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Abstract
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Introduction

What accounts for the sharp spike in the unemployment rate during recessions? The answer

traditionally given by macroeconomists was that falling product demand leads firms to lay off

workers, with these inflows into unemployment a key driver of economic downturns. That view

has been challenged by Hall (2005), Shimer (2012) and Hall and Schulhofer-Wohl (2017), who

argued that cyclical fluctuations in the unemployment rate are instead primarily driven by declines

in the job-finding rates for unemployed workers. By contrast, Yashiv (2007), Elsby, Michaels and

Solon (2009), Fujita and Ramey (2009), and Fujita (2011) concluded that flows into unemployment

are as important or more important than outflows as cyclical drivers of the unemployment rate.

One factor that has been missing in this debate is the role of unobserved heterogeneity. When

there are differences across workers, changes in inflows into unemployment change the composition

of the pool of unemployed and thereby change the outflow rate. Suppose for example that 80%

of the newly unemployed (whom we call type H) have unemployment-continuation probability of

35% and 20% (type L) have probability of 85%. If we look at how many of those individuals are

still unemployed n months later, type L make up a larger fraction of the remaining unemployed.

This will cause the observed average continuation probability of the group to rise as a function of

n (see Figure 1). If in the current month there is an increase in the number of type L job losers,

they are likely to stay unemployed longer and will bring down the average job-finding probability

in future months.

This paper develops a full dynamic model of the interaction between unemployment inflows,

outflows, and unobserved heterogeneity. Developing a complete statistical model allows us to

measure formally the fraction of the error in forecasting unemployment at any horizon that is

attributable to inflows and outflows. Our framework further allows us to decompose the forecast

error associated with any given historical episode into the respective contributions of inflows and

outflows. All this is new to this literature.

Darby, Haltiwanger and Plant (1986) concluded that changes in the composition of inflows are

indeed the cause of changes in future outflow rates, a hypothesis that Baker (2012) and others

have come to refer to as the “heterogeneity hypothesis.” A large literature has examined the

heterogeneity hypothesis. But all of the previous papers in this literature posed the question in
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terms of differences in observable characteristics.1

Why is unobserved heterogeneity important? Consider this striking feature of the data: on

average, someone who is newly unemployed has less than a 50% chance of still being unemployed

next month. By contrast, someone who has been unemployed for 4 months or longer has an 80%

chance of remaining unemployed next month.2 The newly unemployed during the Great Recession

had better job-finding prospects than did the long-term unemployed during the strongest economic

boom. These huge differences in unemployment-continuation probabilities remain regardless of the

observable characteristics on which one may try to condition.3 Any pool of unemployed individuals

who share any given observed characteristics is going to become increasingly represented by those

within that group who have higher ex ante continuation probabilities the longer the period of time

for which the individuals have been unemployed.

In addition to unobserved heterogeneity, the high unemployment-continuation probabilities of

the long-term unemployed could arise if the experience of being unemployed for a longer period

of time directly changes the employment probability for a fixed individual, an effect referred to as

“genuine duration dependence.” A large literature has discussed the difficulty of distinguishing

genuine duration dependence from unobserved heterogeneity.4 A common approach has been to

assume that there is no variation over time in unobserved heterogeneity, in which case identification

can be achieved by observing repeated spells of unemployment for a given individual (Honoré,1993).

However, unobserved heterogeneity arises in part from factors such as specific skill sets. The

demand for these varies over time with changes in technology and business conditions. Modeling

this requires allowing the distribution characterizing unobserved heterogeneity to be time varying.

Our paper uses a proportional hazards specification in which the identifying assumptions are that

genuine duration dependence does not change over time while the distribution characterizing un-

1Baker (1992), Shimer (2012), and Kroft, et al. (2016) found that observed variables contributed little to variation
over time in long-term unemployment rates, while Aaronson, Mazumder and Schechter (2010), Bachmann and Sinning
(2012), Barnichon and Figura (2015), Hall (2014), and Hall and Schulhofer-Wohl (2017) documented important
differences across observable characteristics. Elsby, Michaels and Solon (2009) found that incorporating observable
heterogeneity reduced the imputed role of cyclical variation in unemployment exit rates.

2Let Ũn.+
t denote the seasonally unadjusted number of individuals in month t who report having been unemployed

for n months or longer at that time. The seasonally unadjusted monthly unemployment-continuation probability for
the long-term unemployed was calculated as p̃4.+t = (Ũ7.+t+3/Ũ

4.+
t )1/3. The probability for the newly unemployed was

calculated as the solution to p̃1t (1 + p̃
1
t ) = Ũ

2.3
t+1/Ũ

1
t .

3For example, for individuals who gave involuntary permanent separation as the reason for unemployment, the
average unemployment-continuation probability since 1994:M1 (the sample for which this finer separation exists) was
70% for the newly unemployed and 84% for the long-term unemployed.

4See for example Heckman and Singer (1984a,b), Honoré (1993), and van den Berg (2001).
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observed heterogeneity evolves over time according to a simple process. Our paper is the first to

describe cyclical changes in unobserved heterogeneity and to analyze their importance for unem-

ployment dynamics. Although our approach relies on some parametric assumptions, we will show

that it provides a natural, compelling, and robust way of interpreting the observed data.

Section 1 introduces the data that we will use in this analysis based on the number of job-seekers

each month who report they have been looking for work at various search durations. We describe

the accounting identities that will later be used in our full dynamic model and use average values

of observable variables over the sample to explain the intuition behind our main results.

In Section 2 we extend this framework into a full dynamic model in which we represent het-

erogeneity in terms of two different types of workers at any given date. Type H workers have a

higher ex ante probability of exiting unemployment than type L workers. Our model postulates

that for each type, the number of newly unemployed individuals as well as the probability of ex-

iting unemployment at each date evolve according to unobserved random walks. We also allow

for nonmonotonic time-invariant genuine duration dependence. We show how to approximate the

likelihood function for the observed unemployment data and form an inference about the state

variables at every date using an extended Kalman filter.5

Empirical results are reported in Section 3. We find that variation over time in the inflows

of the newly unemployed are more important than outflows in accounting for errors in predicting

aggregate unemployment at all horizons. Inflow and outflow probabilities for type L workers are

more important than those for typeH workers, and account for 90% of the uncertainty in predicting

unemployment 2 years ahead. In recessions since 1990, shocks to the inflows of type L workers

were the most important cause of rising unemployment during the recession.

Section 4 provides corroborating evidence based on reduced-form VARs. We first use a bivariate

VAR for inflows and outflows to show that a great deal of the observed variation in outflows could

have been predicted on the basis of earlier values of inflows. We further show that changes in the

composition of inflows have additional predictive power for future outflows, and demonstrate that

5Our approach is closely related to that in Hornstein (2012), who used dynamic accounting identities to interpret
aggregate panel dynamics in a similar way to that in our paper. However, Hornstein’s model was unidentified— in
terms of the discussion of identification in Section 1, his model has 5 unknowns and only 4 equations. As a result, his
specification did not allow him to calculate the likelihood function for the observed data or forecasts of unemployment
or duration. By contrast, our model generates values for all these along with the optimal statistical inference about
the various shocks driving the observed dynamics of unemployment.
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changes in the level and composition of inflows account for most of the increase in unemployment

during the Great Recession.

In Section 5 we investigate the robustness of our approach to various alternative specifications,

including alternative methods to account for the change in the CPS questionnaire in 1994, allowing

for correlation between the innovations of the underlying structural shocks in our model, and the

possible effects of time aggregation. While such factors could produce changes in some of the details

of our inference, our overall conclusions (summarized in Section 6) appear to be quite robust.

1 Observable implications of unobserved heterogeneity

The purpose of this section is to use steady-state calculations to explain how our approach allows

for both unobserved heterogeneity and genuine duration dependence and provide the intuition

behind some of the results that will be found in Section 3 using our full dynamic model.

The Bureau of Labor Statistics reports for each month t the number of working-age individuals

who have been unemployed for less than 5 weeks. Our baseline model is specified at the monthly

frequency, leading us to use the notation U1t for the above BLS-reported magnitude, indicating

these individuals have been unemployed for 1 month or less as of month t. BLS also reports the

number who have been unemployed for between 5 and 14 weeks (or 2-3 months, denoted U2.3t ),

15-26 weeks (U4.6t ) and longer than 26 weeks (U7.+t ). One reason the BLS reports the data in

terms of these duration aggregates is to try to minimize the role of measurement error by averaging

within broad groups. We will do the same. Our theoretical model will generate a prediction of the

number of unemployed at every monthly duration, but we will only use the model’s implications

about broad duration aggregates for purposes of calculating the likelihood function of the observed

data.6 Notwithstanding, when reporting on long-term unemployment, many BLS publications7

further break down the U7.+t category into those unemployed with duration 7-12 months (U7.12t )

and those with duration longer than 1 year (U13.+t ). Since long-term unemployment is also a major

interest in our investigation, we have used the raw CPS micro data from which the usual publicly

6 In January 2011 the BLS changed the maximum allowable unemployment duration response from 2 years to 5
years. Although this affected the BLS’s own estimate of average duration of unemployment, it did not change the
total numbers unemployed by the duration categories we use. This is another reason to favor our approach, which
relies only on aggregated data.

7See for example Ilg and Theodossiou (2012).
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reported aggregates are constructed to create these last two series for our study.8

The average values over the full sample of these five observed variables on which our inference

will be based are reported in the first row of Table 1. Our focus is on the following question— of

those individuals who are newly unemployed at time t, what fraction will still be unemployed at

time t+ k? We presume that the answer to this question depends not just on aggregate economic

conditions over the interval (t, t+ k) but also on the particular characteristics of those individuals.

