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1. Introduction 

Common-value auctions, in which the value of the object being sold is unknown but the 

same to all bidders ex post and each bidder receives a private signal that is correlated with the 

value, have been studied intensively, both theoretically and empirically, since Milgrom and 

Weber (1982; "MW"); see the surveys by McAfee and McMillan (1987, Section X), Milgrom 

(1985, Section 4; 1987, Section 4), Wilson (1992, Section 4.2), and Klemperer (2000, Chapter 1). 

A central problem in this area is explaining the "winner's curse," the frequent tendency for 

bidders in common-value auctions to overbid, relative to equilibrium.2 The curse, as we shall call 

it, was first noted in oil-lease auctions by petroleum engineers (Capen, Clapp, and Campbell 

(1971)) and studied theoretically by Wilson (1969). It has since been detected in many analyses of 

field data (Hendricks, Porter, and Boudreau (1987); Hendricks and Porter (1988); and the papers 

surveyed in McAfee and McMillan (1987, Section XII), Thaler (1988), Wilson (1992, Section 

9.2), and Laffont (1997, Section 3)). The curse has also been observed in laboratory experiments 

with precise control of the information conditions on which it depends (Bazerman and Samuelson 

(1983); Kagel and Levin (1986; "KL"); Kagel, Harstad, and Levin (1987); Dyer, Kagel, and 

Levin (1989); Lind and Plott (1991; "LP"); and the papers surveyed in Kagel (1995, Section II) 

and KL (2002)). Finally, curse-like phenomena have been observed in non-auction settings that 

share the informational features of common-value auctions: bilateral negotiations in the Acquiring 

a Company game in Samuelson and Bazerman (1985), Holt and Sherman (1994; "HS"), Tor and 

Bazerman (2003), and Charness and Levin (2005); the Monty Hall game in Friedman (1998), Tor 

and Bazerman (2003), and Palacios-Huerta (2003); zero-sum betting with asymmetric information 

in Sovik (2000) and Sonsino, Erev, and Gilat (2002); and voting and jury decisions in Feddersen 

and Pesendorfer (1996, 1997, 1998). There is also an experimental literature on independent-

private-value auctions, which documents a widespread (though not universal) tendency for 

subjects to bid higher than in the risk-neutral Bayesian equilibrium—though not usually to the 

point of making losses, on average, as in common-value auctions; see Cox, Smith, and Walker 

(1983, 1988); Goeree, Holt, and Palfrey (2002; "GHP"); and the references cited there. 

The curse is often attributed informally to bidders' failure to adjust their value estimates for 

the information revealed by winning. Such adjustments are illustrated by the symmetric Bayesian 

equilibrium of a first- or second-price auction with symmetric bidders, where bidders adjust their 
                                                 
2Some researchers use a more stringent definition: that the winner bids more than the expected value conditional on 
winning. Our weaker definition corresponds more closely to the deviations from equilibrium that are our main focus. 
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expected values for the fact that the winner's private signal must have been more favorable than 

all others' signals, and so overestimates the value based on all available information.3 But despite 

the empirical importance of overbidding in independent-private-value auctions and curse-like 

phenomena in common-value auctions, there have been few attempts to model them formally. 

KL (1986) and HS (1994) formalize the intuition behind the curse in models in which 

"naïve" bidders do not adjust their value estimates for the information revealed by winning, but 

otherwise follow equilibrium logic. Eyster and Rabin's (2002, 2005; "ER") notion of "cursed 

equilibrium" generalizes KL’s and HS’s models to allow intermediate levels of value adjustment, 

ranging from standard equilibrium with full adjustment to "fully-cursed" equilibrium with no 

adjustment. ER also generalize KL’s and HS’s models from auctions and bilateral exchange to 

other kinds of incomplete-information games.4 All three models allow players to deviate from 

equilibrium only to the extent that they do not draw correct inferences from the outcome. Thus 

their predictions coincide with equilibrium in games in which such inferences are not relevant, 

and they do not help to explain non-equilibrium behavior in independent-private-value auctions. 

Other analyses, also assuming equilibrium, seek to explain overbidding in independent-

private-value auctions via various deviations from risk-neutral expected-monetary-payoff 

maximization: risk aversion in Cox, Smith, and Walker (1983, 1988) and HS (2000); the "joy of 

winning" in Cox, Smith, and Walker (1992) and HS (1994); and both of these plus nonlinear 

probability weighting, using McKelvey and Palfrey's (1995) notion of quantal response 

equilibrium ("QRE"), in GHP (2002).5

                                                 
3A bidder's bid should be chosen as if it were certain to win because it affects the bidder's payoff only when it wins.  
4In Samuelson and Bazerman's (1985) Acquiring a Company experiments, both less- and more-informed subjects 
tend to choose as if their (more- or less-informed) partner's information was the same as their own. In Acquiring a 
Company, cursed equilibrium would assume this for a less- but not a more-informed player. It is unclear how to 
extend this interpretation of Samuelson and Bazerman's results to auctions in which each player has some private 
information, so that no one is unambiguously less- or more-informed. Neither of the obvious choices—that a player 
ignores his own private information, or that he assumes all others share it—seems sensible. In related work, Esponda 
(2005) proposes a model in the spirit of self-confirming equilibrium (Fudenberg and Levine (1993)) to explain 
systematic deviations from equilibrium in games like Acquiring a Company. Jehiel and Koessler (2005) propose a 
general model of behavior in incomplete-information games in which players mentally bundle others' private-
information types into analogy classes, which in a leading case reduces to fully cursed equilibrium. Like ER's notion, 
Esponda's and Jehiel and Koessler's are steady-state concepts meant to describe the outcome of a learning process. 
5QRE is a generalization of equilibrium that allows players' choices to be noisy, with the probability of each choice 
increasing in its expected payoff, given the distribution of others' decisions; a QRE is thus a fixed point in the space 
of players' choice distributions. To our knowledge QRE has not been used to analyze common-value auctions. Risk 
aversion has been applied mainly to explain overbidding in independent-private-value auctions, with the exception of 
HS (2000). As LP (1991) note, common-value auctions with risk aversion are not well understood theoretically. 
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These explanations all assume the perfect coordination of beliefs about others' strategies that 

is characteristic of equilibrium analysis. Such coordination is plausible when bidders have had 

ample opportunity to learn from experience with analogous auctions.6 But some auctions that 

have been studied using field data lack enough clear precedents to make equilibrium a plausible 

hypothesis for initial responses; and subjects may learn slowly in auction experiments, especially 

with common values (LP (1991); Ball, Bazerman, and Carroll (1991); Garvin and Kagel (1994); 

Kagel and Richard (2001); and Palacios-Huerta (2003)). The justification for equilibrium then 

depends on strategic thinking rather than learning, but such thinking may not follow the fixed-

point logic of equilibrium. It may then be just as plausible to relax the assumption of equilibrium 

as to relax correct value adjustment or risk-neutral expected-money-payoff maximization.7  

Progress via relaxing equilibrium requires a structural model that accurately describes initial 

responses to games.8 In this paper we reconsider the winner's curse in common-value auctions 

and overbidding in independent-private-value auctions using non-equilibrium models of initial 

responses based on "level-k" thinking, introduced by Stahl and Wilson (1994, 1995) and Nagel 

(1995) and further developed and applied by Ho, Camerer, and Weigelt (1998); Costa-Gomes, 

Crawford, and Broseta (2001); Bosch-Domènech et al. (2002); Crawford (2003); Camerer, Ho, 

and Chong (2004; "CHC"); Costa-Gomes and Crawford (2006); and Crawford and Iriberri (2006). 

The level-k model has strong experimental support, which should allay the concern that once one 

                                                 
6Such experience might justify fully cursed equilibrium, for instance, by teaching bidders the tradeoff between the 
cost of higher bids and their increased probability of winning without also teaching them to avoid the curse. In the 
field bidders seldom observe others' values, which impedes learning about the curse. In most of the relevant 
experiments, subjects' bids and signals were made public after each round, but even experienced subjects may focus 
on the relationship between the winner's signal and bid and the realized value of the object, without looking for 
relationships like the curse. It seems much harder to justify less than fully-cursed equilibrium, because once one 
realizes there may be a relationship to look for, there is no obvious reason to stop at intermediate levels of cursedness. 
7Compare Fudenberg (2006): "…the fact that the amount of 'cursedness' typically declines as subjects become more 
experienced suggests that the curse, while real, is not an equilibrium phenomenon." It should eventually be possible 
to adapt the insights into cognition from analyses of initial responses to yield a deeper understanding of learning. 
Combining the two should then yield a clearer view of behavior in dynamic settings. Interesting evidence on learning 
in auctions is reported in Garvin and Kagel (1994), Kagel and Richard (2001), Neugebauer and Selten (2006), and 
Filiz and Ozbay (2006). Neugebauer and Selten's results for initial responses of subjects playing against random 
computer-simulated bidders include more underbidding than overbidding, and so suggest that some overbidding is a 
learned response, highly dependent on the feedback about the highest bid among other bidders. 
8Maintaining common knowledge of rationality but otherwise leaving beliefs unrestricted yields notions like 
rationalizability, which implies some restrictions on behavior in first-price auctions or common-value second-price 
auctions, and duplicates equilibrium in independent-private-value second-price auctions. k-level rationalizability—
consistency with rationality and mutual certainty of (k-1)-level rationalizability—implies bounds on behavior in first-
price auctions characterized in Battigalli and Siniscalchi (2003) and restricts behavior in common-value second-price 
auctions; it also duplicates equilibrium in independent-private-value second-price auctions. By contrast, our approach 
dispenses with common knowledge of rationality (and of beliefs), but normally yields unique predictions. 
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departs from equilibrium, "anything is possible." We focus on symmetric first- and second-price 

auctions, leaving their progressive Dutch and English counterparts for future work. 

A level-k analysis has the potential to give a unified explanation of overbidding in 

independent-private-value and common-value auctions as well as curse-like phenomena in other 

settings. It also promises to establish a link between empirical auction studies and non-auction 

experiments on strategic thinking, and thereby to bring a large body of auction evidence to bear 

on the issue of how best to model initial responses to games. Finally, it allows us to explore the 

issues that arise in extending level-k models to games of incomplete information, and the 

robustness of standard auction theory's conclusions to failures of the equilibrium assumption.  

A level-k model allows behavior to be heterogeneous, but it assumes that each player's 

behavior is drawn from a common distribution over a particular hierarchy of decision rules or 

types. Type Lk for k > 0 anchors its beliefs in a nonstrategic L0 type and adjusts them via thought-

experiments with iterated best responses: L1 best responds to L0, L2 to L1, etc. L1 and L2 have 

accurate models of the game and are rational; they depart from equilibrium only in basing their 

beliefs on simplified models of other players.9 This yields a workable model of others' decisions 

while avoiding much of the cognitive complexity of equilibrium analysis.10 In applications the 

population type distribution is usually translated from previous work or estimated from the 

current dataset. The estimated distribution tends to be stable across games, with most of the 

weight on L1 and L2. Thus the anchoring L0 type exists mainly in the minds of higher types. 

