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ONLINE APPENDIX A. Generalizing Tversky and Kahneman’s notion of loss aversion with 

constant sensitivity and using it to simplify Proposition 4’s sufficient conditions for a 

rationalization.  

 
 There is strong experimental and empirical support for loss aversion, whereby reference-

dependent preferences are more sensitive to changes below a reference point than to equal changes 

above it (Kahneman and Tversky 1979; Tversky and Kahneman 1991; Goette, Graeber, Kellogg, and 

Sprenger 2020). We begin with a nonparametric generalization of Tversky and Kahneman’s (1991, 

pp. 1047-1048) definition for the two-good case to the multi-good case. Like Tversky and Kahneman 

we assume constant sensitivity, but we relax their assumption of additive separability across goods. 

(The idea of loss aversion is still well defined with variable sensitivity, but formalizing it then is 

more complex, and Propositions 2 and 3 show that it is then nonparametrically irrefutable anyway.)   

 

DEFINITION A1: [Preferences with constant sensitivity and loss aversion.] 

Assume that reference-dependent preferences and an associated utility 

function 𝑢(𝒒, 𝒓) have constant sensitivity. A collection of regime preferences 

over consumption bundles satisfies loss aversion if and only if, for any 

observation {𝒑𝑡, 𝒒𝑡, 𝒓𝑡}, the preference ordering’s global better-than set is 

weakly contained in each regime preference ordering’s local better-than set at 

the same observation. 
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Figure A1. Loss aversion with one active reference point 

(solid curves for the loss indifference map, dashed curves for the gain map) 

 

 Figure A1 illustrates loss aversion with one active reference point and two gain-loss regimes. Loss 

aversion is a property of the relationship between regimes’ preferences over consumption bundles, 

hence independent of reference points. Because Definition A1’s nesting of local and global better-

than sets must hold throughout commodity space, global loss aversion is equivalent to requiring that 

the regime indifference maps satisfy a global single-crossing property: For any observation, across 

regimes that differ only in the gain-loss status of good i, the loss-side marginal rates of substitution 

between good i and any other good (generalized as needed for non-differentiable preferences) must 

be weakly more favorable to good i than the gain-side marginal rates of substitution. (Thus, 

neoclassical preferences are weakly loss averse.) It is this single-crossing property, not the kinks in 

global indifference maps that it creates, that shapes loss aversion’s nonparametric implications, 

which may be testable with finite data. Loss aversion precludes nonconvex kinks, so if all regime 

maps have convex better-than sets, then so do the associated global maps. 

 Corollary A1 shows that GARP for each regime’s observations plus a condition weaker than loss 

aversion are sufficient for a rationalization. The literature views loss aversion as an empirically well-

supported assumption with important behavioral implications, but not as one that is linked to the 

existence of a reference-dependent rationalization, but Corollary A1 makes it part of one plausible 

set of sufficient conditions for such a rationalization. 

 

COROLLARY A1: [Rationalization with modelable reference points via preferences 

with constant sensitivity that satisfy a condition weaker than loss aversion.] Suppose 

that reference-dependent preferences are defined over K ≥ 2 goods, that reference-

dependence is active for all K goods, that the preferences, satisfy constant sensitivity 

and are jointly continuous, and that they satisfy Proposition 1’s equation (2). 

Consider data {𝒑𝑡 , 𝒒𝑡, 𝒓𝑡}𝑡=1,…,𝑇 with modelable reference points. If each regime’s 
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observations satisfy GARP, then any combination of rationalizing regime preferences 

such that there are no observations for which 𝒒𝑡 is not on the boundary of the convex 

hull of 𝒒𝑡’s upper contour set for the associated candidate for a global preference 

ordering for 𝒓𝑡, yields a rationalization with associated utility function as in (2). 

