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We combine Nagel’s “step-k” model of boundedly rational players with a “law of effect”
learning model. Players begin with a disposition to use one of the step-k rules of behavior, and
over time the players learn how the available rules perform and switch to better performing
rules. We offer an econometric specification of this dynamic process and fit it to Nagel’s
experimental data. We find that the rule of learning model vastly outperforms other nested
and nonnested learning models. We find strong evidence for diverse dispositions and reject
the Bayesian rule-learning model.Journal of Economic LiteratureClassification Numbers:
C70, C52, D83. © 1996 Academic Press, Inc.

1. INTRODUCTION

While there is ample evidence that people rarely choose Nash equilibrium
strategies the first time they play a given game, there is evidence that some people
tend to learn to play a Nash equilibrium.1 How do people learn to play? What
do people learn (simple behaviors or complicated rules)? How do people make
their initial choice, and how is the information they accumulate incorporated
into the dynamic learning process? A growing literature on learning in games is
addressing these questions.2

∗ Partial funding of this research was provided by grant SBR-9308914 from the National Science
Foundation. The author thanks Rosemarie Nagel for permission to use her experimental data for this
study and for many stimulating conversations, Xioahua Lu for substantial programming and research
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1 Cheung and Friedman (1994), El-Gamalet al. (1993, 1994), Mookherjee and Sopher (1994), Roth
and Erev (1995), Van Huycket al. (1995) to mention just a few.

2 Crawford (1995), Friedmanet al. (1995), Fudenberg and Kreps (1993), Fudenberg and Levine
(1993), Jordan (1991), Kalai and Lehrer (1993), Milgrom and Roberts (1991), Rosenthal (1993),
Selten (1990, 1991). Selten and Buchta (1994), etc.
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FIGURE 1

In a simple adaptive behavior model, an individual is endowed with an initial
“propensity” to choose a particular behavior, and the observed payoffs for var-
ious choices affect future propensities: behaviors which lead to more favorable
outcomes are more likely to be repeated in the future. This is the “Law of Ef-
fect” in psychology (see Bush and Mosteller, 1955, and Roth and Erev, 1995).
Simple adaptive behavior models can predict reasonably well and lead to opti-
mal behavior in stationary, single-decision-maker problems. However, in games
that generate nonstationary sequences of observations, such simple models are
severely limited.

The main distinction between a single decisionmaker problem and a game is
that an intelligent human player of a game will attempt to anticipate the actions of
the other players. Therefore, a successful learning model for games must entail
a model of other players, as well as best-response computations.

The Bayesian approach to learning hypothesizes that players havepriors (be-
liefs) of the dynamic strategies of other players, update thesepriors using Bayes
theorem, and choose a best response given these beliefs (e.g., Blume and Easley,
1992; Jordan, 1991; Kalai and Lehrer, 1993; and Nyarko, 1991). This extremely
complicated process is highly unrealistic and there is no evidence that real people
use it (Holt, 1993).

Rosenthal (1993) and others (e.g., Holland, 1976; Arthur, 1990, 1993; and
Aumann, 1986) have proposed that players begin with a set of “rules-of-thumb”
and that the propensity to employ a particular rule-of-thumb is reinforced as
in the adaptive behavior model. In other words, the definition of “behavior” is
broadened to include rules-of-thumb as well as simple actions.

More generally, we could consider a measurable class of functions (or rules)
that map from a player’s information to the set of feasible actions. Propensities
would be defined as a measure on this class, and the reinforcement principle
would define a learning dynamic, as illustrated in Fig. 1. Kuan and White (1994)
and Chen and White (1994) investigate the general stochastic properties of such
learning dynamics. A wide variety of behavioral rules could be encompassed in
such a general model. For example, maximin, maximax, and best response to
uniform.

However, to operationalize such a general theory, we must address three sub-
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stantive issues.First, what is the empirically relevant class of rules?Second,
what are the initial propensities: Do all individuals have the same initial propen-
sities, or is there significant diversity among individuals?Third, what are the
specific dynamics: how is reinforcement quantified, how much weight is given
to old information and new information, how much experimentation/search is
employed, how are new rules introduced, and how significant are computational
errors?

In this paper, we suggest an approach to these issues for strategic situations
in which each player is given a summary statistic of the other player’s choices
in the previous period of play. Our approach yields a tractable empirical model
of rule learning, and we confront this model with data from a guessing game
experiment. Crawford (1995) also addresses this class of games but using a
simple adaptive behavior model.

Nagel’s (1995) experiment and model motivate our approach. There is a finite
number of players. Each chooses a real number in the [0,100] interval. The mean
of all the submitted numbers is computed, and the player that is closest toρ times
the mean wins a prize; all others get nothing. We will focus on two treatments by
Nagel in whichρ = 1/2 and 2/3 respectively. The game is dominance solvable
with 0 as the solution. However, in actual experiments, the mean is always
well above 0 and only slowly decreases over several trials. Figure 2 displays
a kernel estimate of the density function for Nagel’s data using a bandwidth
of 2.3 One of the striking features is that in the first period there appear to be
modes in the distribution near 50ρ and 50ρ2, suggesting that the participants
used rules-of-thumb corresponding to different depths of reasoning as suggested
by Nagel.4 Nagel computed a nonparametric test of this hypothesis and found
that the period-1 choices were significantly concentrated in intervals around 50,
50ρ, 50ρ2, and 50ρ3. Further, the written comments from the participants lend
support to this “depth-of-reasoning” explanation.

Nagel proposed the following model of boundedly rational behavior. Thestep-
0 rule chooses the previous mean, with 50 being the default mean for the first
period.5 A player using the step-0 rule essentially has no understanding of the
game, but tends to follow the crowd. Thestep-1 rule chooses a best response
to the previous mean. A player using the step-1 rule essentially believes that all
other players will use the step-0 rule. Thestep-2 rule chooses a best response to
the step-1 rule. A player using the step-2 rule essentially believes that all others
will use the step-1 rule, etc.

For periods 2 to 4, it appears from Fig. 2 that the distribution becomes more

3 We present this figure as a convenient and suggestive display of the data, not as a formally tested
kernel estimate. We used a bandwidth of 2 because the resulting distribution best reveals the modes
that Nagel’s nonparametric tests showed were significant.

4 See also Stahl (1993) and Stahl and Wilson (1994, 1995).
5 Nagel tested and rejected 100 as the default value in favor of 50.
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FIG. 2. Kernel Estimates of Nagel Data: Bandwidth = 2.

concentrated around 50ρ2, with no strong tendency for convergence to the Nash
equilibrium at 0.6 Nagel performed statistical tests showing that the shift of the
distribution toward the step-2 rule is significant. On the other hand, Nagel’s test

6 For periods 2 to 4, the data are divided by the previous mean and multiplied by 50, so 50ρk can
be interpreted as the behavioral rule of choosingρk times the previous mean in every period—i.e., a
step-k rule. This interpretation implicitly assumes that 50 is the default value for the previous mean in
period 1.
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of the prevalence of the step-k rules in periods 2 to 4 fails to reject the hypothesis
that the choices were not significantly concentrated around the predictions for
the step-0 to step-3 rules inclusive. It is possible, as Nagel argues, that this test
failed because different behavioral rules enter after the initial period. However,
it also could be that computational error or individual diversity increase, or that
learning behavior itself increases the likelihood of type-II errors for this test.

