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I. INTRODUCTION

There is an abundance of experimental evidence that subjects will often
take actions that are not apparently in their best interest.1 In many cases,
these actions may be viewed as attempts to reach cooperative outcomes.
While the empirical literature on cooperative play is quite extensive, the
literature evaluating the predictive power of theories proposed to explain
the observed cooperation is not. The purpose of this paper is to test two
leading theories of cooperative play: altruism and reputation building.

Much attention has been paid in particular to cooperative play in the
prisoner’s dilemma (PD) game. In Game PD below, each player has a
dominant strategy: she should fink regardless of her expectation regarding
her rival’s play and the outcome of (fink, fink) is therefore predicted. The
important feature of this game is that this outcome is not Pareto-optimal.
Indeed, the outcome in which both players cooperate Pareto-dominates
(fink, fink) and maximizes joint payoffs.

Player II

Fink Cooperate

Player Fink b, b c, d

I Cooperate d, c a, a

Game PD: c . a . b . d

Experimental evidence on games of this form repeatedly reveals that
some players cooperate.2 While the design of these experiments has varied
widely in terms of the frequency of play and the number of times a player
faces the same opponent, the observed cooperative play is quite robust to
these changes.3 In particular, cooperative play is observed in both repeated
and one-shot environments.

One leading theoretical explanation of cooperative play is associated
with Kreps et al. (1982), who argue that cooperation in finitely repeated

1 To be precise, players take actions which appear to be against their self-interest assuming
that the experimenter has controlled payoffs.

2 See Dawes (1980) and Dawes and Thaler (1988) for an overview of this vast literature.
3 Cooperative play has also been observed in the play of coordination games (see, e.g.,

Cooper et al., 1990, hereafter CDFR1), in ultimatum and dictator games (see, e.g., Forsythe
et al., 1994) and in the centipede game of McKelvey and Palfrey (1992).
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PD games arises due to the presence of incomplete information regarding
the true payoffs of a rival. The power of the Kreps et al. result is that
a small belief that an opponent will cooperate is enough to support
considerable cooperative play even when all players are purely self-
interested. Common knowledge of rationality does not hold in this
theoretical structure. A leading alternative to reputation theories of
cooperation admits the possibility that some players actually are altruistic.
In this way, cooperate is not a dominated strategy since true payoffs
differ from those given in Game PD.

However, relatively little attention has been paid to the testing of theories
that attempt to explain this behavior and that is the goal of this paper.4

Relative to the existing literature on cooperation in experimental games,
this paper makes two contributions. First, we analyze both one-shot and
repeated games to gauge the relative importance of reputation effects. In
light of existing experimental evidence of cooperation in one-shot games,
we know that the reputation arguments of Kreps et al. do not explain all
observations. One open question is that of whether the reputation model
is consistent with observed play in the finitely repeated game. Andreoni
and Miller (1991) make a similar comparison between one-shot and finitely
repeated games and conclude, based on aggregate play, that there is evi-
dence in favor of the reputation model.5 Relative to one-shot games, we
find that the amount of cooperative play increases when players interact
for a finite number of plays but the pattern of individual play is not consistent
with that predicted by Kreps et al. Further, the dynamic pattern of coopera-
tion predicted by the theory does not match the observed aggregate pattern
of play: cooperation rates do not fall nearly as quickly as predicted by the
theory. Also, we evaluate alternative theories of cooperation in one-shot
games based on altruism and find support for the hypothesis that a signifi-
cant fraction of players in our cohorts are altruists. Using maximum likeli-
hood methods, we estimate that approximately 12–13% of the subjects in
our sample are altruists.6 Overall, we find that neither the altruism model
nor the reputation model of Kreps et al. is consistent with our observations.
The reputation model is inconsistent with observed cooperation in one-

4 Dawes and Thaler (1988) do confront some of the theories with evidence from selected
studies. Our approach here is somewhat different, in that we are designing an experiment
explicitly to test the theories and so will attempt greater control from treatment to treatment.
Further, our goal is to test the theories for games outside of those that they were constructed
to explain.

5 Kahn and Murnighan (1993) study the effects of experimenter-controlled uncertainty
about rivals’ payoffs on cooperation in finitely repeated PD and related games and find more
cooperation than predicted by the theory. They do not consider models of altruism or the
possible influence of uncertainty from uncontrolled sources.

6 In this we follow the lead of McKelvey and Palfrey (1992), who estimate that about 5%
of their subjects playing the centipede game were altruists.
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shot games, an observation that the model of altruism can explain. However,
neither model is consistent with the frequency of cooperation observed in
the finitely repeated game.

II. THEORIES OF COOPERATION

Two main types of theories have been offered to explain why players
cooperate in PD games. The first applies only to agents playing the game
repeatedly and involves history-dependent strategies. These theories, asso-
ciated with Kreps et al., maintain the assumption of self-interested players
and rely on the repeated nature of the game to create incentives for coopera-
tion. In these models, the key assumption is that players hold a small
belief that their opponent is a cooperative player and this induces the self-
interested players to cooperate in a finitely repeated PD game. The second
type of theory postulates that at least some agents are not strictly self-
interested and benefit from cooperation in a manner not reflected in the
payoff matrix provided in PD experiments. We discuss the implication of
these models for observed play of one-shot and finitely repeated PD games.

a. One-Shot Games

i. Reputation. The Kreps et al. model assumes that, while players be-
lieve that a fraction of their opponents are altruists, all players are in
fact egoists. While these ‘‘irrational beliefs’’ have considerable power in
generating cooperative play in finitely repeated games, it is equally clear
that in a sequence of one-shot games, the theory of Kreps et al. predicts
that cooperation rates will be zero.

ii. Altruism. In models with altruism, in contrast, there are assumed
to be a subset of players for whom cooperate is not a dominated strategy.
To study this, we restrict attention to a ‘‘warm glow’’ model in which a player
receives an additional payoff by cooperating in the PD game. Consider the
following payoff matrix where the entries correspond to the payoffs of
Game PD except that the row player is assumed to be an altruist.

Egoist

Fink Cooperate

Altruist Fink b, b c, d

Cooperate d 1 d, c d 1 a, a
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This is a ‘‘warm glow’’ model in that the payoffs of the row player in
the event cooperate (C) is chosen are augmented by d $ 0.7 In general,
we will assume that d is distributed across the population according to a
cumulative distribution function G(d). When d 5 0 this game is the same
as Game PD. We term players with d less than min(b 2 d, c 2 a) egoists
since fink (F) is a dominant strategy for them. If d exceeds both b 2 d and
c 2 a, then cooperate becomes a dominant strategy for the row player. We
term players with payoffs satisfying these restrictions dominant strategy
altruists. If d exceeds c 2 a but is less than b 2 d, then cooperate is no
longer a dominant strategy so that cooperative play could be rationalized
only by a belief that a rival is cooperating with a sufficiently high probability.
Players with these preferences are best response altruists.