 

PROOF: Any combination of rationalizing regime preferences ensures that each observation’s 

consumption bundle is optimal within its own regime. Consider a defection from 𝒒𝑡 ∊  𝐺(𝑔; 𝒓𝑡) to 

some 𝒒 ∊  𝐺(𝑔′; 𝒓𝑡) with 𝑔′ ≠ 𝑔 and 𝒑𝑡 ⋅ 𝒒 ≤  𝒑𝑡 ⋅ 𝒒𝑡. If such a 𝒒 were in regime 𝑔 for 𝒓𝑡, we would 

have:  

 

(A1)   𝑢(𝒒, 𝒓𝑡) ≡ 𝑉(𝒒) + ∑ [𝑣𝑔
𝑘(𝑞𝑘)𝑘 − 𝑣𝑔

𝑘(𝑟𝑡
𝑘)] ≤ 𝑉(𝒒𝑡) + ∑ [𝑣𝑔

𝑘(𝑟𝑡
𝑘)𝑘 − 𝑣𝑔

𝑘(𝑟𝑡
𝑘)] ≡ 𝑢(𝒒𝑡 , 𝒓𝑡). 

 

 If the combination of rationalizing regime preferences is such that there are no observations t for 

which 𝒒𝑡 is not on the boundary of the convex hull of 𝒒𝑡’s upper contour set for the candidate global 

preference ordering for 𝒓𝑡, assuming global loss aversion is without loss of generality, because the 

global ordering can then be replaced by a convexified ordering whose upper contour sets are the 

convex hulls of the original global ordering without changing any observation’s optimal bundle. 

With 𝒒 ∊  𝐺(𝑔′; 𝒓𝑡) with 𝑔′ ≠ 𝑔, loss aversion implies, cancelling terms for which good i’s gain-loss 

status with 𝒓𝑡 is the same for 𝑔 and 𝑔′: 

 

(A2)   ∑ [𝑣𝑔′
𝑘 (𝑞𝑘)𝑘 − 𝑣𝑔′

𝑘 (𝑟𝑡
𝑘)] ≤ ∑ [𝑣𝑔

𝑘(𝑞𝑘)𝑘 − 𝑣𝑔
𝑘(𝑟𝑡

𝑘)]. 

 

Combining (A1) and (A2) shows that defections to bundles in the budget set in other regimes is not 

beneficial either. ■ 

 

 Corollary A1’s final “no observations not on the boundary” condition rules out bunching of 

observations in regions of commodity space where the rationalizing regime preferences violate loss 

aversion, and is therefore vacuously satisfied for regime preferences that satisfy loss aversion. This 

restriction on bunching brings the analysis closer to tangible features of the data, and appears to be 

unusual in a nonparametric analysis. 
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Figure A2. Rationalizing data that violate GARP when the Afriat regime preferences 

violate loss aversion but satisfy Corollary A1’s conditions  

(solid lines for the loss map, dashed lines for the gain map) 

 

 In Figure A2 the entire dataset violates GARP, the Afriat regime preferences violate loss aversion, 

but the data satisfy Corollary A1’s final conditions, allowing a rationalization. Only reference point 

𝒓1 is shown and observation 1 is in the good-2 loss regime. Assume that 𝒓2 = [0, 0], so that 

observation 2’s budget set is entirely in the good-2 gain regime; and that 𝒓3 = [0, 𝑚], where m is 

large enough that observation 3’s budget set is entirely in the good-2 loss regime. The Afriat regime 

preferences yield a candidate for global preferences that make all three observations’ consumption 

bundles optimal: Observations 2’s and 3’s budget sets are entirely in their regimes (good-2 gain and 

good-2 loss, respectively), so their bundles’ optimality in their regimes suffices for global optimality. 

Observation 1’s bundle is optimal for its good-2 loss regime preferences and Corollary 1 ensures that 

its bundle’s optimality extends to its entire budget set. 
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ONLINE APPENDIX B. Proof that Figure 4’s example cannot satisfy Proposition 5’s 

condition (10) for a rationalization using the Afriat rationalizing regime utilities. 
 

