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Abstract

An important question facing economists and policymakers is how long individuals would
collect unemployment insurance (UI) if it were made available for a longer period of time.
This is a difficult task because (i) distributional assumptions can have a large impact past
the censoring point (i.e., after UI benefits are exhausted) and (ii) there may be a behav-
ioral response to any change in the maximum allowed benefit duration. To estimate the
survival function past the censoring point, I adopt a semiparametric approach which builds
on Chen, Dahl, and Khan (2005). I flexibly model the location and scale parameters of an
accelerated failure time (AFT) model, without specifying the error term distribution. Us-
ing administrative-level data from New Jersey’s UI system, the semiparametric estimates
predict a relatively flat exit rate from UI past the censoring point in the absence of a be-
havioral response. In contrast, the parametric Weibull model significantly biases UI exit
rates upwards. To estimate the incentive effects past the censoring point of 26 weeks, I
take advantage of a unique policy experiment which exogenously increased the maximum
duration from 26 to 39 weeks (see Card and Levine, 2000). I find only a modest behavioral
response in weeks 26 to 39 due to the extension in benefits. The results suggest the long-
term unemployed have a difficult time re-entering the labor force, with UI benefits serving
as an important income maintenance program for these workers.



1 Introduction

Unemployment insurance (UI) plays an important role in buffering the income shocks of

individuals who experience job loss in the United States and many other countries. In the

United States, the maximum duration of UI benefits is set at the state level, but is generally

26 weeks during normal economic times. An important question facing economists and

policymakers is how long individuals would collect unemployment insurance if it were

made available for a longer period of time.

However, many claimants exhaust their UI benefits, resulting in a significant fraction of

censored observations. This censoring makes estimation of the complete survival curve

and the predicted costs of an extension difficult. Even though distributional assumptions

generally make little difference for the non-censored portion of a survival curve (i.e., before

UI benefits are exhausted), they can have a large impact past the censoring point. Moreover,

there may be a behavioral response to any change in the maximum allowed benefit duration.

Beyond the costs of an extended benefits program, researchers and policymakers are also

concerned about UI’s effect on job search behavior. Extended benefits might provide ad-

ditional time to find a better job match, but many worry that such extensions might also

reduce claimants incentives to find a job and hence slow re-entry into the labor force. Both

costs and disincentive effects are often cited as reasons to limit the length of UI benefits.

In this paper I estimate bounds on both the costs and disincentive effects of extending UI

benefits in a flexible way. I find the long-term unemployed are predicted to exit the UI sys-

tem very slowly over time. I also find the incentive effects to delay exiting UI are minimal.

Combining these two results, it appears the long-term unemployed have a difficult time
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re-entering the labor force, with UI benefits serving as an important income maintenance

program for these workers.

To estimate the survival function past the censoring point, I adopt an approach which builds

on Chen, Dahl, and Khan (2005). UI spell duration is modeled in an accelerated failure

time (AFT) framework, with flexible modeling of the location and scale parameters as a

function of observed characteristics of individuals. The approach is semiparametric in two

ways: (i) it does not specify the distribution of the error term, and (ii) it does not specify

the functional form for how the x’s influence median failure time. The key requirements for

identification are a median zero error term and a relatively large support for the error term

compared to the effect of the independent variables on the location and scale parameters.

Since the conditional distribution of the error term can be identified up to scale, I can also

estimate other quantiles of the survival function beyond the censoring point.

Semi-parametric estimation in this framework quickly becomes computationally infeasible

with more than one or two continuous variables. To avoid this curse of dimensionality, I dis-

cretize the data into a set of mutually exclusive and exhaustive cells. These cells are based

on demographic information, characteristics of a claimant’s previous job, and a measure of

local labor market conditions. Since estimates are calculated at the cell-level, I propose a

simple way to combine these cell-level estimates to create aggregate survival functions.

I estimate the survival curve for New Jersey’s UI program in the late 1990s, using a large

dataset of individual-level administrative records. I find that incorrect distributional as-

sumptions can significantly bias the results. The Weibull model is a commonly used para-

metric model, and a special case of the semiparametric AFT model used in this paper.

While both estimates are similar to the Kaplan-Meier estimate below the censoring point,
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the Weibull estimate predicts a much quicker drop off in UI claims past the censoring point.

A policymaker who based predictions on this incorrect distributional assumption would

grossly underestimate the cost of an extension in UI benefits, even in the absence of any

behavioral response. While some parametric AFT models based on alternative distributions

do not underestimate costs, the point is that it is difficult to know which distribution to use

in advance.

I then estimate an upper bound on the behavioral response using a unique policy experiment

first explored by Card and Levine (2000). In the late 1990’s, New Jersey increased the du-

ration of UI benefits from 26 weeks to 39 weeks, for arguably exogenous reasons unrelated

to economic conditions. I compare the actual duration of UI spells from 1 to 39 weeks

during the policy experiment to that predicted using the semiparametric estimator and data

outside the policy experiment period. Under a monotonicity assumption about selection

into New Jersey’s extended benefits program and an assumption that behavioral responses

do not decrease spell length, the difference between the two survival functions yields an

upper bound estimate of the behavioral response. There is little evidence of a behavioral

response past the censoring point. My findings suggest that the slow re-entry of the long-

term unemployed is not primarily due to a disincentive effect where workers decrease their

job search intensity.

The remainder of the paper proceeds as follows. I first briefly discuss the previous literature

and outline how to model UI receipt in an AFT framework. In Sections 3 and 4 I discuss

the data from New Jersey’s UI system and lay out the semiparametric estimation approach.

Section 5 discusses results, first at the cell level and then at a more aggregated level. Section

6 estimates an upper bound on the behavioral response and Section 7 concludes.
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2 Modeling Unemployment Insurance Receipt

Previous research on the determinants of UI spell length has focused on the effect of ben-

efit levels (Anderson and Meyer(1997), Chetty (2008), Ham and Rea(1987), Hunt(1995),

Lalive et al. (2006), McCall(1995), and Meyer(1992)) and the maximum allowed bene-

fit duration (Card and Levine(2000), Jurajda and Tannery (2003), Katz and Meyer(1990),

Meyer(1990), Moffitt and Nicholson(1982), Moffitt(1985), Ours and Vodopivec (2006),

Roed et al (2008), Woodbury and Murray(1997)). This literature generally concludes that

both higher benefit levels and higher maximum durations significantly increase the length

of an individual’s spell of unemployment insurance receipt. The empirical findings mainly

rely on variation in benefit amounts and maximum benefit lengths over time, across states,

or between individuals for identification.