Let wit denote the number of people of type i who are newly unemployed at time t. Thus

U1t =
I�

i=1
wit. (1)

We define Pit(k) as the fraction of individuals of type i who were newly unemployed in t − k and

are still unemployed at t. The total number of individuals who have been unemployed for exactly

k + 1 months at time t is given by

Uk+1t =
I�

i=1
wi,t−kPit(k). (2)

We first examine what we could infer about unobserved types based only on the historical

average values Ū1, Ū2.3, Ū4.6, Ū7.12, and Ū13.+, and then will consider what additional information

can be learned from variation over time in these five variables.

1.1 Inference using historical average values alone

Suppose for purposes of this section only that the number of newly unemployed individuals of

each type remained constant over time at values wi and also that the probabilities that individuals

of each type remain unemployed in any given month are constants pi for i = 1, ..., I. Consider

first the case when there is only one type of worker (I = 1). Under these assumptions (2) would

simplify to Uk+1 = wpk. Given the average observed values for Uk for two different values of k,

we could then estimate the values of w and p, for example, ŵ = Ū1 and p̂ = Ū2/Ū1. As noted

above, we regard aggregate measures like U2.3t as more reliable than a specific estimate such as U2t

that could be constructed from CPS micro data, and therefore use instead p̂+ p̂2 = Ū2.3/Ū1. The

8See Appendix A for further details of data construction.
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estimated values for ŵ and p̂ that result from this equation are reported in row 2 of Table 1 and

plotted in Panel A of Figure 2. Most of the newly unemployed find jobs quickly (p̂ = 0.48). But

if workers who had been unemployed for more than 3 months also had this same job-finding rate,

there would be far fewer workers in the 4-6 month, 7-12, and 13+ categories than we observe in

the data, as represented by the black circles in Figure 2.9

Consider next the case when there are I = 2 types of workers. In this case (2) becomes

Uk+1 = wLp
k
L +wHp

k
H . (3)

This equation describes the average number of individuals who have been unemployed for k + 1

months as the sum of two different functions of k, with each of the two functions being fully

characterized by two parameters (wi and pi). The solid red curve in Panel B of Figure 2 plots

the first function (wLp
k
L), while the dotted blue curve plots the sum. Given observed values of

Ū1, Ū2.3, Ū4.6, and Ū7.12, we could estimate the four parameters (wL, wH , pL, pH) to match exactly

those four observations, as in Panel B of Figure 2 and row 3 of Table 1.10 These estimates imply

that typeH individuals comprise 78% of the initial pool of unemployed U1. But the unemployment-

continuation probability for type H individuals (pH = 0.36) is much lower than for type L (pL =

0.85). Because the type H are likely to find jobs relatively quickly, there are very few type H

individuals included in Un for durations n beyond 4 months, as seen in Panel B of Figure 2. The

key feature of the observed data (represented by the black dots in Figure 2) that gives rise to this

conclusion is the fact that the numbers drop off very quickly at low durations (as most of the type

H workers find jobs), but after that much more slowly (as the remaining type L workers continue

searching).

What about when I > 2? In this case we can still get a useful characterization of heterogeneity

across workers by separating them into two broad types. Specifically, for any true values for wi

and pi for i = 1, ..., I > 2 and any observed 4 durations k1, k2, k3, k4, we can find values for the 4

9The black circles are used as a visual device to summarize the interval averages from row 1 of Table 1. Specifically,
they are the implied values at the particular durations 1, 3, 5, 9.5, and 15 months from a flexible functional form
(equation (6)) that could predict numbers for every duration and whose predictions exactly match the observed
average values for the five observations in row 1 of Table 1.

10Specifically, the four functions are obtained from equations (10)-(13) below for the special case when the left-hand
variables represent historical averages and on the right-hand side we set wit = wi, Pit(k) = p

k
i , and r

x
t = 0.
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parameters (ŵL, ŵH , p̂L, p̂H) to approximate the cross-sectional distribution as the solutions to

ŵLp̂
k
L + ŵH p̂

k
H =

I�

i=1
wip

k
i for k = k1, k2, k3, k4. (4)

Note that if we only observed 4 duration categories, a mixture of two types is a fully general char-

acterization of heterogeneity in the sense that it can completely describe all the features observable

in the data and provides the identical fit to the observed data as would a specification with I > 2.11

Given measurement error in the CPS data, we do not believe we can reliably use more than 5

observed duration categories, meaning estimation of more than I = 2 types is infeasible using these

data. In other data sets and in somewhat different settings from ours, Ham and Rea (1987), Van

den Berg and van Ours (1996), and Van den Berg and van der Klaauw (2001) tested for the number

of types and found I = 2 is sufficient to capture heterogeneity in the data sets they analyzed. In

this paper we will represent heterogeneity in terms of a mixture of two types, though we view this

primarily as a convenient approximation.12

Although we did not use the fifth data point, Ū13.+, in estimating these parameters, the frame-

work generates a prediction for what that observation would be.13 This is reported in the last entry

of row 3 of Table 1 to be 621,000 which is quite close to the observed value of 664,000. The feature

of the data that produced this result is that the observed numbers fall off at close to a constant

exponential rate once we get beyond 4 months, as the simple mixture model would predict.

Alternatively, we could equally well describe the observed averages using a model in which there

is only genuine duration dependence (GDD). Suppose that an individual who has been unemployed

for τ months has a probability p(τ) of still being unemployed the following month. We can always

write this in the form p(τ) = exp(− exp(dτ )) for dτ an arbitrary function of τ . For example, we

could fit the 5 observations in the first row of Table 1 perfectly if we used w = Ū1 along with a

11This result can be viewed as an illustration of Theorem 3.1 in Heckman and Singer (1984a).
12 If in a true population for which I > 2 there is an increase in the level of inflows with no change in outflows

or relative composition (w∗i = λwi and p
∗
i = pi for i = 1, ..., I), then a 2-mixture approximation would correctly

conclude that only the level of inflows has changed with no change in composition or in outflows; that is, equation (4)
would have the solution ŵ∗i = λŵi and p̂

∗
i = p̂i for i = H,L. Likewise if there is a proportional change in all outflow

probabilities with no change in composition or inflows in a population mixture of I types (w∗i = wi and p
∗
i = λpi for

i = 1, ..., I), the 2-type approximation (4) would correctly conclude that ŵ∗i = ŵi and p̂
∗
i = λp̂i for i = H,L since for

each k the left and right sides of the equation are then multiplied by λk.
13Following Hornstein (2012) we truncate all calculations at 48 months in equation (14). Most of the models

considered in this paper imply essentially zero probability of an unemployment spell exceeding 4 years in duration.
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4-parameter representation for dτ such as14

dτ = δ0 + δ1τ + δ2τ
2 + δ3τ

3. (5)

A large number of empirical studies have assumed Weibull durations, essentially corresponding to

δ2 = δ3 = 0. The values for δj that would exactly fit the historical averages are reported in row 4 of

Table 1 and the implied function p(τ) is plotted in panel A of Figure 3. Note that in contrast to the

popular Weibull assumption and most theoretical models, the fitted function (5) is not monotonic.

If we were willing to restrict the functional form of GDD to the Weibull case, we could also

interpret the historical averages as resulting from a combination of unobserved heterogeneity and

GDD. Suppose we assumed proportional hazards15 and represent the probability that an individual

of type i who has been unemployed for τ months will still be unemployed the following month as

pi(τ) = exp{− exp[xi + dτ ]} (6)

with implied unemployment counts

Uk+1 =
�
i=L,H wipi(1)pi(2) · · · pi(k). (7)

The value of xi for i = H,L reflects cross-sectional heterogeneity in unemployment-continuation

probabilities and dτ captures genuine duration dependence. As noted by Katz and Meyer (1990),

this double-exponential functional form is a convenient way to implement a proportional hazards

specification so as to guarantee a positive hazard16, a feature that will be very helpful for the

generalization in the following section in which we will allow for variation of xit over time. Sup-

14Specifically, we calculate Uk+1 = wp(1)p(2) · · · p(k) and find the values of w, δ0, δ1, δ2, δ3 to match the observed
values in row 1 of Table 1.

15Alvarez, Borovičková, and Shimer (2016) concluded that proportional hazards is not consistent with the observed
data. Their identifying assumption was that the heterogeneous characteristics of individual i do not change even if
the individual is observed in different decades. But employers’ demands for the specific skills of individual i surely
change over time. For example, the demand for carpenters varies over housing booms and busts. By contrast,
our specification in the following section allows both an individual’s identification with a particular group as well as
the group’s average unemployment-continuation probabilities to be continually changing, an approach that gives a
proportional-hazards specification considerably more flexibility.

16Consider an individual i who has been unemployed for τ months as of the beginning of month t and let the
hazard within month t be λi,t,τ = exp(xit) exp(dτ ) where the exponentiation is a device to guarantee that the hazard
is positive for any xit and dτ . The meaning of the hazard is that if we divide month t into n subintervals, the
probability that individual i exits unemployment in the interval (s, s + 1/n) is λi,t,τ/n + o(1/n) from which the
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pose we were willing to model GDD using a one-parameter function, say dτ = δ(τ − 1). Then

we could find a value for the 5 parameters wL, wH , xL, xH , δ so as to fit the 5 time-series averages

Ū1, Ū2.3, Ū4.6, Ū7.12, and Ū13.+ exactly. These values are reported in row 5 of Table 1. The implied

value for δ is close to zero, and the other parameters are close to those for the pure cross-sectional

heterogeneity specification of row 3. Thus for this particular parametric example, we would con-

clude that cross-sectional heterogeneity is much more important than genuine duration dependence

in accounting for why observed unemployment-continuation probabilities rise with duration of un-

employment. The feature of the data that gave rise to this conclusion is that the 4-parameter pure

heterogeneity model gives a very good prediction of all five observations.

1.2 Inference using changes over time

Next consider what we can discover using time-series variation in the observed aggregates.

