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ABSTRACT

This paper makes the following original contributions to the literature. (1) We de-

velop a simpler analytical characterization and numerical algorithm for Bayesian inference

in structural vector autoregressions that can be used for models that are overidentified,

just-identified, or underidentified. (2) We analyze the asymptotic properties of Bayesian

inference and show that in the underidentified case, the asymptotic posterior distribution

of contemporaneous coefficients in an n-variable VAR is confined to the set of values that

orthogonalize the population variance-covariance matrix of OLS residuals, with the height

of the posterior proportional to the height of the prior at any point within that set. For

example, in a bivariate VAR for supply and demand identified solely by sign restrictions,

if the population correlation between the VAR residuals is positive, then even if one has

available an infinite sample of data, any inference about the demand elasticity is coming

exclusively from the prior distribution. (3) We provide analytical characterizations of the

informative prior distributions for impulse-response functions that are implicit in the tra-

ditional sign-restriction approach to VARs, and note, as a special case of result (2), that

the influence of these priors does not vanish asymptotically. (4) We illustrate how Bayesian

inference with informative priors can be both a strict generalization and an unambiguous

improvement over frequentist inference in just-identified models. (5) We propose that re-

searchers need to explicitly acknowledge and defend the role of prior beliefs in influencing

structural conclusions and illustrate how this could be done using a simple model of the U.S.

labor market.
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1 Introduction.

In pioneering papers, Blanchard and Diamond (1990), Faust (1998), Davis and Haltiwanger

(1999), Canova and De Nicoló (2002), and Uhlig (2005) proposed that structural inference

using vector autoregressions might be based solely on prior beliefs about the signs of the

impacts of certain shocks. This approach has since been adopted in hundreds of follow-up

studies, and today is one of the most popular tools used by researchers who seek to draw

structural conclusions using VARs.

But an assumption about signs is not enough by itself to identify structural parameters.

What the procedure actually delivers is a set of possible inferences, each of which is equally

consistent with both the observed data and the underlying restrictions.

There is a huge literature that considers econometric inference under set identification

using a frequentist approach; see for example the reviews in Manski (2003) and Tamer

(2010). However, to our knowledge Moon, Schorfheide and Granziera (2013) is the only

effort to apply these methods to sign-restricted VARs, where the number of parameters can

be very large and the topology of the identified set quite complex. Instead, the hundreds

of researchers who have estimated sign-restricted VARs have virtually all used numerical

methods that are essentially Bayesian in character, though often without acknowledging

that the methods represent an application of Bayesian principles.

If the data are uninformative for distinguishing between elements within a set, for some

questions of interest the Bayesian posterior inference will continue to be influenced by prior

beliefs even if the sample size is infinite. This point has been well understood in the literature
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on Bayesian inference in set-identified models; see for example Poirier (1998), Gustafson

(2009), and Moon and Schorfheide (2012). However, the implications of this fact for the

procedures popularly used for set-identified VARs have not been previously documented.

The popular numerical algorithms currently in use for sign-identified VARs only work

for a very particular prior distribution, namely the uniform Haar prior. By contrast, in this

paper we provide analytical results and numerical algorithms for Bayesian inference for a

quite general class of prior distributions for structural VARs. Our expressions simplify the

methods proposed by Sims and Zha (1998) as well as generalize them to the case in which the

structural assumptions may not be sufficient to achieve full identification. Our formulation

also allows us to characterize the asymptotic properties of Bayesian inference in structural

VARs that may not be fully identified.

We demonstrate that as the sample size goes to infinity, the analyst could know with

certainty that contemporaneous structural coefficients fall within a set S(Ω) that orthogo-

nalizes the true variance-covariance matrix, but within this set, the height of the posterior

distribution is simply a constant times the height of the prior distribution at that point. In

the case of a bivariate model of supply and demand in which sign restrictions are the sole

identifying assumption, if the reduced-form residuals have positive correlation, then S(Ω)

allows any value for the elasticity of demand but restricts the elasticity of supply to fall

within a particular interval. With negatively correlated errors, the elasticity of supply could

be any positive number while the elasticity of demand is restricted to fall in a particular

interval.
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We also explore the implications of the Haar prior. We demonstrate that although this

is commonly regarded as uninformative, in fact it implies nonuniform distributions for key

objects of interest. It implies that the impact of a one-standard-deviation structural shock

is regarded before seeing the data as coming from a distribution with more mass at the

center when the number of variables n in the VAR is greater than 3 but more mass at the

extremes when n = 2. We also show that the Haar distribution implies Cauchy priors for

structural parameters such as elasticities. We demonstrate that users of these methods can

in some cases end up performing hundreds of thousands of calculations, ostensibly analyzing

the data, but in fact are doing nothing more than generating draws from a prior distribution

that they never even acknowledged assuming.

We recommend instead that any prior beliefs should be acknowledged and defended

openly and their role in influencing posterior conclusions clearly identified. We claim a

number of advantages of this approach over existing methods for both underidentified and

just-identified VARs. First, although sign restrictions only achieve set-identification, most

users of these methods are tempted to summarize their results using point estimates, an

approach that is deeply problematic from a frequentist perspective (see e.g., Fry and Pagan,

2011). By contrast, if priors accurately reflect our uncertainty about parameters and the

underlying structure, then given a loss function there is an unambiguously optimal posterior

estimate to report for any object of interest, and the Bayesian posterior distribution accu-

rately represents our combined uncertainty resulting from having a limited set of observed

data as well as possible doubts about the true structure itself. Second, researchers like Kilian
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and Murphy (2012) and Caldara and Kamps (2012) have argued persuasively for the benefits

of using additional prior information about parameters as a supplement to sign restrictions

in VARs. Our approach provides a flexible and formal apparatus for doing exactly this in

quite general settings. Third, our proposed Bayesian methods can be viewed as a strict

generalization of the conventional approach to identification, with multiple advantages, in-

cluding better statistical treatment of joint uncertainty about contemporaneous and lagged

coefficients as well as the opportunity to visualize, as in Leamer (1978), the consequences

for the posterior inference of relaxing the role of the prior.1

The plan of the paper is as follows. Section 2 describes a possibly set-identified n-variable

VAR and derives the Bayesian posterior distribution for an arbitrary prior distribution on

contemporaneous coefficients assuming that priors for other parameters are chosen from the

natural conjugate classes. We also analyze the asymptotic properties of Bayesian inference

in this general setting. Section 3 provides an analytical characterization of the priors that

are implicit in the popular approach to sign-identified VARs. Section 4 discusses the use of

additional information about impacts at longer horizons, noting the need to formulate these

in terms of joint prior beliefs about contemporaneous and lagged structural coefficients.

Section 5 illustrates our recommended methods using a simple model of the U.S. labor

market. Section 6 briefly concludes.

1 Giacomini and Kitagawa (2014) proposed forming priors directly on the set of orthogonal matrices that
could transform residuals orthogonalized by the Cholesky factorization into an alternative orthogonalized
structure, and investigate the sensitivity of the resulting inference to the priors. By contrast, our approach
is to formulate priors directly in terms of beliefs about the economic structure.
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2 Bayesian inference for partially identified structural

vector autoregressions.

We investigate dynamic structural models of the form

Ayt = Bxt−1 + ut (1)

for yt an (n× 1) vector of observed variables, A an (n× n) matrix summarizing their con-

temporaneous structural relations, xt−1 a (k × 1) vector (with k = mn + 1) containing a

constant and m lags of y (x′t−1 = (y
′

t−1,y
′
t−2, ...,y

′
t−m, 1)

′), and ut an (n× 1) vector of struc-

tural disturbances assumed to be i.i.d. N(0,D) and mutually uncorrelated (D diagonal).

The reduced-form VAR associated with the structural model (1) is

yt = Φxt−1 + εt (2)

Φ = A−1B (3)

εt = A−1ut (4)

E(εtε
′
t) = Ω = A−1D(A−1)′. (5)

Note that maximum likelihood estimates of the reduced-form parameters are given by

Φ̂T =
��T

t=1 ytx
′
t−1

���T
t=1 xt−1x

′
t−1

�−1
(6)

Ω̂T = T−1
�T

t=1 ε̂tε̂
′
t (7)

for ε̂t = yt − Φ̂Txt−1.
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In this section we suppose that the investigator begins with prior beliefs about the values

of the structural parameters represented by a density p(A,D,B), and show how observation

of the data YT = (x′0,y
′
1,y

′
2, ...,y

′
T )
′ would lead the investigator to revise those beliefs.2

We represent prior information about the contemporaneous structural coefficients in the

form of an arbitrary prior distribution p(A). This prior could incorporate any combination

of exclusion restrictions, sign restrictions, and informative prior beliefs about elements of A.

For example, our procedure could be used to calculate the posterior distribution even if no

sign or exclusion restrictions were imposed. We also allow for interaction between the prior

beliefs about different parameters by specifying conditional prior distributions p(D|A) and

p(B|A,D) that potentially depend on A. We assume that there are no restrictions on the

lag coefficients in B other than the prior beliefs represented by the distribution p(B|A,D).