                                                 
9Charness and Levin (2005) conduct an interesting experimental test of "simplified models of others" explanations of 
the curse like the one proposed here, in an Acquiring a Company design with a "robot" treatment in which a single 
decision-maker faces an updating problem that is mathematically the same as the one that underlies the curse. They 
find that the curse persists in their treatment, and conclude that their results favor explanations based on limited 
cognition in Bayesian updating or in understanding the problem rather than simplified models of others. Their results 
do suggest that the curse is due to some form of limited cognition rather than strategic uncertainty; but their analysis 
leaves open the possibility that something like a level-k model can describe initial responses to environments, 
interactive or not, that pose cognitive difficulties isomorphic to those of predicting other players' strategic decisions. 
Dorsey and Razzolini (2003) report experiments in which subjects made decisions in independent-private-value first-
price auctions and lotteries that duplicate bidders' incentives in equilibrium. Their lotteries yield some overbidding, 
though less than their auctions, which suggests that overbidding is due in part to limited cognition. 
10In Selten's (1998) words: "Basic concepts in game theory are often circular in the sense that they are based on 
definitions by implicit properties…. Boundedly…rational strategic reasoning seems to avoid circular concepts. It 
directly results in a procedure by which a problem solution is found. Each step of the procedure is simple, even if 
many case distinctions by simple criteria may have to be made." Costa-Gomes and Crawford (2006) summarize the 
evidence for the level-k model and give support for our assumptions that L2 best responds to an L1 without decision 
errors, unlike in Stahl and Wilson (1994, 1995); and to L1 alone rather than a mixture of L1 and L0, unlike Worldly in 
Stahl and Wilson (1995) and L2 in CHC (2004). We confine attention to L0, L1, and L2 because they well illustrate 
the model's potential to explain auction behavior and the evidence suggests that higher types are comparatively rare. 
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Even so, the specification of L0 is the key to the model's explanatory power and the main 

issue that arises in extending the level-k model from complete- to incomplete-information games. 

We compare two specifications, both nonstrategic as is usual in level-k analyses. A random L0 

bids uniformly randomly over the feasible range, as in the complete-information level-k analyses 

of Stahl and Wilson (1994, 1995); Costa-Gomes, Crawford, and Broseta (2001); CHC (2004); and 

Costa-Gomes and Crawford (2006).11 A truthful L0 bids the value that its own private information 

suggests, taken by itself. Although truthfulness has no natural meaning in most settings for which 

level-k analyses have been conducted, in auctions it is both meaningful and plausible, given that 

L0 is only the starting point for a strategic analysis.12 We call the L1 and L2 types based on a 

random L0, random L1 and L2 types, with analogous terms for the truthful L1 and L2 types based 

on a truthful L0. We stress that these L1 and L2 types need not be random or truthful themselves. 

Although a level-k model's predictions coincide with equilibrium in many simple games, in 

games as complex as auctions they may deviate systematically from equilibrium. The deviations 

are determined by the same factors that determine an equilibrium bidder's bidding strategy—value 

adjustment for the information revealed by winning and the bidding trade-off between a higher 

bid's cost and its increased probability of winning—but their influences are altered by types' non-

equilibrium beliefs. The pattern of types' deviations across first- and second-price common- and 

independent-private-value auctions determines whether a level-k model with a sensible type 

distribution can explain the systematic deviations from equilibrium such auctions often evoke. 

                                                 
11One can imagine more refined specifications of random L0, e.g. with bids uniformly distributed below its value 
instead of over the entire range of bids that are sensible for some value. We avoid such refinements because L0 is 
only the starting point for a player's analysis of others' bids, and in a first attempt to define a level-k model for 
auctions it seems best to use a specification in the spirit of the completely naive L0s in most of the previous level-k 
literature, reserving strategic thinking for higher-level types. (Crawford and Iriberri (2006) discuss this issue in 
detail.) Ultimately the best specification is an empirical question, and ours allows a simple, coherent account of the 
data. In the only other incomplete-information level-k model of which we are aware, CHC (2004, Section VI.A) use 
their closely related "cognitive hierarchy" model, with a random L0, to explain curse-like phenomena in Sonsino, 
Erev, and Gilat's (2002) and Sovik's (2000) experimental results on zero-sum betting with asymmetric information. 
12Our truthful L0 is equivalent to LP's (1991) "naive model" and our random L1 is close to their "private-value" 
model. Our truthful L0 is also reminiscent of the truthful sender type W0 in Crawford's (2003) level-k analysis of 
strategic deception via cheap talk, which also appears frequently in the informal literature on deception and receives 
some support in communication experiments (Crawford (1998), Cai and Wang (2006), and the references cited 
there). Models that adapt L0 to the setting in other ways include Ho, Camerer, and Weigelt's (1998) analysis of 
guessing games, where L0 is random with an estimated central tendency; and Crawford and Iriberri's (2006) analysis 
of hide-and-seek games, where L0 responds to the non-neutral framing of locations. By contrast, the level-k model's 
other main assumption, the adjustment of higher-level types' beliefs via iterated best responses, appears to allow a 
satisfactory account of initial responses to many different kinds of games. 
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Our analysis yields two main conclusions. First, many insights of equilibrium auction theory 

extend, suitably interpreted, to level-k auction theory.13 Second, an empirically plausible level-k 

model can explain the winner’s curse in common-value auctions and overbidding in independent-

private-value auctions without the uniform value distributions used in most experiments.14

In common-value auctions, because random L0's bids are independent of its signal, random 

L1 ignores the information revealed by winning, just as ER's fully-cursed equilibrium bidders do. 

In a second-price auction the bidding trade-off is neutral and the lack of value adjustment makes 

random L1's bids coincide with fully-cursed equilibrium bids, so that it normally overbids relative 

to equilibrium. In a first-price auction random L1 differs from a fully-cursed-equilibrium bidder 

in using its non-equilibrium beliefs to evaluate a non-neutral bidding trade-off; this may make it 

bid higher or lower than fully-cursed equilibrium or coincide with it. In independent-private-value 

auctions with uniform values, random L1 coincides with equilibrium. Without uniformity, in 

general, random L1 may underbid, overbid, or coincide with equilibrium.  

In a first- or second-price auction, random L1's bidding strategy is increasing in its signal. 

Thus in common-value auctions random L2 adjusts its value estimate for the information revealed 

by winning. In a second-price auction random L2 bids the expected value given its own signal, 

conditional on just winning. In this it follows the same logic as the equilibrium bidding strategy, 

but its beliefs do not anticipate winning if and only if it has the highest signal, which leads to a 

different adjustment. Value adjustment tends to make bidders' bids strategic substitutes, because 

winning against higher others' bids means others' signals are (stochastically) lower, which lowers 

the expected value conditional on winning. In a second-price auction only value adjustment is 

relevant, so to the extent that random L1 overbids relative to equilibrium, random L2 underbids. 

                                                 
13To the extent that equilibrium insights do not generalize, it is mainly because level-k types, by best responding to 
level-(k-1) types, break the symmetry of a standard equilibrium analysis, which creates difficulties like those in 
equilibrium analyses of asymmetric auctions (McAfee and McMillan (1987, Section VII), Maskin and Riley (2000)). 
14Gneezy (2005) reports experiments in which subjects play stylized common-value first- and second-price auctions 
with complete information. He finds that equilibrium predicts poorly and a level-k model like CHC's fits better than 
equilibrium in the second-price but not the first-price auction. (His first-price auctions yield results like those for the 
Traveler's Dilemma, whose structure is similar (see for example Goeree and Holt (2001)).) Gneezy's complete-
information auctions and the Traveler's Dilemma raise significantly different behavioral issues than the auctions with 
diffuse private information considered here. Compte (2004) proposes an explanation of overbidding in both 
independent-private-value and common-value second-price auctions in which the key assumption is that bidders are 
overconfident in the accuracy of their own signals. In his model the highest bidder is likely to be one whose error 
made him overoptimistic about his signal, and so likely to overbid even in an independent-private-value auction. 
While such errors may make the model more realistic in applications, subjects in the experiments we study are told 
their signals with no error and no ambiguity of interpretation, so Compte's explanation does not apply here. 
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In a first-price auction the bidding trade-off may either reinforce or work against this tendency to 

underbid. In a first- or second-price independent-private-value auction, value adjustment is 

irrelevant. With uniform values the bidding trade-off is neutral, and random L2 coincides with 

equilibrium even in first-price auctions. With non-uniform values, random L2 coincides with 

equilibrium in second-price auctions, but it may underbid or overbid in first-price auctions.  

In first- or second-price common-value auctions, truthful L1 tends to underbid relative to 

equilibrium or coincide with it. Truthful L2 tends to overbid or coincide with equilibrium. With 

uniform, independent private values, truthful L1 and L2 bids coincide with equilibrium. With non-

uniform values, truthful L1 and L2 may underbid, overbid, or coincide with equilibrium.   

These bidding patterns allow a level-k model with an empirically plausible type distribution, 

in which random L1 predominates, with lower frequencies of random L2, truthful L1 and L2, and 

an Equilibrium type that makes its equilibrium bid, to fit experimental data for common-value 

auctions better than equilibrium or cursed equilibrium; and to fit GHP's data for non-uniform 

independent-private-value auctions better than equilibrium or QRE. A level-k model has further 

advantages over cursed equilibrium in that it uses more general strategic principles to explain 

subjects' bidding behavior, with behavioral parameters linked to other bodies of evidence; and it 

may explain non-equilibrium bidding in some other independent-private-value auctions. 

The rest of the paper is organized as follows. Section 2 introduces MW's (1982) general 

model with interdependent values and affiliated signals and review the theories of equilibrium and 

cursed-equilibrium bidding. Section 3 discusses the specification of a level-k model for auctions 

and derive its general implications for random and truthful types. Section 4 compares equilibrium, 

cursed equilibrium, and the level-k model's implications in the leading examples that have been 

most often studied in auction experiments. Section 4 starts with the two common-value examples 

that were the basis of the auction experiments ER (2002, 2005) considered, the first-price auctions 

of KL (1986) and Garvin and Kagel (1994) and the second-price auctions of Avery and Kagel 

(1997; "AK"). It continues with second-price auctions in KL's example (for which ER (2002) but 

not ER (2005) discuss KL's results). Finally, since independent-private-value auctions are 

especially useful for separating cursed equilibrium from level-k decision rules, Section 4 analyzes 

GHP's (2002) design with discrete, slightly non-uniform values, in which level-k decision rules 

are separated, although weakly, from equilibrium. Section 5 compares the models 
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econometrically in these four environments, using data on the initial responses of inexperienced 

subjects, which allow the cleanest tests of models of initial responses. Section 6 is the conclusion. 

