal bidding strategies, the level-k model's 

                                                 
34The number of estimated parameters for the level-k plus equilibrium model is N + K – 1, where K is the number of 
separated types in the treatment, and so varies from 52 in KL first-price to 31 in KL second-price, 26 in AK second-
price, and 84 in GHP. By contrast, the cursed-equilibrium model with subject-specific precisions has 10 + N 
parameters in the common-value treatments, or 61 in KL first-price, 38 in KL second-price, and 33 in AK second-
price. (The number of observations is 5N in each treatment.) 
35In KL's and AK's designs, cursed equilibrium bids are linear in both the bidder's private signal x and the cursedness 
parameter χ. Pooling the data across time periods, ER regressed subjects' bids on those variables, finding that when 
constrained to be equal for all subjects, χ is closer to 1 (fully-cursed equilibrium) for inexperienced subjects and to 0 
(equilibrium) for experienced subjects; and that for AK's data, when χ was allowed to vary across subjects, it varied 
much more for inexperienced than experienced subjects, and was significantly different from 0 for both. 
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advantage stems from random L1's slight likelihood advantage over fully-cursed equilibrium, 

given random L1's non-equilibrium beliefs, in describing deviations from the optimal bidding 

strategy. However, in KL first-price the constraint that χ = 0 or χ = 1 is strongly rejected, and 

allowing more intermediate levels of χ allows the cursed-equilibrium model to fit some subjects 

better than the level-k types, with a better overall fit as well.36

Turning to GHP's independent-private-value design, we replace cursed equilibrium, which 

is not separated from equilibrium, by a mixture model that allows two different QRE "types" with 

different, estimated precisions. Here we follow GHP's preferred explanation of their subjects' non-

equilibrium bids, but we again restrict the number of types to make the number of parameters 

comparable to that of the level-k plus equilibrium model. Again focusing on the estimates with 

subject-specific precisions, the level-k model has a likelihood advantage over a QRE model.37 

Random L1 dominates the level-k type estimates, but there is a significant number of Equilibrium 

subjects and a smaller but significant number of truthful L1 subjects, the latter mostly from the 

high-value treatment, where truthful L1 predicts the overbidding that occurs for some values.  

6. Conclusion 

This paper has proposed a new approach to explaining the winner’s curse in common-value 

auctions and overbidding in some independent-private-value auctions, based on a structural non-

equilibrium "level-k" model of initial responses that describes behavior in a variety of 

experiments with complete-information games. We consider alternative ways to generalize 

complete-information level-k models to this leading class of incomplete-information games, and 

derive their implications in first- and second-price auctions with general information structures, 

comparing them to equilibrium and Eyster and Rabin's (2005) notion of "cursed equilibrium." 

Our analysis shows that many of the insights of equilibrium auction theory, properly 

interpreted, are robust to empirically plausible failures of the equilibrium assumption. It yields a 

tractable non-equilibrium characterization of the value adjustment for the information revealed by 

winning (the "winner's curse") that influences equilibrium bidding strategies in first- or second-

price common-value auctions; and of the bidding trade-off between the cost of higher bids and 
                                                 
36In the specifications with type-specific or constant precisions, we also allowed the same number of cursed types as 
level-k types. But in these cases, for KL first-price and AK second-price, the cursed-equilibrium model estimated 
fewer than the number of types we allowed it. The same thing happened with the QRE types estimated for GHP. 
37Although the Akaike and Bayesian Information Criteria favor the model with constant precision for GHP, its type 
frequency estimates do not differ significantly from those with subject-specific precisions. Random L2 is separated 
from Equilibrium only in GHP's high-value treatment, and then only weakly.   
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their higher probability of winning that influences equilibrium bidding strategies in first-price 

auctions with common or independent private values. These characterizations guide the choice of 

a model that can track the patterns of variation in subjects' behavior across different treatments 

with an empirically plausible population distribution of level-k types. By allowing us to examine 

auction behavior through the lens of a more general model of strategic behavior, they also allow 

us to link a large body of data from auction experiments to data from experiments in other settings 

that were specifically designed to explore strategic thinking.             