While such studies have helped researchers partly understand the determinants of UI spell

length, one limitation of many studies is the endogeneity of the identifying variation. Time

variation is not likely to be exogeneous since benefits are usually extended when labor mar-

ket conditions are poor (see Blaustein, et al(1993) and Blank and Card (1991)). Individual

states also sometimes extend the maximum duration of benefits in response to a slack labor

market. These changes are endogeneous since they occur precisely when spell lengths and

benefit exhaustions would otherwise be predicted to increase. To combat problems of endo-

geneity, a small number of researchers have taken advantage of quasi-experimental policy

changes (e.g., Card and Levine (2000), Lalive et al. (2006), Meyer (1992), and Ours and

Vodopivec (2006)). Of particular relevance is the paper by Card and Levine (2000), since

I make use of the same policy experiment for a different purpose, as described later in the
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paper.

Prior research has concentrated on the responses of individuals with non-censored spells.

For example, many studies document a sharp spike in exit rates immediately prior to benefit

exhaustion. But existing studies say little about spell durations past the censoring point,

since such predictions would need to be made either using parametric assumptions about

the distribution of failure times or functional form assumptions for how covariates affect

failure times past the censoring point. In contrast, this paper uses an approach based on

Chen, Dahl, and Khan (2005), which allows estimation of the survival function beyond the

censoring point with a minimum of parametric and structural assumptions.

I model log-failure time (i.e., when an individual stops collecting UI) as a semiparametric

location-scale model. The model of interest is

log t∗i = µ(xi) + σ(xi)εi (1)

ti = min(t∗i , 26) (2)

The variable ti is the observed number of weeks a claimant collects unemployment insur-

ance benefits, the exogenous vector xi contains claimant characteristics, and εi is a ho-

moskedastic and median zero error term. The censoring point is fixed at 26 weeks; the

latent number of weeks a claimant would like to collect benefits, t∗i , is observed only when

a claimant collects benefits for less than this censoring point.

As described in the next section, the approach taken in this paper can estimate the location

function µ(xi) as well as the conditional distribution of failure times beyond the censor-

ing point. The reader is cautioned that the estimator does not necessarily predict what will
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happen after an increase in maximum duration, since both censored and non-censored in-

dividuals may exhibit a behavioral response to a longer time limit. Conceptually, the effect

of extending the maximum duration can be separated into the sum of claimants (potentially

censored) desired number of weeks under the current time limit plus any behavioral shift

associated with the incentive effects of a longer program. In Section 6, I estimate an upper

bound on the size of the incentive effect for a temporary increase in UI benefits in New Jer-

sey. I find weak evidence of a small incentive effect, implying the estimates in this setting

come close to approximating the total effects. More generally, the approach outlined here

would estimate a lower bound on the effect of increasing the UI time limit, as long as time

limit increases do not shorten individual spell lengths.

The accelerated failure time (AFT) model adopted here is a common approach to estimating

failure time models. Another widely used model, particularly in economics, is the propor-

tional hazards (PH) model.1 When a Weibull distribution is assumed, the model has both an

AFT and a PH interpretation. Although convenient, there is little theoretical justification for

an AFT (or PH) model based on a particular distribution, and faulty distributional assump-

tions can significantly bias the results. For example, Moffitt(1985) reports that estimates of

UI spell length for Tobit-type models are very sensitive to the assumed distribution. Any in-

consistencies generated from incorrectly specifying the distribution are likely to be further

compounded when predicting survival times beyond the censoring point.

Researchers have relaxed distributional assumptions using a variety of semiparametric ap-

proaches for censored duration models (e.g., Cox(1972), Powell(1984), Horowitz(1996)).

While useful, these semiparametric approaches cannot identify the shape of the survival
1One advantage of the PH model is that it can more easily accommodate time-varying covariates.
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function beyond the point of censoring without further assumptions. A commonly used

assumption for a variety of estimators is to specify the functional form of the location func-

tion µ(xi); however, economic theory provides little guidance on what functional form to

assume. The method proposed in this paper does not specify the distribution of the ho-

moskedastic component of the error term or the form of the location function, but still per-

mits estimation of the conditional distribution of failure times beyond the censoring point.

3 Data

The model is estimated using individual-level administrative records from New Jersey’s UI

system. The baseline dataset is drawn from the 322,907 individuals who received their first

payment between June 1, 1996 and October 25, 1997. Of these claimants, 63 percent were

eligible for the legislated maximum of 26 weeks of UI benefits. The sample is restricted to

claimants between the ages of 18 and 65, with complete demographic information, with no

more than one week of partial UI benefits, and who were eligible for 26 weeks of UI. These

restrictions result in a usable dataset containing 192,162 observations (see Card and Levine

(2000) for further details about this dataset).

New Jersey’s UI system is administered at the state level, with benefits being financed by

a tax on both workers and firms. These taxes are subject to maximum and minimum rates,

and are partially experienced rated. Individuals can collect unemployment benefits if they

have a sufficiently long work history and they continue to actively seek work. Benefits are

paid weekly and are based on an individual’s previous earnings with a maximum benefit of

$362 in 1996. During the period of the data, New Jersey experienced a strong labor market;
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for the individuals in this dataset, the median unemployment rate measured at the county

level was 5.5 percent. During the baseline period of the data, the maximum duration of UI

benefits remained constant at 26 weeks. Of those individuals eligible for 26 weeks in the

dataset, 43 percent exhausted their benefits.

A variety of characteristics influence the length of time an individual remains on unem-

ployment insurance. In the analysis, I include demographic information, characteristics

of a claimant’s previous job, and a measure of local labor market conditions. The curse

of dimensionality quickly makes the approach developed in Chen, Dahl, and Khan (2005)

computationally infeasible with more than one or two continuous variables in the model,

since since the approach requires local polynomial estimation. To make estimation feasi-

ble, I discretize the continuous covariates so the data can be grouped into a set of mutually

exclusive and exhaustive cells. Many important characteristics such as race, gender, and

union status are already discrete. Other characteristics, such as years of schooling, pre-

vious weekly earnings, age, or tenure, can be broken up into a few defining categories.