To represent prior information aboutD and B we employ natural conjugate distributions

which facilitate analytical characterization of results as well as allow for simple empirical

implementation. We use Γ(κi, τ i) priors for the reciprocals of diagonal elements of D, taken

to be independent across equations, p(D|A) =
�n

i=1 p(dii|A), with

p(d−1ii |A) =






τ
κi
i

Γ(κi)
(d−1ii )κi−1 exp(−τ id−1ii ) for d−1ii ≥ 0

0 otherwise

, (8)

where dii denotes the (i, i) element of D. Note that κi/τ i is the prior mean for d
−1
ii and κi/τ

2
i

its variance. Our general results allow both κi and τ i to be arbitrary functions of A.

2 Our derivations draw on insights from Sims and Zha (1998). The main difference is that they parame-
terize the contemporaneous relations in terms of a single matrix, whereas we use two matrices A and D,
and take advantage of the fact that the posterior distribution of D is known analytically. As a consequence
the core expression in our result (equation (21)) is simpler than their equation (10). Among other benefits,
we show that the asymptotic properties of (21) can be obtained analytically.
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Normal priors are used for the lagged structural coefficients B, with results particularly

simple if coefficients are taken to be independent N(mi, diiMi) across equations:

p(B|D,A) =
�n

i=1 p(bi|D,A) (9)

p(bi|D,A) =
1

(2π)k/2|diiMi|1/2
exp[−(1/2)(bi −mi)

′(diiMi)
−1(bi −mi)]. (10)

Here b′i denotes the ith row of B (the lagged coefficients for the ith structural equation).

Thus mi denotes the prior mean for the lagged coefficients in the ith equation and diiMi

denotes the variance associated with this prior. We allow mi and Mi to be functions of A

but not of D.

The overall prior is then

p(A,D,B) = p(A)
�n

i=1[p(dii|A)p(bi|D,A)]. (11)

With Gaussian residuals, the likelihood function (conditioning on the pre-sample values of

y0,y−1, ...,y−m+1) is given by

p(YT |A,D,B) = (2π)−Tn/2|det(A)|T |D|−T/2 ×

exp
	
−(1/2)�T

t=1(Ayt −Bxt−1)
′D−1(Ayt −Bxt−1)



(12)

where |det(A)| denotes the absolute value of the determinant of A.

Components of the Bayesian posterior distributions can be conveniently characterized by

regressions on augmented data sets defined by

Ỹi
[(T+k)×1]

=

�

y′1ai ... y′Tai m′
iPi

�′
(13)
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X̃i
[(T+k)×k]

=

�

x′0 ... x′T−1 Pi

�′
(14)

for Pi the Cholesky factor of M−1
i = PiP

′
i. In Appendix A we derive the following charac-

terization of the posterior distribution and detail in Section 5.4 an algorithm that can be

used to generate draws from this distribution.

Proposition 1. Let a′i denote the ith row of A, φ(x;µ,Σ) denote the multivariate

Normal density with mean µ and variance Σ evaluated at x and γ(x;κ, τ) denote a gamma

density with parameters κ and τ evaluated at x. If the likelihood is (12) and priors are

given by (8)-(11), then for Ỹi and X̃i defined by (13) and (14), the posterior distribution

can be written as p(A,D,B|YT ) = p(A|YT )p(D|A,YT )p(B|A,D,YT ) with p(D|A,YT ) =

�n
i=1 γ(d

−1
ii ;κ∗i , τ

∗
i ) and p(B|A,D,YT ) =

�n
i=1 φ(bi;m

∗
i , diiM

∗
i ) where

m∗
i =

�
X̃′

iX̃i

�−1 �
X̃′

iỸi

�
(15)

M∗
i =

�
X̃′

iX̃i

�−1
(16)

κ∗i = κi + (T/2) (17)

τ ∗i = τ i + (ζ∗i /2) (18)

ζ∗i =
�
Ỹ′

iỸi

�
−
�
Ỹ′

iX̃i

��
X̃′

iX̃i

�−1 �
X̃′

iỸi

�
(19)

p(A|YT ) =
kTp(A)[det(AΩ̂TA

′)]T/2

�n
i=1[(2τ

∗
i /T )]

κ∗i

n


i=1

� |M∗
i |1/2

|Mi|1/2
τκii
Γ(κi)

Γ(κ∗i )

�
(20)

for Ω̂T given by (7) and kT the constant for which (20) integrates to unity.

Note that if the prior parameters Mi, κi and τ i do not depend on A, the last term in
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(20) can be subsumed into the constant term kT , in which case (20) simplifies to3

p(A|YT ) =
kTp(A)[det(AΩ̂TA

′)]T/2

�n
i=1[(2τ

∗
i /T )]

κ∗i
. (21)

Consider first the posterior distribution for bi, the lagged coefficients in the ith structural

equation, conditional on A and D. In the special case of a noninformative prior for these

coefficients (M−1
i = 0), this takes the form of a Normal distribution centered at m∗

i =

��T
t=1 xt−1x

′
t−1

�−1 ��T
t=1 xt−1y

′
tai

�
, or the coefficient from an OLS regression of a′iyt on

xt−1, with variance given by dii
��T

t=1 xt−1x
′
t−1

�−1
, again the OLS formula. Although the

Bayesian would describe m∗
i and diiM

∗
i as moments of the posterior distribution, they are

simple functions of the data, and it is also straightforward to use a frequentist perspective to

summarize the properties of the Bayesian posterior inference. In particular, as long as M−1
i

is finite and the true process for yt is covariance-stationary and ergodic for second moments,

we have that as the sample size T gets large,

m∗
i =

�
T−1

�T
t=1 xt−1x

′
t−1 + T−1M−1

i

�−1 �
T−1

�T
t=1 xt−1y

′
tai + T−1M−1

i mi

�

p→
�
E(xt−1x

′
t−1)

−1�E(xt−1y
′
t)ai

andM∗
i

p→ 0. In other words, as long asM−1
i is finite, the values of the prior parametersmi

andMi are asymptotically irrelevant, and the Bayesian posterior distribution for bi collapses

to a Dirac delta function around the same plim that characterizes the OLS regression of a′iyt

on xt−1. Conditional on ai, the data are perfectly informative asymptotically about bi,

reproducing the familiar result that, for these features of the parameter space, Bayesian

3 Note also for the special case of noninformative priors, as κi, τ i → 0, τκii → 1.
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inference is the same asymptotically as frequentist inference and correctly uncovers the true

value.

Similarly for dii, the variance of the ith structural equation, in the special case of a

noninformative prior for B (that is, when M−1
i = 0) we have that ζ∗i = Ta′iΩ̂Tai. If the

priors for dii are also noninformative (κi = τ i = 0) , then the posterior expectation of d−1ii is

given by κ∗i /τ
∗
i = 1/(a′iΩ̂Tai), the reciprocal of the average squared residual from the OLS

regression of a′iyt on xt−1, with variance κ∗i /(τ
∗
i )
2 = 2/[T (a′iΩ̂Tai)

2] again shrinking to zero

as T gets large. In the case of general but nondogmatic priors (κi, τ i and M
−1
i all finite),

as T → ∞, the value of ζ∗i /T still converges to a′iΩ0ai for Ω0 = E(εtε
′
t) the true variance

matrix, and the Bayesian posterior distribution for d−1ii conditional on A collapses to a point

mass at 1/(a′iΩ0ai). Hence again the priors are asymptotically irrelevant for inference about

D conditional on A.

By contrast, prior beliefs about A will not vanish asymptotically unless the elements of

A are point identified. To see this, note that in the special case of noninformative prior

beliefs about B and D, the posterior (20) simplifies to

p(A|YT ) =
kTp(A)|det(AΩ̂TA

′)|T/2

�
det

	
diag(AΩ̂TA′)


�T/2
(22)

where diag(AΩ̂TA
′) denotes a matrix whose diagonal elements are the same as those ofAΩ̂TA

′

and whose off-diagonal elements are zero. Thus when evaluated at any value of A that

diagonalizes Ω̂T , the posterior distribution is proportional to the prior. Recall further

from Hadamard’s Inequality that if A has full rank and Ω̂T is positive definite, then

det
	
diag(AΩ̂TA

′)


≥ det

	
AΩ̂TA

′


with equality only if AΩ̂TA

′ is diagonal. Thus if we
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define

S(Ω) = {A : AΩA′ = diag(AΩA′)}, (23)

then

p(A|YT ) = kTp(A) if A ∈ S(Ω̂T )

p→ 0 if A /∈ S(Ω̂T )

More formally, for any A and Ω we can measure the distance q(A,Ω) between A and

S(Ω) by the sum of squares of the off-diagonal elements of the Cholesky factor of AΩA′,

q(A,Ω) =
�n

i=2

�i−1
j=1 p

2
ij(A,Ω) P(A,Ω)[P(A,Ω)]′ = AΩA′, (24)

so that q(A,Ω) = 0 if and only if A ∈ S(Ω). Let Hδ(Ω) be the set of all A that are within

a distance δ of the set S(Ω):

Hδ(Ω) = {A : q(A,Ω) ≤ δ}. (25)

As long as the prior puts nonzero mass on some values of A that are consistent with the

true Ω0 (Prob[A ∈ Hδ(Ω0)] > 0, ∀δ > 0), then asymptotically the posterior will have no

mass outside of this set (Prob{[A ∈ Hδ(Ω0)]|YT} → 1, ∀δ > 0). Proposition 2 summarizes

the above asymptotic claims; see Appendix B for the proofs.