Suppose we repeat the above exercises only using data around the Great Recession. Row 7 of Table

1 and Panel C of Figure 2 show the results if we tried to explain these numbers entirely in terms of

unobserved heterogeneity. The implied value for the unemployment-continuation probability for

type L individuals, pL = 0.89, is only slightly higher than the value 0.85 fit to the full historical

sample. The reason is that the function Ūn drops off after n = 4 months at only a slightly slower

rate than it did historically. However, we would infer that the inflow of new type L individuals,

wL = 1, 065 is much higher than the historical average value of 690, in order to account for the

fact that Ūn is now dropping off after 4 months from a much higher base. We again find that the

4-parameter model does a reasonable job of anticipating the fifth unused data point.

If we instead tried to explain the recent averages purely in terms of GDD, we would use the

parameter values from row 8 of Table 1. These again could fit the data perfectly, albeit relying on a

function with odd oscillations (see panel B of Figure 3). Although it is mathematically possible to

describe the data with this equation, it would be difficult to motivate a theory of why GDD should

have changed shape in this way. It requires for example a steeper initial slope to the curve in panel

B of Figure 3 when economic conditions worsened, corresponding to the claim that the scarring

probability that the individual is still unemployed at the beginning of month t+ 1 is

lim
n→∞

[1− λi,t,τ/n+ o(1/n)]
n = exp(−λi,t,τ) = exp[− exp(xit) exp(dτ )].
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associated with unemployment is more severe during a recession. But this is directly contradicted

by the experimental finding of Kroft, Lange, and Notowidigdo (2013) that potential employers pay

less attention to applicants’ duration of unemployment when the labor market is weaker.

These concerns notwithstanding, it is possible to allow for both an unrestricted nonmonotonic

functional form for GDD as well as unobserved heterogeneity once we take account of changes over

time. Suppose for example we were to pool the observations from the first row of Table 1 (the

full-sample averages) together with those in row 6 (behavior around the Great Recession), giving us

a total of 10 observations. If we took the view that the unobserved heterogeneity parameters may

have changed over the cycle but that the GDD function dτ in (6) is time-invariant, we would then

be able to generalize dτ to be a function of τ determined by two parameters, say δ1 and δ2, and

use the ten observations to infer ten unknowns (values of wH , wL, xH , xL for the two subsamples

along with the parameters δ1 and δ2). Generalizing a little further, if we use observations across

4 different subsamples we could infer values of wH , wL, xH , xL for each subsample along with a

completely unrestricted nonmonotonic GDD function as in (5). In fact, if we were able to use

all five observations on U1t , U
2.3
t , U

4.6
t , U

7.12
t , U13.+t for every date t, we could even allow for some

modest variation over time in the GDD function dτt, and indeed such a specification will be included

in the general results reported in Section 5.

We have used steady-state calculations in this section primarily to explain the intuition for where

the identification is coming from. Nevertheless, it turns out that the key conclusions of the above

steady-state calculations— that the majority of newly unemployed individuals can be described as

type H who find jobs quickly, that dynamic sorting based on unobserved heterogeneity appears

to be much more important than genuine duration dependence in explaining why a longer-term

unemployed individual is less likely to exit unemployment, and that the key driver of economic

recessions is an increased inflow of newly unemployed type L individuals— will also turn out to

characterize what we will find as we now turn to a richer dynamic model.

2 Dynamic formulation

Our dynamic model is a generalization of (6) in which outflow probabilities for each type of

individual change over time. We assume that for type i workers who have already been unemployed

10



for τ months as of time t− 1, the fraction who will still be unemployed at t is given by

pit(τ) = exp[−exp(xit + dτ )] for τ = 1, 2, 3, ... (8)

where dτ is a third-order polynomial as in equation (5).17 We also allowed inflows for each

type to vary over time, letting wit change each month. Note the identifying assumption is that

the contribution of genuine duration dependence dτ , while of the completely general functional

form used in Figure 3, does not vary over time.18 We now specify a state-space model where

the dynamic behavior of the observed vector yt = (U
1
t , U

2.3
t , U

4.6
t , U

7.12
t , U13.+t )′ is determined as a

nonlinear function of latent dynamic variables— the inflows and outflow probabilities for unemployed

individuals with unobserved heterogeneity. Due to the nonlinear nature of the resulting model, we

draw inference on the latent variables using the extended Kalman filter.

2.1 State-space representation

Our baseline model assumes that the elements of ξt = (wHt, wLt, xHt, xLt)
′ each evolve as

random walks, e.g.,

wHt = wH,t−1 + ε
w
Ht
. (9)

A random walk is the typical assumption in dynamic latent-variable or time-varying-parameter

models and has proven to be a flexible and parsimonious way to adapt inference to a variety of

sources of changing conditions or possible structural breaks.19 Note also that equation (9) is

an unambiguous improvement over the steady-state calculations described in the previous section

(and invoked in the majority of previous studies in this literature), and includes the steady-state

formulation as a special case when the variance of εwHt is zero. We have also experimented with a

model in which we assume AR(1) dynamics for the latent variables with autoregressive coefficients

17We found that the numerical search to find the maximum likelihood estimates performed best when we expressed
this function in terms of scaled Chebyshev polynomials:

dτ = δ̃1((τ − 1)/48) + δ̃2[2((τ − 1)/48)
2
− 1] + δ̃3[4((τ − 1)/48)

3
− 3((τ − 1)/48)].

18 In fact our approach can also allow for modest time variation. In the robustness analysis in Section 5 we replace
dτ with dtτ which changes with t in a restricted way.

19See for example Baumeister and Peersman (2013).
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estimated by maximum likelihood. We found the coefficient estimates to be very close to unity

and the resulting inference very similar to those for our baseline random walk specification.

The intuition for how the extended Kalman filter works is as follows. We will have formed an

inference about the value of ξt based on the data we observed through date t. For example, we

could use the steady-state calculations of Section 2 on a small initial sample of observed y1, .., yt0to

form an initial inference about wH,t0 , wL,t0 , xH,t0 , xL,t0 , which would imply values for Unt0 for every

n from equation (3) based on the average values for that initial sample.20 A random walk means

that we enter period t+ 1 initially expecting it to look like t. This would imply predicted values

for the five variables observed at t+1. If U13.+t+1 is higher than predicted, it would be an indication

that pL has gone up (since there are essentially no type H individuals included in U12.+t ). If U2.3t+1 is

higher than predicted even with this higher value for pL,t+1 it means that pH,t+1 has likely gone up

as well. If U1t+1 is higher than U
1
t , we know that either wL or wH must have gone up. Given the 5

new observations in yt+1, we have more than enough information to update an inference about all

4 elements of ξt+1. Proceeding sequentially through the observed sample in this way, we can form

an inference about ξt for every date and at the same time improve our inference about the previous

history. The final revised inference about the state at date t based on seeing the full sample of

data through date T is referred to as the smoothed inference, denoted ξ̂t|T .

Another key detail of our approach is that we allow for the possibility that unemployment counts

are all contaminated by error. The durations in CPS are in part self-reported and respondents

make a variety of errors. We assume that each element of yt has an associated measurement

error rt = (r
1
t , r

2.3
t , r

4.6
t , r

7.12
t , r13.+t )′. Our identification assumption is that the measurement error

is white noise, meaning that the inference is only adjusted for changes in the observed variables

that prove to be persistent. The observation equations can then be written as follows,

U1t =
�

i=H,L
wit + r

1
t (10)

U2.3t =
�

i=H,L
[wi,t−1Pit(1) +wi,t−2Pit(2)] + r

2.3
t (11)

20Our estimates below start with t0 = 1976:M1 and set ξ̂t0|t0 to the solution to the steady-state model over the
period 1972:M1-1976:M1. Our approach allows the true value ξt0 to differ from this estimate with a very large
variance, so that the initial estimate has a very limited contribution. See Appendix B for details.
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U4.6t =
�

i=H,L

5�

k=3

[wi,t−kPit(k)] + r
4.6
t (12)

U7.12t =
�

i=H,L

11�

k=6

[wi,t−kPit(k)] + r
7.12
t (13)

U13.+t =
�

i=H,L

47�

k=12

[wi,t−kPit(k)] + r
13.+
t (14)

Pit(j) = pi,t−j+1(1)pi,t−j+2(2)...pit(j). (15)

We can arrive at the likelihood function for the observed data {y1, ..., yT} by assuming that

the measurement errors are independent Normal,21 rt ∼ N(0, R), with R = diag(R21, R
2
2.3, R

2
4.6,

R27.12, R
2
13.+) whose diagonals are the variances of r

1
t , r

2.3
t , r

4.6
t , r7.12t and r13.+t respectively.

Let ξt be the vector (wLt, wHt, xLt, xHt)
′ and εt = (εwLt, ε

w
Ht, ε

x
Lt, ε

x′
Ht)

′. Our assumption that

the latent factors evolve as random walks would be written as

ξt����
4×1

= ξt−1 + εt����
4×1

(16)

for εt a (4× 1) vector with variance matrix Σ = diag((σwL)
2, (σwH)

2, (σxL)
2, (σxH)

2). In Section 5 we

will also report results for a specification in which the shocks are contemporaneously correlated.

Since the measurement equations (10)-(14) are a function of {ξt, ξt−1, ..., ξt−47}, the state equa-

tion should describe the joint distribution of ξt’s from t− 47 to t, where I and 0 denote a (4× 4)

identity and zero matrix, respectively:






ξt

ξt−1

ξt−2
...

ξt−46

ξt−47






� �� �
192×1

=






I����
4×4

0����
4×4

0 0 ... 0 0 0

I 0 0 0 ... 0 0 0

0 I 0 0 ... 0 0 0

...
...

...
... ...

...
...

...

0 0 0 0 ... I 0 0

0 0 0 0 ... 0 I 0






� �� �
192×192






ξt−1

ξt−2

ξt−3
...

ξt−47

ξt−48






� �� �
192×1

+






εt����
4×1

0����
4×1

0

...