Nonparametric quantile regression applied to this type of cell-grouped data is simple and

computationally fast. With such cell-grouped data, the estimator discussed in the next sec-

tion requires only easily computed estimates of the median and other quantiles at the cell

level combined with simple algebra.

Table 1 contains summary statistics for different characteristics during the baseline period,

including the fraction of claimants who exhaust their UI benefits. A typical UI claimant

in New Jersey is male, white, middle-aged, not a union member, and has a high school

degree or less. Claimants have varied previous earnings histories and a large fraction of

UI claimants have been at their job for less than two years. Exhaustion rates differ widely
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across characteristics. For example, the exhaustion rate for whites is 40 percent compared to

53 percent for blacks and the exhaustion rate for union members is 34 percent compared to

45 percent for non-union members. Exhaustion rates are also higher for women, older work-

ers, workers with long tenure, and in counties with high unemployment rates. Claimants

from the construction, agriculture, or mining industries also have markedly shorter UI spells

on average.

The complete interaction of all the characteristics in Table 1 yields a possible 2,586 non-

overlapping cells, 2,225 of which are nonempty. In 1,528 of the cells, the median time on

UI benefits is below the censoring point of 26 weeks. These cells contain approximately 69

percent of all observations. The remaining 31 percent of the data are grouped in 697 cells

where more than 50 percent of claimants are observed to exhaust benefits.

4 Nonparametric Estimation Approach

This paper adapts the estimation approach developed in Chen, Dahl, and Khan (2005),

where the estimator is motivated by an identification argument. It is immediate that µ(x)

is identified for any value of the covariates x0 such that µ(x0) < log(26), i.e., for any x0

where the median lies in the noncensored region. In other words, if the true median implies

less than 50% censoring for a particular value of the covariates, the 0.5 quantile can be

identified. Under minimal assumptions, it is possible to show the location function µ(x)

is identified in the censored region as well (i.e., for values x1 where µ(x1) > log(26)). I

outline this proof since it motivates the cell-level estimation technique used in this paper. As

the outline will show, the key requirements for identification are a median zero error term
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and a relatively large support for the error term compared to the effect of the independent

variables on the location and scale parameters.2

Consider the AFT model written out in equations (1) and (2). Let qαj denote the jth quantile

of log failure time. Assuming that µ(x) and σ(x) are finite for all values of x and that ε has

support on the entire real line, there exist quantiles α1 < α2 < 1 (for the homoskedastic

component of the error term ε) such that

µ(x) + cαiσ(x) < log(26) i = 1, 2 (3)

Equation (3) follows since there is always some quantile of ε which will result in a noncen-

sored observation, no matter the value of the covariates x. Thus the following relationships

hold

qα1(x) = µ(x) + cα1σ(x) (4)

qα2(x) = µ(x) + cα2σ(x) (5)

Using these two relationships to substitute out σ(x) and solve for µ(x) yields

µ(x) =
cα2

∆c
qα1(x)− cα1

∆c
qα2(x) (6)

where ∆c = cα2 − cα1 . If the fractions cα1
∆c and cα2

∆c could be identified, then µ(x) could be

identified using the above equation. Note that cα2∆c = 1 +
cα1
∆c , so all that is required is one

of these two fractions.
2For simplicity, a relatively large support for the error term is taken to be support on the entire real line,

while the location and scale parameters are assumed to be finite for all values of x. For details on the technical

assumptions required and a formal proof of consistency, see Chen, Dahl, and Khan (2005).
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The identification of the location function for values of x0 where the median is in the non-

censored region (i.e., µ(x0) < log(26)) can be used to identify cα1
∆c and cα2

∆c . The idea is to

algebraically combine the following values of the conditional quantile function at the three

distinct quantiles 0.5, α1, α2, evaluated at the regressor value x0.

q0.5(x0) = µ(x0) (7)

qα1(x0) = µ(x0) + cα1σ(x0) (8)

qα2(x0) = µ(x0) + cα2σ(x0) (9)

After simple algebra, this enables one to write cα1
∆c and cα2

∆c as

cα1

∆c
=
qα1(x0)− q0.5(x0)

∆q(x0)
(10)

cα2

∆c
=
qα2(x0)− q0.5(x0)

∆q(x0)
(11)

where ∆q(x0) = qα2(x0)− qα1(x0). The ability to substitute out µ(x0) from these expres-

sions relies on a median zero error term, an assumption which is used in equation (7).

This immediately translates into identification of µ(x) from the relationship

µ(x) =
qα2(x0)− q0.5(x0)

∆q(x0)
qα1(x)− qα1(x0)− q0.5(x0)

∆q(x0)
qα2(x) (12)

Equation (12) forms the basis of estimation in this paper. Since the data will be partitioned

into cells, the values of the x variables will uniquely characterize each cell. Cells where the

median is uncensored will be used to estimate both cα1
∆c and cα2

∆c as described in equations

(10) and (11). These estimated coefficients are common to all cells, no matter the value

of the covariates x. These estimated coefficients can therefore be used to get cell-level
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estimates of the median function for all cells, including those whose median is censored,

using equation (12).

Estimation proceeds in three stages. Let q̂αj denote the estimated value of qαj and let ĉ1

and ĉ2 denote the estimated values of cα1
∆c and cα2

∆c . First, median log failure times are

calculated for each cell where the median is not censored. In the second stage, estimates of

the unknown constants cα1
∆c and cα2

∆c are calculated. This requires first estimating the α1 and

α2 cell quantiles (two quantiles lower than the median). For each cell where the median

is below the censoring point, the expressions q̂α1 − q̂0.5 and q̂α2 − q̂0.5 are divided by

q̂α2 − q̂α1 . The sums of these cell calculations, using only cells where the median is below

the censoring point, yield the estimates ĉ1 and ĉ2. The third stage estimates the median

separately for each cell by taking a simple algebraic combination of the estimated constants

ĉ1 and ĉ2 (common to all cells, but estimated only using the cells where the median was not

censored) and the estimated quantiles q̂α1 and q̂α2 (specific to each cell), as suggested by

equation (12)

µ̂(x) = ĉ2q̂α1(x)− ĉ1q̂α2(x). (13)

Once medians have been estimated for all cells, other quantiles can be estimated for each

cell as well since the conditional distribution of εi can be identified up to scale. The αj

quantile of a cell is estimated as

q̂αj (x) = µ̂(x) + ĉj(q̂α2(x)− q̂α1(x)) (14)

where the estimator ĉj is the average of the expression (q̂αj (x0) − q̂0.5(x0))/(q̂α2(x0) −

q̂α1(x0)) over cells where both the estimated median and the αj quantile lie below the

censoring point. It should be noted that the estimated quantiles q̂α1 and q̂α2 appearing in
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these expressions need not be the same as those used to calculate µ̂. They are kept the same

largely for convenience; I find that the estimates are not overly sensitive to the choice of

these two quantiles. Equation (14) allows estimation of the survival curve for each cell up to

the largest αj quantile for which ĉj can be estimated using other cells which are not heavily

censored.