Proposition 2. Let yt
(n×1)

be any process that is covariance stationary and ergodic for

second moments. Let xt
(k×1)

= (y′t,y
′
t−1, ...,y

′
t−m+1, 1)

′ and YT = (x′0,y
′
1,y

′
2, ...,y

′
T )
′. Define

Φ0
(n×k)

= E(ytx
′
t−1) {E(xtx

′
t)}

−1
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Ω0
(n×n)

= E(yty
′
t)− E(ytx

′
t−1) {E(xtx

′
t)}

−1
E(xt−1y

′
t)

with E(xtx
′
t) and Ω0 both assumed to be positive definite. Define

�
A

(n×n)
, d−111 , ..., d

−1
nn, B

(n×k)

�

to be random variables whose joint density conditional on YT is given by

p(A,d−111 , ..., d
−1
nn ,B|YT ) = kTp(A)[det(AΩ̂TA

′)]T/2 ×

�n
i=1

γ(d−1ii ;κ∗i , τ
∗
i )φ(bi;m

∗
i , diiM

∗
i )

[(2τ ∗i /T )]
κ∗i

(26)

where a′i and b′i denote the ith rows of A and B, respectively, and κ∗i , τ
∗
i ,m

∗
i ,M

∗
i , ζ

∗
i and

Ω̂T are the functions of YT defined in Proposition 1 where Mi is any invertible (k × k)

matrix, mi any finite (k × 1) vector, τ i and κi any finite nonnegative constants, and kT an

integrating constant that depends only on Ω̂T , τ i, κi (i = 1, ..., n) and the functional form of

p(A). Let p(A) be any bounded density for which
�
A∈Hδ(Ω0)

p(A)dA > 0 for all δ > 0 with

Hδ(Ω) defined in (25). Then as the sample size T goes to infinity, the random variables

characterized by (26) have the following properties:

(i) B|A,d11, ..., dnn,YT
p→ AΦ0;

(ii) (ζ∗i /T )|A,YT

p→ a′iΩ0ai;

(iii) dii|A,YT

p→ a′iΩ0ai;

(iv) Prob[A ∈ Hδ(Ω0)|YT ]→ 1 for all δ > 0.

Moreover, if κi = τ i = 0 and Mi = 0 for i = 1, ..., n, then when evaluated at any

A ∈ S(Ω̂T ),

(v) p(A|YT ) = kTp(A) for all T.

Note that while we originally motivated the expression in (26) as the Bayesian posterior
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distribution for a Gaussian structural VAR, the results in Proposition 2 do not assume that

the actual data are Gaussian or even that they follow a VAR. Nor does the proposition

make any use of the fact that there exists a Bayesian interpretation of these formulas. The

proposition establishes that as long as the prior assigns nonzero probability to a subset of A

that diagonalizes the value Ω0 defined in the proposition, then asymptotically the posterior

density will be confined to that subset and at any point within the set will converge to some

constant times the value of the prior density at that point.

In the special case where the model is point-identified, there exists only one allowable

value of A for which AΩ0A
′ is diagonal. Provided that p(A) is nonzero in all neighborhoods

including that point, the posterior distribution collapses to the Dirac delta function at this

value of A. This reproduces the familiar result that under point identification, the priors

on all parameters (A,D, and B) are asymptotically irrelevant and Bayesian inference is

asymptotically equivalent to maximum likelihood estimation, producing consistent estimates

of parameters.

3 Priors implicit in the traditional approach to sign-

identified VARs.

In this section we characterize the prior distributions that are implicit in the approach to

sign-restricted VARs developed by Rubio-Ramírez et al. (2010). Their focus was on the

mapping between the VAR residuals εt and a vector of unit-variance structural shocks vt:

εt = Hvt vt ∼ N(0, In). (27)
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Their algorithm begins by generating an (n × n) matrix X = [xij ] of independent N(0, 1)

variates and then calculating the decomposition X = QR where Q is an orthogonal matrix

and R is upper triangular. From this a candidate draw for the contemporaneous response

to the vector of structural shocks is calculated as

H = PQ (28)

for P the Cholesky factor of the variance matrix of the reduced-form innovations:

Ω = PP′. (29)

This algorithm can be viewed as generating draws from a Bayesian prior distribution for

H conditional on Ω, the properties of which we now document. Note that the first column

of Q is simply the first column of X normalized to have unit length:





q11

...

qn1






=






x11/
�
x211 + · · ·+ x2n1

...

xn1/
�
x211 + · · ·+ x2n1






. (30)

In the special case when n = 2, q11 has the interpretation as the cosine of θ, the angle defined

by the point (x11, x21). In this case, the fact that Q is an orthogonal matrix will result in

half the draws being the rotation matrix associated with θ and the other half the reflection

matrix:

Q =











cos θ − sin θ

sin θ cos θ




 with probability 1/2






cos θ sin θ

sin θ − cos θ




 with probability 1/2

. (31)
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Independence of x11 and x21 ensures that θ will have a uniform distribution over [−π, π]. It

is in this sense that the prior implicit in the procedure (28) is thought to be uninformative.

However, a prior that is uninformative about some features of the parameter space can

turn out to be informative about others. It is not hard to show that each element of (30)

has a marginal density given by4

p(qi1) =






Γ(n/2)
Γ(1/2)Γ((n−1)/2)(1− q2i1)

(n−3)/2 if qi1 ∈ [−1, 1]

0 otherwise

. (32)

Note next that the (1, 1) element of (28) therefore implies a prior distribution for the effect

of a one-standard-deviation increase in structural shock number 1 on variable number 1 that

is characterized by the random variable h11 = p11q11 =
√
ω11q11 for ω11 the (1, 1) element of

Ω. In other words, the implicit prior belief about the effect of this structural shock has the

distribution of
√
ω11 times the random variable in (32). Note that if we invoke no further

normalization or sign restrictions, “shock number 1” would be associated with no different

identifying information than “shock number j”. Invariance of the algorithm5 and the

4 Note from Theorem 3.1 of Devroye (1986, p.403) that the variable yi1 = q
2
i1,

yi1 =
x2i1

x211 + · · ·+ x2n1
,

has a Beta(1/2,(n− 1)/2) distribution:

p(yi1) =

�
Γ(n/2)

Γ(1/2)Γ((n−1)/2)y
(1/2)−1
i1 (1− yi1)((n−1)/2)−1 if yi1 ∈ [0, 1]

0 otherwise
.

The density of qi1 =
√
yi1 in (32) is then obtained using the change-of-variables formula. Alternatively, one

can verify directly that when θ ∼ U(−π, π), the random variables ± cos θ and ± sin θ each have a density
that is given by the special case of (32) corresponding to n = 2.

5 This conclusion can also be verified by direct manipulation of the relevant equations, as shown in
Appendix C.
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change-of-variables formula for probabilities thus implies a prior density for hij = ∂yit/∂ujt,

the effect on impact of structural shock j on observed variable i given by

p(hij|Ω) =






Γ(n/2)
Γ(1/2)Γ((n−1)/2)

1√
ωii

(1− h2ij/ωii)
(n−3)/2 if hij ∈ [−√ωii,

√
ωii]

0 otherwise

. (33)

Panel A of Figure 1 plots this density for two different values of n. When there are n = 2

variables in the VAR, this prior regards impacts of ±√ωii as more likely than 0. By contrast,

when there are n ≥ 4 variables in the VAR, impacts near 0 are regarded as more likely. The

distribution is only uniform in the case n = 3.

Alternatively, researchers are more often interested in the effect of a structural shock

normalized by some definition, for example, the effect on observed variable 2 of a shock that

increases observed variable number 1 by one unit. Such an object is characterized by the

ratio of the (2,1) to the (1,1) element of (28):6

h∗21 =
∂y2t
∂u∗1t

=
p21q11 + p22q21

p11q11
=

p21
p11

+
p22
p11

x21
x11

= ω21/ω11 +

�
ω22 − ω221/ω11

ω11

x21
x11

.

Recall that the ratio of independent N(0, 1) has a standard Cauchy distribution. Invariance

properties again establish that the choice of subscripts 1 and 2 is irrelevant. Thus for any

i �= j,

h∗ij|Ω ∼ Cauchy(c∗ij, σ
∗
ij) (34)

6 The final equation here is derived from the upper (2× 2) block of (29):

�
ω11 ω21
ω21 ω22

�
=

�
p211 p11p21
p11p21 p221 + p

2
22

�
.
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with location and scale parameters given by c∗ij = ωij/ωjj and σ∗ij =

�
ωii−ω2ij/ωjj

ωjj
. This

density is plotted in Panel B of Figure 1.

Figure 1 establishes that although the prior is uninformative about the angle of rotation

θ, it can be highly informative for the objects about which the researcher intends to form

an inference, namely the impulse response functions.