As long as there are enough players with d . c 2 a, this framework
rationalizes observed cooperative play in one-shot games. Clearly, if there
are dominant strategy altruists, those players will cooperate in all periods
of play. If there are only best response altruists, an equilibrium always
exists in which altruists and egoists fink. However, if the proportion of
altruists in the cohort is large enough (G(c 2 a) is sufficiently small), then
there will also exist an equilibrium in which the altruists cooperate and the
egoists fink. Finally, when this equilibrium exists, there will also exist a
third equilibrium in which the egoists fink and the altruists randomize
between fink and cooperate. Thus, a model with best response altruists can
have multiple Nash equilibria which can be Pareto-ranked.8 Note that
absent learning, there is no reason for the distribution of play to change
over time in a sequence of one-shot plays of this game.

b. Finitely Repeated Games

i. Reputation. It is well known that if two players play an infinitely
repeated PD game, equilibria, in addition to those from the stage game,
will exist. For example, consider the ‘‘grim strategy’’ where each player

7 More generally, one might consider specifications of preferences for cooperative players
in which either cooperative is a dominated strategy or cooperate is a best response to cooperate
and fink is a best response to fink. The preferences considered here are a simple way of
modeling these two patterns of best responses for cooperative players. In fact, one could go
further and allow for di to depend on past plays. See Bergstrom et al. (1986), Andreoni (1989),
and Andreoni and Miller (1991) for a discussion of alternative theories of altruistic behavior
in public goods environments.

8 To see why these equilibria are Pareto-ordered note that all players receive a payoff of
b in the equilibrium in which they all fink. In the equilibria with partial or complete cooperation
by altruists, egoists earn a payoff exceeding b since there is a positive probability of being
matched with a player cooperating and thus receiving c. Since any of the altruists could fink,
their return in either the full cooperation or mixed strategy equilibrium must yield an expected
payoff in excess of b. By a similar argument, it is easy to see that the payoffs of both types
are higher in the full cooperation equilibrium than in the mixed strategy equilibrium.
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cooperates until the other defects (i.e., finks in Game PD) and then finks
forever after. If adopted by both players, this strategy yields a subgame
perfect Nash equilibrium involving cooperation forever as long as players do
not discount the future too much.9 With only a finite number of repetitions,
however, backward induction arguments imply that the only subgame per-
fect Nash equilibrium will involve finking in every period. Given that most
available experimental results relate to finitely repeated games, reputation
effects associated with infinite horizon games are unlikely to be an explana-
tion for the observed cooperation.10,11

In an important contribution, Kreps et al. offered a theory of cooperation
based upon an assumption of incomplete information in PD games. If a
player assigns a positive probability that his opponent has adopted a tit-
for-tat strategy, it may be optimal for him to cooperate in early rounds. In
a tit-for-tat strategy a player cooperates in the first period, then in every
subsequent period plays whatever his opponent played in the previous
period. As Kreps et al. argue, there may be an equilibrium in which a purely
self-interested player will cooperate in early periods to obtain the benefits
from the (cooperate, cooperate) outcome of the stage game. Cooperation
occurs early in the game when the short-run gains from defecting do not
exceed the long-run costs since, following an initial defection, the equilib-
rium strategies dictate that both players fink forever after.

Alternatively, if a player allows for the possibility that his opponent is
a cooperative player, for whom cooperate is a best response to cooperate,
then cooperative play may also emerge. Kreps et al. argue that for this
game there exists an equilibrium in which self-interested players disguise
themselves as altruists by cooperating in early rounds of play. However,
in order to induce self-interested players to cooperate, it is necessary that
the ‘‘cooperative’’ players best respond to fink by finking in the stage game,
i.e., they must be best response altruists. If, alternatively, cooperation is a
dominant strategy for altruists, then there is no basis for reputation building
in the Kreps et al. model. This places restrictions on models of altruism
that we return to below. The most powerful result from the Kreps et al.
model is that cooperation for some periods can arise even when the proba-

9 For a discussion of this result and others related to the Folk theorem, see Fudenberg and
Maskin (1986) and the references therein.

10 While all experimental games are of finite length, it is possible to randomly choose an
endpoint so that the results can be interpreted as the outcome of an infinite horizon game
with discounting in which the probability of ending the game at a point in time is imbedded
in the discount rate. See Roth and Murnighan (1978) for a discussion of this point.

11 One might argue that players must learn about the logic of backward induction so that,
in initial replications of finitely repeated games, cooperation might be observed. See Selten
and Stoecker (1986) for evidence that, as experience with finitely repeated games increases,
the amount of cooperative play falls.
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bility of one’s opponent being a tit-for-tat or a cooperative player is
quite small.

In our analysis of the data from a finitely repeated version of game PD,
we will be comparing the path of play against the predictions of the Kreps
et al. equilibrium. To understand that comparison, we present an equilib-
rium path for the game in which self-interested players (egoists) attach
a small probability to their opponents being best response altruists. We
concentrate on the equilibrium with mixing by egoists so that cooperation
rates fall along the equilibrium path, as is generally observed in finitely
repeated PD games.

Suppose that players are matched for T periods where PD is the stage
game. An algorithm for finding the mixed strategy (by the egoists) equilib-
rium in a T-period PD game is based on the following three equations,
which hold for t 5 1, 2, . . . T :

rt 5 rt21/(rt21 1 (1 2 rt21 )at21 ),

(rt 1 (1 2 rt )at )(a 2 c 1 VT2t(rt11 ) 2 VT2t(0)) 5 (1 2 rt )(1 2 at )(b 2 d),

VT2t(rt11 ) 5 (rt11 1 (1 2 rt11 )at11 )(a 1 VT2(t11)(rt12 )
1 (1 2 rt11 )(1 2 at11 )(d 1 VT2(t11)(0)).

In this system, rt is the period t probability that a player is an altruist
conditional on that player having cooperated for the first t 2 1 periods.
The probability that an egoist cooperates in period t is at given that both
players have cooperated in all previous periods.

The first equation is Bayes’ rule, which updates beliefs about the type
of an opponent conditional on cooperation by both players until period t.
In the event that a player fails to cooperate in any period, rt 5 0 for all
future periods. The second equation ensures that egoists are indifferent
between cooperation and finking in period t. Thus the algorithm solves for
an equilibrium in which egoists mix between cooperate and fink. Under
this condition, VT2t(rt11 ) is the expected payoff for the remaining T 2 t
periods of the game assuming both players cooperate through period t,
where rt11 is determined by Bayes’ rule using the equilibrium probability
of cooperation by an egoist. So, under the second condition, VT2t(0) is the
value associated with the remaining T 2 t periods of the game after a
defection, with rt 5 0 in all future periods. The third condition relates the
value with T 2 t 1 1 periods remaining to the values for the subsequent
period given beliefs and actions in period t 1 1.

To characterize a candidate equilbrium in which an egoist cooperates in
period t with probability at , one can solve the system of equations given



194 COOPER ET AL.

an arbitrary belief in the last period, rT . Since aT 5 0, if rT is given, one
can then calculate V1(rT ) and then solve for aT21 and rT21 from the egoist’s
incentive condition and Bayes’ rule. Continuing in this fashion generates
the entire time path of beliefs, egoists’ decisions for each period, and an
initial belief consistent with this path of play. Thus the time path of coopera-
tion rates is parameterized by rT or, equivalently, by the initial beliefs r0 .
In addition to this equilibrium with mixing by the egoists, there may also
exist an equilibrium in which egoists cooperate with probability one until
the last period.

The power of this model is the possibility of generating cooperative
play with only a small initial belief that an opponent is altruistic. Another
important feature of this equilibrium is the time path of cooperation. Since
egoists are mixing along the equilibrium path, the probability of cooperation
in a given period is falling over time. In this equilibrium, the dynamics are
the consequence of strategic interactions not of learning.

To better understand this type of equilibrium, consider the case of T 5
2. Let E(x, y) denote an egoist’s payoff from playing x in period 1 and y
in period 2. The expected payoff from cooperating in the first period and
playing fink in the second is given by

E(c, f ) 5 r1(a 1 c) 1 (1 2 r1)[a1(a 1 b) 1 (1 2 a1)(d 1 b)],

where a1 is the fraction of egoists who cooperate in period 1. The first
term is the payoff to the egoist in the event that the other player is an
altruist (a possibility that these agents entertain) and the second term
represents expected payoffs when matched with an egoist randomizing
between cooperate and fink. Instead, by finking in both periods, the egoist
would obtain

E( f, f ) 5 r1(c 1 b) 1 (1 2 r1)[a1(c 1 b) 1 (1 2 a1)2b].