Nagel’s hierarchial models suggests not only a set of behavioral rules but
also suggests a set of initial propensities (or archetypal “dispositions”) for our
learning model: each archetypal disposition has the strongest propensity for one
of the rules. We define a one-parameter class of such dispositions, and estimate
that parameter from the data.

We also hypothesize computational errors and individual diversity within each
type category, so the choice of a player employing the step-k rule is a random
variable distributed normally with expectation equal toρk times the mean of all
players’ choices in the previous period and a standard deviation estimated from
the data.

Our model hypothesizes that the propensities to use the various rules change
from period to period due to reinforcement according to relative performance.
At the beginning of each period after the first, the participants know the previous
mean. Therefore, they can assess how each rule would have done, taking account
of the potential for computational errors. Specifically, we assume that the rele-
vant reinforcement variable for a rule is proportional to the expected payoff of
the rule, which is equal to the probability density that the rule would have gen-
erated the winning number. Then, the current period’s propensity is a weighted
average of last period’s propensity and the recent reinforcement. These weights
are estimated from the data and interpreted later.

Nagel finds support for an alternative “directional” learning model (similar to
that of Selten and Buchta, 1994), in which each individual’s choice is a multiple
of the previous mean, and this multiplicative factor is adjusted up (down) if it
was too low (high) in the previous period. We will compare this alternative with
our model in Section 4.2. Nagel also interprets the evidence as providing only
weak support for increasing depth of reasoning.

When confronted with the data, we find that our learning model vastly out-
performs the simple adaptive behavior model and other nested models. We find
persuasive evidence for heterogeneous initial dispositions. We strongly reject
the hypothesis that a player with a step-k disposition uses the step-k rule inevery
period. In other words, a player learns more than just the previous mean which
gets incorporated into the step-k rules; he learns which rules perform better and
switches to them. We also formulate, test, and subsequently reject a Bayesian
learning model.

In Section 2 we present the formal modeling and in Section 3 we present the
econometric methodology. In Section 4 we present the results and tests, and we
conclude in Section 5.
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2. THE MODEL

2.1. The Game

Suppose there areN players. A parameterρ ∈ (0, 1) is announced at the
beginning of the first period and is fixed for all periods. At the beginning of a
period, a player chooses a real number inA ≡ [0, 100]. Let x̄t denote the mean
of all the choices for periodt . The player whose choice is closest toρ x̄t wins
a prize. If there are ties, the winner is chosen randomly with equal probability
from those who chose the closest number; otherwise, a player receives nothing.
After the first period, every player is fully informed about the mean andρ times
the mean of the previous period. There are four periods in all.

2.2. The Behavioral Rules

Let k ∈ 0, 1, . . . , K index a set ofK + 1 behavioral rules, and letfk: A→
1(A) denote therule that maps the previous mean of the choices of all players
into a probability density on the set of current actions. If the mean in periodt
wasx̄t , then the probability density ofxt+1 under rulek is denotedfk(xt+1; x̄t).
We specify that the mean offk(·; x̄t) isρk · x̄t , corresponding to Nagel’s “step-k”
rule described in the Introduction. Further, we definex̄0 ≡ 50, since 50 is the
mean of the uninformed prior.

Thus, fk(ρ x̄t ; x̄t−1) is the probability density for rulek evaluated at theex
postbest choice for periodt . Since the probability that rulek would have been
the best rule to use is directly related to this density, it is an obvious candidate
for aperformance measure. However, since making a choice and evaluating past
performance are two different operations, we want to allow for the possibility of
a different error process as well as the possibility of spillover reinforcement of
“nearby” rules.

To this end, letgk: A→ 1(A) denote a probability density that has the same
expected value asfk but perhaps a different standard deviation. We will usegk

as the performance measure for rulek.
We must specify a family of distributions that we can identify from the ex-

perimental data. Since several participants chose extreme points (0 and 100),
we cannot use a family with a zero density at the extreme points; this rules out
the beta distribution. For econometric simplicity, we choose the family of nor-
mal distributions truncated to the [0,100] interval, with meanmk and a standard
deviation given by

σk ≡ s1+ r1 · θ ·mk for k > 0. (1)

This specification of the standard deviation with absolute and relative compo-
nents allows for the possibility that the standard deviation decreases as the mean
decreases but does not go below a minimum level. While the theory specifies
thatmk = ρk · x̄t−1 for periodt , the(s1, r1) parameters will be estimated from the
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data;θ is a constant function of the treatment parameterρ : θ = (1−ρ)/(1+ρ).
This value ofθ solves the equation(1+ θ)ρk+1 = (1− θ)ρk. By measuring the
relative standard deviation in units ofθ , one relative standard deviation belowmk

is the same point as one relative standard deviation abovemk+1. Consequently,
r1 measures the relative gap between successive behavioral rules in a manner
that is invariant toρ.

Since a step-0 type has no real understanding of the game, we allow for
different parameter values for the step-0 standard deviation: namely,σ0 = s0 +
r0 · m0. It turns out that in all models in which we included thes0 term, the
maximum likelihood estimate ofs0 was exactly 0, so in the interest of efficient
estimation of the other parameters of the model we sets0 = 0 for all models
reported in this paper. We also tested and strongly rejected the hypothesis that
s0 = s1 andr0 = r1.

For the performance measuregk, we specify the standard deviation similarly
ass2+ r2 · θ ·mk for k > 1, andr3 ·m0 for k = 0. We can interpret this perfor-
mance “bandwidth” as computational error in computing performance, and/or
as a neighborhood reinforcement effect (i.e., second-best rules get reinforced
somewhat also).

2.3. Propensities and Dispositions

A player begins a period with a vector of propensities toward theK +1 rules:
ω ≡ (ω0, . . . , ωK ), with the interpretation that the probability of choosing rule
k is given by exp(ωk)/

∑K
j=0 exp(ωj ). Since ultimately only the probabilities

matter, the equivalence classes of initial propensities can be associated with the
K -dimensional simplex. Propensities for later periods will be determined by the
dynamics specified in the next subsection. Each individual’s behavior will be
uniquely determined by his/her initial propensities and the dynamics. We will
call an individual’s initial vector of propensities adisposition.

Unfortunately, with only four periods andK ≥ 3, it will not be possible to
identify the disposition of each individual. Instead, we consider only a finite set
of dispositions. The evidence presented by Nagel suggests that a reasonable set
of dispositions is the set corresponding to theK + 1 rules.