 Recall that 𝐺(𝑔; 𝒓) ≡ {𝒒 ∊ regime 𝑔 for 𝒓)} and 𝐻({𝒒𝑡 , 𝒓𝑡}𝑡=1,…,𝑇; 𝑔) ≡ {𝑡 ∊ {1, … , 𝑇}│𝒒𝑡 ∊

𝐺(𝑔; 𝒓𝑡)}. In general, Proposition 5’s condition (11) is 

 

(11)  𝑢(𝒒, 𝒓𝑡) − V(𝒓𝑡) ≡ min𝜌∊𝐻({𝒒𝑡,𝒓𝑡}𝑡=1,…,𝑇;𝑔′){𝑈𝜌
𝑔′

+ λ𝜌
𝑔′

𝒑𝜌 ⋅ (𝒒 − 𝒒𝜌)} 

   −min𝜌∊𝐻({𝒒𝑡,𝒓𝑡}𝑡=1,…,𝑇;𝑔′){𝑈𝜌
𝑔′

+ 𝜆𝜌
𝑔′

𝒑𝜌 ⋅ (𝒓𝑡 − 𝒒𝜌)} 

   ≤ 𝑚𝑖𝑛𝜌∊𝐻({𝒒𝑡,𝒓𝑡}𝑡=1,…,𝑇;𝑔){𝑈𝜌
𝑔

+ 𝜆𝜌
𝑔

𝒑𝜌 ⋅ (𝒒𝑡 − 𝒒𝜌)} 

   −𝑚𝑖𝑛𝜌∊𝐻({𝒒𝑡,𝒓𝑡}𝑡=1,…,𝑇;𝑔){𝑈𝜌
𝑔

+ 𝜆𝜌
𝑔

𝒑𝜌 ⋅ (𝒓𝑡 − 𝒒𝜌)} ≡ 𝑢(𝒒𝑡, 𝒓𝑡) − 𝑉(𝒓𝑡). 

 
 To show that Figure 4’s example cannot satisfy (11), specialize it observation by observation, 

with 𝒓1 = (0, 𝑟21) and 𝒓2 = (0, 𝑟22), so 𝑟11 = 𝑟12 = 0 and for all such 𝒓1 and 𝒓2 all bundles are in 

the gain-loss regimes with gains for good 1. With one observation per regime, observation 1 in 𝑔 

with gain for good 1 and loss for good 2 and observation 2 in 𝑔′ with gain for goods 1 and 2, 

subscripts on terms like 𝜆1
𝑔

 are redundant, but we keep them for comparability with (11). With one 

observation per regime we can eliminate the min operators. (11) precluding advantageous defections 

from observation 1 in regime 𝑔 to some affordable 𝒒 in 𝑔′ becomes  

 

(B.1)  𝑢(𝒒, 𝒓1) − V(𝒓1) ≡ {𝑈2
𝑔′

+ λ2
𝑔′

𝒑2 ⋅ (𝒒 − 𝒒2)} − {𝑈2
𝑔′

+ 𝜆2
𝑔′

𝒑2 ⋅ (𝒓1 − 𝒒2)} 

≤ {𝑈1
𝑔

+ 𝜆1
𝑔

𝒑1 ⋅ (𝒒1 − 𝒒1)} − {𝑈1
𝑔

+ 𝜆1
𝑔

𝒑1 ⋅ (𝒓1 − 𝒒1)} ≡ 𝑢(𝒒1, 𝒓1) − 𝑉(𝒓1) for 𝒒 ∊ 𝐺(𝒓1; 𝑔′), 

That is, for 𝒒 with 𝑞2 ≥ 𝑟21. 

 

Simplifying, 

 

(B.2)  λ2
𝑔′

𝒑2 ⋅ (𝒒 − 𝒓1) ≤ 𝜆1
𝑔

𝒑1 ⋅ (𝒒1 − 𝒓1) for all 𝒒 ∊ 𝐺(𝒓1; 𝑔′) i.e. for all 𝒒 with 𝑞2 ≥ 𝑟21. 