For this two-period game, there are two types of equilibria. First, if
r1 $ (c 2 a)/(c 2 b) then there is an equilibrium in which egoists cooperate
with probability one in the first period and fink with certainty in the second.
This behavior by the egoists is supported by the beliefs that the fraction
of altruists is sufficiently high. In addition, there are (r1, a1) pairs that
satisfy the condition E(c, f ) 5 E( f, f ) leaving a1 [ (0, 1) so that egoists
mix. A necessary condition for this is that r1 $ (c 2 a)/(c 2 b).12

In our analysis of the 10-period game, we focus on mixed strategy equilib-
ria such that r9, beliefs at the start of period 9, are at least as large as

12 If r1 $ (c 2 a)/(c 2 b), there will also exist an equilibrium in which all egoists cooperate
with probability one until the last period.



COOPERATION WITHOUT REPUTATION 195

(a 2 c)/(b 2 c). If not, egoists would not cooperate in period 9 and hence
would have no incentive to cooperate earlier. Of course, in the 10-period
game, the beliefs held in period 9 reflect the mixing that takes place in the
first 8 periods. Thus, and this is the power of the Kreps et al. model, very
low initial beliefs can rise rapidly due to the mixing by egoists.

ii. Altruism. The model of altruism has some interesting implications
for play in finitely repeated games. In particular, even if egoists do not
cooperate in the repeated game (i.e., even if they are not building reputa-
tions), more best response altruists (those with lower values of d) will
choose to cooperate due to the repeated nature of play. Thus, increased
cooperation can occur in repeated games relative to one-shots without
reputation building by egoists.

To illustrate, consider Game PD and suppose, as in our experiment, that
a 5 800, b 5 350, c 5 1000, and d 5 0. Further, assume there are three
types of players: Df with d 5 0, Ak with d 5 dl, and Ak with d 5 dh . dl. For
the one-shot game, if dh . 350 2 (AGk:) . d1, then there is an equilibrium
in which only the altruists with the high level of warm glow will cooperate.
In fact, if dl , 350 2 (AGf:), this will be the only equilibrium on the one-
shot game.

Now, suppose that Game PD is played twice. As long as d1 . 200, there
will be an equilibrium in which all of the altruists cooperate in period 1
and cooperate in period 2 iff their opponent cooperates in period 1. Since
the proportion of altruists is relatively small, egoists will fink in both periods.
Thus we see that even without the reputation building effects stressed in
Kreps et al., repeated play can increase cooperation rates by inducing
cooperation by more of the altruists.

More generally, for a T-period repeated game one can construct an
equilibrium in which the egoists do not build reputations (i.e., play fink)
and altruists cooperate in the first period and continue to cooperate iff
their opponent cooperated in period 1 as well. In particular, choosing fink
in every period will be optimal for an egoist, given that other egoists fink
too, iff r1 # rE, where

rE ; (b 2 d)/((b 2 d) 1 (T 2 1)(a 2 b)).13

Likewise, an altruit with warm glow of d will follow the strategy given
above if r1 $ rA, where

rA ; (b 2 d 2 d)/(Ta 2 (T 2 2)b 2 c 2 d 1 (T 2 1)d).

13 In deriving this condition, we make use of the fact that if an egoist were to cooperate
in the first period and be matched with an altruist, the pair would cooperate until the egoist
finks in the last period.
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Using the fact that d 1 a $ c, one can show that rE . rA. Further, both
rE and rA fall with T. An equilibrium for a T-period game in which players
select these strategies is characterized by a level of cooperation r*(T)
satisfying two conditions. First, rE . r*(T) . rA. Second, in this equilib-
rium, there is a critical level of warm glow, denoted d*(T), such that only
altruists with d $ d*(T) cooperate with r*(T) 5 1 2 G(d*(T)).

III. EXPERIMENTAL DESIGN

Each experiment was conducted using cohorts of players recruited from
undergraduate, sophomore and above, and graduate classes at the Univer-
sity of Iowa. Players were seated at separate computer terminals and given
a copy of the instructions. Since these instructions were also read aloud,
we assume that the information contained in them is common knowledge.
These instructions are reproduced in the Appendix.14

The matrix used was Game PD with a 5 800, b 5 350, c 5 1000, and
d 5 0.15 We induced payoffs in terms of utility using the Roth–Malouf
(1979) procedure. In the matrix games, each player’s payoff was given in
points which determine the probability of the player winning a monetary
prize. At the end of each period of play, we conducted a lottery where
‘‘winning’’ players received a $1 prize and ‘‘losing’’ players received noth-
ing.16 This procedure is designed so that all utility maximizing players will
maximize the expected number of points in each game regardless of their
attitudes toward risk and ensures that these utility payoffs are common
knowledge.17

a. One-Shot Games

Each player participated in a sequence of one-shot games against differ-
ent anonymous opponents. One was designated the row player and the
other the column player. All pairing of players was done through the
computer. No player knew the identity of the player with whom he was
currently paired or the history of decisions made by any of the other players.

14 The Appendix contains instructions for the basic PD game and the finitely repeated game.
15 Strictly speaking, these are the payoffs for egoists playing this game.
16 For altruists, view the payoffs that include warm glow effects as the actual payoffs and

thus ignore the translation of points into dollars. In terms of our experiment, we think of
cooperative players as obtaining utility from playing the cooperative strategy in addition to
the points earned from the choice of this strategy. That is, suppose that the utility function
for a cooperative player depends on the dollars earned and a warm glow term. One can then
interpret the di terms as the ‘‘point equivalents’’ of these warm glow effects.

17 The experiments took from one to one and one-half hours to complete. Payments ranged
from $4 to $16.
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In these games, we employed a matching design in which reputation
effects were not feasible. Under this design, 40 players participated in 20
one-shot games. The players were split into two groups, red and blue. In
each period, a red player was anonymously paired with a blue player. The
pairings were constructed so that players were matched with a different
player each period so that contagion effects, associated with Kandori (1988),
and reputation effects from repeated play against a fixed opponent could
not arise.18

The easiest way to understand the matching procedure employed here
is to consider Townsend’s (1980) turnpike model in which an agent belong-
ing to a sequence of agents traveling east on a turnpike is matched with
another agent belonging to a sequence of agents traveling west; all agents
travel at the same speed. These agents are matched for one period and then
move along in opposite directions to meet new opponents. The important
property of this model is that actions taken by a pair in period t cannot
influence the behavior of the agents these players will be matched with in
the future: the turnpike ensures that histories lie behind a given player.
Since our experiment consisted of a finite number of players, we converted
the turnpike into a circle and constructed a matching matrix with the same
non-contagion property of Townsend’s turnpike.

This matching procedure was explained to the players and they were
presented with the actual matrix used in this procedure as well as an example
(see the Appendix). At no time could they ever identify an opponent:
anonymity was maintained throughout. Players alternated between being
row and column players during the treatment.19

b. Finitely Repeated Games

To explore the effects of repeated play on cooperation, 30 players, in
three separate cohorts, each played two 10-fold repetitions of Game PD.
In both repetitions, subjects were randomly and anonymously paired. Each

18 Kandori’s work demonstrates that reputation effects might arise in infinitely repeated
PD games in which self-interested players are randomly matched at the start of each period
and histories are not known. Building on Kreps et al., it would appear that contagion effects
might also exist in finitely repeated games of incomplete information. Along the equilibrium
path of the PD game, players cooperate. In the event of a defection by an opponent players
defect forever after. While the player who initially defects (say, player A) is not necessarily
punished the next period (unless A is matched with the same opponent) the effects of his
defection will spread throughout the community. Eventually A will meet an opponent who
is not cooperating because A had started a chain of defections. In this way, A is eventually
punished for his defection. This contagion effect, which reminds us that random matching
and rematching over several periods is not the same thing as a series of one-shot games, can
support cooperative play for low enough discount rates and a high enough probability of
being matched with someone not cooperating because of an earlier defection.