In specifying a disposition corresponding to the step-k rule, we clearly want
the step-k rule to be the most likely rule to be chosen, but we want the other
rules to have some positive chance of being chosen, because if they have a
zero chance of being chosen, then a wide class of learning dynamics (including
Bayesian updating) would never give them a positive chance. With this in mind,
we define a one-parameter class of prior dispositions.

Letw(k, j, t) denote the propensity of a player to use rulej in periodt given
he/she has a type-k disposition. Then, we definew(k, k, 1) ≡ µ > 0, and
w(k, j, 1) ≡ 0 for j 6= k. With this specification, atype-k dispositionwill have
a exp(µ)/[K +exp(µ)] > 1/(K +1) probability of choosing the step-k rule, and
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a 1/[K + exp(µ)] < 1/(K + 1) probability of choosing a step-j rule ( j 6= k).
The parameterµ, which will be estimated from the data, can be interpreted as
the strength of the initial propensities: the largerµ, the more likely it is that the
designated rule will be chosen over the other rules.

To summarize, we specify a one-parameter family of dispositions correspond-
ing to theK + 1 rules. A disposition specifies the initial vector of propensities
to use each of theK + 1 rules. An individual with a type-k disposition is more
likely to use rulek than any other rule. Thus, an individual is fitted into one of
K + 1 types. To the extent that there is more diversity among individuals than
theseK + 1 types, we hope that the noise parameters(r0, s1, r1, s2, r2, r3) will
capture that diversity.

2.4. The Dynamics

The law of effect asserts that good performing rules should be more likely to
be used in the future and bad performing rules should be less likely to be used
in the future. In the guessing game, there are only two outcomes (win or lose),
so the appropriate performance measure is the likelihood of winning conditional
on rule j : gj .

For periodst > 1, we define the dynamic on propensities by:

w(k, j, t) = β0w(k, j, t − 1)+ β1 gj (ρ x̄t−1; x̄t−2). (2)

Theβ0 coefficient represents the weight given to the most recent propensity. If
0≤ β0¿ 1, then the propensity is discounted heavily (or forgotten readily). In
the absence of performance information, the propensities would decay toward
zero, and all rules would tend to be chosen with equal likelihood. On the other
hand, ifβ0 > 1, then the propensity is accentuated in the future, and in the
absence of performance information the rule with the highest initial propensity
would tend to be used almost always. Theβ1 coefficient represents the weight
given to current performance. The rule for whichρ x̄t−1 has the largest probability
density will receive the most reinforcement. Ifβ1 is large, then the new propensity
will concentrate on the most recent best rule, while ifβ1 is small then new
performance information will be incorporated slowly.

Given these propensities, the probability that a player with a type-k disposition
uses rulej in periodt is defined as

ϕ(k, j, t) ≡ exp[w(k, j, t)]/
∑
`

exp[w(k, `, t)]. (3)

Note that because of the logarithmic specification of propensities, the proba-
bilities would not be affected by the addition of a constant term to Eq. (2) for
renormalization purposes.
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2.5. The Log-Density Mixture Model

Let i ∈ {1, . . . , N} index players, and letx(i, t) be the choice of playeri
in period t . Then, conditional on having a type-k disposition, the probability
density of playeri ’s choice is

p(i, k, t) ≡
K∑

j=0

ϕ(k, j, t) · f j (x(i, t); x̄t−1). (4)

Hence, the probability density of playeri ’s four choices (one for each period),
conditional on having a type-k disposition, is

P(i, k) ≡
4∏

t=1

p(i, k, t). (5)

Let αk denote the proportion of the population of players that have a type-k
disposition fork ∈ {0, 1, . . . , K }. Each of these types has the potential to learn
that other rules are better.

However, it is conceivable that some players do not learn at all. Indeed, the
data reveal that several players chose 100 in rounds 3 and 4, which cannot be
rationalized by any rule. Rather than throw out these “outliers” from the data set,
we introduce another type that chooses randomly from a uniform distribution in
every period; we call such players “−1” types and letα−1 denote the proportion
in the population.7 We also defineP(i,−1) = 0.01, the density of the uniform
distribution overA. Naturally, eachαk is nonnegative and

∑K
k=−1 α = 1.

Then, the unconditional probability of playeri ’s choices is

P∗i ≡
K∑

k=−1

αk P(i, k), (6)

and the log-density of the whole data set,x, is

L(x) ≡
∑

i

ln(P∗i ). (7)

3. THE STATISTICAL METHODOLOGY

The log-densityL defined by Eq. (7) is a function of the parameters of the
model: theαk’s, β0, β1, µ, r0, s1, r1, s2, r2, andr3. We seek to find values for

7 These “irrational” choices suggest that these players were more interested in aggravating their
peers than in winning. While such behavior is not itself a random draw from a uniform distribution,
the−1 type behavior is a parsimonious way to capture this as well as all other behavior that is not
consistent with any of the step-k rules.
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these parameters that maximizeL, and we will call these parameter values the
maximum density estimatesand denote them aŝβ.

When we proceeded to maximizeL, we encountered a heteroscedasticity
problem. Specifically, because the choices of the individuals decrease substan-
tially over the periods, and because the data indicate a substantial decrease in the
standard deviation over the periods, the densities (being divided by the standard
deviation) are an order of magnitude larger in the last period than in the first pe-
riod. This imbalance means that the fourth period data have a disproportionate
influence on the coefficient estimates.

To correct for this problem, we transformed the data by multiplying the choice
in period t by 50/x̄t−1. Thus, in terms of the transformed data, a step-k rule
will generate a mean choice of 50ρk in every period and a standard deviation of
50s1/x̄t−1+r1ρ

k for periodt . Note that the relative standard deviation component
becomes independent of the period, while the absolute component becomes
significant only in the later period. All results reported below are based on the
transformed data.

We maximizeL using the simplex algorithm of Nelder and Mead (1965), using
a variety of starting values to increase our confidence that a global maximum
was achieved. The simplex method requires only function evaluations. Although
it is not very efficient in terms of the number of function evaluations required,
the method is easier to implement than other algorithms sometimes used with
mixture models, such as the EM-algorithm.

Nonparametric confidence intervals for parameter estimates were estimated
using the bootstrap percentile method described by Efron (1982, Chap. 10).
While it is possible to obtain conventional standard error estimates by evaluating
the information matrix derived from the log-likelihood function, interpretation
of t-ratios obtained from these estimates is problematic due to the nonnormality
of the underlying distributions.

The bootstrap method is based on the notion of replicating error processes by
resampling estimated residuals. Since our model is a probabilistic choice model,
residual terms are not explicitly estimated, and so the simulation step requires
some modification. We first maximize the log-likelihood, Eq. (7), using the actual
dataset to obtain a vector of parameter estimates,β̂. Then, to generate pseudo-
dataxs for each player, a uniform [0, 1] pseudorandom deviate is generated
via the multiplicative congruential method and compared to the estimatesα̂k,
k ∈ {−1, 0, . . . ,3}, to determine the player’s disposition type. If the type is−1,
then a uniform [0,100] pseudorandom deviate is generated for every period as the
player’s choice. Otherwise, a uniform [0,1] pseudorandom deviate is generated
and compared to theϕ(k, j, l ), usingµ̂, to determine the rule used by the player
for period 1. If the rule is step-k (k ≥ 0), then normal pseudorandom deviates
(with mean 50ρk and standard deviationσ k) are generated until one lies in the
[0,100] interval, and this one becomes the player’s choice.