Expanding the vector products, denoting goods as scalars indexed by subscripts, so that 𝒒 ≡

(𝑞1, … , 𝑞𝐾) and 𝒒𝒕 ≡ (𝑞1𝑡, … , 𝑞𝐾𝑡), with analogous notation for 𝒑, 𝒑𝒕, 𝒓, and 𝒓𝒕, and using 𝑟11 =

𝑟12 = 0 

 

(B.3) λ2
𝑔′

(𝑝12𝑞1 + 𝑝22𝑞2 − 𝑝22𝑟21) ≤ λ1
𝑔

(𝑝11𝑞11 + 𝑝21𝑞21 − 𝑝21𝑟21) for all 𝒒 with 𝑞2 ≥ 𝑟21. 

 

 For a rationalization (B.3) must hold for any 𝒒 with 𝑞2 ≥ 𝑟21 in observation 1’s budget set, or 

without loss of generality on its budget line 𝑝11𝑞1 + 𝑝21𝑞2 = constant. Along that budget line (B.3) 
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is hardest to satisfy when 𝑝12𝑞1 + 𝑝22𝑞2 is maximized. Given the qualitative relationship of Figure 

4’s example’s budget lines, that maximum occurs when 𝑞1 = 0 and 𝑞2 = (𝑝11𝑞11 + 𝑝21𝑞21)/𝑝21, 

which satisfies 𝑞2 ≥ 𝑟21. Further, λ1
𝑔

 and λ2
𝑔′

 are their (interior) observations’ marginal utilities of 

income. If utility at observation 1 is 𝑝11𝑞1 + 𝑝21𝑞2, a dollar spent on good 1 yields 1/𝑝11 units of 

good 1 and 
𝑝11

𝑝11
= 1 util. Ditto for a dollar spent on good 2 at observation 1’s prices, or on good 1 or 2 

at observation 2’s prices. So λ1
𝑔

= λ2
𝑔′

= 1. Plugging in λ1
𝑔

= λ2
𝑔′

= 1 and 𝑞1 = 0 and 𝑞2 =

(𝑝11𝑞11 + 𝑝21𝑞21)/𝑝21 reduces the infinity of inequalities in (B.3) to the inequality 

 

(B.4)   𝑝22(𝑝11𝑞11 + 𝑝21𝑞21)/𝑝21 − 𝑝22𝑟21 ≤ 𝑝11𝑞11 + 𝑝21𝑞21 − 𝑝21𝑟21  

 or  𝑝11𝑝22𝑞11 + 𝑝21𝑝22𝑞21 − 𝑝21𝑝22𝑟21 ≤ 𝑝11𝑝21𝑞11 + 𝑝21𝑝21𝑞21 − 𝑝21𝑝21𝑟21. 

 

 Given the qualitative relationship of the example’s budget lines, if you spend all your money on 

good 2, observation 1’s budget set yields more of good 2 than observation 2’s. That is, for good 2, 

 

(𝑝11𝑞11 + 𝑝21𝑞21)/𝑝21 > (𝑝12𝑞12 + 𝑝22𝑞22)/𝑝22 

 

Combining that inequality with the first line of (B.4) yields   

 

(B.5) 𝑝12𝑞12 + 𝑝22𝑞22 − 𝑝22𝑟21 < 𝑝22(𝑝11𝑞11 + 𝑝21𝑞21)/𝑝21 − 𝑝22𝑟21 ≤ 𝑝11𝑞11 + 𝑝21𝑞21 − 𝑝21𝑟21 

or    𝑝12𝑞12 + 𝑝22𝑞22 − 𝑝22𝑟21 < 𝑝11𝑞11 + 𝑝21𝑞21 − 𝑝21𝑟21. 