5 Results

5.1 Estimates at the Cell Level

Estimation parallels the stages described in the previous section. In the first two stages,

for each cell where the median lies below the censoring point, I calculate cell medians

and obtain cell-level estimates of the two unknown lower quantiles of the error term up to

scale. I chose the 30th and 40th quantiles for these two quantiles below the median. To

construct the estimates, the 30th and 40th quantiles must be less than 26 weeks and the 40th

quantile cannot equal the median (to avoid division by zero). The first restriction eliminates

approximately seven percent of the data and the second restriction eliminates less than one

quarter of one percent of the data. Of course, other quantiles could be used as well. Other

choices, such as the 17th and 33rd quantiles, do not alter the general findings.

One gauge of the method’s applicability to UI claims is how well the estimate of the location

function compares to the observed median in cells with less than 50 percent censoring. Fig-

ure 1 plots the observed median versus the estimate of the location function for cells where

the observed median is less than 26 weeks. For cells with few observations, the estimate µ̂
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is highly variable and has a large bootstrapped standard error. To simplify the graph, it plots

only those cells with more than 30 observations. The observations are generally clustered

around the forty-five degree line, although the estimate µ̂ is somewhat higher in the weeks

immediately prior to censoring.3

A primary objective of the empirical application is to estimate the location function for cells

with more than a 50 percent exhaustion rate. (Note: Table 2 needs to be updated, as it refers

to a different way of splitting the data into cells.) Since it is impractical to present estimates

for all of these cells, in Table 2 we provide estimates for the subset of cells with more than

250 observations. Since only 13 percent of claimants belong to a union and union members

have low exhaustion rates to begin with, all of the cells appearing in Table 2 contain only

non-union claimants. Otherwise, there is a rich variety of characteristics defining cells.

The estimated medians vary substantially, ranging from approximately 27 weeks (male,

black, young, college, middle earnings, short tenure, high unemployment rate) to 40 weeks

(female, black, mid-age, high school, high earnings, long tenure, high unemployment rate).

The standard errors appearing in Table 2 are estimated using the bootstrap. The bootstrap

estimates are based on 400 replications for each cell, with samples equal in size to the

number of observations in a cell and drawn with replacement.

Conditional quantiles for all cells can be estimated up to the largest probability αj for

which sufficiently many cells have αthj quantiles observed below the censoring point. In

the application, I chose 85 percent as the cutoff probability. There are 17 cells with an

observed 85th quantile less than 26 weeks, with a total of 2,526 observations in these cells.

Using information from these observations, I am able to estimate up to the 85th quantile
3Two outliers are omitted from the graph for visual clarity; these two cells have 34 and 42 observations.
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for all cells in the dataset. For lower quantiles, of course, information can be used from

more than just these 17 cells. For example, there are 119 cells (18,688 total observations)

with an observed 70th quantile less than 26 weeks. (Note: Figure 2 needs to be updated, as

it refers to a different way of splitting the data into cells. The new cell definitions enable

estimation out to the 98th quantile. The other figures and tables in the paper utilize the new

cell definitions.)

Figure 2 graphs the estimated quantiles of UI receipt for eight cells with a diverse set of

characteristics. The varied shapes of the quantile functions suggest the presence of con-

ditional heteroskedasticity. The top four panels show the estimates for four cells with ob-

served medians well below the censoring point. The Kaplan-Meier estimates (with the axes

reversed) closely track the estimates obtained using the semiparametric AFT model and

generally lie within the bootstrapped 95 percent confidence intervals. As expected, these

confidence intervals fan out as the fraction of active claims falls, i.e., for estimates of the

higher quantiles. Notice that in panel 1, the observed 85th quantile occurs at less than 26

weeks. Intuitively, the structure of the assumptions allows cells with more severe censoring

to take advantage of information on the error distribution from cells like those found in

panel 1 to estimate quantiles beyond the censoring point.

The bottom four panels in Figure 2 depict estimates for cells with more severe censoring.

For example, in panel 5 close to 60 percent of the claimants in this cell exhaust benefits.

Even with such severe censoring, however, one can estimate quantile values greater than 26

weeks. Although one could plot up to the 85th quantile for each of these cells as done in

the top panels, I choose instead to include the estimated quantiles until the point estimate

exceeds 52 weeks. This choice was made so the scale of the graphs would more clearly
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illustrate the comparison to the Kaplan-Meier estimate and what is happening immediately

after the 26 week censoring point. As before, the Kaplan-Meier estimates are similar to the

semiparametric estimates.

5.2 Aggregate Survival Functions Based on Cell-Level Estimates

While cell-level estimates of medians and other quantiles beyond the censoring point are

useful, they do not provide a concise summary of what is happening at a more aggregate

level. In this section I describe how to combine cell-level estimates to create aggregate

survival functions. The idea behind aggregation is to take a weighted vertical sum of the

survival curves of individual cells.

To calculate the aggregate survival function, first notice the failure time distribution for all

the data, F (·), can be written as a weighted average of the failure time distributions for each

cell. The weights are merely the fraction of observations belonging to each cell and do not

depend on the failure time. Let Fi(·) denote the distribution of failure times and wi denote

the weight for cell i. The pth quantile is the number t such that

F (t) =
∑
i

wiFi(t) = p (15)

For each cell, quantile estimates up to the 85th quantile have already been obtained. These

cell quantiles are just the inverse distribution functions, F−1
i (·), evaluated at various prob-

abilities. To calculate the unconditional pth quantile for the entire population, one needs to

find p1, p2, . . . , pN such that

F−1
1 (p1) = F−1

2 (p2) = . . . = F−1
N (pN ) (16)
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and

∑
i

wipi = p (17)

where N indicates the total number of cells the data have been divided into.