Sequentially, for periodst = 2, 3,and 4 and dispositionsk ≥ 0, the propensity
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weightsw(k, j, t)are computed according to the dynamic, Eq. (2), usingβ̂. Then,
a uniform [0,1] pseudorandom deviate is generated and compared to theϕ(k, j, t)
to determine the rule used by the player for periodt , given the disposition
type already determined (above). If the rule is step-k (k ≥ 0), then normal
pseudorandom deviates (with meanmk equal toρk times the mean of period
t − 1 of the pseudodata and standard deviationσk) are generated until one lies
in the [0,100] interval, and this one becomes the player’s choice.

Since the original data consist of seven sessions with differing sizes and treat-
ments, we simulate seven sessions of pseudo-data with the same number of
players and the same treatment as in the original. Once seven sessions of pseudo-
choicesxs have been simulated, the model is reestimated using these pseudo-data
to obtain a bootstrap estimatêβs. Then the process is repeated a large number
of times to produceSbootstrap estimates,{β̂s}Ss=1, which approximate the sam-
pling distribution of the original estimator,̂β. Let β̂( j ) andβ̂s( j ) denote thej th
elements ofβ̂ andβ̂s, respectively. Nonparametric 95%-confidence intervals for
β̂( j ) are obtained by sorting{β̂s( j )}Ss=1 by algebraic value and then deleting
0.025× Svalues from each end of the sorted array; the new endpoints give the
confidence interval. In the results reported below, we choseS= 1000 to ensure
adequate coverage.

The bootstrap estimates are also used to compute standard error estimates and
“ t-ratios” which are reported below. The bootstrap standard-error estimates are
obtained by computing the sample standard deviation of{β̂s( j )}Ss=1. As noted
earlier, the interpretation oft-ratios and standard errors is problematic due to the
nonnormality of the underlying distributions.

Since the model presented in Section 2 explicitly includes the treatment pa-
rameterρ, we maximizeL for the pooled data from two treatments: one with
ρ = 1/2 and the other withρ = 2/3. We present tests for treatment effects in
Section 4.4. The first treatment consisted of three separate experimental sessions
with a total of 48 players, while the second treatment consisted of four sessions
with a total of 67 players. (See Nagel for the details of the experiment.)

4. RESULTS

We first present the model withK = 3, i.e., step-0 to step-3 behavioral rules.
To simplify the presentation, we first consider the test of the hypothesis that
the parameters of thefk andgk functions are the same: i.e.,s2 = s1, r2 = r1,
andr3 = r0. The maximized value of the unrestricted log-density function was
304.528, while the maximized value of the restricted log-density function was
301.928. Twice the difference is 5.200, which has a chi-square distribution with
3 degrees of freedom, giving ap-value of 0.158. Thus, we fail to reject the
hypothesis. In other words, we have discovered that a single error process can
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TABLE I
Parameter Estimates of Model withK = 3

Estimate Std Dev t-Ratio 95% Conf. Interval

α−1 0.0566 0.0240 2.362 0.0153 0.1118
α0 0.4153 0.0713 5.825 0.2749 0.5520
α1 0.2109 0.0672 3.142 0.0839 0.3375
α2 0.2787 0.0633 4.403 0.1477 0.4038
α3 0.0384 0.0342 1.125 0.0000 0.1177

r0 0.5168 0.0612 8.444 0.4086 0.6607
r1 0.9469 0.1080 8.769 0.7182 1.1471
s1 0.1356 0.1333 1.017 0.0000 0.4811

β0 0.6037 0.1331 4.536 0.3391 0.8630
β1 0.1721 0.0340 5.060 0.1201 0.2549
µ 3.154 1.132 2.787 2.015 6.237

Estimated Maximum Log-Density = 301.928.

account for diversity in both the choice mechanism( fk) and the reinforcement
mechanism(gk). Our remaining analysis imposes the restriction thats2 = s1,
r2 = r1, andr3 = r0.

Table I presents the maximum density estimates of the parameters for this
model. The estimated proportions of the initial disposition types in the population
(the α’s) are all positive. For types -1, 0, 1, and 2, the lower bound of the
95% (and 99%) confidence interval for theα’s is strictly positive; hence, we
can conclude that theseα’s are significantly different from zero at all normal
significance levels. (We will return to the issue of the statistical significance of
α̂3 momentarily.) The relative standard deviation estimate for the step-0 rule,
r̂0, is 51.7%, while the relative standard deviation estimate for the higher step
rules,r̂1 · θ , is 31.6% and 18.9% forρ = 1/2 and 2/3 respectively. The absolute
standard deviation estimate,ŝ1, is 0.2, and so becomes a factor only in periods 3
and 4 when the average choices become small also. To test the significance ofŝ1,
we estimated the model under the restriction thats1 = 0, and twice the resulting
log-likelihood ratio was 14.774, which has ap-value less than 1.2× 10−4; thus,
we conclude thats1 is significantly different from 0.

The estimatêµ = 3.15 means that the probability of a player behaving ac-
cording to his/her true disposition in period one is 0.887, while the probability
of any other behavior is 0.038. Thus, with an initial disposition toward step-k
rule, that rule is 23 times more likely to be used than any other rule.

The dynamic parameters (β0 andβ1) are both positive and less than 1. Thus,
the past propensity tends to be discounted and learning is slow. Noting that the
maximum density of a normal distribution with standard deviationσ is 1/

√
2πσ ,

and given the parameter estimates fors1 andr1, the maximum density forgk
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ranges from 4.97 to 18.9, soβ1gk ranges from 0.86 to 2.22, allowing substantial
switching to the best-performing rule.

Table II displays the estimatedϕ(k, j, t) functions by session and by period. It
is evident from this table that there is substantial learning of which rules perform
best. In the first period, each dispositional type has a strong propensity toward
its own type behavior. In periods 2 and 3, since the step-2 rule performed best in
the previous period, there is a strong tendency for each type to switch to rule 2.
In period 4, this trend toward rule 2 continues for sessions 1, 4, 6, and 7, while
there emerges some tendency toward rule 3 for sessions 2, 3, and 5.8

We turn now to the issue of whether theα3 parameter estimate with zero as its
left-hand endpoint of the 95% confidence interval is significantly positive or not.
First, we separately estimate the respective restricted model (with the parameter
set to zero) and calculate the likelihood-ratio statistic. Twice the difference of
the maximized log-density function is 1.320. If this statistic were distributedχ2

with one degree of freedom, then we would conclude that it is not significantly
different from zero. Unfortunately, the likelihood-ratio statistic has unknown
distribution under the null hypothesis since the null values of the parameters
are on the boundary of the parameter space (see Everitt and Hand, 1981, and
Titteringtonet al., 1985). Conventional Wald and Lagrange multiplier tests also
have unknown distributions at the edge of the parameter space.