In practice, applied researchers often ignore posterior uncertainty about Ω and simply

condition on the average residual variance Ω̂T . Identifying normalization or sign restrictions

then restrict the distributions hij|Ω̂T or h∗ij|Ω̂T to certain allowable regions. But within

these regions, the shapes of the posterior distributions are exactly those governed by the

implicit prior distributions plotted in Figure 1. One can see how this happens using a simple

bivariate example in which the first variable is a measure of price and the second variable is

a measure of quantity. Taking the case of the reflection matrix in (31) for illustration7 , we

have 



h11 h12

h21 h22




 =






p11 cos θ p11 sin θ

(p21 cos θ + p22 sin θ) (p21 sin θ − p22 cos θ)




 . (35)

Suppose our normalizing and partially identifying restrictions consist of the requirements

that a demand shock raises price (h11 ≥ 0) and raises quantity (h21 ≥ 0) while a supply shock

raises price (h12 ≥ 0) and lowers quantity (h22 ≤ 0). The first and third inequalities then

restrict θ ∈ [0, π/2]. Suppose further that the correlation between the price and quantity

residuals is positive (p21 > 0). Then h21 ≥ 0 for all θ ∈ [0, π/2], as called for. But the

7 Draws using the rotation matrix would always be ruled out by the normalization described below.
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condition h22 ≤ 0 requires θ ∈ [0, θ̃] where θ̃ is the angle in [0, π/2] for which cot θ̃ = p21/p22.

Recall that the response of quantity to a supply shock that raises the price by 1% is given by

the ratio of the (2,2) to the (2,1) element in (35): h∗22 = (p21/p11)− (p22/p11) cot θ. As θ goes

from 0 to θ̃, h∗22 varies from −∞ to 0. One can verify directly8 that when θ ∼ U(−π, π),

cot θ ∼ Cauchy(0,1). Thus when the correlation between the OLS residuals is positive, the

posterior distribution of h∗22 is a Cauchy(c
∗
22, σ

∗
22) truncated to be negative.

The value of h∗21 (which measures the response of quantity to a demand shock that raises

the price by 1%) is given by h∗21 = (p21/p11) + (p22/p11) tan θ. As θ varies from 0 to θ̃, this

ranges from

hL =
p21
p11

+
p22
p11

× 0 =
ω21
ω11

. (36)

to

hH =
p21
p11

+
p22
p11

p22
p21

=
p221 + p222
p11p21

=
ω22
ω21

(37)

Note that the magnitude h∗21 usually goes by another name— it is the short-run price

elasticity of supply, while h∗22 is just the short-run price elasticity of demand. We have

thus seen that, when the correlation between price and quantity is positive, the posterior

distribution for the demand elasticity will be the original Cauchy(c∗22, σ
∗
22) truncated to

be negative, while the posterior distribution for the supply elasticity will be the original

Cauchy(c∗21, σ
∗
21) truncated to the interval [hL, hH ].

Alternatively, if price and quantity are negatively correlated, the magnitudes in (36)

and (37) would be negative numbers. In this case, the posterior distribution for the supply

8 See for example Gubner (2006, p.194). This of course is just a special case of the general result in (34).

19



elasticity will be the original Cauchy(c∗21, σ
∗
21) truncated to be positive, while that for the

demand elasticity will be the original Cauchy(c∗22, σ
∗
22) truncated to the interval [hH , hL].

For illustration, we applied the Rubio-Ramírez et al. (2010) algorithm (summarized in

Baumeister and Hamilton, 2014) to an 8-lag VAR fit to U.S. data on growth rates of real

labor compensation and total employment over t = 1970:Q1 - 2014:Q2. The reduced-form

VAR residual variance matrix is estimated by OLS to be

Ω̂ =






0.5920 0.0250

0.0250 0.1014




 . (38)

Since the correlation between wages and employment is positive, the set S(Ω̂) does not

restrict the demand elasticity h∗22. The blue histogram in the top panel of Figure 2 plots

the magnitude that a researcher using the sign-identification methodology would interpret

as the response of employment to a shock to supply that increases the real wage by 1%. The

red curve plots a Cauchy(c∗22, σ
∗
22) density truncated to be negative.

The blue histogram in the bottom panel of Figure 2 plots the magnitude that the re-

searcher would describe as the response of employment to a shock to demand that increases

the real wage by 1%. From (38) we calculate that S(Ω̂) restricts this supply elasticity to fall

between hL = 0.0421 and hH = 4.0626. The green curve plots a Cauchy(c∗21, σ
∗
21) truncated

to be positive and the red curve further truncates it to the interval [hL, hH ]. Because the

correlation between the reduced-form residuals is quite small, there is very little difference

between the red and green distributions.

The figure illustrates that researchers using the traditional methodology can end up
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performing hundreds of thousands of calculations, ostensibly analyzing the data, but in the

end are doing nothing more than generating draws from a prior distribution that they never

even acknowledged that they had assumed!

While one might suppose that the distributions in Figures 1 and 2 are simply an un-

intended side effect of the Haar prior, the problem is much more pervasive. In fact, any

uniform prior distribution for the effect of a structural shock on one variable necessarily im-

plies a nonuniform prior distribution for the effects on other variables or of other structural

shocks, as we now demonstrate. The first row of (27) states that ε1t = h11v1t + · · ·+ h1nvnt

with variance

ω11 = h211 + · · ·+ h21n. (39)

Suppose our sign restrictions require h11 and h12 to be nonnegative. Then h11 can be no

smaller than zero and no larger than
√
ω11. A uniform prior for the effect of structural shock

1 on variable 1 would thus call for h11|Ω ∼ U(0,
√
ω11), as plotted in Panel A of Figure 3.

Taking the case n = 2 for illustration, equation (39) then requires h12 =
�
ω11 − h211, which

implies the density9

p(h12|Ω) =






h12
√
ω11
√

ω11−h2
12

if h12 ∈ [0,
√
ω11]

0 otherwise

. (40)

This density is plotted in Panel B of Figure 3. If the prior for the effect of structural shock 1

was uniform, then the prior for the effect of structural shock 2 necessarily puts more weight

on larger effects. The reason is that if there is a 10% probability that h11 (the effect of shock

9 Notice P (h12 ≤ z) = P (
�
ω11 − h211 ≤ z) = P (h11 ≥

√
ω11 − z2) = 1 −

√
ω11−z2√
ω11

. Differentiating with

respect to z gives (40).

21



1) is less than 0.1
√
ω11 (as a uniform prior on h11 would require), then there must be a 10%

probability that h12 (the effect of shock 2) exceeds
�
ω11 − (0.1)2ω11 =

√
0.99

√
ω11. Thus

the density of h12 in Panel B would be required to go off to infinity as h12 approaches
√
ω11

if we wanted to use a uniform prior for h11. One can also show that a uniform prior for the

effect of structural shock 1 on variable 1, h11|Ω ∼ U(0,
√
ω11), implies a nonuniform prior

for the effect of structural shock 1 on variable 2—we can’t even pick a single shock by itself

about which we could claim that our prior is truly uninformative!10

Could we avoid such problems by posing the prior directly in terms of an unconditional

density p(H) instead of the conditional density p(H|Ω)? Suppose we insisted on relatively

flat priors for h11 and h21, which say correspond to the effect of a one-standard-deviation

shock to monetary policy on interest rates and output. The natural use that researchers

and policymakers would make of the results would be calculating the effect on output if the

Fed raised interest rates by 25 basis points, namely h21/h11. A uniform prior on h11 and h21

implies a nonuniform prior for h21/h11.

These are all illustrations of the general principle that a uniform prior for any parameter

implies a nonuniform prior for nonlinear functions of that parameter (e.g., Datta and Ghosh,

1996). Because the objects of interest in structural VARs are highly nonlinear functions of

the underlying parameters, the quest for “noninformative” priors for structural VARs is

destined to fail.

Our recommendation is that rather than regard these procedures as something that can

10 The distribution for h21|Ω is characterized by the equation ω21 = h11h21 + h12
�
ω22 − h221 where the

distributions of h11|Ω and h12|Ω are as displayed in Figure 3.
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be implemented without thinking, it is preferable to spell out explicitly the class of structural

models that the researcher has in mind and exactly what is known and unknown about the

model. Our proposed formulation of the problem does exactly this. The coefficients in A are

written in the natural units of a true structural model in which the elements correspond to

parameters governing elasticities, policy rules, and first-order conditions. When the model is

written in this way, it is possible (as we illustrate in Section 5) to draw on literally hundreds

of previous studies for what might be known about plausible values for the parameters, as

well as to find the correct implications for any objects of interest when little is known about

the structural model. By contrast, prior beliefs about the elements of H would at best

be based on loose intuition about how the structural parameters in A interact when the

matrix is inverted. We nevertheless note that, since Proposition 1 describes the inference

for an arbitrary set of prior beliefs about A, it immediately also characterizes inference if

for some reason the researcher preferred to represent these in the form of prior beliefs about

the elements of A−1.

4 Sign restrictions for higher-horizon impacts.

In an effort to try to gain additional identification, many applied researchers impose sign re-

strictions not just on the time-zero structural impacts ∂yt/∂u
′
t but also on impacts ∂yt+s/∂u

′
t

for some horizons s = 0, 1, ..., S. These are given by

∂yt+s

∂u′t
= ΨsA

−1 (41)
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for Ψs the first n rows and columns of Fs for

F =






Φ1 Φ2 · · · Φm−1 Φm

In 0 · · · 0 0

...
... · · · ...

...

0 0 · · · In 0






(42)

yt = c+Φ1yt−1 +Φ2yt−2 + · · ·+Φmyt−m + εt.