2. Equilibrium and Cursed Equilibrium 

In this section we review the theories of equilibrium and cursed-equilibrium bidding in 

first- and second-price auctions. We use MW's (1982, Section 3) general model with 

interdependent values and affiliated signals, which includes independent private values, pure 

common values, and intermediate cases in which bidders observe affiliated private signals that are 

informative about their interdependent values. Although ER's (2005) cursed equilibrium includes 

equilibrium as a special case, we begin with equilibrium and generalize to cursed equilibrium. 

Here and below, we assume risk-neutral, symmetric bidders and focus on symmetric equilibria. 

2a. Milgrom and Weber's general model with interdependent values and affiliated signals  

 Milgrom and Weber's general model with interdependent values and affiliated signals has 

N bidders, indexed i = 1,…,N, bidding for a single, indivisible object. Bidder i observes a private 

signal Xi that is informative about his value of the object, with ),...,,( 21 NXXXX = . The vector 

includes additional random variables that may be informative about the value 

of the object. In general, bidder i's value is 

),...,,( 21 MSSSS =

),( XSuV ii = , and the variables in S and X are 

affiliated (positively associated) as defined in MW (1982, Assumption 5 and Appendix). This 

general model includes three leading special cases that are important in our analysis: the pure 

independent-private-value model, in which M = 0 and )( iii XuV = ; the pure common-value model 

(used in KL (1986) and LP (1991)), in which M = 1 and )(SuV ii = ; and an alternative common-

value model (used in AK (1997)), in which . ∑
=

==
N

n
nii XXuV

1
)(

Because bidders are risk-neutral, if bidder i wins the auction and pays price p for the 

object his payoff is . For each i, pVi − Y , the highest signal among bidders other than i, has 

distribution function and density function, conditional on the realization, x, of Xi,  and 

; in cases where the signals are independent, we suppress the conditioning and 

write and . It is also useful to define two expected value functions, which as functions 

are the same for all i: the expected value conditional on winning

)|( xyFY

)|( xyfY

)( yFY )(yfY

[ ]yYxXVEyxv ii ==≡ ,|),( , 

and the unconditional expected value [ ]xXVExr ii == |)( . 
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2b. Equilibrium in first- and second-price auctions 

Our equilibrium analysis closely follows MW's analysis of their general affiliated-signals 

and interdependent-values model; readers who are familiar with their analysis can skip ahead to 

Section 2.c's review of cursed equilibrium. 

In equilibrium, bidders correctly predict and best respond to the distribution of other 

bidders' bids, taking into account the information to be revealed by winning, because in a 

symmetric equilibrium, the winner's signal must be more favorable than others' signals. In this 

subsection we assume other bidders use their equilibrium bidding strategies, in a first-price 

or in a second-price auction, which are both increasing, with inverses and . 

)(* xa

)(* xb )(1
* aa− )(1

* bb−

In a first-price auction, bidder i's optimal bidding strategy solves (for each x) 

(1)  ( )[ ] ( )∫
−

−==− <

)(

})({

1
*

*
)|(),(max|1max

aa

x
YaiaYaia dyxyfayxvxXaVE , 

where 1{·} is the indicator function and x  is the infimum of the support of Y. Taking the partial 

derivative with respect to a yields a first-order differential equation that determines a as a 

function a(x) of x, which characterizes the first-price equilibrium bidding strategy:15

(2)    ( )
)|(
)|()(),()('

xxF
xxfxaxxvxa

Y

Y−= . 

Solving (2) for the equilibrium bidding strategy and using the boundary condition )(* xa

),()(* xxvxa = to determine the constant of integration yields a general expression for the first-

price equilibrium bidding strategy (MW (1982, p. 1107)): 

(3)      .)),((
)|(
)|(exp),()(* ∫ ∫ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−=

x

x

x

y Y

Y yyvddt
ttF
ttfxxvxa  

)(* xa reflects both the value adjustment for the information revealed by winning, via , and 

the bidding trade-off, via the range of integration. The logic of value adjustment is that the bidder 

should bid according to the expected value given his own signal, conditional on just winning, 

which in equilibrium happens when his signal just exceeds the highest of the others' signals. 

),( xxv

                                                 
15MW (1982, p. 1107-1108) show that the objective function in (1) is quasiconcave, so that the first-order conditions 
characterize the equilibrium strategies. MW's quasiconcavity argument breaks down for some of the optimization 
problems considered below, and level-k types' non-equilibrium beliefs can in general lead to boundary optima. In 
Section 4's examples the first-order conditions characterize the optimum except for the random L2 and truthful L1 
types in AK's example, in which the objective function is linear and so either the upper or lower bound is optimal. 
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With independent private values, xxxv =),( and the functions  and  no 

longer depend on x, so the interior integral on the right-hand side of (3) reduces to 

)|( xyfY )|( xyFY

)(
)(

xF
yF

Y

Y  and the 

first-price equilibrium bidding strategy becomes: 

(4)     ].|[
)(
)()(* XYYEdy

xF
yFxxa

x

x Y

Y <≡−= ∫  

In a second-price auction, bidder i's optimal bidding strategy solves (for each x): 

(5) ( )[ ] ( ) .)|(),(),(max|1)(max
)(

})({*

1
*

* ∫
−

−=− <

bb

x
YbibYbib dyxyfyyvyxvXYbVE  

Because is increasing in x,),( yxv 0),(),( >− yyvyxv for all xy < and  for all 0),(),( <− yyvyxv

xy > . Thus the second-price equilibrium bidding strategy (MW (1982, pp. 1100-1101)) is: 

(6)     ),()(* xxvxb = . 

 With independent private values, (6) becomes:  

(7)      xxb =)(* , 

and the equilibrium is a weakly dominant strategy in this case. In a second-price auction a 

bidder's bid determines only when he wins, not what he pays, so the bidding trade-off is neutral 

and truthful bidding given correct value adjustment ensures that he wins if and only if it appears 

profitable, given his information. Comparing (3) to (4) and (6) to (7), the only differences 

between the common- and independent-private-value equilibrium bidding strategies are value 

adjustment and the affiliation of signals . The common-value equilibrium in (6) is 

truthful like the independent-private-value equilibrium in (7), but the common-value equilibrium 

in (6) is not a weakly dominant strategy because optimal value adjustment depends on others' 

bidding strategies, as Section 3's level-k analysis shows more conc

)(* xb

)|( xyfY

retely. 

2c. Cursed equilibrium in first- and second-price auctions 

Our cursed-equilibrium analysis follows ER's (2002, 2005) analysis; readers who are 

already familiar with it can skip ahead to Section 3's discussion of the level-k model. 

In cursed equilibrium, as in equilibrium, bidders correctly predict and best respond to the 

distribution of others' bids. The only difference is that in cursed equilibrium bidders do not 

correctly perceive how others' bids depend on their signals. Instead they believe that with 

probability χ, ER's (2005) level of "cursedness," each other bidder bids the average of others' bids 
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over all signals rather than the bid his strategy specifies for his own signal. The parameter χ 

ranges from 0 to 1, and cursed equilibrium for a given χ is called "χ-cursed" equilibrium. χ = 0 

yields standard equilibrium and χ = 1 yields "fully-cursed" equilibrium, in which bidders assume 

there is no relation between others' bids and signals, so that each takes the expected value of the 

object conditional on his own signal, ignoring the information revealed by winning.16  

ER (2005, proof of Proposition 1, Proposition 5) simplify their analysis by showing that χ–

cursed equilibrium is the same as equilibrium in a hypothetical "χ-virtual game," in which players 

believe that with probability χ others' bids are type-independent, in which case they learn nothing 

about the value of the object from winning. In the χ-virtual game, bidder i's expected payoff from 

winning and paying price p when the value of the object is is: ),( XSui

(8)  )(),()1(]|[],|[)1( xrxxvxXVExYxXVE iiii χχχχ +−==+==− . 

The χ-cursed-equilibrium bidding strategy can then be obtained from the χ-virtual game in exactly 

the same way that the equilibrium bidding strategy was obtained from the original game. 

With independent private values, xxrxxv == )(),( , the χ-virtual game reduces to the 

original game, and cursed equilibrium coincides with equilibrium. But with common values, 

v(x,x) differs from r(x), and cursed equilibrium differs from equilibrium. In this subsection we 

assume that other bidders use their χ-cursed-equilibrium bidding strategy, in a first-price or 

in a second-price auction, which are both increasing, with inverses and . 

)(xaχ

)(xbχ )(1 aa−
χ )(1 bb−

χ

In a first-price auction bidder i's optimal bidding strategy solves (for each x): 

(9)   ( )∫
−

−+−
)(1

)|()(),()1(max
aa

x
Ya dyxyfaxryxv

χ

χχ . 

Just as (1) leads to (3), taking the partial derivative yields a differential equation whose solution 

determines the first-price χ-cursed-equilibrium bidding strategy:  

(10) [ ] [ ]∫ ∫ +−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−+−=

x

x

x

y Y

Y yryyvddt
ttF
ttfxrxxvxa )(),()1(
)|(
)|(exp)(),()1()( χχχχχ . 

                                                 
16The implicit assumption that a player thinks he is more sophisticated than other players is often seen in other forms, 
for which it has considerable experimental support; see for example Weizsäcker (2003). As ER (2005, footnote 6) 
note, cursed equilibrium allows certain kinds of differences in beliefs about others' type-contingent strategies. 
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Like the first-price equilibrium bidding strategy , reflects both value adjustment and 

the bidding trade-off. Cursed equilibrium differs from equilibrium only in underestimating the 

correct value adjustment, to an extent determined by χ.  

)(* xa )(xaχ

Given a cursed-equilibrium bidder's value estimate and its anticipation of others' bids, he 

responds to the bidding trade-off just as an equilibrium bidder would. The effect of his cursedness 

is determined by the difference between the unconditional expected value and the expected 

value conditional on winning . Normally  > , so that a cursed-equilibrium 

bidder overbids, relative to equilibrium, as in KL's example (Section 4). But there are some cases 

in which  > for some values of x, so that some (in extreme cases, nearly all) cursed-

equilibrium bidders underbid, as in AK's example (Section 4; ER (2005, p. 22)). 

)(xr

),( xxv )(xr ),( xxv

),( xxv )(xr

In a second-price auction, bidder i's optimal bidding strategy solves (for each x): 

(11)  ( )∫
−

−−−+−
)(1

)|()(),()1()(),()1(max
bb

x
Yb dyxyfyryyvxryxv

χ

χχχχ , 

which (following the same reasoning as for equilibrium, because both v(x,y) and r(x) are 

monotonically increasing in x) yields the second-price χ-cursed-equilibrium bidding strategy: 

(12)    )(),()1()( xrxxvxb χχχ +−= . 