To circumvent this problem, we use the bootstrap procedure to approximate
the sampling distribution of the likelihood-ratio statistic. The choice data were
simulated as outlined above for the bootstrap procedure (exceptβ̂restrictedwas used
to simulate the pseudo-data under the null hypothesis). Both the restricted and
unrestricted models were estimated on these psuedo-data yielding maximized
log-likelihood valuesL∗restrictedandL∗freerespectively. These values were then used
to compute a bootstrap estimate of the likelihood-ratio statistic:χ∗ ≡ 2(L∗free−
L∗restricted). The entire process was repeated 1000 times to produce bootstrap
estimates{χ∗s }1000

s=1 . Since these values approximate the sampling distribution
of the original likelihood-ratio statistic, it is straightforward to determine the
significance of the original likelihood-ratio statistic by first sorting the values
and then determining the percentile of the original statistic.9

The bootstrap results for theα3 = 0 hypothesis indicate that the 5% critical
value for the likelihood-ratio statistic is 2.844, and that 1.320 has ap-value of

8 Therefore, it did not seem reasonable to considerK < 3.
9 Our bootstrapped hypothesis test is methodologically identical to the Monte Carlo approach em-

ployed by Aitkenet al. (1981), who in effect used only 19 bootstrap replications. Hall (1986) provides
theoretical results which show that using a small number of replications in the bootstrap may increase
the probability of type-II errors. Several authors have suggested using at least 100 replications for
testing null hypotheses regarding parameter values, and as many as 1000 replications for constructing
confidence intervals. Note that merely examining the confidence interval ignores the variation in the
other parameters; thus, the bootstrapped likelihood-ratio statistic provides a more powerful test.
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TABLE II
Rule Probabilitiesϕ(k, j, t)

Disposition Step 0 Step 1 Step 2 Step 3

All Sessions: Period 1

0 0.8865 0.0378 0.0378 0.0378
1 0.0378 0.8865 0.0378 0.0378
2 0.0378 0.0378 0.8865 0.0378
3 0.0378 0.0378 0.0378 0.8856

Session 1
Period 2

0 0.4917 0.0834 0.3517 0.0732
1 0.0692 0.5292 0.3324 0.0692
2 0.0283 0.0322 0.9113 0.0283
3 0.0732 0.0834 0.3518 0.4916

Period 3
0 0.1861 0.0723 0.6757 0.0659
1 0.0573 0.2219 0.6567 0.0640
2 0.0253 0.0310 0.9154 0.0283
3 0.0581 0.0713 0.6657 0.2049

Period 4
0 0.0895 0.0595 0.7974 0.0537
1 0.0440 0.1174 0.7857 0.0529
2 0.0255 0.0339 0.9100 0.0306
3 0.0443 0.0590 0.7902 0.1065

Session 2
Period 2

0 0.5842 0.1265 0.2124 0.0770
1 0.0710 0.6929 0.1733 0.0629
2 0.0507 0.0737 0.8308 0.0449
3 0.0923 0.1341 0.2252 0.5485

Period 3
0 0.2440 0.1014 0.4003 0.2543
1 0.0735 0.3042 0.3805 0.2418
2 0.0456 0.0597 0.7448 0.1499
3 0.0559 0.0734 0.2897 0.5810

Period 4
0 0.0728 0.0442 0.2223 0.6608
1 0.0361 0.0877 0.2205 0.6557
2 0.0306 0.0372 0.3751 0.5571
3 0.0224 0.0272 0.1367 0.8138
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TABLE II
Continued

Disposition Step 0 Step 1 Step 2 Step 3

Session 3
Period 2

0 0.4904 0.0839 0.3545 0.0712
1 0.0688 0.5305 0.3337 0.0670
2 0.0280 0.0322 0.9125 0.0273
3 0.0738 0.0848 0.3582 0.4832

Period 3
0 0.1954 0.0738 0.6405 0.0904
1 0.0603 0.2272 0.6244 0.0881
2 0.0275 0.0328 0.8995 0.0402
3 0.0583 0.0695 0.6034 0.2687

Period 4
0 0.0780 0.0434 0.2563 0.6223
1 0.0388 0.0866 0.2552 0.6195
2 0.0320 0.0357 0.4213 0.5110
3 0.0246 0.0274 0.1618 0.7862

Session 4
Period 2

0 0.5955 0.1349 0.1958 0.0737
1 0.0701 0.7167 0.1549 0.0583
2 0.0550 0.0837 0.8156 0.0457
3 0.0970 0.1475 0.2141 0.5414

Period 3
0 0.2791 0.1408 0.5117 0.0684
1 0.0795 0.3993 0.4598 0.0615
2 0.0462 0.0736 0.8444 0.0358
3 0.0924 0.1471 0.5348 0.2257

Period 4
0 0.1321 0.1045 0.7134 0.0500
1 0.0636 0.2014 0.6869 0.0481
2 0.0400 0.0634 0.8663 0.0303
3 0.0671 0.1062 0.7250 0.1017

0.262. Thus, at the 5% confidence level, we cannot reject the hypothesis that
α3 = 0 (i.e., that there are no step-3 dispositions in the sample population). Note
that, despite this conclusion, step-3 behavior emerges from learning in three out
of seven sessions.
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TABLE II
Continued

Disposition Step 0 Step 1 Step 2 Step 3

Session 5
Period 2

0 0.5654 0.1132 0.2504 0.0710
1 0.0722 0.6521 0.2148 0.0609
2 0.0432 0.0581 0.8624 0.0364
3 0.0911 0.1225 0.2710 0.5154

Period 3
0 0.2673 0.0950 0.3755 0.2622
1 0.0828 0.2933 0.3673 0.2565
2 0.0520 0.0584 0.7285 0.1611
3 0.0612 0.0687 0.2715 0.5986

Period 4
0 0.1049 0.0520 0.2254 0.6177
1 0.0524 0.1042 0.2255 0.6179
2 0.0447 0.0443 0.3846 0.5264
3 0.0335 0.0332 0.1439 0.7894

Session 6
Period 2

0 0.5207 0.0830 0.3212 0.0751
1 0.0752 0.5404 0.3115 0.0729
2 0.0324 0.0347 0.9015 0.0314
3 0.0786 0.0842 0.3257 0.5116

Period 3
0 0.2228 0.0745 0.6166 0.0862
1 0.0700 0.2332 0.6114 0.0855
2 0.0324 0.0342 0.8938 0.0396
3 0.0683 0.0721 0.5964 0.2633