Beliefs about higher-order impacts are of necessity joint beliefs aboutA andB. For example,

∂yt

∂u′t
= A−1 (43)

∂yt+1

∂u′t
= Φ1A

−1. (44)

If Φ1 is diagonal with negative elements, the signs of ∂yt+1/∂u
′
t are opposite those of A

−1

itself. In this case, as the sample size grows to infinity, there will be no posterior distribution

satisfying a restriction such as ∂yit/∂ujt and ∂yi,t+1/∂ujt are both positive. In a finite sam-

ple, a simulated draw from the posterior distribution purporting to impose such a restriction

would at best be purely an artifact of sampling error. Canova and Paustian (2011) demon-

strated using a popular macro model that implications for the signs of structural multipliers

beyond the zero horizon (∂yt+s/∂u
′
t for s > 0) are generally not robust.

In our parameterization prior beliefs about structural impacts for s > 0 would be repre-

sented in the form of the prior distribution p(B|A,D). Our recommendation is that nondog-

matic priors should be used for this purpose, since we have seen the data are asymptotically

fully informative about the posterior p(B|A,D,YT ).
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A common source of the expectation that signs of ∂yt+s/∂u
′
t should be the same as

those of ∂yt/∂u
′
t is a prior expectation that Φ1 is not far from the identity matrix and

that elements of Φ2, ...,Φm are likely small. Nudging the unrestricted OLS estimates in the

direction of such a prior has long been known to help improve the forecasting accuracy of a

VAR.11 This suggests that we might want to use priors for A and B that imply a value for

η = E(Φ) given by

η
(n×k)

=

�

In
(n×n)

0
[n×(k−n)]

 

. (45)

As noted by Sims and Zha (1998), since B = AΦ, this calls for setting the prior mean for

B|A to be E(B|A) = Aη, suggesting a prior mean for bi given by m̃i = E(bi|A) = η′ai.

We can also follow Doan, Litterman and Sims (1984) as modified by Sims and Zha (1998) in

putting more confidence in our prior beliefs that higher-order lags are zero, as we describe

in detail in Section 5.4.

Some researchers may want to use additional prior information about structural dynam-

ics. In the example in the following section, we consider a prior belief that a labor demand

shock should have little permanent effect on the level of employment. We have found it

convenient to implement these as supplements to our general recommendations, where we

could put as little weight as we wanted on the general recommendations by specifying λ0 in

expression (58) to be sufficiently large. For example, had the additional information that hi

linear combinations (represented by Ribi) should be close to some expected value ri, where

ri could be a function of A. As in Theil (1971, pp.347-49) we can represent this additional

11 See for example Doan, Litterman and Sims (1984), Litterman (1986), and Smets and Wouters (2003).
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information in the form of hi pseudo observations

ri
(hi×1)

= Ri
(hi×k)

bi
(k×1)

+ vi
(hi×1)

vi ∼ N(0, dii Vi
(hi×hi)

) (46)

allowing us to simply replace (13) and (14) with12

Ỹi
[(T+k+hi)×1]

=

�

a′iy1 · · · a′iyT m′
iPi r′iPVi

�′
(47)

X̃i
[(T+k+hi)×k]

=

�

x0 · · · xT−1 Pi R′
iPVi

�′
(48)

for M−1
i = PiP

′
i and V

−1
i = PViP

′
Vi
.

Although such priors can help improve inference about the structural parameters in a

given observed sample, they do not change any of the asymptotics in Proposition 2.

5 Application: Bayesian inference in a model of labor

supply and demand.

In this section we illustrate these methods using the example of labor supply and labor

demand introduced in Section 3. The goal here is to elevate such prior information from

something that the researcher imposes mechanically without consideration to something

that is explicitly acknowledged and can be motivated from economic theory and empirical

evidence from other data sets. Consider structural dynamic labor demand and supply curves

12 This is numerically identical to using bi|A,D ∼ N(m̃i, diiM̃i) as a unified prior in (10) with M̃−1
i =

M
−1
i +R′

iV
−1
i Ri and m̃i = M̃i(M

−1
i mi +R

′
iV

−1
i ri).
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of the form:

demand: ∆nt = kd + βd∆wt + bd11∆wt−1 + bd12∆nt−1 + bd21∆wt−2 + bd22∆nt−2 +

· · ·+ bdm1∆wt−m + bdm2∆nt−m + ud
t

supply: ∆nt = ks + αs∆wt + bs11∆wt−1 + bs12∆nt−1 + bs21∆wt−2 + bs22∆nt−2 +

· · ·+ bsm1∆wt−m + bsm2∆nt−m + us
t . (49)

Here ∆nt is the growth rate of total U.S. employment,13 ∆wt is the growth rate of real

compensation per hour,14 βd is the short-run wage elasticity of demand, and αs is the

short-run wage elasticity of supply. Note that the system (49) is a special case of (1) with

yt = (∆wt,∆nt)
′ and

A =





−βd 1

−αs 1




 . (50)

OLS estimation of the reduced-form (2) for this system with m = 8 lags and t = 1970:Q1

through 2014:Q2 led to the estimate of the reduced-form residual variance matrix Ω̂ =

T−1
�T

t=1 ε̂tε̂
′
t reported in (38).

5.1 Maximum likelihood estimates.

As in Shapiro and Watson (1988), for any given α we can find the maximum likelihood

estimate of β by an IV regression of ε̂2t on ε̂1t using ε̂2t − αε̂1t as instruments, where ε̂it are

13 The level nt was measured as 100 times the natural log of the seasonally adjusted number of people on
nonfarm payrolls during the third month of quarter t from series PAYEMS downloaded August 2014 from
http://research.stlouisfed.org/fred2/.

14 The level wt was measured as 100 times the natural log of seasonally adjusted real compensa-
tion per hour for the nonfarm business sector from series COMPRNFB downloaded August 2014 from
http://research.stlouisfed.org/fred2/.
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the residuals from OLS estimation of the reduced-form VAR,

β̂(α) =

�T
t=1(ε̂2t − αε̂1t)ε̂2t�T
t=1(ε̂2t − αε̂1t)ε̂1t

=
(ω̂22 − αω̂12)

(ω̂12 − αω̂11)
, (51)

for ω̂ij the (i, j) element of Ω̂. One can verify directly that any pair (α, β) satisfying (51)

produces a diagonal matrix for AΩ̂A
′
.

The top panel of Figure 4 plots the function β̂(α) for these data. Any pair (α, β) lying

on these curves would maximize the likelihood function, and there is no basis in the data

for preferring one point on the curves to any other.

If we restrict the supply elasticity α to be positive and the demand elasticity β to be

negative, we are left with the lower right quadrant in the figure. When, as in this data

set, the OLS residuals are positively correlated, the sign restrictions are consistent with any

β ∈ (−∞, 0), but require α to fall in the interval (hL, hH) defined in (36)-(37). We earlier

derived these bounds considering allowable angles of rotation but it is also instructive to

explain their intuition in terms of a structural interpretation of the likelihood function.15

Note that hL is the estimated coefficient from an OLS regression of ε̂2t on ε̂1t, which is a

weighted average of the positive supply elasticity α and negative demand elasticity β (see

for example Hamilton, 1994, equation [9.1.6]). Hence the MLE for β can be no larger than

hL and the MLE for α can be no smaller than hL. The fact that the MLE for β can be no

larger than hL is not a restriction, because we have separately required that β < 0 and in

the case under discussion, hL > 0. However, the inference that α can be no smaller than hL

puts a lower bound on α. At the other end, the OLS coefficient from a regression of ε̂1t on

15 Leamer (1981) discovered these points in a simple OLS setting years ago.
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ε̂2t (that is, h
−1
H ) turns out to be a weighted average of α−1 and β−1, requiring β−1 < h−1H

(again not binding when hH > 0) and α−1 > h−1H ; the latter gives us the upper bound that

α < hH . This is the intuition for why hL < α < hH .

The bottom panel in Figure 4 plots contours of the concentrated likelihood function, that

is, contours of the function: T log | det(A)| − (T/2) log
�
det

	
diag(AΩ̂A

′
)

�

.The data are

quite informative that α and β should be close to the values that diagonalize Ω̂, that is, that

α and β are close to the function β = β̂(α) shown in black.

The set S(Ω) in expression (23) is calculated for this example as follows. When the

correlation between the VAR residuals ω12 is positive, S(Ω) is the set of all A in (50) such

that β ≤ 0, (ω21/ω11) ≤ α ≤ (ω22/ω21), and β = (ω22− αω12)/(ω12 −αω11), in other words,

the set of points on the black curve in Figure 4 between hL and hH .

5.2 Prior information about elasticities.

While the frequentist would regard any of the points in S(Ω̂) as equally plausible, from the

standpoint of economic theory that is surely not the case; for example, a demand elasticity of

−100 would not be consistent with any coherent economic model. We propose to represent

prior information about α and β using Student t distributions with ν degrees of freedom.

Note that this includes the Cauchy distribution in (34) as a special case when ν = 1. One

benefit of using ν ≥ 3 is that the posterior distributions for α and β would then be guaranteed

to have finite mean and variance. Our proposal is that the location and scale parameters for

these distributions should be chosen on the basis of prior information about these elasticities.