19 After each period, a different player was selected to draw the lottery ticket.
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subject played the same opponent 10 times as either a row or a column
player. Players were then anonymously matched with new opponents and
play continued for 10 more periods. At the end of each period in a repetition,
subjects were told the play of their opponent. However, when players were
rematched, they were not told anything about the history of play of their
new opponent. After the first repetition, row (column) players became
column (row) players for the second repetition.

Because of our interest in cooperation levels across one-shot and finitely
repeated games, we wanted to provide a comparable experience for the
two treatments. As described under Results, in evaluating the data from
the one-shot games, we concentrate on outcomes in the last 10 periods.
Thus, to make the results in the finitely repeated treatment comparable to
those from the one-shot treatment, the first 10-period repeated game was
preceded by the play of 10 one-shot versions of the PD game. In this
treatment we utilized the matching procedure from CDFR1.20,21

c. Treatments

Thus we have results to report on the following treatments:

(i) PD: This is the series of one-shot plays of Game PD.
(ii) PD-FR: This is the 10-fold finitely repeated version of Game PD.

IV. RESULTS

We begin with an overview of the cooperation rates observed in PD and
PD-FR and then turn to an evaluation of the models. These results are
from the last 10 periods of PD and the 10-period repeated games from the
PD-FR treatment.22 This comparison assumes that the 10 one-shot games

20 With this matching procedure, there were three cohorts, each consisting of 11 players.
In the one-shot session, players were anonymously paired for one period and then matched
to another player in a subsequent period. Players alternated between row and column from
one period to the next. Over 11 periods, each player was paired with every other player once
and sat out once. The second and third sessions of the experiments consisted of the two 10-
period repetitions of Game PD described above. The last subject (11th player) to arrive for
the experiment in each cohort was told in the instructions that he/she would only play in the
first session.

21 We claim that the match–rematch design itself has no effect on cooperation. The basis
for this claim is data from a coordination game with a cooperative dominated strategy, Game
3 of CDFR1, where the treatments were the matching procedure, the Townsend turnpike
design, and our match–rematch design (CDFR1). There were no differences across treatments.

22 We rejected independence across periods for all periods of the PD treatment but were
unable to reject independence across periods of play for the last 10 periods of the PD treatment.
Hence, those results are pooled. Further, there was no evidence that play in PD-FR differed
across the two matches so that those results are pooled in Fig. 1. Table I reports on the
cooperation rates in each of the matches from PD-FR.
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FIGURE 1

that precede both the last half of PD and the repeated games in PD-FR
provide comparable experience for our subjects.

Figure 1 displays the time pattern of play and Table I reports the fre-
quency of cooperative play over the last 10 periods for these two treatments.
Three striking features emerge from these treatments.23

Observation 1. Cooperation rates are positive and generally declining
over time in PD.

TABLE I

Rates of Cooperation

Treatment Proportion of cooperative play

PD, last 10 periods 0.22
PD-FR, first match 0.52
PD-FR, second match 0.57

23 Similar patterns are observed by Andreoni and Miller (1991), though they offer a different
interpretation of the observations.
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Observation 2. Cooperation rates are positive and generally declining
over time in PD-FR.

Observation 3. Cooperation rates are higher in PD-FR than in PD.

Observations 1 and 2 are consistent with the findings of many experiments
examining cooperation in one-shot and finitely repeated PD games.24 That
is, cooperation has been observed in most experimental one-shot and fi-
nitely repeated PD games. Further, the decline in cooperation rates is
frequently observed and, in fact, motivated the reputation model of Kreps
et al. Observation 3 is somewhat novel in that most studies do not present
a comparison of cooperation rates for finitely repeated and one-shot games.

The central issue is to determine the consistency of these observations
with the models discussed above. In particular, what is the importance of
reputation building relative to altruism in our results? To address this we
first look in detail at the one-shots and then evaluate PD-FR.

a. One-Shot Prisoner’s Dilemma Game

The strongest evidence that altruism is at least part of the explanation
for observed cooperative play comes from these one-shot PD games. If
players are egoists, cooperation will not be observed in one-shot PD games.
This hypothesis is clearly rejected by the data: over the entire 400 observa-
tions (the last 10 periods of the 40 player treatment), cooperation rates
were greater than 20%. Moreover, the amount of cooperative play was
much larger in the initial periods, averaging 38% in the first 10 periods.

Figure 2 gives the distribution of cooperation rates in the second half of
this treatment. The distribution reveals that almost all cooperative play
comes from players who do not always cooperate: dominant strategy altru-
ism does not explain the results. Thus we focus on evaluating best re-
sponse altruism.

Our approach is to use our model of best response altruism to estimate
the fraction of altruists and then to test the restriction that this fraction is
zero. We estimate the fraction of altruists in our population using two
different methods. The first uses the observed fractions of play at the
aggregate level to estimate the fraction of altruists (r) in our sample. The
second method looks at individual play and classifies players as altruists
and egoists. We present the results from these two estimation strategies
in turn.

The first approach to estimating the fraction of altruists is to choose the
value of r that maximizes the likelihood of the observed cooperation rates,

24 Again, see the discussion and references in Dawes (1980), Dawes and Thaler (1988), and
Roth (1988).
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FIGURE 2

given in the first row of Table I. Thus the initial estimate is simply r 5 .22.
However, this procedure assumes that egoists fink with probability one,
altruists always cooperate, and mistakes do not occur. Attempting to distin-
guish egoists’ mistakes from altruism is impossible if we restrict attention
to the aggregate cooperation rate since the fraction of observed cooperation
does not allow us to identify both the fraction of altruists and the probabili-
ties that they and the egoists make mistakes.

The alternative estimation strategy is to estimate the fraction of altruists
at the individual level. This allows us to identify types as well as the probabil-
ity of making a mistake for each type. Assume that altruists intend to
cooperate and egoists fink, but that mistakes are possible. With this model,
we can estimate the proportion of altruists and egoists in this sample and
the probability of mistakes. To see how this is accomplished, consider the
choice to fink (F) or cooperate (C) by an individual of type t [ h21, 1j,
where t 5 1 denotes an altruist and t 5 21 an egoist. Let Xt indicate the
period t outcome of the agent’s choice, where Xt 5 t 1 lut . In this expres-
sion, ut is a uniform random variable in the interval [21, 1] and l parameter-
izes a mean preserving spread of this random variable. This decision (dt)
is observed and reflects the realized value of Xt . Assume that dt 5 F if
Xt , 0 and dt 5 C otherwise. Thus the restriction that t 5 1 for an altruist
implies that this player is quite likely to choose C while egoists are more
likely to choose F. Both types, however, can err and this is the point of
introducing noise into the decision process.