0

0






� �� �
192×1

. (17)

21The identical Kalman filter equations that emerge from an assumption of Normality can also be motivated using
a least-squares criterion; see for example Hamilton (1994, Chapter 13).
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2.2 Estimation

Our system takes the form of a nonlinear state space model in which the state transition

equation is given by (17) and observation equation by (10)-(14) where Pit(j) is given by (15) and

pit (τ) by (8). Our baseline model has 12 parameters to estimate, namely the diagonal terms in the

variance matrices Σ and R and the parameters governing genuine duration dependence, δ1, δ2 and

δ3. Because the observation equation is nonlinear in xit, the extended Kalman filter can be used to

approximate the likelihood function for the observed data {y1, ..., yT} and form an inference about

the unobserved latent variables {ξ1, ..., ξT}, as detailed in Appendix B. Inference about historical

values for ξt provided below correspond to full-sample smoothed inferences, denoted ξ̂t|T .

3 Results for the baseline specification

We estimated parameters for the above nonlinear state-space model using seasonally adjusted

monthly data on yt = (U1t , U
2.3
t , U

4.6
t , U

7.12
t , U13.+t )′ for t = January 1976 through June 2017. Figure

4A plots smoothed estimates for pit(1), the probability that a newly unemployed worker of type

i at t − 1 will still be unemployed at t. These average 0.35 for type H individuals and 0.82 for

type L individuals, close to the average calculations of 0.36 and 0.85, respectively, that we arrived

at in row 2 of Table 1 when we were explaining the intuition behind our approach using steady-

state calculations. The probabilities of type H individuals remaining unemployed rise during the

early recessions but are less cyclical in the last two recessions. By contrast, the continuation

probabilities for type L individuals rise in all recessions. The gap between the two probabilities

increased significantly over the last 20 years.

Figure 4B plots inflows of individuals of each type into the pool of newly unemployed. Type

H workers constitute 77% on average of the newly unemployed, again close to the value of 78%

expected on the basis of the simple steady-state calculations in row 5 of Table 1. Inflows of both

types increase during recessions. New inflows of type H workers declined immediately at the end

of every recession, but inflows of type L workers continued to rise after the recessions of 1990-91

and 2001 and were still at above-average levels 3 years after the end of the Great Recession. This

changing behavior of type L workers’ inflows appears to be another important characteristic of

jobless recoveries. The Great Recession is unique in that the inflows of type L workers as well as
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the continuation probabilities reached higher levels than any earlier dates in our data set.

The combined implications of these cyclical patterns are summarized in Figure 5. Before

the Great Recession, the share in total unemployment of type L workers fluctuated between 30%

and 60%, falling during expansions and rising during and after recessions. But during the Great

Recession, the share of type L workers skyrocketed to over 80%. The usual recovery pattern of a

falling share of type L workers has been very slow in the aftermath of the Great Recession.

While the inflows of type H workers show a downward trend since the 1980’s, those of type L

workers exhibit an upward trend. This difference in the low frequency movements of the two series

provides a new perspective on the secular decrease in the inflows to unemployment and the secular

rise in the average duration of unemployment. Figure 4B shows that the downward trend in the

inflows is mainly driven by type H workers. The increased share of type L inflows contributed to

the rise in the average duration of unemployment since the 1980’s. This suggests that unobserved

heterogeneity is important in accounting for low frequency dynamics in the labor market as well as

those for business cycle frequencies.

Table 2 provides parameter estimates for our baseline model. The estimated genuine duration

dependence parameters, δ̃1, δ̃2, and δ̃3 are consistent with the scarring hypothesis— the longer some-

one from either group has been unemployed, provided the duration has been 11 months or less, the

more likely it is that person will be unemployed next month. Once someone has been unemployed

for more than a year, it becomes more likely as more months accumulate that they will either find

a job or exit the labor force in any given month. This non-monotonic behavior of genuine duration

dependence is displayed graphically in Panel A of Figure 6.

As seen in Panel B of Figure 6, our estimates of genuine duration dependence imply relatively

modest changes in continuation probabilities for type L workers for most horizons. And while

the implications for long-horizon continuation probabilities for type H workers may appear more

significant, they are empirically irrelevant, since the probability that type H workers would be

unemployed for more than 12 months is so remote. To gauge the overall significance of genuine

duration dependence, we calculated the unemployment level predicted by our model for each date t

in the sample if the values of δ̃1, δ̃2, and δ̃3 were all set to zero, and found it would only be about 4%

lower on average than the value predicted by our baseline model. Thus although the values of δ̃1 and

δ̃3 are statistically significant, they play a relatively minor role compared to ex ante heterogeneity
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in accounting for differences in continuation probabilities by duration of unemployment.

3.1 Variance decomposition

Many previous studies have tried to summarize the importance of different factors in determining

unemployment by looking at correlations between the observed unemployment rate and the steady-

state unemployment rate predicted by each factor of interest alone; see for example Fujita and

Ramey (2009) and Shimer (2012). One major benefit of our framework is that it delivers a

much cleaner answer to this question in the form of variance decompositions, which measure how

much each shock contributes to the mean squared error (MSE) of an s-period-ahead forecast of a

magnitude of interest.22

Our model can be used to account for the difference between the unemployment realization at

time t + s and a forecast based on values of the state vector only through date t in terms of the

sequence of shocks between t and t+ s, denoted εt+1, εt+2, ..., εt+s. It is convenient to work with a

linear approximation to that decomposition, which we show in Appendix C takes the form

yt+s − ŷt+s|t ≃
s�

j=1
[Ψs,j(ξt, ξt−1, ..., ξt−47+j)]εt+j (18)

for Ψs,j(·) a known (5× 4)-valued function of ξt, ξt−1, ..., ξt−47+j . The mean squared error matrix

associated with an s-period-ahead forecast of yt+s is then

E(yt+s − ŷt+s|t)(yt+s − ŷt+s|t)
′ =

s�

j=1
[Ψs,j(ξt, ξt−1, ..., ξt−47+j)]Σ[Ψs,j(ξt, ξt−1, ..., ξt−47+j)]

′ (19)

=
s�

j=1

4�

m=1
Σm[Ψs,j(ξt, ξt−1, ..., ξt−47+j)em][Ψs,j(ξt, ξt−1, ..., ξt−47+j)em]

′

for em columnm of the (4×4) identity matrix and Σm the rowm, columnm element of Σ. Thus the

contribution of innovations of type L worker’s inflows (the first element of εt = (ε
w
Lt, ε

w
Ht, ε

x
Lt, ε

x
Ht)

′)

to the MSE of the s-period-ahead linear forecast error of total unemployment, ι′5yt, is given by

22Note as in Den Haan (2000) and Hamilton (forthcoming) that an s-period-ahead forecast error can be stationary
even if the unemployment rate is nonstationary, allowing us to calculate the contribution of different shocks to the
MSE at any horizon s. This is another advantage of our approach over that seen in the earlier literature.
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ι5
′
s�

j=1
Σ1[Ψs,j(ξt, ξt−1, ..., ξt−47+j)e1][Ψs,j(ξt, ξt−1, ..., ξt−47+j)e1]

′ι5 (20)

where ι5 denotes a (5 × 1) vector of ones. Note that as in the constant-parameter linear case,

the sum of the contributions of the 4 different structural shocks would be equal to the MSE of an

s-period-ahead linear forecast of unemployment in the absence of measurement error. However,

in our case the linearization is taken around time-varying values of {ξt, ξt−1, ..., ξt−47+j}. We can

evaluate equation (20) at the smoothed inferences {ξ̂t|T , ξ̂t−1|T , ..., ξ̂t−47+j|T} and then take the

average value across all dates t in the sample. This gives us an estimate of the contribution of the

type L worker’s inflows to unemployment fluctuations over a horizon of s months:

qs,1 = T
−1

T�

t=1
ι5
′
s�

j=1
Σ1[Ψs,j(ξ̂t|T , ξ̂t−1|T , ..., ξ̂t−47+j|T )e1][Ψs,j(ξ̂t|T , ξ̂t−1|T , ..., ξ̂t−47+j|T )e1]

′ι5. (21)

Consequently qs,1/
�4
m=1 qs,m would be the ratio of the first factor’s contribution to unemployment

volatility at horizon s.

Figure 7 shows the contribution of each factor to the mean squared error in predicting overall

unemployment as a function of the forecasting horizon. If one is trying to forecast unemployment

one month ahead, uncertainty about future inflows of type H and type L workers are equally

important. However, as one looks farther into the future, the single most important source of

uncertainty becomes inflows of new type L workers, followed by uncertainty about their outflows.

Much of the MSE associated with a 2-year-ahead forecast of unemployment comes from not knowing

when the next recession will begin or the current recession will end. For this reason, the MSE

associated with 2-year-ahead forecasts is closely related to what some researchers refer to as the

“business cycle frequency” in a spectral decomposition.23 We conclude that type L inflows are the

most important factor in unemployment dynamics at the business-cycle frequency.

Panel B of Figure 7 breaks these contributions separately into inflows and outflows. Both

inflows and outflows are important. Inflows account for about 60% of the MSE in predicting

unemployment for any forecasting horizon. We conclude that inflows are the most important

factor in the variability of unemployment at every frequency.

23See Hamilton (forthcoming) for discussion of why the error associated with a two-year-ahead forecast might be
interpreted as the business cycle component of the series.

17



3.2 Historical decomposition

A separate question of interest is how much of the realized variation over some historical episode

came from particular structural shocks. As in (18) our model implies an estimate of the contribution

of shocks to a particular observed episode, namely

yt+s − ŷt+s|t ≃
s�

j=1
[Ψs,j(ξ̂t|T , ξ̂t−1|T , ..., ξ̂t−47+j|T )]ε̂t+j|T (22)

where ε̂t+j|T = ξ̂t+j|T − ξ̂t+j−1|T . From this equation, we can estimate for example the contribution

of εwL,t+1, ε
w
L,t+2, ..., ε

w
L,t+s (the shocks to wL between t + 1 and t + s) to the deviation of the level

of unemployment at t+ s from the value predicted on the basis of initial conditions at t:

ι5
′
s�

j=1
[Ψs,j(ξ̂t|T , ξ̂t−1|T , ..., ξ̂t−47+j|T )]e1ε̂

′
t+j|T e1. (23)

Figure 8 shows the contribution of each component to the realized unemployment rate in the last

five recessions. In each panel, the solid line (labeled Ubase) gives the change in the unemployment

rate relative to the value at the start of the episode that would have been predicted on the basis

of initial conditions. Typically an increase in the inflow of type L workers (whose contribution to

total unemployment is indicated by the starred red curves) is the most important reason that un-

employment rises during a recession. A continuing increase of these inflows even after the recession

was over was an important factor in the jobless recoveries from the 1990 and 2001 recessions.