Hamermesh’s (1996) survey of microeconometric studies concluded that the absolute
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value of the elasticity of labor demand is between 0.15 and 0.75. Lichter, Peichl, and

Siegloch’s (2014) meta-analysis of 942 estimates from 105 different studies favored values

at the lower end of this range. On the other hand, theoretical macro models can imply a

value of 2.5 or higher (Akerlof and Dickens, 2007; Galí, Smets, and Wouters, 2012). A prior

for β that reflects the uncertainty associated with these findings could be represented with

a Student t distribution with location parameter cβ = −0.6, scale parameter σβ = 0.6, and

degrees of freedom νβ = 3, truncated to be negative. This places a 5% probability on values

of β < −2.2 and another 5% probability on values above −0.1.

In terms of the labor supply elasticity, a key question is whether the increase in wages is

viewed as temporary or permanent. A typical assumption is that the income and substitu-

tion effects cancel, in which case there would be zero observed response of labor supply to a

permanent increase in the real wage (Kydland and Prescott, 1982). On the other hand, the

response to a temporary wage increase is often interpreted as the Frisch (or compensated

marginal utility) elasticity, about which there are again quite different consensuses in the

micro and macro literatures. Chetty et al. (2013) reviewed 15 different quasi-experimental

studies all of which implied Frisch elasticities below 0.5. A separate survey of microeconomet-

ric studies by Reichling and Whalen (2012) concluded that the Frisch elasticity is between

0.27 and 0.53. By contrast, values above one or two are common in the macroeconomic liter-

ature (see e.g., Kydland and Prescott, 1982, Cho and Cooley, 1994, and Smets and Wouters,

2007). For the prior used for the short-run elasticity α in this study, we specified cα = 0.6,

σα = 0.6, and να = 3, which associates a 90% probability to α ∈ (0.1, 2.2).
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The prior distribution p(A) is thus taken to be the product of these two truncated

Student t densities, which is written out explicitly in equation (56) below. Contours for

this prior distribution are provided in the top panel of Figure 5, while the bottom panel

displays contours for the posterior distribution that would result if we used only this prior

p(A) with no additional information about D or B. The observed data contain sufficient

information to cause all of the posterior distribution to fall within a close neighborhood of

S(Ω̂). But whereas the frequentist regards all points within this set as equally plausible,

a sensible person with knowledge of the literature would regard values such as α = 0.5,

β = −0.3 as much more plausible than α = 0.06, β = −9.5. The Bayesian approach gives

the analyst a single coherent framework for combining uncertainty caused by observing a

limited data set (that is, uncertainty about the true value of Ω) with uncertainty about the

correct structure of the model itself (that is, uncertainty about points within S(Ω)), which

combined uncertainty is represented by the contours in the bottom panel of Figure 5.

5.3 Long-run restrictions.

We also illustrate how inference could be improved by making use of additional sources of

outside information about the long-run labor supply elasticity. Let ỹt = (wt, nt)
′ denote the

levels of the variables so that yt = ∆ỹt. From (41) the effect of the structural shocks on the

future levels of wages and employment is given by

∂ỹt+s

∂u′t
=

∂∆ỹt+s

∂u′t
+
∂∆ỹt+s−1

∂u′t
+ · · ·+ ∂∆ỹt

∂u′t

= ΨsA
−1 +Ψs−1A

−1 + · · ·+Ψ0A
−1 (52)
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with a permanent or long-run effect given by

lim
s→∞

∂ỹt+s

∂u′t
= (Ψ0 +Ψ1 +Ψ2 + · · · )A−1 = (In −Φ1 −Φ2 − · · · −Φm)

−1A−1.

The long-run effect of a labor demand shock on employment is given by the (2, 1) element

of this matrix. Recalling that Φj = A−1Bj this long-run elasticity would be zero if and only

if the above matrix is upper triangular, or equivalently if and only if the following matrix is

upper triangular

A(In −Φ1 −Φ2 − · · · −Φm) = A−B1 −B2 − · · · −Bm (53)

requiring 0 = −αs − bs11 − bs21 − · · · − bsm1 or

bs11 + bs21 + · · ·+ bsm1 = −αs. (54)

If we were to insist that (54) has to hold exactly, then the model would become just-

identified even in the absence of any information about αs or βd, and indeed hundreds of

empirical papers have used exactly such a procedure to perform structural inference using

VARs.16 We propose instead to represent the idea as a prior belief of the form

(bs11 + bs21 + · · ·+ bsm1)|A,D ∼ N(−αs, d22V2). (55)

Note that our proposal is a strict generalization of the existing approach, in that (55) becomes

(54) in the special case when V2 → 0. We would further argue that our method is a

strict improvement over the existing approach in several respects. First, (54) is usually

16 See for example Shapiro and Watson (1988), Blanchard and Quah (1989), and Galí (1999).
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implemented by conditioning on the reduced-form estimates Φ̂. By contrast, our approach

will generate the statistically optimal joint inference about A and B taking into account

the fact that both are being estimated with error. Second, we would argue that the claim

that (54) is known with certainty is indefensible. A much better approach in our view is to

acknowledge openly that (54) is a prior belief about which any reasonable person would have

some uncertainty. Granted, an implication of Proposition 2 is that some of this uncertainty

will necessarily remain even if we had available an infinite sample of observations on y.

However, our position is that this uncertainty about the specification should be openly

acknowledged and reported as part of the results, and indeed as we have demonstrated this

is exactly what is accomplished using the algorithm suggested in Proposition 1.

Note that our recommended approach also helps address some of the concerns about long-

run restrictions raised by Faust and Leeper (1997). For example, rather than dogmatically

impose that coefficients beyond some fixed lag are all zero, our approach instead allows the

researcher to shrink coefficients toward zero gradually as the lag length increases up to some

largem, with the pace of the shrinkage governed by choice of the parameter λ1 used to define

v1 in expression (58).

5.4 Implementation of the estimation algorithm.

Before discussing the results, we document step by step how our algorithm is implemented

for this example.17 Readers not interested in these technical details can skip this section.

17 Code to replicate these results and to apply in more general settings is available at
http://econweb.ucsd.edu/~jhamilton/BHcode.zip.
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5.4.1 Setting the parameters for the prior distributions

Step 1a: Prior for the elasticities p(A). Collect the unknown elements of A in the

vector α = (α, β)′ with prior p(A) the product of truncated Student t densities:

p(α) =






f(α;cα,σ,ν)
1−F (0;cα,σ,ν)

f(β;cα,σ,ν)
F (β;cα,σ,ν)

if α ≥ 0 and β ≤ 0

0 otherwise

(56)

where f(x; c, σ, ν) denotes the density for a Student t variable with location c, scale σ, and

degrees of freedom ν evaluated at x,

f(x; c, σ, ν) =
Γ(ν+1

2
)√

νπσΓ(ν/2)

!
1 +

(x− c)2

σ2ν

"−(ν+1)/2
(57)

and F (.) the cumulative distribution function F (x; c, σ, ν) =
� x

−∞f(z; c, σ, ν)dz. We set

cα = 0.6, cβ = −0.6, σ = 0.6, and ν = 3.

Step 1b: Prior for the inverse of the structural variances p(dii|A). Prior beliefs

about structural variances should reflect in part the scale of the underlying data. Let

êit denote the residuals from an 8th-order univariate autoregression fit to series i and Ŝ =

T−1
�T

t=1 ê1tê2t the sample variance matrix of these univariate residuals. We set κi = 2,

which given equation (17) puts a weight on our prior equivalent to 2κi = 4 observations of

data. The prior mean for d−1ii = κi/τ i is chosen to equal the reciprocal of the ith diagonal

element of AŜA
′
, that is, τ i(α) = κia

′
iŜai.

Step 1c: Prior for the lagged structural coefficients p(bi|A,D). Compute the

prior mean mi(α) = η′ai with η defined in (45). Doan et al. (1984) suggested that we

should have greater confidence in our expectation that coefficients on higher lags are zero,
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represented by smaller diagonal elements forMi associated with higher lags. Let
√
sii denote

the estimated standard deviation of a univariate 8th-order autoregression fit to variable i and

define v′1
(1×m)

=
#
1/(12λ1

$
, 1/(22λ1), ..., 1/(m2λ1)) and v′2

(1×n)

= (s−111 , s
−1
22 , ..., s

−1
nn)

′ to form

v3 = λ20





v1 ⊗ v2

λ23




 . (58)

Then Mi is taken to be a diagonal matrix whose row r column r element is the rth element

of v3: Mi,rr = v3r. Following Doan (2013), we set λ1 = 1 (which governs how quickly the

prior for lagged coefficients tightens to zero as the lag m increases), λ3 = 100 (which makes

the prior on the constant term essentially irrelevant), and λ0 = 0.2 (which summarizes the

overall confidence in the prior).

To incorporate prior beliefs about the long-run elasticity in the second equation using

(47) and (48), set r2 = −αs, PV2 =
√
0.1, which weights the long-run prior as equivalent to

10 observations, and R2
(1×k)

= (1′m ⊗ e′2, 0) for 1m an (m × 1) vector of ones and e′2 = (1, 0),

which selects the lagged coefficients on real wages.