At the individual level, the maximum likelihood estimates of each player’s
type (altruist or egoist) and his probability of making a mistake are easily
determined. The estimated fractions of players of each type are given in
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TABLE II

Proportion (%) of Player Types from PD (40 Players)

Type First 10 periods Last 10 periods

Altruist 15 12.5
Egoist 62.5 85
Other 22.5 2.5

Table II. A player is classified as an altruist (egoist) if he plays cooperatively
more (less) than 50% of the time. A player cooperating exactly 50% (‘‘other’’
in Table II) of the time cannot be unambiguously identified. Note that we
do not find that all observations of cooperative play are the consequence
of mistakes by egoists.

While the proportion of altruists remained roughly the same in the first
and second halves of this treatment, the egoist group grew in the second
half as a number of players who had played cooperatively exactly half the
time became less cooperative. Only one first half egoist became a second
half altruist.

Given the identity of either an altruist or an egoist, the frequency that
a player selects a strategy other than that indicated for his type provides
an estimate of that player’s individual mistake probability. This probability,
labeled ni , is directly related to li

ni 5 (li 2 1)/2li .

For these players, mistakes can arise either because agents fail to select
their optimal action or because optimal actions depend on beliefs which
we do not observe. Thus, if we observe a best response altruist choosing
fink we term this a mistake even though that action might be rationalized
by the beliefs of the player at that point in the treatment. Data on the
distribution of these individual mistake proportions are given in Table III.

TABLE III

Distribution of Individual Mistake Proportions, Last 10 Periods

Type 0% 10% 20% 30% 40% Total

Altruist 1 0 1 0 3 5
Egoist 14 3 7 9 1 34
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Though the sample of altruits is rather small, there is evidence here that
egoists are less prone to mistakes. The average mistake probability among
egoists was 14% while for altruits it was 28% in the last 10 periods.25 Since
egoists have a dominant strategy, mistakes by altruists are more likely
because, as noted above, a revision of beliefs can lead an altruist to fink,
an event which we would count as a mistake. Further, using these estimates
of the proportion of altruists and the mistakes probabilities by each type,
mistakes by egoists are more costly than mistakes by altruists.

To get some measure of how well this model explains observed behavior,
we evaluate the predictions of the theory, based on our estimates of individ-
ual types and mistake frequencies, to actual aggregated play. The probability
of an outcome, say (fink, fink), equals the probability that two egoists meet
and do not make mistakes, plus the probability that two altruists meet and
both make mistakes, plus the probability that one altruist making a mistake
meets an egoist not making a mistake, plus the probability that one egoist
not making a mistake (or an altruist making one) meets an ‘‘other’’ type
playing fink by chance, plus the probability that two ‘‘other’’ types meet
and both fink:

Prob (fink, fink) 5 «2(1 2 ne)2) 1 r2n2
a 1 2r«na(1 2 ne)

1 c«(1 2 ne) 1 c«na 1 c2/4;

where r is the proportion of altruists, « is the proportion of egoists, c is
the fraction of ‘‘others,’’ and na and ne are the mistake probabilities of
altruists and egoists, respectively. The probabilities of the other outcomes
are expressed in a similar way.

Using data on the proportions of types from the second column of Table
II and the mistake frequencies na 5 0.28 and ne 5 0.14, as given above, we
would predict the following frequencies, with the observed frequencies
in parentheses:

prob (fink, fink) 5 0.606 (0.620)

prob (coop, coop) 5 0.049 (0.065)

prob (coop, fink) 5 0.172 (0.155)

prob (fink, coop) 5 0.172 (0.160)

25 For the first 10 periods of play, the average proportion of mistakes by egoists was over
24%, while that by altruists (27%) was about the same as that from the second half of
the treatment.
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These predictions are close to the actual observations. Define the
statistic t as t 5 o (Ni 2 Npi)2/(Npi), where N is the total number of
observations (here, 200), Ni is the actual number of observations in the
ith cell where the cells correspond to the outcomes (fink, fink), (cooper-
ate, cooperate), (fink, cooperate), or (cooperate, fink), and pi is the
theoretically predicted proportion of observations in cell i. If K is the
number of cells, the statistic t can be shown to be distributed as x 2

with K 2 1 degrees of freedom. The statistic t equals 1.613 with three
degrees of freedom. This value is so low as to make it impossible to re-
ject the hypothesis that the model with mistakes explains these observa-
tions.

Thus, we conclude that our best response altruist model, with the possibil-
ity of mistakes, best explains the PD data. For the last half of play, we
estimate the proportion of altruists to be 12.5%.26 From the perspective of
the competing theories, it is important to note that these estimates of r
are different from zero. The maximum likelihood estimation could have
attributed all cooperation to mistakes by egoists. But, given the high fre-
quency of cooperation by some players, it was more likely that they
were altruists.

b. Finitely Repeated Prisoners’ Dilemma

The results from PD-FR provide an alternative means of evaluating the
two theories. The model of Kreps et al. was constructed to roughly match
observed cooperative play in finitely repeated PD games. The declining
cooperation rate shown in Fig. 1 is certainly consistent with the reputation
theory.27 Thus, qualitatively, Observation 2 matches the prediction of the
reputation model.28

However, there are a number of inconsistencies between the observations
and the reputation model. The reputation model can be evaluated by focus-
ing on play at the pairs and individual level. Study of the pairs data reveals
little support for a pure reputation explanation for cooperation. Excluding
as inconsistent with the Kreps et al. theory any pair in which (i) cooperative
play follows noncooperative play by the same player or his/her opponent

26 Using this and the estimated type-contingent mistake probabilities given above, the critical
value of d such that altruists are indifferent between cooperate and fink is about 317.

27 It should be noted that the cooperation rates are actually not strictly decreasing period
by period. As noted later, this is a consequence of the fact that the strategy described in the
Kreps et al. model is not followed by a majority of the players.

28 Andreoni and Miller (1991) reach a similar conclusion based on aggregated data but do
not focus, as we do below, on individual play. As discussed below, conclusions based on
aggregate play are misleading since individual players do not generally play in a manner
consistent with the equilibrium outlined by Kreps et al.
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FIG. 3. Predicted and actual cooperation rates for PD-FR.

and/or (ii) either player cooperates in the last period, we find that only
10% (3 out of 30) of the pairs performed in a manner consistent with the
theory. At the individual subject level, 25% (15 out of 60) of all players
did nothing inconsistent with the theory. In the final period of play, cooper-
ate was chosen in 14 out of 60 observations, almost 25%. Overall, while
the level of cooperation and its decline over time is qualitatively consistent
with Kreps et al., there is little evidence of their equilibrium at the pairs
and individual level.

Further, it is useful to compare the theoretical predictions for the
finitely repeated game with the observations from PD-FR. Figure 3 plots
the time path of cooperation rates predicted from a mixed strategy
equilibrium of the Kreps et al. model, as discussed in Section II, and
the actual cooperation rates from PD-FR.29 The predicted cooperation
rate line was generated by solving for an equilibrium path in which the
probability an opponent is an altruist, conditional on cooperation by
both players throughout, reaches adF after period 8. As explained earlier,

29 We focus on the mixed strategy equilibrium since the equilibrium in which egoists cooper-
ate with probability one is easily rejected.
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this is an important equilibrium path since it is necessary to have the
conditional probability of altruism rise to adF by the start of period 9 in
order to obtain any cooperation by egoists. Note that in the early periods,
the predicted cooperation rates are reasonably close to those actually
observed in the PD-FR treatment.

The most striking feature of Fig. 3 is that the observed cooperation rate
remains quite high relative to that predicted by the model. In particular,
while the model predicts cooperation will be almost 70% in the first period,
by period 5 cooperation rates should fall below 10%. This low cooperation
rate is necessary to boost conditional beliefs up to the adF level by period 9
as conditional beliefs rise only to the extent that egoists place relatively
low weight on cooperation in their mixed strategy. The observed coopera-
tion rate, however, is above 50% through period 9 and is in excess of 20%
in period 10. Thus the time pattern of play observed is rather different
than predicted even though qualitatively the observed cooperation rates
have the predicted pattern of decline over time. Note too that the observed
cooperation rates are a concave function of time while the predicted cooper-
ation rates are convex.