A grid method is used to compute probabilities associated with a given value for the inverse

distribution function, F−1
i (·). For each cell I estimate the quantiles at 1,000 probabilities

evenly spaced between 0 and 1. To calculate the aggregate survival function at a specific

failure time, for each cell i we first find the probability pi which corresponds as closely

as possible to the quantile equaling this failure time. That is, I take a weighted average of

probabilities straddling integer failure times, where the weights on the probabilities depend

on the distance of the associated quantiles from the integer failure time. I then take the

weighted sum of these cell probabilities, where the weights are estimated by the fraction

of all observations belonging to cell i. The overall survival function is evaluated at failure

times which take on positive integer values, although it should be noted the survival function

could be evaluated at other points as well.

One challenge in the current application is that I am limited to quantile estimates below

the chosen cutoff, i.e., the 98th quantile. For cells where the 98th quantile occurs relatively

early, for example at 28 weeks, what probability should be assigned for failure times greater

than 28 weeks? The maximum probability for failure times beyond the 98th quantile is one,

implying all remaining observations fail immediately after the 98th quantile. The minimum

probability does not increase at all, implying that no observations fail after the 98th quantile.

These two extreme assumptions provide conservative upper and lower bounds on the cell-

specific probabilities associated with failure times beyond the 98th quantile in a cell.
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Notice that aggregate estimates can be calculated for subsets of the data as well as for the

entire dataset. For example, unconditional survival functions can be calculated for different

races, men and women, or union and non-union members separately. In this paper I present

just one such example, for the subset of data with severe cell-level censoring. Figure 3

displays the aggregate survival functions for claimants in cells with an observed median

greater than 26 weeks. For this group of heavily censored claimants, the predicted median

spell length is approximately 32 weeks, or 6 weeks longer than the actual censoring point.

Hence, this group is of special interest when considering extensions to UI benefits. The

figure includes the upper and lower bound estimates of the survival function calculated as

described above, as well as the Kaplan-Meier estimate. The standard errors for the Kaplan-

Meier estimate are relatively small, so to keep things visually simple confidence intervals

for the Kaplan-Meier estimate are excluded from the graph.

For this group, the upper and lower bound estimates of the survival curve are very similar,

and any differences are not visually apparent in the graph. This is because this set of in-

dividuals exhaust benefits quickly, so the 98th quantile generally occurs far later than 52

weeks, the last week shown in the graph. The estimates track the Kaplan-Meier estimate in

the non-censored region fairly well. In the figure we have also added the estimated survival

curve using a Weibull model, a model which has both a proportional hazards and an accel-

erated failure time (AFT) interpretation. It should be noted that my approach generalizes

parametric AFT models, so if the Weibull model is correct it should yield a similar esti-

mate. The pointwise confidence intervals appearing in the graph for the Weibull estimate

are based on standard errors calculated using the delta method.

While the Weibull estimate and the upper and lower bound estimates are similar imme-
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diately prior to the censoring point, they have very different shapes to the right of 26

weeks. In particular, the Weibull estimate is noticeably lower for failure times past the

censoring point. For claimants belonging to heavily censored cells, the semiparametric ap-

proach predicts between roughly 35 percent of claims would still be active at 52 weeks

compared to 26 percent for the Weibull model. Put another way, the median residual life

(i.e., median[t− 26 | t > 26]) for my model is about 39 weeks compared to only 24 weeks

for the Weibull model–a difference of more than 50 percent. These inconsistencies illustrate

the costs of making incorrect distributional assumptions.

While not shown in the figure, some parametric AFT models based on alternative distribu-

tions do not underestimate costs. For example, assuming a lognormal distribution yields an

estimated survival curve which is similar to the semiparametric survival curve. However,

the point is that it is difficult to know which distribution to use in advance, especially since

various distributions all fit the noncensored region fairly well.

Figure 4 graphs the aggregate survival functions for all claimants in the dataset. To the

left of the censoring point, the upper and lower bound estimates are similar to the Kaplan-

Meier estimate. As before, the bootstrap estimates for the pointwise confidence intervals

are based on 400 replications, with samples equal in size to the total number of observations

and drawn with replacement. Immediately prior to the censoring point at 25 weeks, around

42 percent of claims are estimated to be active compared to 41 percent for the Kaplan-

Meier estimate. To the right of 26 weeks, the shape of the survival curve flattens out. As

the number of weeks increase, the upper and lower bound point estimates start to diverge

as a larger fraction of cell-level estimates exceed the 98th quantile. Six weeks after the

censoring point, between 35.5 (upper bound) and 34.2 (lower bound) percent of claims are

19



estimated to still be ongoing. Although the bounds are somewhat wider in latter weeks, the

estimates suggest a significant fraction of claimants would like to continue collecting UI

benefits beyond the legally-specified maximum duration.

The information contained in the estimated survival functions can readily be used to derive

estimates of the monetary cost of extending UI benefits in New Jersey. For each cell and

each week, cell-level costs are calculated by multiplying the average weekly benefit for

individuals in a cell by the number of claims estimated to be ongoing in a cell. Average

payouts vary across cells since benefit amounts depend on pre-displacement wages and

work history. Aggregate cost estimates are then calculated by summing these cell-level cost

estimates.

The first week of UI claims is estimated to cost around 49 million dollars in benefit payouts.

By the censoring point of 26 weeks, this aggregate weekly payout falls to approximately 20

million dollars with an estimated cumulative cost of roughly 880 million dollars. Since the

survival curve flattens out after the censoring point, predicted costs decline slowly. Increas-

ing the maximum duration by fifty percent to 39 weeks is predicted to cost between an extra

209 (lower bound estimate) and 221 (upper bound estimate) million dollars. The reader is

reminded that these estimates represent aggregate costs assuming no behavioral shift asso-

ciated with the incentive effects of a longer program. Since time limit increases should not

decrease the length of time an individual receives UI, these estimates should be interpreted

as the minimum cost of extending the maximum allowed duration. Any behavioral response

would further add to the costs of extending UI benefits.
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6 Behavioral Response

In this section, we take advantage of a unique policy experiment to estimate an upper bound

on the behavioral response to an increase in maximum duration. We explore the behavioral

response to New Jersey’s Extended Benefits (NJEB) program, a temporary increase in UI

duration first examined in a paper by Card and Levine (2000). In the late 1990’s, New Jersey

increased the duration of UI benefits from 26 weeks to 39 weeks, for arguably exogenous

reasons unrelated to economic conditions (see Card and Levine for details).