During the first 8 months of the Great Recession, changes in inflows and outflows of type L

individuals were of equal importance in accounting for rising unemployment. But our model

concludes that new inflows of type L individuals were the most important factor contributing to

rising unemployment after July of 2008.

4 Corroboration using other data sources and methods

In this section we review in evidence that has led some researchers to conclude that inflows

are unimportant, and explain why we believe that conclusion is mistaken. The solid black line in

Figure 9 plots the unemployment rate ut during the Great Recession. In steady state this would
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be related to the inflow rate nt and outflow rate ot by
24

ut ≃
nt

nt + ot
. (24)

As in Shimer (2012) we can ask what the path of unemployment since 2007:Q4 would have been if

ot had stayed fixed at its 2007:Q4 value while nt varied as actually observed. This is plotted as

the dotted black line in Figure 9, and seems to suggest that new inflows into unemployment had

little to do with the Great Recession. Hall and Schulhofer-Wohl (2017) reached a similar conclusion

using an expression describing unemployment as a function of current outflows and past inflows.

The first concern we have with this kind of exercise is that an increase in inflows statistically

predicts future changes in the outflow rate. Consider a bivariate VAR for (∆ot,∆nt):

∆ot = co + φoo,1∆ot−1 + · · ·+ φoo,8∆ot−8 + φon,1∆nt−1 + · · ·+ φon,8∆nt−8 + εot (25)

∆nt = cn + φno,1∆ot−1 + · · ·+ φno,8∆ot−8 + φnn,1∆nt−1 + · · ·+ φnn,8∆nt−8 + εnt. (26)

The null hypothesis that φon,1 = · · · = φon,8 = 0 based on OLS estimation of equation (25) for

t = 1969:Q3 to 2016:Q4 is rejected with a p-value below 10−6. In other words, a great deal of the

observed variation in outflows could have been predicted on the basis of earlier values of inflows.

One way to characterize the role of inflows in accounting for changes in the unemployment

rate in a way that is consistent with this predictability is to add ut as a third variable to the

above VAR and examine historical decompositions. We did this using a Cholesky decomposition

of the covariance matrix with ∆ot ordered first to give as much of the benefit to Shimer’s view as

possible. This historical decomposition attributes more than half of the Great Recession surge in

unemployment to inflows, as seen in the solid green line in Figure 9.

It is not just the level of new inflows but also their composition that predict future outflows.

One indication of changes in composition comes from new claims for unemployment insurance

(UI). Only individuals who are unemployed through no fault of their own can file for UI, and not

everyone who is eligible files a claim. Those who do file claims may represent a subset of the newly

unemployed who are more likely to have skills or attributes that are currently less in demand, such

24We followed Shimer’s method to calculate updated quarterly values for nt and ot.
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as individuals whose jobs were replaced by machines or whose skills are in declining industries—

people who would be characterized by our approach as type L individuals. Let Qt denote the

number of individuals who file new claims in the last week of quarter t and U1t the BLS estimate

of the number of individuals who became newly unemployed in the last month of quarter t. We

added ∆qt for qt = Qt/U
1
t as another variable to (25). The hypothesis that coefficients on lags of

∆qt−j are all zero is again rejected (p < 10−6). Changes in the composition of inflows have huge

additional predictive power for future outflows beyond that contained in the level of inflows alone.

If we add ∆qt as another variable to the VAR predicting unemployment, we would conclude that

the level and composition of inflows account for most of the increase in unemployment during the

Great Recession; see the dashed blue line in Figure 9.25

5 Robustness checks

Column 1 of Table 3 summarizes some of the key conclusions that emerge from our baseline

analysis. The table breaks down the MSE of a forecast of the overall level of unemployment at 3-

month, 1-year, and 2-year forecast horizons into the fraction of the forecast error that is attributable

to various shocks. In our baseline model, inflows account for more than half the variance at all

horizons. Inflows of type L workers are most important but the outflows of type L workers and the

inflows of type H workers are also crucial at a 3-month horizon. At a 1- or 2-year horizon, shocks to

inflows of type L workers are the single most important factor and shocks to outflow probabilities

for type L workers are second most important factor. The table also reports asymptotic standard

errors for each of these magnitudes.

Accounting for the structural break in the CPS. Our baseline estimates adjusted the unemploy-

ment duration data for the change in survey design in 1994 by using differences between rotation

groups 1 and 5 and groups 2-4 and 6-8 in the CPS. Column 2 of Table 3 reports the analogous

variance decompositions when we instead use Hornstein’s (2012) data adjustment.26 In column 3

25Several other recent studies have found that observable characteristics that were not considered in the earlier
literature can further explain differences in unemployment durations. Faberman and Kudlyak (2017) discovered that
how much time newly unemployed devote to searching for a new job predicts how long they will remain unemployed.
Kudlyak and Lange (2017) demonstrated that a newly unemployed individual who the previous month had been
classified as not in the labor force is likely to remain unemployed longer than a newly unemployed individual who had
been employed the previous month. And Morchio (2016) documented that 2/3 of prime-age unemployment comes
from only 10% of the workers.

26Note that although we report the log likelihood and Schwarz’s (1978) Bayesian criterion in rows 2 and 3 of Table
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we use only data subsequent to the redesign in 1994 making no adjustment to the reported BLS

figures. Column 4 uses the full data set from 1976-2013 with no adjustments for the 1994 redesign

(column 4). All specifications lead to the conclusion that changes for type L workers account for

most of the cyclical fluctuations in unemployment.

Time-varying genuine duration dependence. Our baseline specification assumed that the para-

meters δ1, δ2, and δ3 characterizing genuine duration dependence in equations (5) and (8) do not

change over time. Column 5 of Table 3 reports results for a more general specification

dτt = δ̃1t((τ − 1)/48) + δ̃2t[2((τ − 1)/48)
2 − 1] + δ̃3t[4((τ − 1)/48)

3 − 3((τ − 1)/48)]

where δ̃jt = δ̃
(1)
j in normal months and δ̃jt = δ̃

(2)
j if the national unemployment rate is above 6.5%,

times when the labor market is in slack and it is likely that many job losers automatically became

eligible for extended UI benefits. Adding 3 new parameters (δ̃
(2)
1 , δ̃

(2)
2 , δ̃

(2)
3 ) to the model results in

an increase in the log likelihood of 46.2, but does not change any of our core conclusions.

Allowing for correlated shocks. Our baseline specification assumed that the shocks to wLt, wHt,

pLt and pHt were mutually uncorrelated. We estimated a generalization of the model to allow

for nonzero correlations deriving from a factor structure for the innovations, εt = λFt + ut, where

Ft ∼ N(0, 1), λ is a (4×1) vector of factor loadings, and ut is a (4×1) vector of mutually uncorrelated

idiosyncratic components with diagonal variance matrix E(utu
′
t) = Q, so E(εtε

′
t) = λλ

′+Q. Note

that equation (22) continues to hold in this more general setting, and we could still calculate the

magnitude in (23), which measures what would happen if {εwL,t+j}
s
j=1 were to have followed its

inferred historical path with {εwH,t+j, ε
x
L,t+j, ε

x
H,t+j}

s
j=1 all zero. This calculation would no longer

have a clean statistical interpretation as the answer to a forecasting question when the ε’s are

correlated, because in the latter case knowledge of the value of one of the ε’s would cause one

to revise the contemporaneous forecast of the others. Nevertheless, we can still calculate the

magnitude in (23) for the factor model as a check on whether the quantitative importance of type

L inflows is in any way an artifact of having assumed uncorrelated shocks. The lower right panel

of Figure 8 plots the quantitative contribution calculated in this way for each of the four shocks

during the Great Recession. The graph is virtually identical to that in the lower left from our

3, the values for columns 2-4 are not comparable with the others due to a different definition of the observable data
vector yt.
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baseline model.

We can also calculate the separate statistical contribution of each of the 5 uncorrelated shocks

in the factor model, which consist of the aggregate factor Ft and the four elements of ut. The

contributions of each of the five shocks are summarized in column 6 of Table 3. The aggregate

factor by itself accounts for 64% of the MSE of a 1—year-ahead forecast of unemployment. But

the component of inflows of type L workers that is uncorrelated with the aggregate factor would

still by itself account for 31% of the MSE, far more important than any other idiosyncratic shock.

We conclude that the importance of inflows of type L workers is robust to assumptions about

correlations between the shocks.

Time aggregation. Focusing on monthly transition probabilities misses people who lose their

job in week 1 of a month but find a new job in week 2. We discuss some of the literature on this in

Appendix E, and explain our reasons for favoring the specification in our baseline model. Column

7 of Table 3 reports that if we allow for weekly transitions, we would find a modestly smaller role

for inflows than in our baseline model. This is to be expected, since by construction it imputes

some people who gain new jobs only to lose them again before the month is over. Note however

that the weekly model in column 7 has a slightly worse fit to the data than the baseline monthly

model in column 1.

