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MOBILITY AND THE RETURN TO EDUCATION: TESTING A ROY
MODEL WITH MULTIPLE MARKETS

By Gordon B. Dahl1

Self-selected migration presents one potential explanation for why observed returns to
a college education in local labor markets vary widely even though U.S. workers are highly
mobile. To assess the impact of self-selection on estimated returns, this paper first develops
a Roy model of mobility and earnings where workers choose in which of the 50 states (plus
the District of Columbia) to live and work. Available estimation methods are either infea-
sible for a selection model with so many alternatives or place potentially severe restrictions
on earnings and the selection process. This paper develops an alternative econometric
methodology that combines Lee’s (1983) parametric maximum order statistic approach to
reduce the dimensionality of the error terms with more recent work on semiparametric
estimation of selection models (e.g., Ahn and Powell (1993)). The resulting semiparametric
correction is easy to implement and can be adapted to a variety of other polychotomous
choice problems. The empirical work, which uses 1990 U.S. Census data, confirms the role
of comparative advantage in mobility decisions. The results suggest that self-selection of
higher educated individuals to states with higher returns to education generally leads to
upward biases in OLS estimates of the returns to education in state-specific labor markets.
While the estimated returns to a college education are significantly biased, correcting for
the bias does not narrow the range of returns across states. Consistent with the finding that
the corrected return to a college education differs across the U.S., the relative state-to-
state migration flows of college- versus high school-educated individuals respond strongly
to differences in the return to education and amenities across states.

Keywords: Selection bias, polychotomous choice, Roy model, return to education,
migration.

1� introduction

Estimating simple human capital regressions for workers currently living
in each state in the U.S. reveals a wide variation in measured returns to a college
education, ranging from 22 percent in Wyoming to 52 percent in Texas.2 Another
empirical observation about the U.S. labor market is the high mobility rate of its
workers. The U.S. Census reveals that in 1990 four percent of white males age

1 I thank Orley Ashenfelter, Mark Bils, David Dahl, Bo Honoré, Shakeeb Khan, David Lee, Lance
Lochner, James Powell, an editor, and two anonymous referees for valuable comments. In addition,
I am particularly grateful to David Card for many helpful discussions and suggestions. I also thank
seminar participants at Brandeis University, Brigham Young University, Dartmouth College, George
Mason University, Princeton University, Stanford University, SUNY Stonybrook, UC Berkeley, UC
Davis, University of Chicago Harris School, University of Rochester, and UT Austin.
2 Returns to a college education relative to a high school education, controlling for potential expe-

rience, marital status, and residence in an SMSA, estimated on a subset of white males who were
working full-time and age 25 to 34 in the 1990 U.S. Census. Throughout the paper, the District of
Columbia is treated as if it were a state.
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25 to 34 moved across state lines, with the cumulative effect that almost a third
of this group no longer resided in the state in which they were born. The wide
variation in college returns and the high rate of interstate migration leads natu-
rally to the question of why returns to schooling are not equalized across states.
Self-selected migration presents one potential explanation for the observed vari-
ability. If workers chose where to live and work based on comparative advantage,
then the estimated returns to college in any given state could be biased upward
or downward.
To understand the effects of self-selected migration and obtain unbiased esti-

mates of the return to college, I develop a multi-market Roy (1951) model of
mobility and earnings. Instead of workers choosing occupations as in Roy’s paper,
this paper formulates a model where individuals choose in which of the 50 states
in the U.S. (plus the District of Columbia) to live and work. In the same spirit as
Roy’s model, different geographical areas are modeled as having different earn-
ings and different amenity benefits for workers with different schooling levels.
Therefore, self-selected migration causes the observed return to education for
current residents of a state to differ from the return we would expect a randomly
chosen individual to earn.
Estimating a Roy model without imposing severe restrictions on the selection

process presents many challenges, especially when there are a large number of
alternative choices. Easily implementable techniques for dichotomous and poly-
chotomous selection models were first developed in a parametric framework.3 As
parametric techniques have come under closer scrutiny, efforts have been made
to relax these distributional assumptions. For dichotomous choice models, var-
ious semiparametric methods that avoid specifying the joint distribution of the
error terms in the outcome equation (for example, an earnings equation) and the
single selection equation have been proposed.4 However, the challenges inher-
ent in polychotomous choice models have largely prevented parallel advances in
Roy models with many alternatives.5

This paper proposes a new semiparametric methodology to correct for sample
selection bias in polychotomous choice models. I start with Lee’s (1983) insight