I compare the actual duration of UI spells from 1 to 39 weeks during the policy experiment

to that predicted using the semiparametric estimator and data outside the policy experiment

period. Card and Levine compare hazard functions from 1 to 26 weeks, and the spike

immediately prior to exhaustion. The focus of this paper is to compare predicted and actual

survival curves from weeks 27 to 39 weeks, in addition to 1 to 26 weeks.

It is important for policy purposes to understand what happens past 26 weeks, since 43%

of claimants exhaust benefits when the maximum allowed duration is 26 weeks. What

these 43% of claimants will do after 26 weeks if benefits are extended is important for cost

predictions. Moreover, the behavioral response of the long-term unemployed (individuals

on UI over 26 weeks are classified as “long-term” unemployed by the government) may or

may not be similar to the behavioral response for those individuals who exit UI relatively

quickly.

One challenge in using the NJEB program is that roughly 30% of claimants never sign up

for extended benefits, even though they have exhausted their regular 26 week benefits and

are eligible. Card and Levine discuss several potential reasons for this, the most salient
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of which relate to the temporary nature of the NJEB program. The results in this section

should certainly take the temporary nature of the program into account, as a more perma-

nent change might have larger behavioral effects. It should be recognized, however, that

analyzing temporary changes is useful, since many extensions to UI benefits are in fact

transitory.

The idea behind estimating the behavioral response is to compare the predicted survival

curve when individuals are only eligible for 26 weeks to the actual survival curve when

individuals are eligible for 39 weeks. The difference between the two survival functions

yields an estimate of the behavioral response, assuming that economic conditions did not

change between the two periods. (In fact, economic conditions were remarkable similar

during the two periods, and the demographic composition of claimants was very similar.)

However, since 30% of claimants do not sign up for extended benefits, I can only estimate

an upper bound on any behavioral response.

To identify an upper bound on the behavioral response, I make three assumptions. First, I

assume that individuals who self-select into the NJEB program are not positively selected.

By this I mean that claimants who signed up for extended benefits would not have had

shorter spell lengths (past 26 weeks) compared to those who did not sign up for the program.

This assumption seems natural, since claimants who sign up for extended benefits are likely

to be those who need them the most.

Second, I assume that increasing the maximum duration from 26 to 39 weeks did not de-

crease average spell length. This assumption says that the NJEB program did not cause

claimants to exit UI more quickly.
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Finally, I assume no exits from UI at 26 weeks. We do not know how many claimants exit

UI at 26 weeks (eg, because they find a job at 26 weeks) versus how many claimants fail

to sign up for the program but would otherwise not have exited at 26 weeks. I make the

conservative assumption that no claimants exit at 26 weeks, so that the survival function is

flat through 26 weeks. While this assumption is extremely conservative, it delivers an upper

bound estimate under the worst case scenario.

Under these three assumptions, the difference between the two survival curves yields an

upper bound estimate of the behavioral response. Figure 5 graphs the behavioral response.

The two solid lines plot the upper and lower bound semiparametric estimates of the ag-

gregate survival function. As a reminder, the semiparametric survival curve is estimated

using data when the maximum allowed duration was 26 weeks. The step function graphs

the Kaplan-Meier estimate, assuming random participation in the NJEB program (i.e., ran-

dom censoring of individuals at 26 weeks) and no exits at 26 weeks. Past 26 weeks, this

step function is an upper-bound estimate of the survival curve given the three assumptions

outlined above.

Interestingly, there is little evidence of a large behavioral response past the censoring point.

The upper bound Kaplan-Meier estimate is near the upper 95 percent confidence interval

for the semiparametric estimator’s upper bound. Evaluated at each week past the censoring

point, there is never a week where the estimated quantiles from the two approaches are

significantly different.4 Figure 5 suggests the slow re-entry of the long-term unemployed is

not primarily due to a disincentive effect where workers decrease their job search intensity.
4A test which aggregates over all weeks would likely find a significant difference, but I have not yet per-

formed such a test.
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7 Conclusion

Predicting how UI spell length would change in response to an extension in allowable du-

ration is difficult as many claimants have censored spells. In the New Jersey data analyzed

in this paper, 43 percent of claimants exhaust their benefits at 26 weeks. How long would

these censored claims remain active if UI benefits were made available for a longer time

period? The answer would be particularly useful in evaluating the costs and benefits of ex-

tending the maximum duration of UI benefits. Also of interest is whether such an extension

provides disincentive effects to leave the UI system in a timely manner.

Using a flexible semiparametric approach, the costs of extending UI benefits are estimated

to be quite substantial. This is because the shape of the survival curve is relatively flat past

the censoring point; few individuals are predicted to exit the program each week after 26

weeks of payments. If time limit increases do not decrease an individual’s desired spell

length, a lower bound estimate for the cost of increasing the maximum duration can be

calculated. The minimum cost estimate for a 50 percent increase in maximum allowed

duration (from 26 weeks to 39 weeks) is estimated to raise the amount of money spent on

New Jersey’s UI program by over 25 percent. If researchers rely on an incorrect parametric

model, these costs could be significantly underestimated.

Any behavioral response would further add to the costs of extending the maximum allowed

duration. The behavioral response is estimated with a unique policy experiment in New

Jersey which exogenously increased the duration of UI benefits from 26 to 39 weeks. The

analysis reveals at most a small disincentive effect after 26 weeks when benefits are ex-

tended to 39 weeks. The results imply the group of individuals who have been unemployed
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for at least 26 weeks have a difficult time finding a job and leaving UI. This suggests an

important role for UI as an income maintenance program for the long-term unemployed.

References

[1] Anderson, P. and B.D. Meyer (1997) ”Unemployment Insurance Take Up Rates and

the After-Tax Value of Benefits”, Quarterly Journal of Economics, 112, 913-938.