5.4.2 Computing the target function and setting initial values.

For any α we can calculate the target function

q(α) = log p(α) + (T/2) log{det[A(α)Ω̂TA(α)′]} (59)

−�2
i=1(κi + T/2) log{[2τ i(α)/T ] + [ζ∗i (α)/T ]}+

�2
i=1 κi log τ i(α)

where A(α) is defined as in (50), Ω̂T is the residual variance-covariance matrix given by

(38), and ζ∗i (α) = (Ỹ′
i(α)Ỹi(α)) − (Ỹ′

i(α)X̃i)(X̃
′
iX̃

−1
i )(X̃′

iỸi(α)) using (13) and (14) for
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Ỹ1(α) and X̃1 with P1 the Cholesky factor of M−1
1 = P1P

′
1 and using (47) and (48) for

Ỹ2(α) and X̃2. Calculating an approximation to the shape of the posterior distribution

will help the numerical components of the algorithm be more efficient. For the posterior

mean, form an initial guess α̂ by maximizing (59) numerically and get the matrix of second

derivatives Λ̂ = ∂2q(α)
∂α∂α′

%%%
α=α̂

with Cholesky factor P̂ΛP̂
′
Λ
= Λ̂ which gives an idea of the scale

of the posterior distribution.

5.4.3 Generating draws from the posterior distribution p(A,D,B|Y T ).

Step 3a: Generating draws from p(A|Y T ) using a random-walk Metropolis-

Hastings step. Setting α(1) = α̂, generate a candidate α̃(ℓ+1) = α(ℓ) + ξ(P̂−1
Λ
)′vℓ+1 for

vℓ+1 a (2 × 1) vector of independent standard Student t variables with 2 degrees of free-

dom and ξ a scalar tuning parameter that ensures a 30% acceptance rate (here ξ = 1.3). If

q(α̃(ℓ+1)) < q(α(ℓ)), set α(ℓ+1) = α(ℓ) with probability 1 − exp
	
q(α̃(ℓ+1))− q(α(ℓ))



; other-

wise, set α(ℓ+1) = α̃(ℓ+1). After ℓ = 1, ..., D with D = 106 burn-in draws, also cycle through

steps 3b and 3c until ℓ = 2D.

Step 3b: Generating draws from p(D|A, Y T ). Starting with ℓ = D + 1, for each

α(ℓ) also generate δ
(ℓ)
ii ∼ Γ(κi + T/2, τ i(α

(ℓ)) + ζ∗i (α
(ℓ))/2) and set the variance of structural

shocks to d
(ℓ)
ii = 1/δ

(ℓ)
ii for i = 1, 2 which are the (i, i) elements of the diagonal matrix D(ℓ).

Step 3c: Generating draws from p(B|A,D, Y T ). Take draws for the lagged struc-

tural coefficients from b
(ℓ)
i ∼ N(m∗

i (α
(ℓ)), d

(ℓ)
ii M

∗
i ) with m∗

i (α
(ℓ)) = (X̃′

iX̃
−1
i )(X̃′

iỸi(α
(ℓ)))

and M∗
i = (X̃′

iX̃i)
−1 and form B(ℓ) as the matrix whose ith row is given by b

(ℓ)′
i for i = 1, 2.
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5.4.4 Computing impulse responses.

The triple {A(α(ℓ)),D(ℓ),B(ℓ)}2Dℓ=D+1 represents a sample of size D drawn from the posterior

distribution p(A,D,B|YT ). Compute Φ(ℓ) = [A(α(ℓ))]−1B(ℓ) and use the first nm = 16

columns to fill in the first two rows of F defined in (42). The structural impulse response

at horizon s = 0, 1, 2, ..., S is obtained from Ψ
(ℓ)
s [A(α(ℓ))]−1 as in (41) with Ψ

(ℓ)
0 = I2.

5.5 Empirical results.

The top panels in Figure 6 display prior densities (red curves) and posterior densities (blue

histograms) for the short-run demand and supply elasticities. The data cause us to revise

our prior beliefs about βd, regarding elasticities near zero as less likely having seen these

data. Our beliefs about the short-run supply elasticity are more strongly revised, favoring

estimates at the lower range of the microeconometric literature over values often assumed

in macroeconomic studies. Although our prior expectation was for a zero long-run response

of employment to a labor demand shock, the data provide support for a significant positive

permanent effect (see the bottom panel in Figure 6).

Median posterior values for the impulse-response functions in (52) are plotted as the

solid lines in Figure 7. The shaded 95% posterior credible regions reflect both uncertainty

associated with having observed only a finite set of data as well as uncertainty about the

true structure. A 1% leftward shift of the labor demand curve raises worker compensation

on impact (and permanently as well) by about 1%, and raises employment on impact by

much less than 1% in equilibrium due to the limited short-run labor-supply elasticity. And

although we approached the data with an expectation that this would not have a permanent
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effect on employment, after seeing the data we would be persuaded that it does. An increase

in the number of people looking for work depresses labor compensation (upper right panel

of Figure 7), and raises employment over time.

Figure 8 shows the consequences of putting different weights on the prior belief about the

long-run labor-supply elasticity. The first panel in the second row reproduces the impulse-

response function from the lower-left panel of Figure 7, while the second panel in that row

reproduces the prior and posterior distributions for the short-run labor supply elasticity (the

upper-right panel of Figure 6, drawn here on a different scale for easier visual comparisons).

The first row of Figure 8 shows the effects of a weaker weight on the long-run restrictions,

V2 = 1.0, weighting the long-run belief as equivalent to only one observation rather than 10.

With weaker confidence about the long-run effect, we would not conclude that the short-run

labor supply elasticity was so low or that the equilibrium effects of a labor demand shock

on employment were as muted. The third and fourth rows show the effects of using more

informative priors (V2 = 0.01 and V2 = 0.001, respectively). Even when we have a fairly

tight prior represented by V2 = 0.01, the data still lead us away from believing that the

long-run effect of a labor demand shock is literally zero, and to reach that conclusion we

need to impute a very small value to the short-run labor supply elasticity as well. Only

when we specify V2 = 0.001 is the long-run effect pushed all the way to zero.

This exercise demonstrates an important advantage of representing prior information in

the form proposed in Section 2. In a typical frequentist approach, the restriction (54) is

viewed as necessary to arrive at a just-identified model and is therefore regarded as inher-
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ently untestable. By contrast, we have seen that if we instead regard it as one of a set

of nondogmatic prior beliefs, it is possible to examine what role the assumption plays in

determining the final results and to assess its plausibility. Our conclusion from this exercise

is that it would not be a good idea to rely on exact satisfaction of (54) as the identifying

assumption for structural analysis. A combination of a weaker belief in the long-run impact

along with information from other sources about short-run impacts is a superior approach.

6 Conclusion.

Drawing structural inference from observed correlations requires making use of prior beliefs

about economic structure. In just-identified models, researchers usually proceed as if these

prior beliefs are known with certainty. In vector autoregressions that are only partially

identified using sign restrictions, the way that implicit prior beliefs influence the reported

results has not been recognized in the previous literature. In this paper we have explicated

the prior beliefs that are implicit in sign-restricted VARs and proposed a general Bayesian

framework that can be used to make optimal use of prior information and elucidate the

consequences of prior beliefs in any vector autoregression. Our suggestion is that explicitly

defending the prior information used in the analysis and reporting the way in which the

observed data causes these prior beliefs to be revised is superior to pretending that prior

information was not used and has no effect on the reported conclusions.
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Appendix

A. Proof of Proposition 1.

It is not hard to show that the product of the likelihood (12) with the prior for B (9)

can be written

p(B|A,D)p(YT |A,D,B) = (2π)−Tn/2|det(A)|T |D|−T/2 × (60)

�n
i=1

1

(2π)k/2|diiMi|1/2
exp

�

−ζ
∗
i + (bi −m∗

i )
′ (M∗

i )
−1 (bi −m∗

i )

2dii

 

;

see Baumeister and Hamilton (2014) for details. Multiplying (60) by the priors for A and

D and rearranging gives

p(YT ,A,D,B) = p(A)p(D|A)p(B|A,D)p(YT |A,D,B)

= p(A)(2π)−Tn/2|det(A)|T
n


i=1

�
d
−T/2
ii

τκii
Γ(κi)

Γ(κ∗i )

(τ ∗i )
κ∗i

(τ ∗i )
κ∗i

Γ(κ∗i )
(d−1ii )κi−1 exp(−τ∗i d−1ii )×

|M∗
i |1/2

|Mi|1/2
1

(2π)k/2|diiM∗
i |1/2

exp

�

−(bi −m∗
i )
′ (M∗

i )
−1 (bi −m∗

i )

2dii

 &

= p(A)(2π)−Tn/2|det(A)|T ×
n


i=1

� |M∗
i |1/2

|Mi|1/2
τκii

Γ(κi)

Γ(κ∗i )

(τ ∗i )
κ∗i

�
γ(d−1ii ;κ∗i , τ

∗
i )φ(bi;m

∗
i , diiM

∗
i ). (61)

Note that the product in (61) can be interpreted as

p(YT ,A,D,B) = p(YT )p(A|YT )p(D|A,YT )p(B|A,D,YT ).