 

That is, the utility of defecting from observation 1 to the best defection in regime 𝑔′ (whose utility is 

constant along observation 2’s budget line), taking loss costs into account (with 𝑟11 = 0), is < 0.   

 Similarly, precluding advantageous defections from observation 2 in regime 𝑔′ to some affordable 

𝒒 in regime 𝑔, (11) becomes 

 

(B.6) 𝑢(𝒒, 𝒓2) − V(𝒓2) ≡ {𝑈1
𝑔

+ λ1
𝑔

𝒑1 ⋅ (𝒒 − 𝒒1)} − {𝑈1
𝑔

+ 𝜆1
𝑔

𝒑1 ⋅ (𝒓2 − 𝒒1)} 

≤ {𝑈2
𝑔′

+ 𝜆2
𝑔′

𝒑2 ⋅ (𝒒2 − 𝒒2)} − {𝑈2
𝑔′

+ 𝜆2
𝑔′

𝒑2 ⋅ (𝒓2 − 𝒒2)} ≡ 𝑢(𝒒2, 𝒓2) − 𝑉(𝒓2) for 𝒒 ∊ 𝐺(𝒓2; 𝑔), 

that is, for 𝑞2 ≤ 𝑟22. 

 

Simplifying, 

 

(B.7) λ1
𝑔

𝒑1 ⋅ (𝒒 − 𝒓2) ≤ 𝜆2
𝑔′

𝒑2 ⋅ (𝒒2 − 𝒓2) for 𝒒 ∊ 𝐺(𝒓2; 𝑔) i. e. for all 𝒒 with 𝑞2 ≤ 𝑟22. 

 

Expanding the vector products, with 𝑟11 = 𝑟12 = 0 
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(B.8) λ1
𝑔

(𝑝11𝑞1 + 𝑝21𝑞2 − 𝑝21𝑟22) ≤ λ2
𝑔′

(𝑝12𝑞12 + 𝑝22𝑞22 − 𝑝22𝑟22) for all 𝒒 with 𝑞2 ≤ 𝑟22. 

 

 For a rationalization (B.8) must hold for any 𝒒 with 𝑞2 ≤ 𝑟22 in observation 2’s budget set, or 

without loss of generality on its budget line 𝑝12𝑞1 + 𝑝22𝑞2 = constant. Along that budget line (B.8) 

is hardest to satisfy when 𝑝11𝑞1 + 𝑝21𝑞2 is maximized. Given the example’s budget lines, that 

maximum occurs when 𝑞1 = (𝑝12𝑞12 + 𝑝22𝑞22)/𝑝12 and 𝑞2 = 0, which satisfies 𝑞2 ≤ 𝑟22. Plugging 

in λ1
𝑔

= λ2
𝑔′

= 1 and 𝑞1 = (𝑝12𝑞12 + 𝑝22𝑞22)/𝑝12 and 𝑞2 = 0,  reduces the infinity of inequalities in 

(B.8) to the inequality 

 

(B.9)   𝑝11(𝑝12𝑞12 + 𝑝22𝑞22)/𝑝12 − 𝑝21𝑟22 ≤ 𝑝12𝑞12 + 𝑝22𝑞22 − 𝑝22𝑟22  

 or 𝑝11𝑝12𝑞12 + 𝑝11𝑝22𝑞22 − 𝑝12𝑝21𝑟22 ≤ 𝑝12𝑝12𝑞12 + 𝑝12𝑝22𝑞22 − 𝑝12𝑝22𝑟22. 

 

 Given the example’s budget lines, if you spend all your money on good 1, observation 1’s budget 

set yields less of good 1 than observation 2’s. That is, for good 1, 

 

(B.10)   (𝑝11𝑞11 + 𝑝21𝑞21)/𝑝11 < (𝑝12𝑞12 + 𝑝22𝑞22)/𝑝12. 