The predicted time path of play for the reputation model is parameter-
ized by the beliefs that agents hold at the start of the game, r1 . The
predicted line in Fig. 3 assumes that r9 5 adF , as this value leads to the
highest cooperation rates over the finitely repeated game. While one
could evaluate the likelihood that the observed pattern of play emerged
from the mixed strategy equilibrium, the fact remains that the positive
level of cooperation observed in the last period, as well as some of the
deviations from the predicted play at the individual level, is inconsistent
with the theory.30

As argued earlier, repeated play can induce increased cooperation by
altruists (players with d . 200) who might choose not to cooperate in
one-shot games. Thus it is conceivable that the higher cooperation rates
observed in PD-FR could occur without any reputation building by egoists.
However, from the evidence, it seems quite unlikely that the observed
cooperation rates in PD-FR are a consequence of cooperative play by
altruists alone.

First, the equilibrium of the repeated game without reputation building
by egoists has a particular structure: Altruists cooperate in the first
period while all egoists fink. If both players cooperate in period 1, then
they are both known to be altruists and they cooperate for the remainder

30 That is, since this is a mixed strategy equilibrium, there will be a distribution of outcomes
in the 10-period game which, in principle, could be evaluated. However, the cooperation in
period 10 has zero probability and thus can only be explained by formally adding mistakes
to this model. We are grateful to Paul Beaudry for conversations clarifying this point.
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of the game. In all other cases, both players fink for the remainder of
the game. Empirically, this equilibrium implies that cooperation rate
should be highest in the first period (but less than 100% assuming there
are some egoists) and at a lower, constant level for the remainder of
the game. For PD-FR, Fig. 1 clearly shows that this is not the case
since cooperation rates are not independent of time. Moreover, in the
proposed equilibrium, there is no basis for the observed drop in coopera-
tion rates in the last period.

Second, the cooperation rates in periods two through nine exceed 50%.
For this to be consistent with the proposed equilibrium requires that the
fraction of altruists exceeds 70%. However, this is well above the calculated
value of rE(10) so that, according to our earlier discussion, egoists will
cooperate which breaks the equilibrium.

V. CONCLUSIONS

The point of this paper was to evaluate competing theories of coopera-
tion. To do so, we designed an experiment to compare cooperative play
in one-shot and repeated environments. Two extreme models were
considered, one with reputation building and one with altruism. Neither
model alone is sufficient to explain observed behavior in the one-shot
and finitely repeated PD games. The reputation models fail to explain
observed cooperation in one-shot games and the presence of altruists
without reputation building by egoists is insufficient to explain the higher
cooperation rates and the time pattern of play in finitely repeated games.
Thus both models fail to explain the observations off the ‘‘domain’’
that the models were constructed to match. Finally, the reputation model
of Kreps et al. fails to match observed play in the finitely repeated
games.

In principle, one could evaluate a mixed model in which the finitely
repeated structure induces more altruists to cooperate and creates an incen-
tive for egoists to build reputations. This is consistent with the higher
cooperation rates observed in PD-FR relative to PD and with the drop in
cooperation in the last period. With regard to individual pairs, about 30%
are perfectly consistent with this equilibrium.31 This is higher than the 10%
consistency reported for the Kreps et al. model though it is clearly much
less than 100%. The mixed model also fails to explain the time path of play
observed in PD-FR. Perhaps our inability to fit the observations better
reflects our limited model of reputation building since, following Fudenberg

31 This figure was calculated in the same manner as the 10% figure reported in the evaluation
of the reputation model in Section IVa except that condition (ii) is excluded.



208 COOPER ET AL.

and Maskin (1986), we know that a wide variety of equilibria can arise in
this class of models if one searches more broadly for alternative types of
‘‘irrational’’ players.

There is an opportunity to take this approach further. First, we can
use the data generated by our finitely repeated game to estimate the
proportions of egoists and altruists. Second, we have not yet integrated
the possibility of mistakes into the model of repeated play which, while
quite complicated, may be quite interesting. Consider again the twice-
repeated PD game described in Section II. Along the equilibrium path,
it was necessary that altruists fink in the second period if their opponent
chose fink in period 1. This provides the needed incentive for egoists
to cooperate in the first period. Once the model is extended to allow
for mistakes, the optimal choice of an altruist in the second period
conditional on an opponent selecting fink in the first period will depend
on the beliefs that the altruist holds regarding the type of his opponent.
If, as our data suggest, egoists are less mistake prone than altruists,
then an equilibrium in which all players cooperate in the first period
may not be robust to the introduction of mistakes since an altruist may
not have an incentive to punish a deviation from the path. A complete
analysis of the equilibria for finitely repeated games with mistakes is
beyond the cope of this paper, though this modification of the Kreps
et al. equilibrium may be a useful direction for bridging the gap between
theory and observation.

APPENDIX

Instructions for One-Shot PD Game

General

You are about to participate in an experiment in the economics of decision making. If you
follow these instructions carefully and make good decisions, you might earn a considerable
amount of money which will be paid to you in cash at the end of the experiment.

The experiment will consist of a series of separate decision making periods. Each period
consists of two phases. In Phase I you will be paired with another person and, based upon
your combined actions, you will be able to earn points. In Phase II, you will have the opportunity
to earn dollars based upon the points you earn in Phase I. We begin by describing Phase II
so that you understand how the points you earn affect the number of dollars you earn. Then,
we describe Phase I in detail so that you understand how to earn points.

Phase II Instructions

At the end of Phase I, you will have earned between 0 and 1000 points according to the
rules we will discuss below. The number of dollars you earn in Phase II will depend partly
on the number of points you earned in Phase I and partly on chance. Specifically, we have
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a box which contains lottery tickets numbered 1 to 1000. In Phase II, a ticket will be randomly
drawn from the box. If the number on this ticket is LESS THAN OR EQUAL TO the
number of points you earned in Phase I, you WIN $1.00. If the number on this ticket IS
GREATER THAN the number of points you earned in Phase I, you WIN $0.00. For example,
if you have 600 points, you will have a 60% chance of winning $1.00. Notice that the more
points you have, the larger will be your chance of winning the $1.00 prize.

Phase I Instructions

In each decision making period, you will be paired with another person. One of you will
be designated the Row player and the other will be designated the Column player. At the
beginning of the period, both the Row player and the Column player must separately and
independently select an action. The combined actions of the Row player and the Column
player jointly determine the number of points earned by the Row player and the number of
points earned by the Column player.

You will alternate from being the Row player to being the Column player from one period
to the next. At the beginning of each period, you will receive a message on your terminal stating:

‘‘FOR PERIOD , YOU ARE A ROW PLAYER.’’

or

‘‘FOR PERIOD , YOU ARE A COLUMN PLAYER.’’

In your folder you will find a record sheet. On this sheet you will indicate, based on the message
previously received on your terminal, whether you are a Row player or a Column player.

In the experiment we are going to conduct today, there are 40 participants who are divided
into two equal groups of 20 players. The experiment will consist of 20 periods.