Period 4
0 0.1746 0.1492 0.5943 0.0818
1 0.0821 0.2813 0.5596 0.0770
2 0.0579 0.0990 0.7889 0.0543
3 0.0877 0.1500 0.5976 0.1647

4.1. Comparison with Alternative Nested Models

4.1.1. The No-Rule-Learning Hypothesis. We can formally test the hypothesis
of no “rule learning” by restrictingβ0 = 1 andβ1 = 0. The maximum density
estimate ofµ is 1.81, implying initial dispositions that have 67% probability of
true type behavior and a 11% probability of each other type of behavior. Note
that the restricted model still permits learning in the sense of incorporating new
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TABLE II
Continued

Disposition Step 0 Step 1 Step 2 Step 3

Session 7
Period 2

0 0.5459 0.1017 0.2829 0.0695
1 0.0728 0.6116 0.2534 0.0622
2 0.0378 0.0473 0.8827 0.0323
3 0.0872 0.1091 0.3034 0.5004

Period 3
0 0.2483 0.1134 0.5767 0.0616
1 0.0732 0.3331 0.5364 0.0573
2 0.0379 0.0547 0.8777 0.0279
3 0.0817 0.1178 0.5987 0.2018

Period 4
0 0.1175 0.0761 0.7489 0.0575
1 0.0577 0.1497 0.7361 0.0565
2 0.0347 0.0450 0.8863 0.0340
3 0.0588 0.0762 0.7498 0.1153

information into a fixed rule, but no systematic switching that depends on past
rule performance.10 The maximized value of the restricted log-density function
was 263.210. Twice the difference is 77.436, which given aχ2 distribution with
4 degrees of freedom would have ap-value less than 10−16; hence, under theχ2

assumption, we would strongly reject the hypothesis of no rule learning.11

4.1.2. Simple Adaptive Behavior. The simple adaptive behavior model, men-
tioned in the Introduction, is nested within our model:β0 = 1,β1 = 0,µ = ∞,
andαk = 0 for k 6= 1. That is, there is only the step-1 rule, hence no learning of
rules, only updating of this step-1 rule:xt+1 = (1−λ)ρ x̄t+λxt , wherex̄0 andx0

are initialized to 50.12 Because of the outliers, we also include a−1 type in the
model. The maximized log-density function is 115.359, which is enormously
less than our model. Thus, we can strongly reject the simple adaptive behavior
model in favor of our model.

10 The random iid switching allowed by theµ parameter can be suppressed by settingµ = ∞; doing
this, the maximized log-density function drops to 224.364.

11 Given our experience, bootstrapping will not alter this conclusion, so we did not expend the
considerable resources to bootstrap this test.

12 If λ > 0, then this adaptive expectations model is not nested; however, the maximized log-density
estimateλ̂ is 0, so the estimated model is nested. Since the corresponding likelihood ratio statistic is
so large, the issue of the number of degrees of freedom can be resolved liberally without affecting our
conclusion.
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4.2. Comparison with Alternative Non-nested Models

4.2.1. Homogeneous vs Heterogeneous Dispositions. Consider ahomogeneous
rule-learning modelwhich differs from our mixture model only in that each par-
ticipant is assumed to be one of two types: type−1 (defined as before) or typè
for “learner.” All learners are assumed to have the same initial disposition. Let
νk denote the probability that the latter type uses the step-k rule in period one.
After period one, learning is assumed to occur according to the same dynamic
(β0, β1) and the same noise parameters(r0, s1, r1). (The four new parameters
replace theµ parameter of our mixture model, and we also eliminateα0, . . . , α3,
leaving a total of eight parameters to be estimated.) The maximized log-density
value was 294.635, which is less than the maximized log-density value of the
heterogeneous mixture model by 7.293. Since these models are not nested, we
cannot use aχ2 test of significance.

Therefore, we conducted a Monte Carlo simulation of the likelihood ratio
statistic (Schork, 1992). Similar to the bootstrap procedure discussed above, we
generated 1000 pseudo-data sets using the parameter estimates of the alterna-
tive homogeneous rule-learning model. For each pseudo-data set, we estimated
the original model and the alternative model and computed the log-likelihood
difference. These Monte Carlo results indicate that the 5% critical value of the
log-likelihood difference is 1.110, and since the largest simulated log-likelihood
difference was 5.774, the statistic 7.293 has ap-value less than 0.001. Thus,
we have strong evidence in favor of heterogeneous dispositions as opposed to
homogeneous dispositions.

4.2.2. Adaptive Ratio-Forecasting. The simple adaptive behavior model con-
sidered in Section 4.1.2 did not perform well for reasons similar to why simi-
lar price-level forecasting predicts badly in an inflationary economy. Since the
mean x̄t is falling, it would be better to attempt to forecast the rate of fall:
γ (t + 1) ≡ x̄t+1/x̄t . We call thisadaptive ratio forecasting, and specify a one-
parameter forecasting rule:

γ (t + 1) = λ x̄t /x̄t−1+ (1− λ)γ (t), with γ (1) = 1 andx̄0 = 50.

The choice is the best response to this forecast:xt+1 = ργ (t + 1)x̄t . We also
include the−1 type.

The maximum log-density function for this model is 190.132, which is a
substantial improvement over simple adaptive expectations. However, this is still
substantially less than our model, and while this alternative is not nested within
our model, the difference is large enough to persuade us (without conducting
Monte Carlo simulations) to reject adaptive ratio forecasting in favor of our
model.
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4.2.3. A Two-Lag Forecasting Rule. Recognizing that the class of rules in our
model use only the most recent mean choice, we decided to investigate a model
consisting of a type that operates like the step-1 rule in the first period, but
thereafter uses the two most recent means. For periodt ≥ 2, the expected mean
of the population for periodt + 1 is given

xe(t + 1) ≡ λ1x̄t + λ2x̄t−1.

In addition, we included a−1 type. The maximized log-density function was
216.805, an improvement over the above alternative, but still substantially less
than our model.

4.2.4. Nagel’s Learning Hypothesis. Nagel (1995) suggested a qualitative “di-
rectional” learning model in which each individual’s choice is a multiple of the
previous mean, and this multiplicative factor is adjusted up (down) if it was too
low (high) in the previous period. This notion is similar to our learning model
in that players who start by using the step-0 rule will eventually use a lower
multiplicative factor, and players who start by using the step-3 rule will tend to
use a higher multiplicative factor in periods 2 and 3 (and sometimes in period
4 as well). To make a rigorous comparison, we must first develop a parameter-
ized version of Nagel’s suggestion. We will include a type−1 to accommodate
outliers, as we did in our model.