6 Conclusion

Representative worker models of unemployment can give rise to profoundly different dynamics

from models that allow for heterogeneity. In this paper we demonstrated how to estimate a dynamic

model of unemployment allowing for unobserved heterogeneity, and concluded that new inflows of

individuals with low job-finding probabilities are the dominant feature of economic recessions.
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Table 1. Actual and predicted values for unemployment on average and during Great Recession

using different steady-state representations

Parameter values Actual or predicted values

U1 U2.3 U4.6 U7.12 U13.+

1976:M1-2017:M06 Observed values

(1) 3,178 2,281 1,244 1,064 664

w p Fitted (and predicted) values

(2) 3,178 0.4840 3,178 2,281 (618) (78) (1)

wH wL pH pL Fitted (and predicted) values

(3) 2,488 690 0.3559 0.8476 3,178 2,281 1,244 1,064 (621)

w δ0 δ1 δ2 δ3 Fitted values

(4) 3,178 0.1090 -0.3690 0.0140 3.314e-5 3,178 2,281 1,244 1,064 664

wH wL pH(1) pL(1) δ Fitted values

(5) 2,482 696 0.3550 0.8440 -0.0050 3,178 2,281 1,244 1,064 664

2007:M12-2013:M12 Observed values

(6) 3,339 2,787 2,131 2,426 1,902

wH wL pH pL Fitted (and predicted) values

(7) 2,274 1,065 0.32920 0.890 3,339 2,787 2,131 2,426 (2,358)

w δ0 δ1 δ2 δ3 Fitted values

(8) 3,339 0.2360 -0.6620 0.0540 -1.27e-3 3,339 2,787 2,131 2,426 1,902

wH wL pH(1) pL(1) δ Fitted values

(9) 2,307 1,032 0.3340 0.9000 0.0170 3,339 2,787 2,131 2,426 1,902

Notes to Table 1. Table reports average values of Uxt in thousands of workers over the entire

1976:M1-2017:M6 sample and the 2007:M12-2013:M12 subsample along with predicted values

from simple steady-state calculations. Parameters were chosen to fit exactly the values in that

row appearing in normal face, while the model’s predictions for other numbers are indicated by

parentheses.
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Table 2. Parameter estimates for the baseline model

σw
L

0.0422*** R1 0.1011*** δ̃1 5.0512***

(0.0039) (0.0054) (1.9164)

σw
H

0.0437*** R2.3 0.0753*** δ̃2 -0.0485

(0.0057) (0.0044) (0.0532)

σx
L

0.0476*** R4.6 0.0817*** δ̃3 2.1674***

(0.0054) (0.0073) (0.8104)

σx
H

0.0204*** R7.12 0.0586***

(0.0027) (0.0047)

R13+ 0.0393***

(0.0025)

No. of Obs. 498

Log-Likelihood 2,574.0

Notes to Table 2. White (1982) quasi-maximum-likelihood standard errors in parentheses. See

footnote 20 for the definition of δ̃j.
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Table 3. Comparison of variance decomposition across different models

Shocks (1) (2) (3) (4) (5) (6) (7)

# of Param. 12 12 12 12 15 16 12

Log-L. 2574.0 2474.7 1326.6 2608.7 2620.2 2585.7 2571.0

SIC -5073.4 -4874.8 -2585.5 -5142.8 -5147.2 -5072.0 -5067.5

3 month F - - - - - 0.588 -

- - - - - (0.069) -

wL 0.415 0.414 0.225 0.131 0.392 0.233 0.384

(0.045) (0.048) (0.053) (0.025) (0.046) (0.041) (0.044)

wH 0.208 0.229 0.225 0.388 0.214 0.123 0.147

(0.041) (0.048) (0.057) (0.052) (0.044) (0.030) (0.040)

pL 0.281 0.288 0.279 0.203 0.281 0.000 0.253

(0.043) (0.046) (0.067) (0.039) (0.045) (0.055) (0.041)

pH 0.096 0.068 0.271 0.277 0.114 0.057 0.216

(0.022) (0.017) (0.067) (0.045) (0.022) (0.016) (0.046)

Inflows 0.623 0.644 0.450 0.519 0.606 0.355 0.531

L group 0.696 0.703 0.503 0.335 0.673 0.233 0.637

1 year F - - - - - 0.635 -

- - - - - (0.070) -

wL 0.510 0.489 0.350 0.307 0.489 0.297 0.476

(0.050) (0.052) (0.060) (0.042) (0.052) (0.051) (0.049)

wH 0.074 0.083 0.102 0.210 0.079 0.045 0.051

(0.017) (0.022) (0.030) (0.041) (0.020) (0.012) (0.016)

pL 0.380 0.403 0.399 0.318 0.388 0.000 0.391

(0.051) (0.053) (0.071) (0.053) (0.054) (0.071) (0.053)

pH 0.036 0.025 0.148 0.165 0.044 0.022 0.082

(0.009) (0.007) (0.045) (0.034) (0.010) (0.006) (0.022)

Inflows 0.584 0.572 0.453 0.516 0.567 0.343 0.527

L group 0.890 0.892 0.750 0.625 0.877 0.298 0.867

2 year F - - - - - 0.644 -

- - - - - (0.072) -

wL 0.523 0.485 0.427 0.430 0.503 0.310 0.483

(0.052) (0.053) (0.064) (0.048) (0.054) (0.053) (0.051)

wH 0.049 0.054 0.063 0.139 0.053 0.031 0.033

(0.012) (0.015) (0.020) (0.031) (0.014) (0.008) (0.012)

pL 0.403 0.444 0.413 0.320 0.413 0.000 0.428

(0.053) (0.055) (0.071) (0.050) (0.056) (0.075) (0.054)

pH 0.025 0.017 0.096 0.112 0.031 0.015 0.055

(0.006) (0.005) (0.032) (0.026) (0.007) (0.004) (0.017)

Inflows 0.572 0.539 0.491 0.568 0.556 0.341 0.516

L group 0.926 0.929 0.841 0.750 0.916 0.310 0.911

Notes to Table 3. (1) Baseline model, (2) alternative data, (3) post 94 data, (4) unadjusted data, (5)

time-varying GDD, (6) correlated shocks, (7) weekly frequency. Standard errors in parentheses.
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Figure 1. Illustration of how ex ante heterogeneity can cause unemployment-continuation prob-

abilities to increase with duration.

Notes to Figure 1. Of newly unemployed at time t, 80 have unemployment-continuation prob-

ability of 35% and 20 have probability of 85%. The figure reports the number from each group

who are still unemployed in subsequent months and the average continuation probabilities for each

surviving cohort.
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(C) Great Recession

Figure 2. Predicted (smooth curves) and actual (black circles) numbers of unemployed as a

function of duration based on constant-parameter specifications

Notes to Figure 2. Horizontal axis shows duration of unemployment in months and vertical

axis shows number of unemployed for that duration in thousands of individuals. Circles denote

imputed values for Ū1, Ū3, Ū5, Ū9.5, and Ū15 based on equation (6) with wL, wH , xL, xH , and

δ chosen to fit the observed values of Ū1, Ū2.3, Ū4.6, Ū7.12, and Ū13.+ exactly. Panel A: homo-

geneous specification fit to 1976:M1-2017:M6 historical averages for Ū1, and Ū2.3. Panel B: pure

cross-sectional heterogeneity specification fit to 1976:M1-2017:M6 historical averages for Ū1, Ū2.3,

Ū4.6, and Ū7.12. Panel C: pure cross-sectional heterogeneity specification fit to average values for

2007:M12-2013:M12 for Ū1, Ū2.3, Ū4.6, and Ū7.12.
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(B) Great Recession

Figure 3. Unemployment-continuation probabilities as a function of duration based on constant-

parameter pure genuine duration dependence specification

Notes to Figure 3. Horizontal axis shows duration of unemployment in months; vertical axis

shows probability that individual is still unemployed the following month. Curves denote predicted

values from the 5-parameter pure GDD model (w plus parameters in equation (5)) fit to 1976:M1-

2017:M6 historical average values for Ū1, Ū2.3, Ū4.6, Ū7.12 and Ū13.+ (panel A) and for values for

2007:M12-2013:M12 (panel B). Each GDD model exactly fits the dots in Figure 2.
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Figure 4. Probability that a newly unemployed worker will still be unemployed the following

month and number of newly unemployed

Notes to Figure 4. Panel A plots p̂it|T (1) for i = L,H with 95% confidence intervals. Panel B

plots ŵit|T for i = L,H with 95% confidence intervals.
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Figure 6. Effects of genuine duration dependence

Notes to Figure 6. Panel A plots dτ as a function of τ (months spent in unemployment).

Panel B plots average unemployment-continuation probabilities of type H and type L workers as

a function of duration of unemployment.
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Figure 7. Fraction of variance of error in forecasting total unemployment at different horizons

attributable to separate factors

Notes to Figure 7. Horizontal axis indicates the number of months ahead s for which the forecast

is formed. Panel A plots the contribution of each of the factors {wHt, wLt, xHt, xLt} separately,

Panel B shows combined contributions of {wHt, wLt} and {xHt, xLt}, and Panel C shows combined

contributions of {wHt, xHt} and {wLt, xLt}. Dotted lines denote 95% confidence intervals.
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(F) 2007 Recession (correlated shocks)

Figure 8. Historical decompositions of five U.S. recessions

Notes to Figure 8. Panels A-E use baseline model. Panel F uses factor model.

34



2008 2009 2010 2011 2012 2013 2014 2015 2016
3

4

5

6

7

8

9

10
Unemployment rate
Shimer
VAR(3) inflows
VAR(4) inflows

Figure 9. Contribution of inflows to level of unemployment

Notes to Figure 9. Solid black line: unemployment rate, 2007:Q4 to 2016:Q4. Dotted black line:

−1.5 plus 100 times the value of equation (24) with ot fixed at its 2007:Q4 value. Solid green line:

value predicted by 3-variable VAR ordered ot, nt, ut with shocks to ot and ut set to zero. Dashed

blue line: value predicted by 4-variable VAR ordered ot, nt, qt, ut with shocks to ot and ut set to

zero.
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Online Appendix

A. Measurement issues and seasonal adjustment

The seasonally adjusted numbers of people unemployed for less than 5 weeks, for between 5 and

14 weeks, 15-26 weeks and for longer than 26 weeks are published by the Bureau of Labor Statistics.