The pairings for the periods are constructed in such a way that the decision you make in
any one period can have no effect on the decisions of individuals you will be paired with in
later periods. To illustrate this, consider the following example with 8 players. The players
are divided into two equal groups: the Red Group with players 1 to 4 and the Blue Group
with players a to d. Players in the Red Group are called red players and players in the Blue
Group are called blue players. There are 4 periods in the experiment and the pairings are
as follows:

Red Group Table

Period Number
1 2 3 4

Red 1 a b c d

Group 2 b c d a

Players 3 c d a b

4 d a b c
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Blue Group Table

Period Number
1 2 3 4

Blue a 1 2 3 4

Group b 2 3 4 1

Players c 3 4 1 2

d 4 1 2 3

In each group’s table, each player in the group is identified on the left. In the row corresponding
to a player, the order in which he/she will play individuals in the other group is shown.
Suppose that you are player 1. You would play player a in period 1, player b in period 2,
player c in period 3, and player d in period 4. Similarly, you can determine how all other
players will be paired.

From these pairing tables, you can see that the decision you make in any one period
can have no effect on the decisions of individuals you play in later periods. Suppose you
are a red player and that you try to use your current decision against a blue player to
influence the decision of some other blue player whom you will be paired with in a future
period. Since blue players never play against each other you will have to accomplish this
indirectly. At the very least, this would require that your current decision affect a future
decision of the blue player you are currently paired with in a particular way. Namely,
this blue player must affect the decision of some other red player, who in turn affects
the decisions of other blue players whom you will be paired with in the future. But this
can never happen since the blue players you wll be paired with in the future all play
against other red players before the blue player you are currently paired with plays those
same red players.

To see this in the above example, continue to assume that you are player 1, and notice
that the decision you make when paired with player a in period 1 can have no effect on
the decision made by player d when you are paired with player d in period 4. This is
the case because after you are paired with player a, player a meets players 2, 3, and 4
after they have already been paired with player d. So anything that player a does cannot
alter the way players 2, 3, or 4 play when they are paired with player d. Therefore, the
decision which player d makes when playing you in period 4 cannot be affected by the
way you played against player a.

You can similarly verify that a decision made by any player in any of the other pair-
ings will have no effect on the decisions made by individuals he/she is paired with in the
future.

The tables we will use for pairing the 40 players in today’s experiment are attached at the
end of these instructions (please turn to them now). Players numbered 1 through 20 are in
the Red Group and players numbered 21 through 40 are in the Blue Group. The tables were
constructed in the same way as the tables given above. You are free to verify that the same
principle holds there as in the previous example—there is no way for you to make a decision
that will affect the decisions made by individuals you are paired with in the future. Again
this is because of the way that players you are paired with in the other group go on to meet
other players in your group. In particular, after being paired with you, they are paired with
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other members in your group only after the other members in your group have been paired
with individuals you will play in the future.

Except for their identification number or letter, you will not be told the name of any person
you are playing in any period. Similarly, nobody you are paired with will know your name
in any period nor will you be told who these people are either during or after the experiment.

The points that you earn in each period will be determined by the rules given below.

Specific instructions to Row player. In this part of the instructions we will be referring to
specific numbers of points. These numbers are the same as you will be using in today’s
experiment and those found on the session information sheet at the end of these instructions.

In those periods in which you are a Row player, you and the Column player must separately
and independently decide on actions which will jointly determine the number of points earned
by you and the number of points earned by the Column player. As the Row player, you may
choose either action R1 or action R2. Similarly, the Column player may choose action C1 or
action C2. The number of points earned by you is given by the following table for each pair
of actions you and player S might select:

Number of points earned by Row player

Column’s Action

C1 C2

Row’s R1 350 1000

Action R2 0 800

To read this table, suppose that you chose action R2 and the Column player chose action
C1. You would then earn 0 points. Similarly, suppose that you chose action R1 and the
Column player chose action C2. You would then earn 1000 points. In a like manner, you
can use this table to determine the number of points you would earn for all other pairs
of actions you and the Column player may select. Column players also earn points
depending upon the type of action they select. These are given in the next section of
the instructions.

When you select an action, enter the action chosen into the computer via your terminal
and record the action chosen on your record sheet. Once both you and the Column player
have selected your actions and entered them into the computer via your terminals, the
computer will determine the number of points earned by you based on the table given
above. The result is then sent to you via your terminal. The message will look like the
one below:

PERIOD POINTS ARE .

At the end of the period, you are to record your point earnings for Phase I on your
record sheet. Make sure you check your earnings in points against the computer’s
calculations. The computer will also inform you about the action taken by the Column
player. Make sure you record this information on your record sheet.
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Specific instructions to Column player. In those periods in which you are the Column
player, you and the Row player must separately and independently decide on actions
which will jointly determine the number of points earned by you and the number of
points earned by the Row player. As the Column player, you may choose either action
C1 or action C2. The number of points earned by you is given by the following table
for each pair of actions you and the Row player might select:

Number of points earned by Column player

Column’s Action

C1 C2

Row’s R1 350 0

Action R2 1000 800

To read this table, suppose that the Row player chose action R2 and you chose action C1.
You would then earn 1000 points. Similarly, suppose that the Row player chose action R1
and you chose action C2. You would then earn 0 points.

When you select an action, enter the action chosen into the computer via your terminal
and record the action chosen on your record sheet. Once both you and the Row player have
selected your actions and entered them into the computer via your terminals, the computer
will determine the number of points earned by you based on the table given above. The result
is sent to you via your terminal. The message will look like the one below:

PERIOD POINTS ARE .

At the end of the period, you are to record your point earnings for Phase I on your record
sheet. Make sure you check your earnings in points against the computer’s calculations. The
computer will also inform you of the action taken by the Row player. Make sure you record
this information on your record sheet.

Phase II recording rules. After completing your Phase I record sheet for a given decision
making period, you are to use your profit sheet to record the dollars you earn in Phase II.
First, record your Phase I point earnings in the row corresponding to the number of the
period that is currently being conducted. One player, a different one in each period, will then
be asked to draw a lottery ticket from the box. Before he/she returns the ticket to the box,
the number on the ticket will be announced. You should record the number of the ticket in
the second column of your profit sheet. If the number drawn IS LESS THAN OR EQUAL
TO the number of points you earned in Phase I, circle $1.00 in the next column; otherwise
circle $0.00 in that column. Pay careful attention to what you circle. Any erasure will invalidate
your earnings for the period. If you do make a mistake and circle the wrong number, call it
to the experimenter’s attention.

At the end of the session, add up your total profit in dollars and record this sum in row
21 of your profit sheet. All dollars on hand at the end of the session in excess of $0.00 dollars
are yours to keep. Subtract this number, which is on row 22, from your total dollars in row
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21 and record this difference on row 23. This is the amount of dollars you have earned in
this session.

In summary, your earnings in the experiment will be the total of the amounts you win
in all Phase II lotteries. The amount of money you earn will depend partly upon luck
and partly upon whether you have made good decisions in Phase I. Notice that the more
points you earn in Phase I, the more likely you will win in Phase II. Are there any ques-
tions?

Instructions for Finitely Repeated PD Game

General

You are about to participate in an experiment in the economics of decision making. If you
follow these instructions carefully and make good decisions, you might earn a considerable
amount of money which will be paid to you in cash at the end of the experiment.

The experiment will consist of a series of separate decision making periods. Each period
consists of two phases. In Phase I you will be paired with another person and, based upon
your combined actions, you will be able to earn points. In Phase II, you will have the opportunity
to earn dollars based upon the points you earn in Phase I. We begin by describing Phase II
so that you understand how the points you earn affect the number of dollars you earn. Then,
we describe Phase I in detail so that you understand how to earn points.