Like the second-price equilibrium bidding strategy , reflects only the value adjustment 

for the information revealed by winning, which it underestimates just as in a first-price auction. 

)(* xb )(xbχ

3. Level-k Models 

In this section we generalize the level-k model to common- and independent-private-value 

auctions. As explained in the Introduction, the level-k model allows behavior to be heterogeneous, 

but it assumes that each bidder's behavior is drawn from a common distribution over a hierarchy 

of decision rules or types, in which L1 best responds to a nonstrategic anchoring type L0, L2 best 

responds to L1, etc. In this section we derive types' implications in general; in Section 4 we 

specialize them to the examples used in the leading auction experiments.17 We consider two 

alternative specifications of L0: a random L0 that bids uniformly randomly, independent of its 
                                                 
17Because any convex combination of monotonically increasing belief functions is monotonically increasing, hence 
invertible, which is all that is needed for our analysis, one could easily carry it out for CHC's cognitive hierarchy 
specification. Such an analysis would probably yield results close to ours (even allowing types higher than L2). We 
do not pursue this possibility because there is at least as much experimental support for our specification as CHC's 
(Costa-Gomes and Crawford (2006)) and our specification greatly simplifies characterizing types' implications. 
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own private signal, over the range determined by the range of its signal and the value function 

; and a truthful L0 that bids the value its own signal suggests, taken by itself. We 

assume that a given player follows type L0, L1, or L2 (footnote 12), either random or truthful. 

(Recall that "random" (or "truthful") L1 or L2 is shorthand for an L1 or L2 type associated with a 

random (or truthful) L0; random or truthful L1 or L2 types are not random or truthful themselves.) 

),( XSuV ii =

3a. Random L1 and L2 bidding strategies in first- and second-price auctions 

 Random L1 assumes that other bidders are random L0, hence with bids independently and 

identically distributed (henceforth "i.i.d.") uniformly over the range ],[ zz determined by the range 

of its private signal and the value function ),( XSuV ii = . Random L1 therefore believes that 

winning conveys no information about the value of the object, even with common values and 

affiliated signals. Its optimal bid is determined by its own signal; the price it pays if it wins; and 

its beliefs about the highest bid among the others' uniformly random bids, Z, described by the 

distribution function 
1

)(
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
N

Z zz
zzzF  and the density

zzzz
zzNzf

N

Z −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−=
−

1)1()(
2

. Note that 

these do not depend on the bidder's own signal , which is uninformative about Z; or on the 

distribution of others' signals. 

1X

In a first-price auction a random L1 bidder i's optimal bidding strategy solves (for each x): 

(13) ( )[ ] ( ) ( ) ).()(max)()(max|1max }{ aFaxrdzzfaxrXaVE Za

a

z
ZaiaZia −≡−≡− ∫<  

Random L1's first-price bidding strategy, , is characterized by the first-order condition: )(1 xar

(14)    0)()())(( =−− aFafaxr ZZ . 

This problem and first-order condition differ from those for first-price equilibrium in (1) and (2) 

in two ways: r(x) replaces , and the integral in (13) and density and distribution function in 

(14) refer to random L1's beliefs about the highest of L0 others' bids Z, rather than the highest of 

others' signals Y that determines the highest others' bid in a symmetric equilibrium. The first 

difference reflects the fact that random L1 believes that winning conveys no information about the 

value of the object. Given the normal tendency for  > , this tends to make random L1 

overbid relative to equilibrium, just as a fully-cursed equilibrium bidder does. The second 

difference reflects random L1's use of its non-equilibrium beliefs to evaluate the bidding trade-off 

between a higher bid's cost and increased probability of winning. Depending on the signal 

),( xxv

)(xr ),( xxv
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distribution, this difference may tend to either raise or lower random L1's first-price bidding 

strategy relative to the equilibrium bidding strategy. 

In a second-price auction, a random L1 bidder i's optimal bidding strategy solves:  

(15)    ( )[ ] ( ) .)()(max|1max }{ ∫ −=− <

b

z
ZbibZib dzzfzxrXZVE  

Random L1's second-price bidding strategy, , is characterized by the first-order condition: )(1 xbr

(16)   ( ) 0)()( =− bfbxr Z  or, solving for b, . )()(1 xrxbr =

This problem and first-order condition differ from those for second-price equilibrium in (5) and 

(6) in that r(x) replaces and in the use of random L1's non-equilibrium beliefs. But given 

random L1's cursed value adjustment, truthful bidding is optimal, just as it is in an equilibrium 

analysis.

),( xxv

18 This important insight from an equilibrium analysis remains valid, here and below, 

even though the truthful equilibrium bidding strategy in (6) is not weakly dominant and random 

L1 beliefs differ from equilibrium beliefs, because a bidder's bid in a second-price auction still 

determines only when he wins, not what he pays; and truthful bidding, given correct value 

adjustment taking others' anticipated bidding strategies into account, still ensures that he wins 

when it appears profitable, given his beliefs. Random L1's bidding strategy therefore coincides 

with the second-price fully-cursed equilibrium bidding strategy in (12) with χ = 1, so that it has 

the same tendency to overbid in common-value auctions. But it coincides with equilibrium in 

second-price independent-private-value auctions, where like other level-k types with k > 0, which 

all best respond to beliefs, it follows its weakly dominant strategy. 

Unlike random L1, random L2 adjusts its value estimate for the information revealed by 

winning, because random L1's bidding strategy is an increasing function of its private signal in 

either kind of auction.19 We derive the optimal bids more generally, because the results will 

determine truthful L1's and L2's bidding strategies as well as random L2's. 

Suppose that in a first-price auction, a level-k bidder (random or truthful) expects others to 

bid according to the monotonically increasing bidding strategy , with inverse . The 

bidder's optimal bidding strategy with value V

)(1 xak− )(1
1 aak

−
−

i and signal Xi then solves (for each x): 

                                                 
18Fully-cursed equilibrium and random L1 are readily comparable because both are determined by the unconditional 
expected value r(x) instead of the value conditional on just winning v(x,x), and so differ only in their beliefs. Even so, 
in first-price auctions random L1 and fully-cursed equilibrium are not directly comparable, because random L1's and 
equilibrium beliefs can differ considerably, depending on the specific distribution of the signals. 
19This is easily verified from (14) for first-price auctions and (16) for second-price auctions.     
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(17)  ( )[ ] ( )∫
−
−

−
−=− <

)(

})({

1
1

1
)|(),(max|1max

aa

x
YaiaYaia

k

k
dyxyfayxvXaVE . 

Taking the partial derivative with respect to a, the first-order condition can be written: 

(18)  0)|)(()()|)(()))(,(( 1
1

1
11

1
1
1 =−

∂
∂

− −
−

−
−−

−
−
− xaaF

a
aaxaafaaaxv kY

k
kYk . 

With independent private values xxxv =),( and the functions  and  no longer 

depend on x, so that (18) reduces to: 

)|( xyfY )|( xyFY

(19) 0))(()())(()( 1
1

1
11

1 =−
∂

∂
− −

−

−
−−

− aaF
a

aaaafax kY
k

kY  or 
a

aa
aaf
aaFax k

kY

kY

∂
∂

=−
−
−

−
−

−
− )(

))((
))(()(

1
1

1
1

1
1 . 

Now suppose that in a second-price auction, a level-k bidder expects others to follow the 

monotonic bidding strategy , with inverse . The bidder's optimal bidding strategy 

with value V

)(1 xbk− )(1
1 bbk

−
−

i and signal Xi then solves (for each x): 

(20)  ( )[ ] ( )∫
−
−

− −<− −=−
)(

1})({1

1
1

1
)|()(),(max|1)(max

bb

x
YkbibYbkib

k

k
dyxyfybyxvXYbVE . 

Taking the partial derivative with respect to b, the first-order condition can be written: 

(21)  0)()|)(()))(,((
1
11

1
1
1 =

∂
∂

−
−
−−

−
−
− b

bbxbbfbbbxv k
kYk  or . 0))(,( 1

1 =−−
− bbbxv k

With independent private values (21) reduces to the weakly dominant strategy in (7). 

Comparing the second-price level-k bidding strategy from (21) with the second-price 

equilibrium bidding strategy from (6) isolates the effects of value adjustment. The logic of value 

adjustment is the same for both: Each bids according to the expected value given its own signal, 

conditional on just winning. The only difference is that a level-k bidder's beliefs do not anticipate 

winning if and only if it has the highest signal, as a (symmetric) equilibrium bidder's do. A level-k 

bidder believes it wins if and only if it bids at least , which depending on others' 

anticipated bidding strategy may be more or less stringent than having the highest signal.  

)(1 Ybk−

Value adjustment tends to make bidders' bids strategic substitutes. Suppose that a level-k 

bidder believes others' bids are higher than in equilibrium, so winning means others' signals are 

(stochastically) lower than it would mean in equilibrium. Comparing (21) and (6) and noting 

that is increasing in y (MW (1982, Theorems 2-5)), this belief lowers his value conditioned 

on winning, making the curse seem worse and lowering his optimal bid, other things equal.  

),( yxv
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Comparing the first-price level-k bidding strategy determined by (18) with the first-price 

equilibrium bidding strategy determined by (2) reveals that both involve exactly the same kind of 

value adjustment as in the second-price bidding strategies. In first-price auctions, however, value 

adjustment interacts with the bidding trade-off, which depending on the signal distribution and 

how the others' anticipated strategy relates to the equilibrium strategy, may tend to either 

raise or lower the level-k bidding strategy relative to the equilibrium strategy. The web appendix 

investigates this interaction in more detail, identifying the general principles that determine 

whether types overbid, underbid, or coincide with equilibrium here and in Section 4's examples.   

)(1 xak−

Now consider how random L2's first-price bidding strategy, , is determined by (18) 

with  replacing , hence by: 

)(2 xar

)(1
1 aa r − )(1

1 aak
−
−

(22)   0)|)(()()|)(()))(,(( 1
1

1
11

1
1

1 =−
∂

∂
−

−
−

−− xaaF
a

aaxaafaaaxv r
Y

r
r

Y
r . 

In a first-price auction, random L2, like random L1, deviates from equilibrium both in value 

adjustment and in using its non-equilibrium beliefs to evaluate the bidding trade-off. Random L2's 

value adjustment reflects the same logic as an equilibrium bidder's, but its beliefs generally lead 

to a different adjustment. To the extent that random L1 overbids relative to equilibrium, because 

random L2 believes that to win it must bid higher than all others' random L1 bids, not just higher 

than their equilibrium bids, given the strategic substitutability of value adjustment random L2 

believes that the curse is more severe than in equilibrium, and this tends to make it underbid, 

relative to equilibrium. Depending on the signal distribution and how random L1's bidding 

strategy relates to the equilibrium strategy, the bidding trade-off may tend to raise or lower 

random L2's bids relative to equilibrium or cursed equilibrium. 