In our econometric analysis, we find that a specification based on a random uniform 

anchoring (level-0) type like the one used in many analyses of complete-information games 

allows a unified explanation of the winner’s curse in common-value auctions and overbidding in 

those independent-private-value auctions without the uniform value distributions used in most 

experiments; but that a specification based on a truthful anchoring type, despite its plausibility in 

auctions, does poorly either because it is not separated from equilibrium, or it requires an 

empirically implausible type distribution. A level-k model fits subjects' initial responses to a wide 

range of auction experiments better than the leading alternatives of cursed equilibrium or (in one 

case) quantal-response equilibrium. 
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Table 1. Types' Bidding Strategiesa

Auction/Type    Equilibrium χ-cursed 
Equilibrium Random L1 Random L2 Truthful L1 Truthful L2 

2nd-price i.p.v. x  x  xxbr =)(1  xxbr =)(2  
)(1 xbt  from (30) 

with ),( ⋅xv ≡ x 
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aIf there is no general closed-form expression, Table 1 refers to the equation in the text that determines the bidding strategy.    
 

 

 
 
 

 

 



 

 

Table 2. Data Sources and Experimental Designs 
g (Experimental 
treatment) 

Auction Type ),( XSu  Signals n (sample 
size) 

Treatment variables 

1. KL (1986) First-Price Common 
Value  

SXSu =),(  ]
2

,
2

[~| asasUSX +−  
51 a (precision), N (number 

of bidders), limits of s 
2. KL (1986) Second-Price Common 

Value 
SXSu =),(  ]

2
,

2
[~| asasUSX +−  

28 a (precision) 

3. AK (1997)  Second-Price Common 
Value 

21),( XXXSu +=
 

]4,1[],[~ =xxUX  23 No variation, N = 2 

4. GHP (2002) First-Price Independent 
Private Value 

XXSu =),(  
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40 No variation, N = 2 
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Table 3a. Estimation Approaches and Estimates for Kagel and Levin First-Price 

Model L s evel-k plus equilibrium Mixture of cursed type
 

Specification 
Individual 

specific 
precision ( iλ ) 

Type specific 
precision ( kλ ) 

Same precision 
(λ ) 

Individual specific precision ( iλ ) and 
fixed cursedness types 
( ))0,...9.0,1(=χ ) 

Type 
specific 

precision 
( kλ ) 

Same 
precision 

(λ ) 

Type 
specific 

precision 
( kλ ) 

Same 
precision 

(λ ) 

    Types χ   Reduced 
types kχ   kχ   

Random L0 
( )0=λ  

0.04 -- -- RL0 
(

)0=λ  

 0.06  --  --  0.04

Random L1 0.67         1  0.89 0.51 Type 1 1 0.47 0.67 0.84 0.89 0.5
1RLλ        2.24 1.31 Type 2 0.9 0.02 -- 1λ  0.59 2λ  0.68 

Random L2 ~Equilibriu
m 

~Equilibrium ~Equilibrium Type 3  0.8 0.08      -- 0 0.11 0 0.5

2RLλ     Type 4 0.7 0.06 -- 2λ  14.84 1λ  0.68 
Truthful L1 ~Equilibriu

m 
~Equilibrium ~Equilibrium Type 5  0.6 0      --

1TLλ           Type 6  0.5 0 --
Truthful L2 ~Equilibriu

m 
~Equilibrium ~Equilibrium Type 7  0.4 0.04      --

2TLλ           Type 8  0.3 0.04 --
Equilibrium 0.29         0.11 0.49 Type 9  0.2 0.04 --

EQλ           14.75 1.31 Type
10 

 0.1 0 --

           Type
11 

0 0.19 0.29

Log-likelihood          -1660.52 -1754.28 -1755.28 -1640.5 -1663.85 -1745.7 -1762.24
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Table 3b. Estimation Approaches and Estimates for Kagel and Levin Second-Price 

Model Level-k plus equilibrium Mixture of cursed types 

 
Specification 

Individual 
specific 

precision ( iλ ) 

Type specific 
precision ( kλ ) 

Same precision 
(λ ) 

Individual specific precision ( iλ ) 
and fixed cursedness types 

( ))0,...9.0,1(=χ ) 