Thus the posterior p(B|A,D,YT ) is the product of N(m∗
i , diiM

∗
i ) densities, the posterior

p(D|A,YT ) the product of Γ(κ
∗
i , τ

∗
i ) densities, and

p(YT )p(A|YT ) = p(A)(2π)−Tn/2|det(A)|T
n


i=1

� |M∗
i |1/2

|Mi|1/2
τκi
i

Γ(κi)

Γ(κ∗i )

(τ∗i )
κ∗i

�
. (62)
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The posterior p(A|YT ) is thus proportional to (62). Since Ω̂T is not a function of A, we

can write multiply (62) by |Ω̂T |T/2 to write the result in an equivalent form that facilitates

numerical calculation and interpretation:

p(A|YT ) ∝
p(A)[det(AΩ̂TA

′)]T/2

�n
i=1[(2τ

∗
i /T )]

κ∗i

n


i=1

� |M∗
i |1/2

|Mi|1/2
τκii
Γ(κi)

Γ(κ∗i )

�

as claimed in equation (20). Note that we could replace Ω̂T in the numerator with any

matrix not depending on unknown parameters, with any such replacement simply changing

the definition of kT in (20). Our use of Ω̂T in the numerator helps the target density (which

omits kT ) behave better numerically for large T , as will be seen in the asymptotic analysis

below.

B. Proof of Proposition 2.

Results (i)-(iii) are relatively straightforward; proofs can be found in Baumeister and

Hamilton (2014).

(iv) We first demonstrate that

Prob{[A /∈ Hδ(Ω̂T )]|YT} → 0 ∀δ > 0. (63)

To see this, let pij(A,Ω) denote the row i, column j element of P(A,Ω) for P(A,Ω) the

lower-triangular Cholesky factor P(A,Ω)[P(A,Ω)]′ = AΩA′. Note that

|AΩA′| = p211(A,Ω)p222(A,Ω) · · · p2nn(A,Ω)

a′iΩai = p2i1(A,Ω) + p2i2(A,Ω) + · · ·+ p2ii(A,Ω).
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Furthermore, ζ∗i , the sum of squared residuals from a regression of Ỹi on X̃i, by construction

is larger than Ta′iΩ̂Tai, the SSR from a regression of a′iyt on xt−1. Thus

(2τ ∗i /T ) = (2τ i/T ) + ζ∗i /T

≥ a′iΩ̂Tai

=
�i

j=1[p
2
ij(A, Ω̂T )]

2.

But for all A /∈ Hδ(Ω̂T ), ∃ j∗ < i∗ such that
	
pi∗j∗(A, Ω̂T )


2
> δ∗ for δ∗ = 2δ/[n(n − 1)]

meaning a′i∗Ω̂Tai∗ > [δ∗+pi∗i∗(A, Ω̂T )]
2 for some i∗ and

�n
i=1(2τ

∗
i /T ) > [p11(A, Ω̂T ]

2 · · · [δ∗+

pi∗i∗(A, Ω̂T )]
2 · · · [pnn(A, Ω̂T ]

2. Thus

Prob[A /∈ Hδ(Ω̂T )|YT ] =

'

A/∈Hδ(Ω̂T )

kTp(A)[p211(A, Ω̂T )p
2
22(A, Ω̂T ) · · · p2nn(A, Ω̂T )]

T/2

�n
i=1[(2τ i/T ) + ζ

∗
i /T ]

κi [(2τ i/T ) + ζ∗i /T ]
T/2

dA

<

'

A/∈Hδ(Ω̂T )

�
kTp(A)�n

i=1[(2τ i/T ) + (ζ∗i /T )]
κi
×

[p211(A, Ω̂T )p
2
22(A, Ω̂T ) · · · p2nn(A, Ω̂T )]

T/2

{[p211(A, Ω̂T )] · · · [δ∗ + p2i∗i∗(A, Ω̂T )] · · · [p2nn(A, Ω̂T ]}T/2

 

dA

=

'

A/∈Hδ(Ω̂T )

kTp(A)�n
i=1[(2τ i/T ) + ζ∗i /T ]

κi

�
p2i∗i∗(A, Ω̂T )

δ∗ + p2i∗i∗(A, Ω̂T )

 T/2

dA

which goes to 0 as T →∞.

Note next that

Prob{[A /∈ Hδ(Ω0)]|YT} = Prob
	�n

i=2

�i−1
j=1 [pij(A,Ω0)]

2 > δ


.

But

[pij(A,Ω0)]
2 =

�
pij(A, Ω̂T ) +

	
pij(A,Ω0)− pij(A, Ω̂T )


�2

≤ 2
	
pij(A, Ω̂T )


2
+ 2

	
pij(A,Ω0)− pij(A, Ω̂T )


2
.
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Hence

Prob{[A /∈ Hδ(Ω0)]|YT} ≤ Prob{[(A1T +A2T ) > δ]|YT}

A1T = 2
�n

i=2

�i−1
j=1

	
pij(A, Ω̂T )


2

A2T = 2
�n

i=2

�i−1
j=1

	
pij(A,Ω0)− pij(A, Ω̂T )


2
.

Given any ε > 0 and δ > 0, by virtue of (63) and result (ii) of Proposition 2, there exists a

T0 such that Prob{[A1T > δ/2]|YT} < ε/2 and Prob{[A2T > δ/2]|YT} < ε/2 for all T ≥ T0,

establishing that Prob{[(A1T +A2T ) > δ]|YT} < ε as claimed.

(v) When κi = τ i = 0 and Mi = 0, we have ζ∗i = Ta′iΩ̂Tai and í

p(A|YT ) =
kTp(A)[det(AΩ̂TA

′)]T/2

�n
i=1[a

′
iΩ̂Tai]T/2

which equals kTp(A) when evaluated at any A for which AΩ̂TA
′ is diagonal.

C. Invariance of the Rubio-Ramírez et al. algorithm.

To verify the invariance of the priors for impulse-response coefficients that are implicit

in this algorithm in the absence of sign restrictions or other identifying assumptions, note

from (28) that

hi1 = pi1q11 + pi2q21 + · · ·+ piiqi1 =
pi1x11 + pi2x21 + · · ·+ piixi1�

x211 + x221 + · · ·+ x2n1
.

The numerator of hi1 is a zero-mean Normal variable with variance p2i1+ p2i2+ · · ·+ p2ii = ωii

and therefore the numerator can be written as
√
ωiivi1 where vi1 ∼ N(0, 1) for

vi1 =
pi1x11 + pi2x21 + · · ·+ piixi1√

ωii
= α′ix1

for x1 the first column of X and α′i a vector with the property that α′iαi = 1.
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If we then consider the square of the impact, h2i1 = ωiiv
2
i1/(x

2
11 + x221 + · · · + x2n1), the

claim is that this is ωii times a Beta(1/2,(n−1)/2) random variable. This would be the case

provided that we can write the denominator as

x211 + x221 + · · ·+ x2n1 = v211 + v221 + · · ·+ v2n1

where (v11, ...., vn1) are independentN(0, 1) and the ith term vi1 is the same term as appears in

the numerator. That this is indeed the case can be verified by noting that since x1 ∼ N(0, In),

it is also the case that v1 ∼ N(0, In) when v1 = αx1 and α is any orthogonal (n×n) matrix.

We can start with any arbitrary unit-length vector α′i for the ith row of α and always fill

in the other rows {α′1,α
′
2, ...,α

′
i−1,α

′
i+1, ...,α

′
n} so as to find such an orthogonal matrix α.

Then v′1v1 = x′1α
′αx1 = x′1x1 as claimed.
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Figure 1. Prior densities for initial effect of shocks implicit in traditional approach to sign-restricted VAR.  

Panel A: response of variable i to one-standard-deviation increase of any structural shock when number 

of variables in VAR is 2 (solid blue) or 6 (dashed green).  Panel B: response of variable i to a structural 

shock that increases variable j by one unit.  
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Figure 2.  Effects of structural shocks as imputed by the traditional sign-restriction methodology (blue) 

and truncated priors implicit in that approach (red).  Top panel: short-run wage elasticity of labor 

demand; bottom panel: short-run wage elasticity of labor supply. 
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Figure 3.  Prior densities when a uniform prior is used for the effect of shock 1 and number of variables 

is 2.  Panel A: prior density for response of variable 1 to structural shock 1.  Panel B: prior density for 

response of variable 1 to structural shock 2.   
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Figure 4. Maximum likelihood estimates and likelihood contours for α and β.  Distance between contour 

lines is 10, and unshaded regions are exceedingly unlikely given the data. 
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Figure 5. Maximum likelihood estimates and contours of prior and posterior distribution.  Distance 

between contour lines is 2, and unshaded regions are exceedingly unlikely given prior beliefs and the 

data. 
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Figure 6.  Distributions for prior (red curves) and posterior (blue histograms).  Panel A: short-run 

elasticity of labor demand; panel B: short-run elasticity of labor supply; panel C: long-run labor-supply 

parameter (negative of lower left element of the matrix in equation (55)). 
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Figure 7.  Posterior median (blue line) and 95% posterior credibility sets (shaded regions) for effects of 

labor demand and supply shocks on levels of employment and the real wage at alternative horizons (V = 

0.1). 
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Figure 8.  Effect of stronger priors about the long-run labor supply elasticity.  Left column: response of 

employment to a labor demand shock for prior weights given by V = 1, 0.1, 0.01, or 0.001; right column: 

distribution for short-run labor supply elasticity for prior (red curve) and posterior (blue histograms) 

associated with different values of V.  
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