Random L2's second-price bidding strategy, , is determined by (21) with  

replacing : 

)(2 xbr )(1
1 bbr −

)(1
1 bbk

−
−

(23)  0)()|)(()))(,((
1

11
1

1
1 =

∂
∂

−
−

−−

b
bbxbbfbbbxv

r
r

Y
r  or . ))(,( 1

1 bbxvb r−=

The second-price random L2 bidding strategy is again truthful; but to the extent that random L1 

overbids relative to equilibrium, the strategic substitutability of value adjustment makes random 

L2 underbid because it believes the curse is more severe than in equilibrium. 
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3b. Truthful L1 and L2 bidding strategies in first- and second-price auctions 

A truthful L1 bidder's bid is a best response to a truthful L0, and thus assumes that others 

follow the monotonic bidding strategy , with inverse . ]|[)()(0 xXVExrxa ii
t ==≡ )()( 11

0 araat −−
≡

In a first-price auction, truthful L1's optimal bidding strategy, , solves a problem (for 

each x) that is a special case of the general first-price monotonic problem (17). is then 

determined by the first-order condition (18) with  (because ) 

replacing :    

)(1 xat

)(1 xat

)()( 11
0 araat −−

≡ )()(0 xrxat ≡

)(1
1 aak

−
−

(24)    0)|)(()()|)(()))(,(( 1
1

11 =−
∂

∂
− −

−
−− xarF

a
arxarfaarxv YY . 

Thus, in a first-price auction, truthful L1 deviates from equilibrium in its use of its non-

equilibrium beliefs to evaluate the bidding trade-off, like random L1; but its different beliefs 

imply a different value adjustment.20 Truthful L0 overbids relative to the first-price equilibrium 

bidding strategy, because it neither adjusts for the curse nor shades its bids. Hence truthful L1, 

which believes that to win it must bid higher than all others' truthful bids, not just higher than 

their equilibrium bids, believes that the curse is even more severe than in equilibrium. Thus the 

strategic substitutability of value adjustment tends to make truthful L1 underbid. But the bidding 

trade-off may again tend to raise or lower truthful L1's bids relative to equilibrium. 

In a second-price auction, a truthful L1 bidder's optimal bidding strategy, , solves a 

special case of the general monotonic problem (20) (for each x). Truthful L1's second-price 

bidding strategy, , is then determined by (21) with replacing : 

)(1 xbt

)(1 xbt )()( 11
0 brbbt −−

≡ )(1
1 bbk

−
−

(25)  0)()|)(()))(,((
1

11 =
∂

∂
−

−
−−

b
brxbrfbbrxv Y or . ))(,( 1 brxvb −=

Thus, bidding is truthful as in the previous second-price analyses. Truthful L0 normally overbids 

relative to second-price equilibrium because it does not adjust for the curse, hence the strategic 

substitutability of value adjustment normally makes truthful L1 underbid.21 In a common-value 

second-price auction, truthful L1's bidding strategy is identical to random L2's, because random 

L1 bids the expected value of the item based on its own signal, just as truthful L0 does. 
                                                 
20Because truthful types' bidding strategies are determined by v(x,y), like equilibrium strategies, they are more readily 
compared to equilibrium than to cursed-equilibrium strategies, which are influenced by r(x) as well as v(x,y). 
21In a second-price auction with independent private values, truthful L0's (but not random L0's) bids coincide with 
equilibrium when a player's signal reveals the actual value with certainty. 
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In a first-price auction, truthful L2 expects other bidders to bid according to the monotonic 

bidding strategy , with inverse . Truthful L2's first-price bidding strategy, , is 

then determined by problem (17) with replacing : 

)(1 xat )(1
1 aat− )(2 xat

)(1
1 aat− )(1

1 aak
−
−

(26)  0)|)(()()|)(()))(,(( 1
1

1
11

1
1

1 =−
∂

∂
−

−
−

−− xaaF
a

aaxaafaaaxv t
Y

t
t

Y
t . 

Thus, to the extent that truthful L1 underbids, value adjustment tends to make truthful L2 overbid. 

But the bidding trade-off may again raise or lower truthful L2’s bids relative to equilibrium.  

In a second-price auction, truthful L2 expects other bidders to bid according to the 

monotonic bidding strategy , with inverse . Truthful L2's second-price bidding 

strategy, , is again determined by (21), now with  replacing : 

)(1 xbt )(1
1 bbt −

)(2 xbt )(1
1 bbt − )(1

1 bbk
−
−

(27)  0)()|)(()))(,((
1

11
1

1
1 =

∂
∂

−
−

−−

b
bbxbbfbbbxv

t
t

Y
t  or .  ))(,( 1

1 bbxvb t −=

To the extent that truthful L1 underbids, value adjustment again makes truthful L2 overbid. 

4. Can a Level-k Model Explain the Curse and Other Kinds of Overbidding? 

The auction experiments whose data we analyze are based on two leading common-value 

examples and one independent-private-value example. This section introduces the examples and 

their equilibrium, cursed equilibrium, and level-k bidding strategies, to assess the level-k model's 

potential to explain behavior in the experiments and in preparation for Section 5's econometric 

analysis. Calculations are in the web appendix.  

4a. Kagel and Levin's, Avery and Kagel's, and Goeree, Holt, and Palfrey's examples 

In the first example, used in KL's (1986) analyses of first-price auctions and in LP's (1991) 

follow-up experiments, N ≥ 3, SXSuV ii == ),( , S is uniformly distributed on a subset of the real 

line ],[ ss , and X|S is conditionally uniformly i.i.d. on the interval ]
2

,
2

[ asas +−  with dispersion a 

> 0, with minor adjustments due to truncation near s  or s . The density, distribution function, and 

expected value of X|S are:
a

f SX
1

| = ,
2
1

| +
−

=
a

sxF SX , and sSXE =]|[ . Thus 

. Standard calculations show that:  xxXSExr ==≡ ]|[)(
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Thus xxr
N
aaxxxv =≤+−= )(

2
),( , with strict inequality for N > 2, and cursed-equilibrium 

bidders overbid relative to equilibrium or coincide with it for any χ or x. 

In the second example, used in AK's (1997) analysis of second-price auctions, 

, and X∑
=

==
N

i
iii XXSuV

1
),( i is i.i.d. uniformly distributed on the interval ],[ xx . Thus, in general, 

2
)1(]|[)(

1

xxNxxXXExr i

N

k
k

+
−+==≡ ∑

=

, xNNyxyxv
2

)2(
2

),( −
++= , and 

xNNxxxxv
2

2
2

),( −
++=  > (<) r(x) if and only if 

N
xxNx +−

<>
)1()( , so that v(x,x) > r(x) for 

bidders with high signals and v(x,x) < r(x) for bidders with low signals: Cursed-equilibrium 

bidders underbid relative to equilibrium for high signals (because they implicitly assume that 

others' signals take their average values, when their own signal makes others' more likely to be 

high) and overbid for low signals.22 When N = 2 and ]4,1[],[ =xx , as in AK's experiments, 

2
5)( += xxr  and , so that xxxv 2),( = ),()( xxvxr < when

2
5

>x and when ),()( xxvxr >
2
5

<x .  

In the third example, used in GHP's (2002) analysis of first-price independent-private- 

value auctions, N = 2, , and there are two treatments, each with bids restricted to 

integer values and discrete, slightly non-uniform (because of spacing) values—equal probabilities 

on {0, 2, 4, 6, 8, 11} in a low-value treatment and on {0, 3, 5, 7, 9, 12} in a high-value treatment. 

iii XXSuV == ),(

We now describe the relationships among equilibrium, cursed-equilibrium, and random 

and truthful L1 and L2 bidding strategies in the examples. Table 1 summarizes the conclusions, 

first in general and then in KL's and AK's examples. The conclusions follow fairly simply from 

the facts that only the bidding trade-off (as influenced by equilibrium, cursed equilibrium, or 
                                                 
22This corrects a typographical error in ER (2005, p. 1642), where they say that bidders with high signals overbid 
relative to equilibrium while those with low signals underbid. 
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level-k beliefs) matters with independent private values; that only value adjustment (as influenced 

by the various beliefs) matters in second-price common-value auctions; and that the two effects 

combine in straightforward ways in first-price common-value auctions.       

4b. Equilibrium and cursed equilibrium versus level-k models in second-price auctions 

In a second-price auction with independent private values, random and truthful L1 and L2 

bid truthfully, as in equilibrium and cursed equilibrium, because they follow weakly dominant 

strategies when they exist. Thus neither level-k model can explain non-equilibrium bidding. 

In a second-price auction with common values, in KL's example, random L1 coincides 

with equilibrium for N = 2 and, like a fully-cursed equilibrium bidder, overbids for N > 2, to an 

extent that increases with N and the dispersion a. Random L2 coincides with equilibrium for N = 

2 but underbids for N > 2, to an extent that decreases with N and increases with a. In AK's 

example, random L1 with a low (high) signal overbids (underbids), like a fully-cursed equilibrium 

bidder. Random L2 with a low (high) signal matches the bid of random L1 with the lowest 

(highest) possible signal (with only weak strategic substitutability for these boundary solutions). 

In a second-price auction with common values, because random L1 bids the value its own 

signal suggests, like truthful L0, truthful L1 coincides with random L2.23 We have not derived a 

closed-form solution for truthful L2 in the examples, but computations show that in KL's example 

truthful L2 overbids by more than a fully cursed-equilibrium bidder, to an extent that increases 

with N; and in AK's example with N = 2 it overbids for some values and underbids for others. 

To sum up for second-price auctions, with independent private values level-k types of 

either kind coincide with equilibrium and cursed equilibrium. With common values a level-k 

model has the potential to improve upon cursed equilibrium; but this depends on whether an 

empirically plausible mixture of level-k types gives a better account of subjects' heterogeneous 

bidding behavior than a plausible mixture of cursed types. 