3 For dichotomous choice models, the earliest method to receive widespread use was Heckman’s
(1979) two-step procedure, which assumes joint normality of the error terms in the outcome equation
and the selection equation. Under this assumption, the addition of a simple expression representing
the conditional mean of the selected residuals to the outcome equation of interest will control for
selectivity bias. Later work fruitfully developed parametric approaches to deal with polychotomous
choices. Hay (1980) and Dubin and McFadden (1984) generalized Heckman’s method to a multino-
mial context, while Lee (1982, 1983) transformed univariate order statistics to construct a simpler
two-stage estimator.
4 One of the earliest semiparametric approaches can be found in Heckman (1981). Most recent

approaches take advantage of a latent index framework to characterize the conditional mean of the
error term in the outcome equation (see, for example, Manski (1985), Newey, Powell, and Walker
(1990), Cosslett (1991), Klein and Spady (1993), Ahn and Powell (1993)). A survey of methods to
deal with sample selection bias can be found in Vella (1998).
5 Notable exceptions are Ichimura and Lee (1991) and Lee (1995), who extend the semiparametric

estimation of single-index models to a multiple-index context.
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that the maximum order statistic can summarize the error terms of a multi-choice
selection model with a single random variable. Lee’s approach assumes that with
multiple alternatives, the choice that matters is the first-best, or observed choice.
I then combine Lee’s idea with newer research on semiparametric estimation
of single-index models (e.g., Ahn and Powell (1993)), with the result that the
sample selection correction takes the form of an unknown function of the first-
best selection probability.6 I extend this approach to a multiple-index framework,
where the bias correction is an unknown function of a small number of selec-
tion probabilities. As a supplement to this new methodology, I classify similar
individuals into cells to get a simple distribution-free estimate of the selection
probabilities. By using cell means for the selection probabilities, I avoid impos-
ing the undesirable “independence of irrelevant alternatives” property inherent
in the conditional logit model. The resulting two-step semiparametric correction
avoids the need to specify the joint distribution of the error terms in the outcome
and selection equations and is easy to implement.
In the empirical section of the paper, I estimate a Roy model of mobility and

earnings and test for the presence of self-selection. The analysis, which uses 1990
U.S. Census data, proceeds in three steps. First, I estimate the selection probabil-
ities semiparametrically by grouping individuals with the same discrete character-
istics together and taking cell means for the different migration paths. I find con-
siderable variation in state-to-state migration flows for individuals with different
levels of education. These flows indicate that comparative advantage in earnings
and differences in tastes by education level potentially play an important role in
mobility decisions. In the second step, I use these migration probabilities in the
correction functions for each state to get consistent estimates of the return to
education. The correction functions from the fifty-one wage equations generally
enter significantly, confirming the presence of self-selection. The results suggest
that self-selection of higher educated individuals to states with higher returns to
education generally leads to upward biases in the return to a college education, in
many cases by 10 to 20 percent. However, the variation between states in returns
does not narrow, suggesting that state-specific amenities or other nonwage vari-
ables play important roles in the migration decisions of individuals with different
levels of education. In the final step, I test the responsiveness of migration flows
to differences in the return to education and amenities across states. I find the
relative mobility rate of college-educated to high school-educated men from state
to state is strongly correlated with amenity differences and the relative gaps in
returns to college across the different local labor markets.

2� an extended roy model of mobility and earnings

Roy’s 1951 paper, “Some Thoughts on the Distribution of Earnings,” discusses
the effects of self-selection into different occupations in a surprisingly modern

6 It should be noted that Heckman (1981) and Heckman and Robb (1985, 1986) first proposed the
general approach developed in Ahn and Powell (1993).
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way. In the paper, which does not include a single equation, he outlines a simple
model of selection based on comparative advantage and investigates the result-
ing effects on the distribution of earnings in different occupations. Roy’s gen-
eral framework has been applied to a variety of labor market settings, including
female labor force participation (Gronau (1974), Heckman (1974)), union ver-
sus nonunion employment (Lee (1978)), choice of schooling (Willis and Rosen
(1979)), internal and international migration (Nakosteen and Zimmer (1980),
Borjas (1987), Borjas, Bronars, and Trejo (1992)), training program participation
(Ashenfelter and Card (1985), Ham and LaLonde (1996)), occupational choice
(Dolton, Makepeace, and van der Klaauw (1989)), and choice of industry (Heck-
man and Sedlacek (1990)). In each application, the researchers replace the choice
of “occupation” in Roy’s original paper with a parallel choice of which market
or sector to enter.
In this section I develop a Roy model for the choice of where to live and work.