Phase II Instructions

At the end of Phase I, you will have earned between 0 and 1000 points according to the
rules we will discuss below. The number of dollars you earn in Phase II will depend partly
on the number of points you earned in Phase I and partly on chance. Specifically, we have
a box which contains lottery tickets numbered 1 to 1000. In Phase II, a ticket will be randomly
drawn from the box. If the number on this ticket is LESS THAN OR EQUAL TO the
number of points you earned in Phase I, you WIN $1.00. If the number on this ticket IS
GREATER THAN the number of points you earned in Phase I, you WIN $0.00. For example,
if you have 600 points, you will have a 60% chance of winning $1.00. Notice that the more
points you have, the larger will be your chance of winning the $1.00 prize.

Phase I Instructions

In each decision making period, you will be paired with another person. One of you will
be designated the Row player and the other will be designated the Column player. At
the beginning of the period, both the Row player and Column player must separately and
independently select an action. The combined actions of the Row player and the Column
player jointly determine the number of points earned by the Row player and the number of
points earned by the Column player.

Except for the last person to arrive for the experiment, player 11, all of you will be
participating in three separate sessions during today’s experiment. Player 11 will only
participate in the first session. The first session will be 11 periods; you will be randomly
paired with each person once —as either the Row player or the Column player—and
you will not participate in one period. The second session will be 10 periods; however,
you will be paired with the same person during the entire session. The third session will
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also be 10 periods and you will be paired with the same person during the entire session.
However, the person you are paired with in the third session will differ from the one
you were paired with in the second session. In all sessions, you will not know the
identification of the person you are playing against in any period. Similarly, nobody in
your decision making pair will know your identification in any period. Further, you will
not be told who these people are either during or after the session.

In the first or current session, you will alternate from being the Row player to being the
Column player from one period to the next. Since there is not an even number of people
participating in this experiment, you will occasionally be required not to participate during
a particular period. When this is the case, you will receive a message on your terminal
which states:

‘‘FOR PERIOD , YOU ARE SITTING OUT.’’

In the periods in which you are participating you will receive a message stating:

‘‘FOR PERIOD , YOU ARE A ROW PLAYER.’’

or

‘‘FOR PERIOD , YOU ARE A COLUMN PLAYER.’’

In your folder you will find a record/profit sheet. On this sheet you will indicate, based on
the message previously received on your terminal, whether you are a Column player, a Row
player, or sitting out this period.

The points that you earn in each period will be determined by the rules given below.

Specific instructions to Row player. In this part of the instructions we will be referring to
specific numbers of points. These numbers are the same as you will be using in the first session
of today’s experiment.

In those periods in which you are the Row player, you and the Column player must
separately and independently decide on actions which will jointly determine the number of
points earned by you and the number of points earned by the Column player. As the Row
player, you may choose either action R1 or action R2. Similarly, the Column player may
choose action C1 or action C2. The number of points earned by you is given by the following
table for each pair of actions you and the Column player might select:

Number of points earned by Row player

Column’s Action

C1 C2

Row’s R1 350 1000

Action R2 0 800
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To read this table, suppose that you chose action R2 and the Column player chose action
C1. You would then earn 0 points. Similarly, suppose that you chose action R1 and the
Column player chose action C2. You would then earn 1000 points. In a like manner, you
can use this table to determine the number of points you would earn for all other pairs
of actions you and the Column player may select. Column players also earn points
depending upon the type of action they select. These are given in the next section of
the instructions.

When you select an action, enter the action chosen into the computer via your terminal
and record the action chosen on your record sheet. Once both you and the Column player
have selected your actions and entered them into the computer via your terminals, the
computer will determine the number of points earned by you based on the table given
above. The result is then sent to you via your terminal. The message will look like the
one below:

PERIOD POINTS ARE .

At the end of the period, you are to record your point earnings for Phase I on your
record sheet. Make sure you check your earnings in points against the computer’s
calculations. The computer will also inform you about the action taken by the column
player. Make sure you record this information on your record sheet.

Specific instructions to Column player. In those periods in which you are the Column
player, you and the Row player must separately and independently decide on actions
which will jointly determine the number of points earned by you and the number of
points earned by Row player. As the Column player, you may either choose action C1
or action C2. The number of points earned by you is given by the following table for
each pair of actions you and the Row player might select:

Number of points earned by Column player

Column’s Action

C1 C2

Row’s R1 350 0

Action R2 1000 800

To read this table, suppose that the Row player B chose action R2 and you chose action C1.
You would then earn 1000 points. Similarly, suppose that the Row player chose action R1
and you chose C2. You would then earn 0 points.

When you select an action, enter the action chosen into the computer via your terminal
and record the action chosen on your record sheet. Once both you and the Row player
have selected your actions and entered them into the computer via your terminals, the
computer will determine the number of points earned by you based on the table given
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above. The result is sent to you via your terminal. The message will look like the one
below:

PERIOD POINTS ARE .

At the end of the period, you are to record your point earnings for Phase I on your record
sheet. Make sure you check your earnings in points against the computer’s calculations. The
computer will also inform you of the action taken by the Row player. Make sure you record
this information on your record sheet.

Phase II recording rules. After completing your Phase I record sheet for a given
decision making period, you are to use your profit sheet to record the dollars you earn
in Phase II. First, record your Phase I point earnings in the row corresponding to the
number of the period that is currently being conducted. The person who sat out in this
period will then be asked to draw a lottery ticket from the box. Before he/she returns
the ticket to the box, the number on the ticket will be announced. You should record
the number of the ticket in the second column of your profit sheet. If the number drawn
IS LESS THAN OR EQUAL TO the number of points you earned in phase I, circle
$1.00 in the next column; otherwise circle $0.00 in that column. Pay careful attention to
what you circle. Any erasure will invalidate your earnings for the period. If you do make
a mistake and circle the wrong number, call it to the experimenter’s attention.

At the end of the session, add up your total profit in dollars and record this sum in
row 23 of your profit sheet. All dollars on hand at the end of the session in excess of
$0.00 dollars are yours to keep. Subtract this number, which is on row 24, from your
total dollars in row 23 and record this difference on row 25. This is the amount of dollars
you have earned in this session.

In summary, your earnings in the experiment will be the total of the amounts you win
in all Phase II lotteries. The amount of money you earn will depend partly upon luck
and partly upon whether you have made good decisions in Phase I. Notice that the more
points you earn in Phase I, the more likely you will win in Phase II. Are there any questions?

Session II

This session of the experiment will again consist of a series of separate decision making
periods. Each period will gain consist of two phases. In Phase II you will be able to earn
dollars based upon the points you earned in Phase I in exactly the same way you did in the
first session. In Phase I you will again be paired with another person and, based upon your
combined actions, you will be able to earn points.

However, Phase I in this session differs from Phase I in the previous session in the follow-
ing ways:

(1) There will be 10 periods in this session.

(2) There will be 10 players in this session.

(3) At the beginning of the session, each player will be assigned as either the Row
player or the Column player. Once assigned as the Row player, he/she will be the Row player
for the entire session. Once assigned as the Column player, he/she will be the Column player
for the entire session.

(4) At the beginning of the session, each player will be randomly paired with another
player. These two players will be paired together for the entire session—10 periods.
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Session III

This session of the experiment will again consist of a series of separate decision making
periods. Each period will again consist of two phases. In Phase II you will be able to earn
dollars based upon the points you earned in Phase I in exactly the same way you did in the
first two sessions. Similarly, in Phase I you will again be paired with another person and,
based upon your combined actions, you will be able to earn points.

Phase I in this session differs from Phase I in the previous session in the following ways:

(1) Row players in the previous session will be Column players in this session. Column
players in the previous session will be Row players in this session.

(2) Each player will be randomly paired with a different player than he/she was paired
with in the previous session.
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