4c. Equilibrium and cursed equilibrium versus level-k models in first-price auctions 

In a first-price auction with independent private values, in general the bidding trade-off 

may tend to make a random or truthful L1 or L2 either underbid or overbid, depending on the 

value distribution. Most independent-private-value experiments used values uniformly i.i.d. on 

                                                 
23Although in independent-private-value auctions, random Lk types are equivalent to the analogous Lk truthful types 
when the distribution of private signals is unconditionally uniform; in common-value auctions random and the 
analogous truthful types are not equivalent in general, because they differ in value adjustment. 
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[ xx, ]. In this case the equilibrium bidding strategy xxx
N

Nxa +−
−

= )(1)(*  is a best response to 

any beliefs derived from others' bidding strategies xxxc +− )( , as long as 0 < c ≤ 1. Random or 

truthful L1, and therefore random or truthful L2, then coincide with equilibrium; and this limits 

the potential for a level-k model to improve upon an equilibrium explanation of overbidding.24

But for non-uniform value distributions, a level-k model may be able to explain non-

equilibrium bidding. In GHP's (2002) independent-private-value designs, random L1 or L2 

coincides with equilibrium except for the highest valuation in the high-value treatment, where 

random L1 slightly overbids and random L2 underbids (web appendix). Truthful L1 underbids in 

the low-value and overbids in the high-value treatment, and truthful L2 underbids in both.25  

In a first-price auction with common values, in KL's example, when N = 2, equilibrium 

and fully-cursed equilibrium bids coincide and random L1 bids are slightly lower than but 

approximately coincide with them; and random L2 bids approximately coincide with equilibrium 

or fully-cursed equilibrium.26 When N > 2, random L1 bids approximately coincide with fully-

cursed equilibrium bids; but both overbid relative to equilibrium, by an amount that increases 

with N and a; and random L2 bids approximately coincide with equilibrium but underbids relative 

to fully-cursed equilibrium, by an amount that increases with N and a. Value adjustment and the 

bidding trade-off offset each other for random L2 and truthful L1, which approximately coincides 

with equilibrium. Truthful L2 approximately coincides with equilibrium because truthful L1 does. 

To sum up for first-price auctions, with uniform independent private values level-k types 

coincide with equilibrium and cursed equilibrium. But with non-uniform value distributions as in 

GHP (2002), random (or truthful) L1 bids coincide with (or fall below) equilibrium bids in the 
                                                 
24Some potential for improvement remains because the costs of deviations differ slightly for Equilibrium and random 
L1, etc., so they are weakly separated. For low values and low precision, underbidding is less costly for Equilibrium 
than for random L1 while overbidding is more costly for Equilibrium than for random L1. As precision increases, this 
asymmetry between under- and overbidding disappears except for very low values, and both under- and overbidding 
are costlier for Equilibrium. For high values, both under- and overbidding are costlier for Equilibrium than for 
random L1, so the L1 probability distribution of decisions has thicker tails. Differences in deviation costs sometimes 
separate types in other treatments (Section 5). 
25In GHP we define random L0 with equal probabilities for subjects' possible values in each treatment. Random and 
truthful specifications do not coincide in GHP's design, even though the ex ante values and random L0 are uniformly 
distributed, because the values are discrete and unevenly spaced and integer bids between the values are allowed. 
26"Approximately coincides" means that the bidding strategies differ only by the exponential part of KL’s example's 
first-price equilibrium bidding strategy, which is positive but negligible for all x not very close to x ; KL and all other 
analysts have ignored this exponential part and we will follow them in this from now on, for cursed equilibrium as 
well as equilibrium. Our solution for KL's example differs from those reported in KL, LP, and ER, which all have 
a/(N+1) in the third term in place of our a/N (web appendix). We believe that our version is correct, but the 
discrepancy makes little difference because the exponential term is negligible. 
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low-value treatment and exceed equilibrium bids in the high-value treatment; and random (or 

truthful) L2 bids coincide with (or fall below) equilibrium bids for both treatments. A level-k 

model is then weakly separated from equilibrium and cursed equilibrium, and may be able to 

explain non-equilibrium bidding. With common values, a level-k model again has the potential to 

improve upon cursed equilibrium. 

 

5. Comparing the Models Econometrically 

All of the models compared here depend on behavioral parameters: logit error precisions for 

all of them, plus population type frequencies for level-k models or cursedness parameters for 

cursed-equilibrium models. This section uses existing data from auction experiments to estimate 

the models econometrically and compare their abilities to account for observed behavior in the 

experiments. Our goal in the econometrics is to constrain our discretion in calibrating the models 

and to obtain likelihoods that provide an objective criterion for comparing them; not to take a 

definitive position on the parameters. We estimate treatment by treatment: Because our main 

purpose is model evaluation and the treatments have widely differing subject populations and 

experimental conditions, we have not tried to pool them.  

Table 2 summarizes the data we use. Because learning can lead even unsophisticated 

subjects to equilibrium, strategic thinking appears most clearly before subjects have seen others' 

responses. We therefore (unlike ER) use data only from inexperienced subjects; and (instead of 

pooling data from all periods and usually all subjects as ER did) we focus on individual subjects' 

initial responses, interpreted as the first five periods (in which a subject typically had five 

different realizations of his private signal) to compensate for small sample size. 

Given these choices, we maximize comparability with ER's analysis of KL's (1986) first-

price and AK's (1997) second-price data. KL, however, had only experienced subjects (who had 

participated in at least one prior auction session); and while AK had some inexperienced subjects, 

ER's analysis focused on their experienced subjects. For common-value second-price auctions we 

therefore use AK's data for inexperienced subjects and the unpublished data for inexperienced 

subjects in the second-price version of KL's design mentioned in the Appendix to Kagel, Levin, 

Battalio, and Meyer (1989) as reprinted in KL (2002, Chapter 2), referring to the latter as the "KL 
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second-price" data. For common-value first-price auctions we use Garvin and Kagel's (1994) data 

for inexperienced subjects in KL's design, referring to them as the "KL first-price" data.27

Finally, because cursed equilibrium coincides with equilibrium in independent-private-value 

auctions, they are particularly important in assessing the level-k model. But with independent 

private values, level-k types coincide with equilibrium in second-price auctions; and with the i.i.d. 

uniform values used in most designs, in first-price auctions as well (Section 4c).28 We therefore 

use GHP's (2002) data from independent-private-value first-price auctions with discrete non-

uniform values, which weakly separate level-k types from equilibrium.29

Our econometric specification follows the mixture-of-types models of Stahl and Wilson 

(1994, 1995); Costa-Gomes, Crawford, and Broseta (2001); Camerer, Ho, and Chong (2004); 

Costa-Gomes and Crawford (2006); and Crawford and Iriberri (2006). Level-k and cursed types, 

Equilibrium, and QRE types are all assumed to make logistic errors as described below. (Random 

L0 directly specifies a uniform distribution of decisions, and so has no precision parameter.)  

For our level-k plus equilibrium models we allow random L0 and both random and truthful 

L1 and L2 types as well as Equilibrium, each with its own beliefs (Section 3).30 In the most 

general specification we allow subject-specific precisions, but we also consider models with type-

specific and constant precisions.   

For our cursed-equilibrium models in the common-value treatments, we also allow random 

L0 to avoid biasing the comparisons. In the most general specification we allow subject-specific 

precisions and levels of ER's cursedness parameter χ, as in their analysis of AK's data; but we also 

consider models with "cursed types," both with type-specific precision and constant precision. In 

the former case, for computational tractability, we constrain χ to multiples of 0.1 in [0, 1]. In the 

latter cases we constrain χ to a number of estimated values in [0, 1] equal to the number of types 

                                                 
27Other common-value experiments whose data would enrich our analysis include LP's (1991) and HS's (2000); but 
despite those authors' generous efforts, their data are unavailable. 
28This coincidence extends even to Kagel and Levin's (1993) uniform independent-private-value third-price auctions. 
29Goeree and Holt (2001, Section III) report similar results for a closely related design, which we do not consider here 
(although their data are available). In Palfrey's (1985) and Chen and Plott's (1998) independent-private-value designs 
level-k types also deviate from equilibrium; but despite those authors' generous efforts, their data are unavailable. We 
define payoffs as payments for performance, omitting show-up fees, and express them in 1989 dollars. Following AK 
and GHP, we edited a small number of "crazy" bids (6 in AK, 11 in KL first-price, 3 in KL second-price, and 12 in 
GHP), replacing bids above the highest (below the lowest) rationalizable bid with the highest (lowest) such bid. 
30We omit truthful L0 in the econometric analysis because truthful bidding is very rare for the first-price treatments 
(6/255 observations in KL and 6/400 in GHP, with no subject making more than two truthful bids); and because there 
is no way to assign beliefs that makes truthful bidding optimal in first-price auctions, where it is dominated, which 
makes it difficult to specify logit errors like those we use for the other types. 
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in the analogous level-k model. Either way, unlike ER, we restrict χ to [0, 1].31 Each of our 

cursed-equilibrium models allows χ = 0, and so nests equilibrium, which is important for a fair 

comparison of cursed-equilibrium and level-k models. We have more confidence in the cursed 

types χ = 0 or 1 because their theoretical rationales are stronger than for intermediate values of χ 

(footnote 6), but estimates of models allowing intermediate values are useful diagnostics. 

For GHP's independent-private-value treatments, where cursed equilibrium coincides with 

equilibrium, we replace cursed equilibrium with a QRE model like the one GHP favor. Random 

L0 is implicitly included as a QRE type with 0 precision. In the most general specification we 

again allow subject-specific precisions; but we also consider models with "QRE types," both with 

type-specific and constant precision. We again constrain the number of types to that of the 

analogous level-k model.32

The formal discussion that follows covers all three models and all three error structures, 

with k = 1,2,…K indexing level-k (or Equilibrium) types, cursed types, or QRE types. Index Table 

2's treatments (first- or second-price) g (for "games") = 1, 2, 3, 4. Each type k implies a bidding 

strategy in game g, denoted ; )(xcg
k

g
itc  denotes subject i's observed bid in game g at time t. We 

assume that a subject of type k normally follows , but subject to logistic errors of precision 

λ, assumed independent across the five periods in which he plays. Write his expected payoff for 

bid c given signal x with type k's beliefs  (formally defined in Section 2 or 3). The 

probability of observing bid c within the range of possible bids 

)(xcg
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],[ cc  for type k is then: 
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As usual, this implies that the costlier an error is ex ante, given type k's beliefs, the lower the 

player's probability of making it, with the cost-sensitivity tuned by the precision λ. The player's 

bids approach uniform randomness as 0→λ , or the error-free bid as)(xcg
k ∞→λ . 

                                                 
31Unlike level-k models, cursed equilibrium can accommodate heterogeneous bidding behavior only via cursed types 
or subject-specific cursedness parameters. ER (2005, Table II) allowed χ to take any value and reported many 
estimates for AK's inexperienced subjects outside [0, 1], contradicting χ's interpretation as a probability. This 
problem would also arise in unconstrained estimates for KL's examples, where the below-equilibrium or above-signal 
bids sometimes observed correspond to χ < 0 or χ > 1. Level-k types often explain such bids better than cursed types 
with χ = 0 or 1, particularly in second-price common-value auctions like AK's and KL's (Table 1). 
32We depart from GHP by ruling out non-neutral risk preferences and payoffs for "joy of winning," in keeping with 
our goal of learning whether a level-k model can explain auction behavior without such refinements.   
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The matrix Λ ≡ ][ ikλ  gives precision indexed by subject i and type k. Subject-specific 

precisions do not restrict how ikλ varies with i and k. Type-specific precisions restrict ikλ to be 

independent of i for any given k. Constant precisions restrict ikλ to be independent of i and k. 