To further break down the number unemployed for longer than 26 weeks into those with duration

between 27 and 52 weeks and with longer than 52 weeks, we used seasonally unadjusted CPS

microdata publicly available at the NBER website (http://www.nber.org/data/cps_basic.html).

Since the CPS is a probability sample, each individual is assigned a unique weight that is used to

produce the aggregate data. From the CPS microdata, we obtain the number of unemployed whose

duration of unemployment is between 27 and 52 weeks and the number longer than 52 weeks. We

seasonally adjust the two series using X-12-ARIMA,27 and calculated the ratio of those unemployed

27-52 weeks to the sum. We then multiplied this ratio by the published BLS seasonally adjusted

number for individuals who had been unemployed for longer than 26 weeks to obtain our series

U7.12t .28

An important issue in using these data is the redesign of the CPS in 1994. Before 1994,

individuals were always asked how long they had been unemployed. After the redesign, if an

individual is reported as unemployed during two consecutive months, then her duration is recorded

automatically as the sum of her duration last month and the number of weeks between the two

months’ survey reference periods. Note that if an individual was unemployed during each of the two

weeks surveyed, but worked at a job in between, that individual would likely self-report a duration

of unemployment to be less than 5 weeks before the redesign, but the duration would be imputed

to be a number greater than 5 weeks after the redesign.

As suggested by Elsby, Michaels and Solon (2009) and Shimer (2012) we can get an idea of the

size of this effect by making use of the staggered CPS sample design. A given address is sampled

for 4 months (called the first through fourth rotations, respectively), not sampled for the next 8

27An earlier version of this paper dealt with seasonality by taking 12-month moving averages and arrived at
similar overall results to those presented in this version. As a further check on the approach used here, we compared
the published BLS seasonally adjusted number for those unemployed with duration between 15 and 26 weeks to an
X-12-ARIMA-adjusted estimate constructed from the CPS microdata, and found the series to be quite close.

28This adjustment is necessary because the published number for unemployed with duration longer than 26 weeks
is different from that directly computed from the CPS microdata, although the difference is subtle. The difference
arises because the BLS imputes the numbers unemployed with different durations to various factors, e.g., correction
of missing observations.
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months, and then sampled again for another 4 months (the fifth through eighth rotations). After

the 1994 redesign, the durations for unemployed individuals in rotations 2-4 and 6-8 are imputed,

whereas those in rotations 1 and 5 are self-reported, just as they were before 1994. For those in

rotation groups 1 and 5, we can calculate the fraction of individuals who are newly unemployed

and compare this with the total fraction of newly unemployed individuals across all rotations. The

ratio of these two numbers is reported in Panel A of Figure A1, and averaged 1.15 over the period

1994-2007 as reported in the second row of Table A1. For comparison, the ratio averaged 1.01

over the period 1989-1993, as seen in the first row. This calculation suggests that if we want to

compare the value of U1t as calculated under the redesign to the self-reported numbers available

before 1994, we should multiply the former by 1.15. This is similar to the adjustment factors of

1.10 used by Hornstein (2012), 1.154 by Elsby, Michaels and Solon (2009), 1.106 by Shimer (2012),

and 1.205 by Polivka and Miller (1998).

For our study, unlike most previous researchers, we also need to specify which categories the

underreported newly unemployed are coming from. Figure A1 reports the observed ratios of

rotation 1 and 5 shares to the total for the various duration groups, with average values summarized

in Table A1. One interesting feature is that under the redesign, the fraction of those with 7-12

month duration from rotations 1 and 5 is very similar to that for other rotations, whereas the

fraction of those with 13 or more months is much lower.29 Based on the values in Table A1, we

should scale up the estimated values for U1t and scale down the estimated values of U2.3t and U13.+t

relative to the pre-1994 numbers. The values for U4.6t and U7.12t seem not to have been affected

much by the redesign. Our preferred adjustment for data subsequent to the 1994 redesign is to

multiply U1t by 1.15, U
2.3
t by 0.87, U13.+t by 0.77, and leave U4.6t and U7.12t as is. We then multiplied

all of our adjusted duration figures by the ratio of total BLS reported unemployment to the sum

of our adjusted series in order to match the BLS aggregate exactly.

Hornstein (2012) adopted an alternative adjustment, assuming that all of the imputed newly

unemployed came from the U2.3 category. He chose to multiply U1t by 1.10 and subtract the

added workers solely from the U2.3t category. As a robustness check we also report results using

29One possible explanation is digit preference— an individual is much more likely to report having been unemployed
for 12 months than 13 or 14 months. When someone in rotation 5 reports they have been unemployed for 12 months,
BLS simply counts them as such, and if they are still unemployed the following month, BLS imputes to them a
duration of 13 months. The imputed number of people 13 months and higher is significantly bigger than the self-
reported numbers, just as the imputed number of people with 2-3 months appears to be higher than self-reported.
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Hornstein’s proposed adjustment in Section 5.1, as well as results using no adjustments at all.

An alternative might be to to use the ratios for each t in Figure A1 rather than to use the aver-

ages from Table A1. However, as Shimer (2012) and Elsby, Michaels and Solon (2009) mentioned,

such an adjustment would be based on only about one quarter of the sample and thus multiplies

the sampling variance of the estimate by about four, which implies that noise from the correction

procedure could be misleading in understanding the unemployment dynamics.

Table A1. Average ratio of each duration group’s share in the first/fifth rotation group to that

in total unemployment

U1 U2.3 U4.6 U7.12 U13.+

1989-1993 1.01 1.01 0.96 1.02 0.97

1994-2007 1.15 0.87 0.95 1.05 0.77

B. Estimation algorithm

The system in Section 2.1 can be written as

xt = Fxt−1 + vt

yt = h(xt) + rt

for xt = (ξ
′
t, ξ

′
t−1, ..., ξ

′
t−47)

′, E(vtv′t) = Q, and E(rtr
′
t) = R. The function h(.) as well as elements of

the variance matrices R and Q depend on the parameter vector θ = (δ̃1, δ̃2, δ̃3, R1, R2.3, R4.6, R7.12,

R13+, σ
w
L , σ

w
H , σ

x
L, σ

x
H)

′. The extended Kalman filter (e.g., Hamilton, 1994b) can be viewed as an

iterative algorithm to calculate a forecast x̂t|t−1 of the state vector conditioned on knowledge of θ and

observation of Yt−1 = (y
′
t−1, y

′
t−2, ..., y

′
1)
′ with Pt|t−1 the MSE of this forecast. With these we can

approximate the distribution of yt conditioned on Yt−1 as N(h(x̂t|t−1),Ωt) for Ωt = H
′
tPt|t−1Ht+R

and Ht = ∂h(xt)/∂x′t|xt=x̂t|t−1 from which the approximate likelihood function associated with that

θ,

ℓ(θ) =
�T
t=1 ln f(yt|Yt−1; θ)

ln f(yt|Yt−1; θ) = −(1/2) ln(2π)− (1/2) ln |Ωt| − (1/2)[yt − h(x̂t|t−1)]
′Ω−1t [yt − h(x̂t|t−1)],
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can be maximized numerically. The forecast of the state vector can be updated by iterating on

Kt = Pt|t−1Ht(H
′
tPt|t−1Ht +R)

−1

Pt|t = Pt|t−1 −KtH
′
tPt|t−1

x̂t|t = x̂t|t−1 +Kt(yt − h(x̂t|t−1))

x̂t+1|t = Fx̂t|t

Pt+1|t = FPt|tF
′ +Q.

Prior to the starting date January 1976 for our sample, BLS aggregates are available but not the

micro data that we used to construct U13.+t . For the initial value for the extended Kalman filter,

we calculated the values that would be implied if pre-sample values had been realizations from an

initial steady state, estimating the (4× 1) vector ξ̄0 from the average values for Ū1, Ū2.3, Ū4.6, and

Ū7.+ over February 1972 - January 1976 using the method described in Section 1.1. Our initial

guess was then x̂1|0 = ι48 ⊗ ξ̄0 where ι48 denotes a (48 × 1) vector of ones. Diagonal elements of

P1|0 determine how much the presample values of ξj are allowed to differ from this initial guess ξ̂j|0.

For this we set E(ξj − ξ̂j|0)(ξj − ξ̂j|0)
′ = c0I4 + (1− j)c1I4 with c0 = 10 and c1 = 0.1. The value

for c0 is quite large relative to the range of ξt|T over the complete observed sample, ensuring that

the particular value we specified for x̂1|0 has little influence. For k < j we specify the covariance30

E(ξj − ξ̄0)(ξk − ξ̄0)
′ = E(ξj − ξ̄0)(ξj − ξ̄0)

′. The small value for c1 forces presample ξj to be close

to ξk when j is close to k, again consistent with the observed month-to-month variation in ξ̂t|T .

Smoothed inferences about xt using the full sample of available data, x̂t|T = E(xt|YT ) and their

variance matrix Pt|T = E[(xt − x̂t|T )(xt − x̂t|T )
′] can be calculated by iterating backwards on the

30 In other words,

P1|0 =






c0I4 c0I4 c0I4 · · · c0I4
c0I4 c0I4 + c1I4 c0I4 + c1I4 · · · c0I4 + c1I4
c0I4 c0I4 + c1I4 c0I4 + 2c1I4 · · · c0I4 + 2c1I4
...

...
... · · ·

...
c0I4 c0I4 + c1I4 c0I4 + 2c1I4 · · · c0I4 + 47c1I4





.
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following equations for t = T − 1, T − 2, ..., 1:

Jt = Pt|tF
′P−1
t+1|t

x̂t|T = x̂t|t + Jt(x̂t+1|T − x̂t+1|t)

Pt|T = Pt|t + Jt(Pt+1|T − Pt+1|t)J
′
t.