Type specific 
precision ( kλ ) 

Same precision 
(λ ) 

     Types χ   kχ   kχ   

Random L0 
)0=(λ  

0   -- -- RL0 
( )0=λ  

--      0.18 -- --

Random L1 0.21         0.10 0.62 Type 1 1 0.18 0.86 0.27 0.79 0.43
1RLλ      95.84 8.91 Type 2 0.9 0.04 1λ  8.89 3λ  2.95 

Random L2 0.14       0.27 0.11 Type 3 0.8 0.03 0.18 0.3 0.33 0.15
2RLλ     2.5 8.91 Type 4  0.7 0 2λ  5.35 2λ  2.95 

Truthful L1 ~RandomL2 ~RandomL2 ~RandomL2 Type 5 0.6 0 -- 0.43 0 0.42 
1TLλ     Type 6  0.5 0.03 3λ  0 1λ  2.95 

Truthful L2 0.29         0.33 0.27 Type 7 0.4 0.03
2TLλ          6.1 8.91 Type 8  0.3 0

Equilibrium 0.36         0.30 0 Type 9 0.2 0.11
EQλ           49.76 -- Type 10 0.1 0.04
         Type 11 0 0.36 

Log-likelihood           -921.73 -967.8 -973.81 -954.5 -987.48 -995.59
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Table 3c. Estimation Approaches and Estimates for Avery and Kagel Second-Price 

Model Level-k plus equilibrium Mixture of cursed types 

 
Specification 

Individual 
specific 

precision ( iλ ) 

Type specific 
precision ( kλ ) 

Same 
precision (λ ) 

Individual specific precision ( iλ ) 
and fixed cursedness types 

( ))0,...9.0,1(=χ ) 

Type specific 
precision ( kλ ) 

Same precision 
(λ ) 

     Types χ   kχ   kχ   

Random L0 
( )0=λ  

0   -- -- RL0 
( )0=λ  

--      0.13 -- --

Random L1 0.65           0.58 0.94 Type 1 1 0.44 1 0.37 0.8 1
1RLλ       12.42 4.3 Type 2 0.9 0 1λ  9.67 1λ  2.77 

Random L2 0.09        0 0.05 Type 3 0.8 0 0.73 0.08
2RLλ     -- 4.3 Type 4  0.7 0.13 1λ  161.45   

Truthful L1 ~RandomL2 ~RandomL2 ~RandomL2 Type 5       0.6 0.04 0.63 0.55
1TLλ     Type 6  0.5 0.09 1λ  1.33   

Truthful L2 0.22         0.42 0 Type 7 0.4 0.04
2TLλ           1.07 4.3 Type 8 0.3 0

Equilibrium 0.04         0 0.01 Type 9 0.2 0.04
EQλ          -- 4.3 Type 10 0.1 0.04 
         Type 11 0 0.04 

Log-likelihood           -668.33 -702.57 -710.53 -677.65 -706.00 -715.77
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Table 3d. Estimation Approaches and Estimates for Goeree Holt and Palfrey, First-Priceb

Model Level-k plus equilibrium Mixture of Quantal Response Equilibrium types 

 
Specification 

Individual 
specific 

precision 
( iλ ) 

Type 
specific 

precision 
( kλ ) 

Same 
precision 

(λ ) 

Individual specific precision ( iλ ) Type specific 
precision ( kλ ) 

Same precision 
(λ ) 

Random L0 
( )0=λ  

0   -- -- RL0 
( )0=λ  

     -- --

Random L1 0.60   0.98 0.99 0>λ  1  QRE 0.80 λ  3.14 
1RLλ       8.54 8.71 1λ  2.74   

Random L2 0.04        0 0 QRE 0.20
2RLλ       -- 8.71 2λ  9.63   

Truthful L1 0.14         0 0
1TLλ           -- 8.71

Truthful L2 0.01         0 0
2TLλ           -- 8.71

Equilibrium 0.21         0.02 0.01
EQλ           29.84 8.71

Log-likelihood          -569.30 -642.91 -644.12 -624.28 -684.81 -688.44
bThis summary of the estimates for Goeree, Holt, and Palfrey pools their low- and high-value treatments for simplicity.  
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