 

Combining that inequality with (B.9)  

 

(B.11)  𝑝11𝑞11 + 𝑝21𝑞21 − 𝑝21𝑟22 < 𝑝11(𝑝12𝑞12 + 𝑝22𝑞22)/𝑝12 − 𝑝21𝑟22 ≤ 𝑝12𝑞12 + 𝑝22𝑞22 − 𝑝22𝑟22 

 or   𝑝11𝑞11 + 𝑝21𝑞21 − 𝑝21𝑟22 < 𝑝12𝑞12 + 𝑝22𝑞22 − 𝑝22𝑟22. 

 

That is, the utility of defecting from observation 2 to the best defection in regime 𝑔 (whose utility is 

constant along observation 1’s budget line), taking loss costs into account (with 𝑟12 = 0), is < 0.   

 Combining the conditions for observations 1 and 2 yields necessary and sufficient conditions for a 

rationalization using the Afriat regime preferences  

 

(B.12)  𝑝12𝑞12 + 𝑝22𝑞22 − 𝑝22𝑟21 < 𝑝11𝑞11 + 𝑝21𝑞21 − 𝑝21𝑟21 

or    𝑝12𝑞12 + 𝑝22𝑞22 − 𝑝11𝑞11 − 𝑝21𝑞21 < (𝑝22 − 𝑝21)𝑟21 

 

and 

 

(B.13)   𝑝11𝑞11 + 𝑝21𝑞21 − 𝑝21𝑟22 < 𝑝12𝑞12 + 𝑝22𝑞22 − 𝑝22𝑟22  

or    (𝑝22 − 𝑝21)𝑟22 < 𝑝12𝑞12 + 𝑝22𝑞22 − 𝑝11𝑞11 − 𝑝21𝑞21 

 

Chaining the second lines yields a contradiction. ■  
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ONLINE APPENDIX C. Farber’s (2005, 2008) dataset 

Figure C.1: Hours and earnings choices, driver by driver 

Driver 1   Driver 2   Driver 3   Driver 4   Driver 5    Driver 6   Driver 7 

 

 

Driver 8   Driver 9   Driver 10   Driver 11   Driver 12    Driver 13   Driver 14 

 

 

Driver 15   Driver 16   Driver 17   Driver 18   Driver 19    Driver 20   Driver 21 
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ONLINE APPENDIX D. Models that relax additive separability across goods 

Figure D.1: Pass rates by reference-point model with reference-dependence in hours only, relaxing 

additive separability across goods  

 

Notes: Horizontal axis: pass rate [0,1]. Vertical axis: driver identifier{1,..21}. 

Horizontal lines: extent of the bounds on pass rate for each reference-point model; 

where the line is a point the upper and lower bounds coincide and the pass rate is 

point-identified. Vertical line: the pass rate for the neoclassical model.  
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Figure D.2: Pass rates by reference-point model with reference-dependence in earnings only, 

relaxing additive separability across goods 

 

Notes: Horizontal axis: pass rate [0,1]. Vertical axis: driver identifier{1,..21}. 

Horizontal lines: extent of the bounds on pass rate for each reference point model; 

where the line is a point the upper and lower bounds coincide and the pass rate is 

point-identified. Vertical line: the pass rate for the neoclassical model.   
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Figure D.3: Pass rates by reference-point model with reference-dependence in both hours and 

earnings, relaxing additive separability across goods 

 

Notes: Horizontal axis: pass rate [0,1]. Vertical axis: driver identifier{1,..21}. 

Horizontal lines: extent of the bounds on pass rate for each reference point model; 

where the line is a point the upper and lower bounds coincide and the pass rate is 

point-identified. Vertical line: the pass rate for the neoclassical model.  



 

 

12 

 

Figure D.4: Selten measures by reference-point model with reference-dependence in hours only, 

relaxing additive separability across goods 

 

Notes: Horizontal axis: Selten Index [-1,1]. Vertical axis: driver identifier{1,..21}. 