Earnings in different areas vary by schooling level and each individual follows the
migration path that maximizes utility. As in Roy’s simple model, the pursuit of
comparative advantage potentially causes the observed return to education in an
area to differ from its true population mean. I introduce three extensions to the
simple Roy model: (i) multiple markets or sectors, (ii) choices based on utility
maximization, and (iii) an unspecified distribution of latent skills.7

2�1� A Model of Mobility and Earnings

To formalize ideas, consider a country with N distinct geographic areas and
think of individuals as living for two periods. In the first period, individuals are
born and do not work, while in the second period individuals work. Individuals
are randomly assigned to a geographic area at birth in the first period, but choose
where they would like to live and work for the second period of their lives. I
refer to the state in which an individual is born as the “birth” state, and the state
in which an individual chooses to work as the “residence” state. While each area
would have the same distribution of individual skills in the absence of migration,
self-selected migration potentially alters the skill distribution across states.
This paper focuses on the returns to a particular measure of skill—education,

and on a specific set of areas—the 50 states of the U.S. plus the District of
Columbia. However, the following extended Roy model and the estimation pro-
cedure proposed in this paper could be adapted to a variety of settings with
different measures of skill or different definitions of sectors. Consider individ-
uals who have already made their migration decisions and begun working. The
population earnings function for individual i if he works in state k is given by

yik=�k+x′i�k+si
k+uik �k= 1
 � � � 
N�
(1)

7 Roy’s model (i) considers only two “occupations” or sectors, (ii) is based on income maximization,
and (iii) assumes lognormality of latent skills. Heckman and Honoré (1990) discuss the empirical
content of Roy’s original model as well as extensions to it.
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where yik is log earnings, �k is a state-specific constant, xi is a vector of individual
characteristics, si measures level of schooling, and uik is an error term. Of course,
an individual’s earnings are not observed for all states, but only for the single
state in which he chooses to live and work. In the self-selected sample for state
k, the error term uik does not necessarily have zero mean conditional on xi and
si, and ordinary least squares regression potentially yields biased estimates of �k
and 
k. The schooling coefficients, or “returns to education,” for the 51 states
corrected for migration-induced selection bias comprise the focus of this paper.
In the absence of mobility, the earnings functions described in (1) can differ

in each of the N states since the productivity of different skills may vary from
state to state. For example, the return to education in different states may vary
due to differences in natural resources or varying skill needs of local employers.
However, earnings in a state do not depend on a resident’s state of birth, a
restriction that will play a key role in identification later in the paper. As an
example of this specification, two individuals with identical characteristics, living
and working in the same state, but born in different states, will earn the same
amount. If skills and other individual characteristics are measured perfectly, this
formulation is a natural way to describe labor markets: earnings depend on skills,
and not on nonproductive characteristics such as state of birth.8

Movement between states is based on utility maximization, where utility is a
function of earnings and tastes. For expositional purposes, I assume the utility of
individual i, born in state j , considering a move to state k consists of an additively
separable function of earnings and a person-specific taste factor:

Vijk= yik+tijk �k= 1
 � � � 
N�
(2)

where Vijk indexes utility, yik is log earnings, and tijk is a vector indexing taste for
moving from state j to state k. This taste vector represents the nonwage determi-
nants that enter the utility functions. As such, it includes any fixed costs of mov-
ing, amenity differences between states, and any other nonwage or psychic costs
and benefits associated with moving from one state to another. For simplicity,
I assume that individuals possess accurate expectations about individual-specific
earnings and tastes.9

8 The exclusion restriction that an individual’s birth state does not influence earnings may not be
entirely convincing as an instrument. If skills are not adequately described by the variables in the
wage equation, an individual’s state of birth may contain additional information about the earnings
process. For example, differences in school quality from state to state may affect the measured return
to education (see Card and Krueger (1992)). Equation (1) could be relaxed to allow state of birth to
affect earnings; identification would then be achieved through demographic variables not appearing
in the wage equations or by restricting the return to education to not depend on the interaction
between state of birth and state of residence. In the latter case, cross-equation restrictions would
then be necessary for estimation, an approach not pursued in this paper.
9 The additive separability of the earnings and tastes residuals is not required for the estimation

procedure developed in this paper. Likewise, adding in uncertainty so that migration is based on
expected utility maximization does not change the main insights of the model or the applicability of
the estimation method that follows. Rather, the role of these assumptions is to simplify the discussion
of earnings and tastes throughout the paper.
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The deviation of an individual’s earnings if they were to work in state k from
the average for the entire population (including individuals who do not actually
work in state k) is

yik−E�yik�xi
 si�= uik �k= 1
 � � � 
N��(3)