[2] Blank, R. M. and D. Card (1991) ”Recent Trends in Insured and Uninsured Unem-

ployment: Is There an Explanation?”, Quarterly Journal of Economics, 106, 1157-

1190.

[3] Blaustein, S.J., W.J. Cohen and W. Haber (1993) Unemployment Insurance in the

United States: The First Half Century, W.E. Upjohn Institute for Employment

Research, Kalamazoo, MI.

[4] Buchinsky, M. (1998) ”Recent Advances in Quantile Regression Models:A Practical

Guideline for Empirical Research.” Journal of Human Resources 33, 88-126.

[5] Card, D. and P.B. Levine (2000) ”Extended Benefits and the Duration of UI Spells:

Evidence from the New Jersey Extended Benefit Program”, Journal of Public Eco-

nomics, 78, 107-138.

[6] Chen, S., G.B. Dahl, and S. Khan (2005) “Nonparametric Identification and Estima-

tion of a Censored Location-Scale Regression Model”, Journal of the American

Statistical Association, 100, 212-221.

[7] Chen, S. and S. Khan (2000) “Estimation of Censored Regression Models in the Pres-

ence of Nonparametric Multiplicative Heteroskedasticity”, Journal of Economet-

25



rics, 98, 283-316.

[8] Chetty, R. (2008) ”Moral Hazard versus Liquidity and Optimal Unemployment Insur-

ance“, Journal of Political Economy, 116, 173-234.

[9] Cox, D.R. (1972) “Regression Models and Life Tables” (with discussion), Journal of

the Royal Statistical Society, Series B, 34, 187-220.

[10] Ham, J.C. and S.A. Rea Jr. (1987) ”Unemployment Insurance and Male Unemploy-

ment Duration in Canada”, Journal of Labor Economics, 5, 325-353.
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[12] Honoré, B.E., Khan, S. and J.L. Powell (2002), “Quantile Regression under Random

Censoring”, Journal of Econometrics, 109, 67-105.

[13] Horowitz, J.L. (1996) “Semiparametric Estimation of a Regression Model with an

Unknown Transformation of the Dependent Variable”, Econometrica, 64, 103-137

[14] Hunt, J. (1995) ”The Effect of Unemployment Compensation on Unemployment Du-

ration in Germany”, Journal of Labor Economics , 13, 88-120.

[15] Jurajda, S. and F. Tannery. (2003) ”Unemployment Durations and Extended Unem-

ployment Benefits in Local Labor Markets“, Industrial and Labor Relations Re-

view, 56, 324-348.

[16] Katz, L.F. and B.D. Meyer (1990) ”The Impact of the Potential Duration of Unemploy-

ment Benefits on the Duration of Unemployment”, Journal of Public Economics,

105, 973-1002.

26



[17] Khan, S. and J.L. Powell (2001) “Two-Step Quantile Estimation of Semiparametric

Censored Regression Models ”, Journal of Econometrics, 103, 73-110.

[18] Lalive, R., J. van Ours, and J. Zweimuller (2006) “How Changes in Financial Incen-

tives Affect the Duration of Unemployment”, Review of Economic Studies, 73,

1009-1038.

[19] Lewbel, A. and O.B. Linton (2002) “Nonparametric Censored and Truncated Regres-

sion”, Econometrica, 70, 765-779.

[20] McCall, B.P. (1995) ”The Impact of Unemployment Insurance Benefit Levels on Re-

cipiency”, Journal of Business and Economic Statistics, 12, 189-198.

[21] Meyer, B.D. (1990) ”Unemployment Insurance and Unemployment Spells”, Econo-

metrica, 58, 757-782.

[22] Meyer, B.D. (1992) ”Quasi-Experimental Evidence on the Effects of Unemployment

Insurance from New York State”, Unpublished Manuscript.

[23] Moffitt, R. (1985) ”Unemployment Insurance and the Distribution of Unemployment

Spells”, Journal of Econometrics, 28, 85-101.

[24] Moffitt, R. and W. Nicholson (1982) ”The Effect of Unemployment Insurance on Un-

employment: The Case of Federal Supplemental Compensation”, Review of Eco-

nomics and Statistics, 64, 1-11.

[25] van Ours, J. C. and M. Vodopivec (2006) ”How Shortening the Potential Duration of

Unemployment Benefits Affects the Duration of Unemployment: Evidence from

a Natural Experiment“, Journal of Labor Economics, 24, 351-378.

[26] Powell, J.L. (1994) “Estimation of Semiparametric Models”, in Engle, R.F. and

27



D. McFadden (eds.) , Handbook of Econometrics, Vol. 4, Amsterdam: North-

Holland.

[27] Roed, K., P. Jensen, and A. Thoursie (2008) “Unemployment Duration and Un-

employment Insurance: A Comparative Analysis Based on Scandinavian Micro

Data”, Oxford Economic Papaers, 53, 254-274.

[28] Woodbury, S.A. and A.R. Murray (1997) ”The Duration of Benefits”, in O’Leary, C.J.,

Wandner, S.A. (eds.), Unemployment Insurance in the United States: Analysis of

Policy Issues, W.E. Upjohn Institute for Employment Research, Kalamazoo, MI.

28



Table 1.  Characteristics of Unemployment Insurance Recipients in New Jersey. 
 
   
 
Characteristic 

 
Percent 

Percent Exhausting 
Benefits 

   
   
Gender 
     male 
     female 

 
56.7 
43.3 

 
40.1 
47.1 

Race 
     white (not hispanic) 
     black (not hispanic) 
     hispanic and other 

 
62.7 
18.0 
19.3 

 
39.8 
53.4 
44.4 

Age 
     age ≤ 35 
     35 < age ≤ 50 
     50 < age ≤ 65 

 
37.8 
40.3 
21.9 

 
40.0 
43.0 
48.5 

Education 
     high school or less 
     some college or more 

 
60.3 
39.7 

 
43.9 
41.8 

Weekly Earnings at Previous Job 
     earnings ≤ $375 
     $375 < earnings ≤ $625 
     earnings > $625 

 
33.2 
33.5 
33.3 

 
42.1 
47.6 
39.5 

Tenure at Previous Job 
     less than 2 years 
     greater than 2 years 

 
43.3 
56.7 

 
39.6 
45.8 

Union Status at Previous Job 
     union member 
     not a union member 

 
12.7 
87.3 

 
33.5 
44.5 

County Unemployment Rate 
     less than 5.5% 
     greater than or equal to 5.5% 

 
49.6 
50.4 

 
40.9 
45.3 

Industry 
     Construction , Mining, or Agriculture 
     Manufacturing, Wholesale Trade, or Retail Trade 
     Transportation, Services, FIRE, or Public Administration 

 
18.4 
44.0 
37.6 

 
15.9 
47.3 
49.3 

   
All Observations 100.0 43.1 
   
Notes:  Data consists of 192,162 individuals from administrative records of the New Jersey Department of Labor.  
Sample is restricted to claimants age 18 to 65 who were eligible for 26 weeks of benefits and received their first 
payment between June 1, 1996 and October 25, 1997.  Sample also excludes claimants with missing information on 
age, earnings, or UI claim characteristics. 
 