With errors independent, conditional on type, the likelihood of observing the 5-observation 

sample for subject i of type k with signal x and precision ),,,,( 54321
g
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g
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g
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i cccccc = ikλ in game g is: 
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Let kπ denote the proportion of type k in the population, with 1=∑
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Given (29), because the payoff function is quasiconcave and the logit term increases with 

payoff, the likelihood treats a bid as stronger evidence for a type the closer it is to the type's bid or 

the better the deviations are explained given the its beliefs. In most cases types' bids differ and the 

first factor is more important. Although some types' bids always or almost always coincide, even 

they are usually weakly separated by differences in the deviation costs implied by their beliefs. 

Indexing treatment g's subjects gNi ,...2,1= and letting , from (32) we can 

now write the models' likelihood (L) and log-likelihood (LL) functions for treatment g: 
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In all four treatments, subjects' estimated precisions are highly heterogeneous. In each case, 

likelihood-ratio tests for the level-k plus equilibrium models, for which the alternative error 

structures are nested, strongly reject constant or type-specific error precisions (p-values 0.0015 or 

lower). The Bayesian Information Criterion (henceforth "BIC"), which adjusts the likelihood to 

penalize models with more parameters without requiring that the models be nested, also favors 

models with subject-specific precisions, except in GHP where it favors constant precisions for the 

level-k model and type-specific precisions for the QRE model.33 For cursed-equilibrium models 

                                                 
33Here and below, the Akaike Information Criterion, which makes an adjustment similar to the BIC's but requires that 
the models be nested, always orders nested models in the same way that the BIC does. For the common-value 
treatments, with type-specific precisions and random L0 plus four types (in each such treatment, one pair of types is 
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(for which the error structures are not nested), the BIC again favors subject-specific precisions. 

Given the results of the likelihood-ratio tests and that our primary purpose is model evaluation, 

we focus on the results for subject-specific precisions, with some attention to those for type-

specific precisions and, in GHP, constant precisions.34

Tables 3a-c summarize treatment-by-treatment parameter estimates and likelihoods for our 

level-k and cursed-equilibrium models for KL first- and second-price and AK second-price; and 

Table 3d summarizes parameter estimates and likelihoods for our level-k and QRE models for 

GHP. Level-k types that are not separated from other types (even by deviation costs) in a given 

treatment are listed in that treatment's table, with their equivalences indicated by a tilde (~).35

In the KL first-price estimates in Table 3a, for instance, for the level-k plus equilibrium 

model with subject-specific precisions we estimate 4% random L0, 61% random L1, 4% random 

L2, 16% truthful L1, and 16% truthful L2 or Equilibrium (not separated here) subjects. With type-

specific precisions, we estimate 35% random L1, 3% random L2, 54% truthful L1, and 8% 

truthful L2 or Equilibrium. The log-likelihood is noticeably higher with subject-specific than 

type-specific or constant precisions, corresponding to the rejections via likelihood-ratio tests 

reported above. The BIC also favors the model with subject-specific precisions, but less strongly. 

For the cursed-equilibrium models in the right half of Table 3a, with subject-specific 

precisions and 11 cursed types, restricted to χs that are multiples of 0.1 in the interval [0, 1], we 

estimate 40% of the subjects with χ = 1 (fully-cursed equilibrium) and 20% with χ = 0 

(Equilibrium), with the remaining 33% spread almost uniformly over intervening values of χ. 

With type-specific precisions the model estimates only three cursed types with positive frequency, 
                                                                                                                                                               
not separated even by deviation costs), the level-k model has 8 independent parameters (4 type frequencies and 4 
precisions). The analogous cursed-equilibrium model has 12 (4 levels of χ, 4 type frequencies, and 4 precisions; 
random L0 has no precision). For GHP, with type-specific precisions and random L0 plus five types, the level-k 
model has 10 independent parameters (5 type frequencies and 5 precisions). The analogous QRE model has 10 (5 
type frequencies and 5 precisions). But as will be seen, for KL first-price and AK second-price, cursed-equilibrium 
models with type-specific and constant precisions estimate fewer types with positive frequencies than we allowed. 
For GHP, QRE models with type-specific and constant precisions also estimate fewer types than we allowed.    
34Type-specific precisions, or a parameterized distribution of subject-specific precisions, are likely to be more useful 
for prediction. But models with subject-specific precisions are more robust to specification bias (e.g. if some subjects 
are very erratic but their precisions are constrained to equal those of other subjects) and so more useful as diagnostics. 
They also make our estimates more comparable with ER's, some of which allow subject-specific (though non-
logistic) error distributions. With subject-specific precisions, estimating (32) reduces to estimating subject-by-subject.  
35In KL first-price, random L2 and truthful L1 are separated from Equilibrium only by deviation costs, and truthful L2 
is not separated from Equilibrium even by deviation costs. In the second-price auctions truthful L1 and random L2 are 
not separated even by deviation costs. In GHP (web appendix), random L1 and Equilibrium are separated only by 
bids for v = 12 in the high-value treatment and by deviation costs for other values; and random L2 and Equilibrium 
are separated only in the high-value treatment, and only by deviation costs. For simplicity, Table 3d pools the results 
for GHP's low- and high-value treatments. 

 26



with χs of 0, 0.78, and 0.99.36 As for the level-k models, the log-likelihood is highest with subject-

specific precisions, a likelihood-ratio test rejects restrictions to type-specific or constant 

precisions (p-values far below 0.001), and the BIC favors subject-specific precisions. In this 

treatment (unlike AK or KL second-price), the constraint that χ = either 0 or 1 is strongly rejected 

(p-value far below 0.001) and intermediate levels of χ fit some subjects better than random L1 (χ 

= 1) or Equilibrium (χ = 0). 

Overall, in KL first-price a cursed-equilibrium model has a modest likelihood advantage 

over a level-k model with subject-specific or type-specific precisions, which persists when the 

BIC is used to correct for its larger number of parameters with subject-specific precisions. Most 

(but not all) of the cursed-equilibrium model's advantage here is due to the fact that cursed types 

with intermediate values of χ fit some subjects better than any of our level-k types. (By contrast, 

in AK or KL second-price, intermediate values of χ add little to a cursed equilibrium model's fit.) 

We now review the results for the other three treatments, focusing mainly on those for 

subject- and type-specific precisions. For the level-k models, the estimated frequency of random 

L0 drops from 4% in KL first-price to 0 in the other three treatments, as in most previous 

estimates, so random L0 exists mainly in the minds of random L1 and L2. With subject-specific 

precisions, the estimated population type frequencies vary remarkably little across these three 

treatments: In KL first-price, AK second-price, and GHP, the frequency of random L1 ranges 

from 0.61 to 0.65; that of random L2 (given that it is not separated from truthful L1 in AK second-

price) ranges from 0.04 to 0.09; that of truthful L1 ranges from 0.09 to 0.16; that of truthful L2 

(given that it is not separated from Equilibrium in KL first-price) ranges from 0.01 to 0.22; and 

that of Equilibrium ranges from 0.04 to 0.19.37 The estimated type frequencies are generally 

behaviorally plausible and close to previous estimates (Stahl and Wilson (1995); Costa-Gomes, 

Crawford, and Broseta (2001); Camerer, Ho, and Chong (2004); Costa-Gomes and Crawford 

(2006); and Crawford and Iriberri (2006)). The estimated frequency of random L1 is higher than 

in most previous estimates, but this may be due to the heavier cognitive load of incomplete 

information games. 

                                                 
36When four cursed types are allowed, two of them are estimated to have χ = 1, with different precisions; thus the 
extra type serves mainly to relax the restriction to type-specific precisions. Likelihood ratio tests fail to reject the 
restriction to three types (p-value 0.0639).   
37With type-specific precisions, the estimated frequencies vary more widely, but given that the restriction to type-
specific precisions is rejected, we view this as likely to be due to specification bias. 
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The estimates for KL second-price (Table 3b) are very different. With subject-specific 

precisions, the estimated frequency of random L1, at 0.25, is far below the range of the other three 

treatments. The estimated frequency of truthful L2, at 0.32, is correspondingly high. We suggest a 

tentative explanation as follows.38 In KL second-price Equilibrium shades its bid below the value 

suggested by its signal to adjust for the curse, random L1 bids the value suggested by its signal, 

truthful L1 and random L2 shade more than in equilibrium, and truthful L2 bids above the value 

suggested by its signal. There are two main patterns in the data: Some subjects shade their bids, 

but less than in equilibrium; in a level-k model they are best captured by Equilibrium or random 

L1. Others bid above the values suggested by their signals; they are best captured by truthful L2. 

We suspect that the latter subjects bid so high not because they believe (like truthful L2) that 

others are shading their bids more than in equilibrium, but because they don't fully process the 

subtle implications of the second-price auction for their optimal bidding strategy: They know they 

will not have to pay their own bid, and they underestimate its indirect cost via winning and paying 

more than the value, which may be less salient to them than what they will have to pay. Our 

model rules out this kind of cognitive error by assumption, leaving truthful L2 as the best proxy 

for these subjects. If truthful L2 were excluded, they would best be described by random L1.  

Turning to the cursed-equilibrium estimates in the right halves of the Tables 3a-3c, despite 

our different specification and use of data from inexperienced subjects, our cursed-equilibrium 

estimates for KL first-price and AK second-price are generally consistent with ER's estimates for 

their subjects, particularly AK's inexperienced subjects.39 They are also close to our estimates for 

the level-k plus equilibrium model: For all three common-value treatments, with subject-specific 

precisions and 11 cursed types restricted to multiples of 0.1, there are spikes in the estimated 

distribution at χ = 1 (fully-cursed equilibrium or random L1) and χ = 0 (Equilibrium) and little 

weight on intervening values (with minor exceptions at χ = 0.2 in KL second-price and χ = 0.7 in 

AK second-price). The results for cursed types are similar except in KL second-price, where with 

                                                 
38Similar deviations from the dominant bidding strategy occur in second-price independent private-value auctions 
(Kagel, Harstad, and Levin (1987)). This and the evidence on experience and/or ability effects in Kagel and Richard 
(2001); Casari, Ham, and Kagel (2004); and Charness and Levin (2005) suggest that some non-equilibrium bidding 
has nothing to do with strategic uncertainty, and so cannot be explained by level-k thinking. This and evidence from 
new experiments, should ultimately make it possible to build a more comprehensive model of bidders' behavior. 
39In KL's and AK's designs, cursed equilibrium bids are linear in both the bidder's private signal x and the cursedness 
parameter χ. Pooling the data across time periods, ER regressed subjects' bids on those variables, finding that when 
constrained to be equal for all subjects, χ is closer to 1 for inexperienced subjects and to 0 for experienced subjects; 
and that for AK's data, when χ was allowed to vary across subjects, it varied much more for inexperienced than 
experienced subjects, and was significantly different from 0 for both. 
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type-specific precisions the cursed-equilibrium model also breaks down, estimating the frequency 

of random L0 subjects as 0.43. In KL and AK second-price, unlike KL first-price, level-k models 

have substantial advantages in likelihood and the BIC for all error specifications. 