For all other players, we assume that in the first period they use one of the
step-k rules,k = 0, 1, . . . ,3, and letαk denote the proportion using the step-k
rule. Then, the probability of playeri ’s first period choice is

p̃(i, 1) ≡
K∑

k=0

αk · fk(x(i, 1); 50), (8)

where fk( ) is the same as in our model. Fort = 2, 3, and 4, the expected choice
of playeri is γ (i, t)x̄t−1, where

γ (i, t) ≡ λγ (i, t − 1)+ (1− λ)ρ x̄t−1/x̄t−2 and γ (i, 1) ≡ x(i, 1)/50.
(9)

In other words, the player adjusts his/her multiplicative factor in the direction of
the most recent best factor. We specify that the choicex(i, t) is distributed as a
normal random variable, truncated to the [0,100] interval, with meanγ (i, t)x̄t−1

and standard deviationσ = s+ r · γ (i, t)x̄t−1.
There are 10 parameters to estimate (fourα’s, r0, s1, r1, s, r , andλ). The

maximized log-density is 267.705, which is a substantial improvement over the
other alternative models, but still 34.223 less than our model. To investigate
how significant this difference is, we conducted a Monte Carlo simulation of
this likelihood ratio statistic (as described in 4.2.1). These Monte Carlo results
indicate that the 5% critical value of the log-likelihood difference is−11.063,
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and since the largest simulated log-likelihood difference was 10.679, the statistic
34.223 has ap-value less than 0.001. Thus, we reject the directional learning
hypothesis in favor of our model.

4.2.5. Testing for Step-4Behavior. We also considered the model with a step-4
behavioral rule (i.e.,K = 4). For that model the maximized value of the log-
densityL was 301.895, which is slightly less than the log-density withK = 3
(301.928). Furthermore, the maximum density estimate ofα4 was identically
zero. Note that these models are not nested since the set of rules as well as the
number of dispositions changes; hence,L does not have to decrease in going
from K = 4 to K = 3. On the contrary, by concentrating theϕ functions on a
smaller set of rules, the data are fit better, andL increases by 0.033.

To test the significance of this difference, we conducted a Monte Carlo simu-
lation of this likelihood ratio statistic (as described in 4.2.1). These Monte Carlo
results indicate that the 5% critical value of the log-likelihood difference is 13.08,
and since the smallest simulated log-likelihood difference was 0.017, the statistic
−0.083 has ap-value less than 0.001. Thus, we can reject the hypothesis that
K = 4 in favor of the hypothesis thatK = 3.

4.3. Comparison with Bayesian Rule Learning

By modifying the reinforcement function of our model, we can transform
the model into one with Bayesian rule learning. Specifically, if instead ofgj in
Eq. (2) we use log( f j ), then the rule probabilities become

ϕ̃(k, j, t) ≡ ϕ̃(k, j, t − 1)β0 f j (t − 1)β1∑
` ϕ̃(k, `, t − 1)β0 f`(t − 1)β1

. (8)

Then, specifyingβ0 = β1 = 1, Eq. (8) becomes Bayes formula for the posterior
probability that rulej is best conditional on the periodt −1 observation and the
prior belief for periodt − 1. In other words, this modified model allows players
to have different priors but then update according to Bayes rule.

When we estimate this alternative model withβ0 and β1 unrestricted, we
find a maximized log-density of 293.284, which is less than our original model
(301.928), indicating that our specification of the reinforcement function fits
the data better.13 The maximum density estimates ofβ0 andβ1 are 0.406 and
0.717 respectively. Thus, relative to Bayes rule, the participants in this experi-
ment discounted the past too much and did not give adequate weight to current
performance.

Restrictingβ0 = β1 = 1, the maximized log-density falls to 280.993. Twice
the difference is distributedχ2 with 2 degrees of freedom, and has ap-value less

13 Our Monte Carlo simulation indicates that this difference is statistically significant at all commonly
accepted levels.
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TABLE III
Treatment Effects

ρ = 1/2 ρ = 2/3 Combined

α−1 0.0643 0.0464 0.0566
α0 0.3168 0.5200 0.4153
α1 0.1855 0.2185 0.2109
α2 0.3765 0.2022 0.2787
α3 0.0568 0.0129 0.0384

r0 0.4996 0.5301 0.5168
r 0.8132 1.052 0.9469
s 0.1753 0.0001 0.1356

β0 0.4426 0.7076 0.6037
β1 0.1520 0.1842 0.1721
µ 5.132 2.500 3.154

L̂ 140.930 167.075 301.928
No. of Subjects 48 67 115

than 5× 10−6. Therefore, we strongly reject the Bayesian rule learning model.
One might object to this formulation of a Bayesian rule learning model for the

following reason. Suppose players experiment in the first period. Then, our iden-
tification of their prior would be contaminated, and the restriction thatβ0 = 1
would be unwarranted, especially for the first period. To investigate this pos-
sibility, we reestimated the model allowingβ0 to be less than or equal to one
for the update from period 1 to period 2, but restricted to equal one for all sub-
sequent updates. The maximum density estimateβ̂0 was equal to one, clearly
demonstrating that this modification does not improve the Bayesian rule learn-
ing model. We therefore reject both formulations of Bayesian rule learning as
an explanation of this data.

4.4. Treatment and Session Effects

Does our model fully account for the effect ofρ? Since the data involve 48
players with theρ = 1/2 treatment, and 67 players with theρ = 2/3 treatment,
we can formally test treatment effects. The results are displayed in Table III.
Since 2× [L (1/2)+ L (2/3)− L] = 14.156 has aχ2 distribution with 10 degrees of
freedom and ap-value of 0.166, we cannot reject the hypothesis of no treatment
effects. Thus, the effect of the treatment parameter of behavior appears to be
adequately captured by the theory.

We can ask whether all sessions in one treatment were statistically indistin-
guishable. To do this, we estimated the model on each session separately. A
priori we might expect some differences to show up since (1) there are fewer ob-
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servations per session upon which to estimate the 10 parameters to the efficiency
of the estimates declines, and (2) extensive data mining enhances the chances of
type-II errors.

Indeed, we can reject at the 5% level the hypothesis that all theρ = 1/2 sessions
are identical; on the other hand, we cannot reject any one of the threeρ = 1/2
sessions as being statistically different from the pooledρ = 1/2 group.14 Further,
we cannot reject at the 5% level the hypothesis that all theρ = 2/3 sessions are
identical, and we cannot reject any one of the fourρ = 2/3 sessions as being
statistically different from the pooledρ = 2/3 group.

Summing the session-by-session maximum density estimates and comparing
this sum to the pooled data for both treatments (all 7 sessions), we can reject at
the 5% level the hypothesis that all the sessions are identical; on the other hand,
on an individual session basis we can reject only Session 1 as being statistically
different from the pooled data.

Because Nagel’s data include only four observations per player, it would not
be possible to obtain useful estimates of individual player differences (such as
learning rates), so the theoretical model proposed incorporates individual differ-
ences only through the four archetypal initial dispositions. Given this constraint,
we would expect that individual differences among the players might manifest
themselves as differences among sessions. Thus, we are comfortable with these
test results.