Table 2.  Estimated Medians for Cells with More Than a Fifty Percent Exhaustion Rate and More Than 
250 Observations. 
 
          

 
Gender 

 
Race 

 
Age 

 
Education

 
Earnings 

 
Tenure 

Unemp. 
Rate 

Estimated 
Median 

 
Std. Error

Obs. in 
Cell 

          
male white young H.S. middle long low 33.50 1.95 992 
male white young H.S. middle long high 32.33 1.92 731 
male white young H.S. middle short high 32.72 2.26 477 
male white young H.S. high long low 28.74 2.38 304 
male white mid-age H.S. middle long low 29.76 1.59 1500 
male white mid-age H.S. mid-age long high 35.82 2.49 1135 
male white mid-age H.S. high long low 34.31 2.49 819 
male white mid-age college mid-age long high 31.25 3.02 712 
male white older H.S. mid-age short high 33.50 4.98 258 
male white older college mid-age long low 38.47 3.36 607 
male white older college mid-age long high 39.70 3.84 353 
male white older college high long low 33.50 2.85 857 
male black young H.S. low long low 34.52 5.56 253 
male black young H.S. low short high 34.31 1.91 1091 
male black young college mid-age long high 35.14 2.24 429 
male black young college mid-age short high 26.95 2.96 387 
male black mid-age H.S. low short high 34.31 2.65 524 
male black mid-age college low short high 32.72 4.01 251 
male hispanic young H.S. mid-age long high 37.28 3.59 262 
male hispanic young college mid-age long high 30.57 2.37 253 

female white older H.S. mid-age long low 32.72 2.70 699 
female white older H.S. high long low 28.94 1.97 1345 
female white older H.S. high long high 32.72 3.63 981 
female white older college mid-age long low 31.46 3.35 276 
female white older college mid-age short low 35.14 4.95 277 
female white older college high long low 31.97 1.79 2114 
female white older college high long high 29.76 2.28 1085 
female black young H.S. low long high 33.50 2.81 649 
female black young H.S. mid-age short high 28.54 1.64 415 
female black young college mid-age short high 26.95 4.40 321 
female black mid-age H.S. low long high 33.22 2.34 488 
female black mid-age H.S. low short low 31.97 4.23 301 
female black mid-age H.S. mid-age long low 31.50 2.23 288 
female black mid-age H.S. mid-age short high 31.50 2.24 344 
female black mid-age H.S. high long high 39.70 4.13 297 
female black mid-age college low short high 33.22 3.06 252 
female black mid-age college high long high 33.50 4.67 339 
female black older H.S. mid-age long high 36.53 4.58 337 

          
Notes:  All cells contain non-union claimants.  Standard errors are calculated using the bootstrap, based on 400 
replications with samples equal in size to the number of observations in a cell and drawn with replacement. 
 



Figure 1.  Comparison of the Estimated Location Function )(ˆ xμ  to the Observed Median 
for Cells with Less than Fifty Percent Censoring. 
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Notes:  Solid line indicates the 45 degree line.  Circle size is proportional to cell size.  For visual 
clarity, sample restricted to cells with at least 30 observations. 
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Figure 2.  Estimated Quantiles of Unemployment Insurance Receipt for Selected Cells, with a 
Comparison to the Kaplan-Meier Estimates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Notes:  Smooth lines indicate estimated quantiles and broken lines indicate pointwise 95 percent 
confidence intervals.  The step function is the Kaplan-Meier estimate (with the axes reversed).  A line is 
drawn at 26 weeks to indicate the censoring point.  Panels 1-4 plot the estimated quantiles up to the point 
where 15 percent of claims are predicted to be active.  Panels 5-8 plot the estimated quantiles until the point 
estimate exceeds 52 weeks. 



Figure 3.  Aggregate Survival Function for Claimants in Cells with More than Fifty 
Percent Censoring, with a Comparison to the Kaplan-Meier and Weibull Estimates. 
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Notes:  Broken lines indicate pointwise 95 percent confidence intervals.  The step function is the 
Kaplan-Meier estimate.  A vertical line is drawn at 26 weeks to indicate the censoring point.



Figure 4.  Upper and Lower Bound Estimates of the Aggregate Survival Function for All 
Claimants, with a Comparison to the Kaplan-Meier Estimate. 
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Notes:  Two solid lines indicate the upper and lower bound estimates of the aggregate survival 
function.  Dashed lines indicate pointwise 95 percent upper and lower bound confidence intervals 
for the estimates.  The step function is the Kaplan-Meier estimate.  A vertical line is drawn at 26 
weeks to indicate the censoring point. 



Figure 5.  Behavioral Response to an Increase in Maximum Allowed Duration from 26 to 
39 weeks. 
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Notes:  Two solid lines indicate the upper and lower bound estimates of the aggregate survival 
function, using data from the period when the maximum allowed duration was 26 weeks.  Dashed 
lines indicate pointwise 95 percent upper and lower bound confidence intervals for the estimates.  
The step function is the upper bound Kaplan-Meier estimate, using data when the maximum 
allowed duration was extended to 39 weeks.  The upper bound Kaplan-Meier estimate 
conservatively assumes random participation in the extended benefits program and no exits at 26 
weeks.  The difference between the solid lines and the step function captures the behavioral 
response to the extended benefits program.  A vertical line is drawn to indicate the censoring 
point in the period when the maximum allowed duration was 26 weeks. 
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