Horizontal lines: extent of the bounds on the Selten index for each reference point 

model; where the line is a point the upper and lower bounds coincide and the Selten 

Index is point-identified. Vertical line: the Selten Index for the neoclassical model.  
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Figure D.5: Selten measures by reference-point model with reference-dependence in earnings only, 

relaxing additive separability across goods 

 

Notes: Horizontal axis: Selten Index [-1,1]. Vertical axis: driver identifier{1,..21}. 

Horizontal lines: extent of the bounds on the Selten index for each reference point 

model; where the line is a point the upper and lower bounds coincide and the Selten 

Index is point-identified. Vertical line: the Selten Index for the neoclassical model.  
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Figure D.6: Selten measures by reference-point model with reference-dependence in both hours and 

earnings, relaxing additive separability across goods 

 

Notes: Horizontal axis: Selten Index [-1,1]. Vertical axis: driver identifier{1,..21}. 

Horizontal lines: extent of the bounds on the Selten index for each reference point 

model; where the line is a point the upper and lower bounds coincide and the Selten 

Index is point-identified. Vertical line: the Selten Index for the neoclassical model. 
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ONLINE APPENDX E. Models that impose additive separability across goods 

Figure E.1: Pass rates by reference-point model with reference-dependence in hours only, imposing 

additive separability across goods 

 

Notes: Horizontal axis: pass rate [0,1]. Vertical axis: driver identifier{1,..21}. 

Horizontal lines: extent of the bounds on pass rate for each reference point model; 

where the line is a point the upper and lower bounds coincide and the pass rate is 

point-identified. Vertical line: the pass rate for the neoclassical model. 
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Figure E.2: Pass rates by reference-point model with reference-dependence in earnings only, 

imposing additive separability across goods 

 

Notes: Horizontal axis: pass rate [0,1]. Vertical axis: driver identifier{1,..21}. 

Horizontal lines: extent of the bounds on pass rate for each reference point model; 

where the line is a point the upper and lower bounds coincide and the pass rate is 

point-identified. Vertical line: the pass rate for the neoclassical model.  
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Figure E.3: Pass rates by reference-point model with reference-dependence in both hours and 

earnings, imposing additive separability across goods 

 

Notes: Horizontal axis: pass rate [0,1]. Vertical axis: driver identifier{1,..21}. 

Horizontal lines: extent of the bounds on pass rate for each reference point model; 

where the line is a point the upper and lower bounds coincide and the pass rate is 

point-identified. Vertical line: the pass rate for the neoclassical model.  
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Figure E.4: Selten measures by reference-point model with reference-dependence in hours only, 

imposing additive separability across goods 

 

Notes: Horizontal axis: Selten Index [-1,1]. Vertical axis: driver identifier{1,..21}. 

Horizontal lines: extent of the bounds on the Selten index for each reference point 

model; where the line is a point the upper and lower bounds coincide and the Selten 

Index is point-identified. Vertical line: the Selten Index for the neoclassical model.  
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Figure E.5: Selten measures by reference-point model with reference-dependence in earnings only, 

imposing additive separability across goods 

 

Notes: Horizontal axis: Selten Index [-1,1]. Vertical axis: driver identifier{1,..21}. 

Horizontal lines: extent of the bounds on the Selten index for each reference point 

model; where the line is a point the upper and lower bounds coincide and the Selten 

Index is point-identified. Vertical line: the Selten Index for the neoclassical model.  
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Figure E.6: Selten measures by reference-point model with reference-dependence in both hours and 

earnings, imposing additive separability across goods 

 

Notes: Horizontal axis: Selten Index [-1,1]. Vertical axis: driver identifier{1,..21}. 

Horizontal lines: extent of the bounds on the Selten index for each reference point 

model; where the line is a point the upper and lower bounds coincide and the Selten 

Index is point-identified. Vertical line: the Selten Index for the neoclassical model.  

 