These smoothed inferences x̂t|T and functions of them are plotted in Figures 5-7 and 10.

We calculated standard errors for the estimate θ̂ as in equation (3.13) in Hamilton (1994b):

E(θ̂ − θ)(θ̂ − θ)′ ≃ V = K−1
1 K2K

−1
1

K1 =
∂ℓ(θ)

∂θ∂θ′

����
θ=θ̂

K2 =
�T
t=1


�
∂ ln f(yt|Yt−1; θ)

∂θ

����
θ=θ̂

��
∂ ln f(yt|Yt−1; θ)

∂θ

����
θ=θ̂

�′�
.

To obtain standard errors for the variance decompositions in Figure 7 and Table 3, we gen-

erated J = 1, 000 draws from the asymptotic distribution of θ̂, θ[j] ∼ N(θ̂, V ), j = 1, ..., J and

calcuated qs,k(θ
[j]) as in equation (21) for each s and each k = 1, ..., 4. The standard deviation

of qs,k(θ
[j])/

�4
k=1 qs,k(θ

[j]) across draws j was used to get the error bands and standard errors in

Figure 7 and Table 3.

The standard errors used for Figures 5 and 6 incorporate both filter and parameter uncertainty.

The matrix Pt|T summarizes uncertainty we would have about xt even if we knew the true value of

the parameters in θ. Given that we also have to estimate θ, the true uncertainty is greater than

that represented by Pt|T . Following Ansley and Kohn (1986) we calculate the total variance as

Pt|T
��
θ=θ̂

+ ZtV Z
′

t

Zt
(4×12)

=
∂x̂t|T

∂θ′

����
θ=θ̂

.

The values of {Zt}Tt=1 can be found by numerical differentiation, e.g., replace θ̂ with θ̂ + δei for

δ = 10−8 and ei the ith column of I12 and then redo the iteration to calculate x̂t|T (θ̂ + δei). The
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ith column of Zt is then δ
−1[x̂t|T (θ̂ + δei)− x̂t|T |(θ̂)].

C. Derivation of linearized variance and historical decompositions

The state equation ξt+1 = ξt + εt+1 implies

ξt+s = ξt + εt+1 + εt+2 + εt+3 + · · ·+ εt+s

= ξt + ut+s.

Letting yt = (U
1
t , U

2.3
t , U

4.6
t , U

7.12
t , U13.+t )′ denote the (5× 1) vector of observations for date t, our

model implies that in the absence of measurement error yt would equal h(ξt, ξt−1, ξt−2, ..., ξt−47)

where h(·) is a known nonlinear function. Hence

yt+s = h(ut+s + ξt, ut+s−1 + ξt, ..., ut+1 + ξt, ξt, ξt−1, ..., ξt−47+s).

We can take a first-order Taylor expansion of this function around ut+j = 0 for j = 1, 2, ..., s,

yt+s ≃ h(ξt, ..., ξt, ξt, ξt−1, ..., ξt−47+s) +
s�

j=1
[Hj(ξt, ξt, ..., ξt, ξt, ξt−1, ..., ξt−47+j)]ut+s+1−j

for Hj(·) the (5× 4) matrix associated with the derivative of h(·) with respect to its jth argument.

Using the definition of ut+j, this can be rewritten as

yt+s ≃ cs(ξt, ξt−1, ..., ξt−47+s) +
s�

j=1
[Ψs,j(ξt, ξt−1, ..., ξt−47+j)]εt+j

from which (18) follows immediately.

Similarly, for purposes of a historical decomposition note that the smoothed inferences satisfy

ξ̂t+s|T = ξ̂t|T + ε̂t+1|T + ε̂t+2|T + ε̂t+3|T + · · ·+ ε̂t+s|T
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where ε̂t+s|T = ξ̂t+s|T − ξ̂t+s−1|T . For any date t + s we then have the following model-inferred

value for the number of people unemployed:

ι5
′h(ξ̂t+s|T , ξ̂t+s−1|T , ξ̂t+s−2|T , ..., ξ̂t+s−47|T ).

For an episode starting at some date t, we can then calculate

ι5
′h(ξ̂t|T , ξ̂t|T , ξ̂t|T , ..., ξ̂t|T , ξ̂t−1|T , ..., ξ̂t+s−47|T ).

This represents the path that unemployment would have been expected to follow between t and t+s

as a result of initial conditions at time t if there were no new shocks between t and t+s. Given this

path for unemployment that is implied by initial conditions, we can then isolate the contribution

of each separate shock between t and t+ s. Using the linearization in equation (18) allows us to

represent the realized deviation from this path in terms of the contribution of individual historical

shocks as in (22).

D. Alternative estimates of unemployment-continuation probabilities

There is an unresolved controversy in the literature about how to measure outflows from un-

employment. Our measure described in footnote 1 follows van den Berg and van Ours (1996),

van den Berg and van der Klaauw (2001), Elsby, Michaels and Solon (2009), Shimer (2012), and

Elsby, Hobijn and Şahin (2013) in deriving flow estimates from the observed change in the number

of unemployed by duration. An alternative approach, employed by Fujita and Ramey (2009) and

Elsby, Hobijn and Şahin (2010), is to look at only those individuals for whom there is a matched

observation of unemployment in month t− 1 and a status of employment or out of the labor force

in month t. In the absence of measurement error, the two estimates should be the same, but in

practice they turn out to be quite different. One reason for the discrepancy is misclassification. For

example, an individual who goes from long-term unemployed to out of the labor force to back to

long-term unemployed in three successive months counts as a successful “graduate” from long-term

unemployment using matched flows but is contributing to the stubborn persistence of long-term

unemployment when using the stock data. A follow-up paper to Elsby, Hobijn and Şahin (2010) by

Elsby et al. (2011) documented that of the individuals who were employed or out of the labor force
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in month t − 1 and who were recorded as unemployed in month t, more than half reported their

duration of unemployment to be 5 weeks or longer. Another important reason is that individuals

for whom two consecutive observations are available differ in important ways from those for whom

some observations are missing. Abowd and Zellner (1985) and Frazis et al. (2005) acknowledged

that these measurement errors are more likely to bias the matched flow data than the stock data

and suggested methods to correct the bias.

Since our goal is to understand how the reported stock of long-term unemployed came to be so

high and why it falls so slowly, we feel that our approach, which is consistent with the observed

stock data by construction, is preferable for our application.

E. Details of robustness tests

The standard errors in Table 3 were calculated as follows. For each model, we generated 500

draws for the k-dimensional parameter vector (where k is reported in the first row of the table)

from a N(θ̂, V̂ ) distribution where θ̂ is the MLE and V̂ is the (k×k) variance matrix from inversed

hessian of the likelihood function. For each draw of θ(ℓ) we calculated the values implied by that

θ(ℓ) and then calculated the standard error of that inference across the draws θ(1), ..., θ(500).

Time-varying genuine duration dependence. Vishwanath (1989) and Blanchard and Diamond

(1994) developed theoretical models in which genuine duration dependence could be linked to

market tightness. See Whittaker and Isaacs (2014) for a detailed discussion of the conditions that

can trigger extended unemployment benefits.

Shimer (2012) argued that this time-aggregation bias would result in underestimating the im-

portance of outflows in accounting for cyclical variation in unemployment, and Fujita and Ramey

(2009), Shimer (2012) and Hornstein (2012) all formulated their models in continuous time.

Allowing for structural shocks. For the factor model, the variance decomposition (19) becomes
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E(yt+s − ŷt+s|t)(yt+s − ŷt+s|t)
′

=
s�

j=1
[Ψs,j(ξt, ξt−1, ..., ξt−47+j)](λλ

′ +Q)[Ψs,j(ξt, ξt−1, ..., ξt−47+j)]
′

=
s�

j=1
[Ψs,j(ξt, ξt−1, ..., ξt−47+j)]λλ

′[Ψs,j(ξt, ξt−1, ..., ξt−47+j)]
′

+
s�

j=1

4�

m=1
Qm[Ψs,j(ξt, ξt−1, ..., ξt−47+j)em][Ψs,j(ξt, ξt−1, ..., ξt−47+j)em]

′

for Qm the row m, column m element of Q.

Time aggregation. Elsby, Michaels and Solon (2009) questioned the theoretical suitability of

a continuous-time conception of unemployment dynamics, asking if it makes any sense to count a

worker who loses a job at 5:00 p.m. one day and starts a new job at 9:00 a.m. the next as if they

had been unemployed at all. We agree, and think that defining the central object of interest to

be the fraction of those newly unemployed in month t who are still unemployed in month t + k,

as in our baseline model, is the most useful way to pose questions about unemployment dynamics.

Nevertheless, and following Kaitz (1970), Perry (1972), Sider (1985), Baker (1992), and Elsby,

Michaels and Solon (2009) we also estimated a version of our model formulated in terms of weekly

frequencies as an additional check for robustness.

We can do so relatively easily if we make a few simplifying assumptions. We view each month

t as consisting of 4 equally-spaced weeks and assume that in each of these weeks there is an

inflow of wit workers of type i, each of whom has a probability pit(0) = exp[− exp(xit)] of exiting

unemployment the following week. This means that for those type i individuals who were newly

unemployed during the first week of month t, wit[pit(0)]3 are still unemployed as of the end of the

month. Thus for the model interpreted in terms of weekly transitions, equations (10) and (11)

would be replaced by

U1t =
�

i=H,L
{wit +wit[pit(0)] +wit[pit(0)]

2 +wit[pit(0)]
3}+ r1t

U2.3t =
�

i=H,L

4�

s=1

�
wi,t−1[pi,t−1(1)]

8−s +wi,t−2[pi,t−2(2)]
12−s

�
+ r2.3t
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for pit(τ) given by (5) and (8). Note that although this formulation is conceptualized in terms of

weekly inflow and outflows wi and pi, the observed data yt are the same monthly series used in our

other formulations, and the number of parameters is the same as for our baseline formulation.
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