In GHP's treatments, as already noted, a level-k model with subject-specific precisions 

yields type frequency estimates very close to those for KL first-price and AK second-price. The 

level-k models have a substantial likelihood and BIC advantage over their QRE counterparts, and 

they explain some of the deviations from equilibrium that GHP attribute to quantal response, risk 

aversion, and/or joy of winning. In this case the models with type-specific and constant precisions 

have substantial likelihood and BIC advantages over the model with subject-specific precisions.  

 

6. Conclusion 

This paper has proposed a new approach to explaining the winner’s curse in common-value 

auctions and overbidding in some independent-private-value auctions, based on a structural non-

equilibrium "level-k" model of initial responses that describes behavior in a variety of 

experiments with complete-information games. We consider alternative ways to generalize 

complete-information level-k models to this leading class of incomplete-information games, and 

derive their implications in first- and second-price auctions with general information structures, 

comparing them to equilibrium and Eyster and Rabin's (2005) notion of "cursed equilibrium." 

Our analysis shows that many of the insights of equilibrium auction theory, properly 

interpreted, extend to an empirically plausible model of non-equilibrium bidding. The model 

yields tractable characterizations of the two factors that determine equilibrium bidding strategies 

in first- or second-price: value adjustment for the information revealed by winning in common-

value auctions (the "winner's curse") and the bidding trade-off between the cost of higher bids and 

their higher probability of winning in first-price auctions with common or independent private 

values. These characterizations guide the choice of a model that can track the variation in 

subjects' initial responses to auctions across several experimental treatments. 

In our econometric analysis, a level-k model with an empirically plausible type distribution 

fits better except in KL first-price than the leading alternatives of cursed equilibrium or QRE, and 

yields a simple, unified explanation of the winner’s curse in some leading common-value auction 

designs and overbidding in some independent-private-value auction designs with non-uniform 

value distributions. Random L1 is by far the most frequent type in all but KL second-price, with 
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truthful L1 playing a substantial supporting role. Thus most subjects' behavior is strategic, even 

though it does not usually conform to equilibrium. Even though random L1 yields the same 

bidding strategies as Eyster and Rabin's notion of fully-cursed equilibrium in the common-value 

treatments, our estimated level-k type distribution fits the distribution of subjects' responses better 

than an estimated model with the same number of cursed types in all but KL first-price.    

Thus, by viewing behavior in these auctions through the lens of a general, portable model of 

strategic behavior, the level-k model allows us to link a large body of data from auction 

experiments, most of which has been analyzed assuming equilibrium in some form, to data from 

non-auction experiments that were specifically designed to study strategic thinking. 
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Table 1. Types' Bidding Strategiesa

Auction/Type    Equilibrium χ-cursed 
Equilibrium Random L1 Random L2 Truthful L1 Truthful L2 

2nd-price i.p.v. x  x  xxbr =)(1  xxbr =)(2  
)(1 xbt  from (25) 

with ),( ⋅xv ≡ x 
)(2 xbt from (27) 

),(with ⋅xv ≡ x 

2nd-price c.v. ),()(* xxvxb =  ) (),()1()( xrxxvxb χχχ +−= )()(1 xrxbr =  
)(2 xbr from (23): 
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 ))(,( 1 brxvb −=
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aIf there is no general closed-form expression, Table 1 refers to the equation in the text that determines the bidding strategy.    
 

Table 2. Data Sources and Experimental Designs 
g (treatment) Auction type ),( XSu  Signals n (sample size) Treatment variables 

1. KL first-price first-price common value SXSu =),(  ]2/,2/[~| asasUSX +− 51 a (dispersion), N (number 
of bidders), limits of s 

2. KL second-price second-price common value SXSu =),(  ]2/,2/[~| asasUSX +− 28 a (dispersion) 
3. AK second-price second-price common value 21),( XXXSu += ]4,1[],[~ =xxUX  23 no variation, N = 2 

4. GHP first-price independent 
private value XXSu =),(  

]12,9,7,5,3,0[~
]11,8,6,4,2,0[~

UX
UX

 40 no variation, N = 2 



 
Table 3a. Models and Estimates for Kagel and Levin First-Price 

Model Level-k plus equilibrium Cursed equilibrium 
 

Specification 
Subject- 
specific 

precision ( iλ ) 

Type-specific 
precision ( kλ ) 

Constant 
precision (λ ) 

Subject-specific precision ( iλ ) 
and fixed cursedness types 

( ))0,...9.0,1(=χ ) 

Type-specific precision 
( kλ ) 

Constant precision 
(λ ) 

 kπ̂  kπ̂  
kλ̂  kπ̂  λ̂  Types χ  

kπ̂  kχ  kπ̂  
kλ̂  kχ  kπ̂  λ̂  

Random L0 0.04             0 -- 0 -- Random L0 -- 0.06 -- 0 -- -- 0 --
Random L1 0.61          0.35 1 0.49 1.62   Type 1 1 0.47 0.99 0.83 0.6 1 0.5 0.68
Random L2 0.04           0.03 280.9 0 1.62 Type 2 0.9 0.02 0.78 0.06 46.20 0 0.5 0.68
Truthful L1 0.16           0.54 1.21 0.29 1.62 Type 3 0.8 0.08 0 0.11 14.74   
Truthful L2 ~Eq.            ~Eq. ~Eq. ~Eq. ~Eq. Type 4 0.7 0.06   
Equilibrium 0.16 0.08            11.09 0.22 1.62 Type 5 0.6 0 

                Type 6 0.5 0
               Type 7 0.4 0.04
               Type 8 0.3 0.04
               Type 9 0.2 0.04
             Type 10 0.1 0
              Type 11 0 0.20

Log-likelihood      -1658.39 -1739.6 -1753.54 Log-likelihood -1640.5 -1736.62 -1762.24 
BIC -1724.57     -1749.23 -1759.56 BIC -1715.1 -1747.45 -1768.26
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Table 3b. Models and Estimates for Kagel and Levin Second-Price 

Model Level-k plus equilibrium Cursed equilibrium 
 

Specification 
Subject- specific 
precision ( iλ ) 

Type-specific 
precision ( kλ ) 

Constant precision 
(λ ) 

Subject-specific precision ( iλ ) 
and fixed cursedness types 

( ))0,...9.0,1(=χ ) 

Type-specific precision 
( kλ ) 

Constant precision 
(λ ) 

 kπ̂  kπ̂  
kλ̂  kπ̂  λ̂  Types χ  

kπ̂  kχ  kπ̂  
kλ̂  kχ  kπ̂  λ̂  

Random L0 0             0 -- 0 -- Random L0 -- 0.18 -- 0.43 0 -- 0 --
Random L1 0.25             0.10 95.84 0.62 8.91 Type 1 1 0.18 0.86 0.27 8.89 0.79 0.43 2.95
Random L2 0.14             0.27 2.50 0.11 8.91 Type 2 0.9 0.11 0.18 0.30 5.35 0.33 0.15 2.95
Truthful L1 ~R.L2 ~R.L2 ~R.L2 ~R.L2 ~R.L2 Type 3 0.8 0.04    0 0.42 2.95 
Truthful L2 0.32           0.33 6.10 0.27 8.91 Type 4 0.7 0   
Equilibrium 0.29 0.30            49.76 0 8.91 Type 5 0.6 0.07

              Type 6 0.5 0.04
              Type 7 0.4 0.04
              Type 8 0.3 0
              Type 9 0.2 0.11
              Type 10 0.1 0.07
              Type 11 0 0.18

Log-likelihood       -920.68 -967.80 -973.81 Log-likelihood -950.91 -987.48 -995.59
BIC -955.01     -976.39 -979.17 BIC -992.76 -997.14 -1003.1
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Table 3c. Models and Estimates for Avery and Kagel Second-Price 

Model Level-k plus equilibrium Cursed equilibrium 
 

Specification 
Subject- specific 
precision ( iλ ) 

Type-specific 
precision ( kλ ) 

Constant precision 
(λ ) 

Subject-specific precision ( iλ ) 
and fixed cursedness types 

( ))0,...9.0,1(=χ ) 

Type-specific precision 
( kλ ) 

Constant precision 
(λ ) 

 kπ̂  kπ̂  
kλ̂  kπ̂  λ̂  Types χ  

kπ̂  kχ  kπ̂  
kλ̂  kχ  kπ̂  λ̂  

Random L0 0             0 -- 0 -- Random L0 -- 0.13 -- 0 -- -- 0 --
Random L1 0.65             0.56 12.77 0.94 4.3 Type 1 1 0.43 1 0.37 9.67 0.8 1 2.77
Random L2 0.09       0 -- 0.06 4.3 Type 2 0.9 0 0.73 0.08 161.45  
Truthful L1 ~R. L2 ~R. L2 ~R. L2 ~R. L2 ~R. L2 Type 3 0.8 0 0.63 0.55 1.33    
Truthful L2 0.22             0.05 1000  0 4.3 Type 4 0.7 0.13
Equilibrium 0.04               0.39 0.63 0 4.3 Type 5 0.6 0.04

               Type 6 0.5 0.09
               Type 7 0.4 0.04
               Type 8 0.3 0
               Type 9 0.2 0.04
              Type 10 0.1 0.04
               Type 11 0 0.04

Log-likelihood       -668.23 -702.34 -710.53 Log-likelihood -677.65 -706.00 -715.77
BIC -696.05     -710.58 -715.68 BIC -714.13 -715.27 -719.89
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Table 3d. Models and Estimates for Goeree, Holt, and Palfrey First-Priceb

Model Level-k plus equilibrium QRE 
 

Specification 
Subject- 
specific 

precision 
( iλ ) 

Type-specific 
precision ( kλ ) 

Constant 
precision (λ ) 

Subject-specific precision ( iλ )  Type specific 
precision ( kλ ) 

Constant precision 
(λ ) 

 kπ̂  kπ̂  
kλ̂  kπ̂  λ̂  Types kπ̂  

kλ̂  kπ̂  λ̂  kπ̂  
Random L0 0          0 -- 0 -- Random L0 0 -- 0 -- 0
Random L1 0.62         0.98 8.54 0.99 8.71 ˆ 0λ >  1 2.74 0.80 3.14 1
Random L2 0.04          0 -- 0 8.71  9.63 0.20
Truthful L1 0.14           0 -- 0 8.71
Truthful L2 0.01           0 -- 0 8.71
Equilibrium 0.19          0.02 29.84 0.01 8.71

            
            
            

Log-likelihood     -568.83 -642.91 -644.12 Log-likelihood -624.28 -684.81 -688.44 
BIC -678.12      -655.92 -651.93 BIC -728.36 -688.71 -689.74

bThis summary pools GHP's results for the low-  and high-value treatments. 
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