4.5. Relative Expected Performance of Disposition Types

Given our estimated model, what would be the expected payoff to a player
with a disposition typek in a large population of players? To answer this, we
simulated 100,000 runs of the experiment (like the bootstrap procedure) and
recorded the winners by disposition type. Table IV shows the results. The type-2
disposition which uses the step-2 rule initially has the highest expected payoff.
The type-1 disposition is in second place; type-0 and type-3 dispositions are
essentially tied for third place.

4.6. Descriptive and Predictive Performance

While our model achieves the maximum log-likelihood density of any model,
that still does not tell us how well the model fits the data, and while Table II
shows the estimated behavior of the rule probabilities (ϕ), it does not show us
the corresponding differences in the real behavior. If we know the true initial
dispositions of each participant, then we could average the choices for all step-k
types and plot these averages over time to get a visual picture of the behavioral
types. However, the best we can do is compute the Bayesian posterior probability

14 We can reject Session 1 at the 10% level.
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TABLE IV
Expected Payoff by Disposition Type

Type No. by Type Wins by Type Exp. Payoff

−1 650539 33119 0.0509
0 4774720 898157 0.1880
1 2425533 585512 0.2414
2 3203913 1190313 0.3715
3 442543 92899 0.2099

Totals: 11,500,000 2,800,000

that i had a step-k disposition:

α̃ik ≡ α̂k P̂(i, k)/P̂∗i , (9)

where P̂(i, k) and P̂∗i are given by Eqs. (5) and (6) evaluated at the estimated
parameter values. Since there are five values fork ∈ {−1, 0, . . . ,3}, but only four
observations per participant, these calculated posterior probabilities contain little
information individually. However, consider the following aggregation. As in
Section 4.2.2 and 4.2.4, letγ (i, t) ≡ xit /x̄t−1 denote participanti ’s multiplicative
adjustment factor relative to the previous mean. Then, let

γ̃k(t) =
(∑

i

α̃ik · γ (i, t
)

/

(∑
i

α̃ik

)
, (10)

which is the calculated population-averaged multiplicative adjustment factor for
a step-k disposition, using the posterior probabilities as weights. Note that the
denominator is an estimate of the number of participants with a step-k disposition.
If the model fits perfectly, then in period one we would haveγ̃k(1) = ρk (for
k ≥ 0), with gradual convergence with experience.

Figure 3 shows these plots disaggregated by treatments (ρ = 1/2 and 2/3) for
k ∈ {0, 1, 2, 3}. In period 1, theγ̃k(1) values correspond well to their theoretical
values; noting this, it is easy to trace out each step-k curve. While step-2 and
step-3 behaviors are not dramatically different, step-0, step-1, and the mean
of steps-2&3 behaviors are quite distinct for the first two periods, and these
differences become less distinct for periods three and four as predicted by the
model.

We also computed the theoretical expected values and standard deviations of
γ̂k(t), given our parameter estimates and the observed meansx̄t . In comparing
these theoretical values with those of Fig. 3, sinceγ̃k(t) is also a random variable
of unknown distribution, we use a 1% significance level to compensate for the
increased likelihood of false rejection. Each of the 32 points plotted in Fig. 3
corresponds to an hypothesis thatγ̃k(t) = γ̂k(t); only two are rejected at the 1%
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FIG. 3. Descriptive Performancẽγk(t).

level. If these tests were independent, the probability of two or more rejections
would be 0.041. Therefore our model appears to fit the data well.

5. CONCLUSIONS

We have specified a “law-of-effect” learning model in which players use one
of a finite number of behavioral rules from Nagel’s step-k hierarchy. The ini-
tial vector of probabilities of using the rules is called a disposition, and we
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TABLE V
Summary of Maximized Log-Likelihood Density Estimates

Model Section L̂

Rule-learning (K = 3) 4.0 301.928
Rule-learning (K = 4) 4.2.5 301.895
Homogeneous rule-learning 4.2.1 294.635
Unrestricted “Bayesian” 4.3 293.284
Bayesian rule-learning 4.3 280.993
Directional learning 4.2.4 267.705
No-rule-learning 4.1.1 263.210
Two-lag forecasting 4.2.3 216.805
Adaptive-ratio forecasting 4.2.2 190.132
Simple adaptive behavior 4.1.2 115.359

hypothesize that associated with each rule is a disposition type for which the
associated rule is the most probable rule. The learning dynamic specifies that the
propensities of the better performing rules increase while the propensities of the
worse performing rules decrease. We then confronted this model with Nagel’s
experimental data.

We found that a model with step-0 to step-3 rules plus a completely random
nonlearning type fits the data better than a model with step-0 to step-4 rules
plus a completely random nonlearning type. Further, we could not reject the
hypothesis that the initial dispositions were confined to the step-0 to step-2 rules.
Nonetheless, over time some participants tend to switch to the step-3 rule. The
estimated dynamic parameters indicate that the initial disposition is discounted
substantially. Thus, while over a third of the population begins with random play,
they quickly abandon that rule the better performing step-2 rule. On the other
hand, a type-2 disposition has the greatest expected payoff over four periods of
play.

There is strong evidence of rule learning as opposed to simple updating adap-
tation. We examined a model with a homogeneous disposition for all participants
and rejected it in favor of heterogeneous initial dispositions. Our model performs
vastly better than the simple adaptive behavior model and better than two vari-
ants of adaptive behavior. We developed a parameterized specification of Nagel’s
directional learning hypothesis, tested and subsequently rejected it in favor of
our model. We also tested and rejected the Bayesian rule-learning hypothesis
in favor of our model. For ease of comparison, Table V presents the maximum
density estimates for the models considered.

In contrast to Nagel (1995), we interpret the evidence as providing strong
support for increasing depth of reasoning. In the early periods, a sufficient pro-
portion of players use step-0 and step-1 rules, so the step-3 and higher rules do
not perform well; thus, the learning dynamic decreases their likelihood, giving
the appearance of no increasing depth of reasoning in the aggregate. On the other
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hand, we find that type-0 and type-1 players do learn to switch to the step-2 rule,
and in some sessions, by the fourth period the proportion of players using the
step-3 rule increases. Theoretically, our learning model will eventually drift to-
ward higher and higher step-k rules, but there are insufficient periods in this data
for a conclusive test of this prediction.15

One shortcoming of our model is that, due to having only four periods of
data, we did not allow for heterogeneous rates of learning (β0 andβ1) in the
population. When confronting data over many more periods, it will be possible
to allow for heterogeneous learning rates within each disposition type and to
look for correlation between dispositions and learning rates.

In conclusion, we have found (1) that individuals are heterogeneous in their
initial behavior which can be characterized by Nagel’s (1995) step-k hierarchy
of rules and (2) that a law-of-effect learning model for these step-k rules explains
individual behavior over time far better than extant alternatives.

The approach of this paper may be applicable to a wide class of games,
especially those in which each player need only predict a single summary statistic
of what everyone else is doing (e.g., Van Huycket al., 1990, 1991). It would be
interesting to contrast this approach with that of Crawford (1995). In ongoing
research (Stahl, 1996), our learning model is being extended to apply to typical
normal-form games.
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