Define a similar equation for the deviation of an individual’s taste for moving
from state j to state k from the population average, so that

tijk−E�tijk�zi�=wijk �k= 1
 � � � 
N�
(4)

where zi is a vector of individual characteristics and wijk is an error term for
individual deviations from mean tastes. Notice that I allow the value for mean
tastes to be a function of both state of birth j and state of residence k, whereas
I restrict mean earnings in (3) to be a function only of state of residence. Tastes
for moving from state j to state k potentially include an overwhelming number
of variables. For example, tijk could include the costs of moving from j to k, the
difference in climate between j and k, the difference in state tax rates between
j and k, or any other nonwage differences between the two states.
The expression for Vijk can now be written in terms of the population mean

and an error component specific to the individual:

Vijk = Vjk+eijk �k = 1
 � � � 
N�
(5)

where Vjk =E�yik�xi
 si�+E�tijk�zi� and eijk = uik+wijk. In the selection literature
Vjk is often called the subutility function.
Individuals follow the migration path that maximizes their utility, so that indi-

vidual i chooses to move from state j to state k according to

Mijk = 1 if and only if Vijk =max�Vij1
 � � � 
VijN �

= 0 otherwise


where Mijk is an indicator for whether individual i actually moves from state j
to state k. The selection equations can alternatively be written as

Mijk = 1 if and only if Vjk+eijk ≥ Vjm+eijm ∀m
(6)

= 0 otherwise.

Utility depends on the specific migration path j to k; that is, the utility for
an individual depends not only on the state of residence, but also on the state
of birth. Assume the set �Vij1
 � � � 
VijN � has a unique maximum and the error
terms from the N selection criteria in (6) have a joint distribution that has finite
moments and depends on a finite dimensional parameter set.
In this model, an individual can only live and work in one state; therefore,

earnings for an individual are not observed in every state. The selection rule is

yik observed if and only if Mijk = 1
(7)
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so that earnings are observed for an individual’s utility maximizing choice.
Earnings are observed only if all N selection equations in (6) are satisfied simul-
taneously. Equations (1)–(7) describe an extended Roy model of earnings and
mobility. Note that individuals currently living in state k are not a random sam-
ple of the population, and in general

E�uik�yik observed�= E�uik�Mijk = 1�(8)

= E�uik�eijm−eijk ≤ Vjk−Vjm
 ∀m�
	= 0�

I refer to E�uik�Mijk = 1� as the selectivity bias for observation i. If this condi-
tional expectation is correlated with xi or si, OLS regression of observed yik on
xi and si will result in biased estimates. The direction and size of the bias for an
individual depends on the joint distribution of uik and the error terms from the
N migration equations, eij1− eijk
 � � � 
 eijN − eijk. Since eijk = uik+wijk, the bias
depends on the correlation of residual earnings across areas as well as on the
relationship between residual earnings and residual tastes.
Unlike the case where there are only two markets and no taste variables, no

general statements can be made a priori about when the expected selectivity bias
is always positive or always negative for different states and skill levels. Since all
N selection equations must be satisfied simultaneously for an individual to move
to state k, the selectivity bias will in general vary across individuals observed to
be born in the same area j and living in the same area k but with different values
for eij1
 � � � 
 eijN .

2�2� Challenges to Estimating a Roy Model with Many Sectors

The estimation of a Roy model with high dimensionality presents many chal-
lenges. With a two sector model, the usual approach specifies the joint distribu-
tion of the error terms in the outcome equation and the single selection equation
to be bivariate normal. While a few researchers have modified and applied this
approach for three and even four choices, estimation quickly becomes intractable
as the number of choices increases. Therefore, for polychotomous choice mod-
els, most previous work makes distributional assumptions that greatly simplify
the form of the selectivity bias.
The most popular procedure for estimating the selection equations in a multi-

choice Roy model has been the conditional logit model or its extension, the
nested logit model (McFadden (1974, 1984), Trost and Lee (1984), Falaris
(1987)). While this formulation results in convenient expressions for the selec-
tion probabilities, it has the undesirable property of “independence of irrelevant
alternatives.” For two alternative choices perceived by individuals to be similar
rather than independent, this model generates a joint probability of selection for
the two alternatives that is too high. While the conditional logit model could be
relaxed by specifying a nested structure, the researcher must decide which choices
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belong in the same nest and which choices are independent, with the restriction
that the correlation between choices in the same nest be positive.
Selectivity bias corrections can also be quite sensitive to departures from

the true joint distribution of the error terms (Arabmazar and Schmidt (1981,
1982), Goldberger (1983), Mroz (1987)). Estimators relying on joint normality,
for example, can perform poorly when the true selectivity effect is nonlinear
and nonmonotonic. The bias arising from incorrectly assuming joint normal-
ity becomes particularly severe as the amount of truncation in the self-selected
sample increases. Such drawbacks have spawned new semiparametric estimation
methods for dichotomous choice models, but as mentioned in the introduction,
few methods for polychotomous choice models.
A separate challenge inherent in a Roy model based on utility maximization

is which variables to include in the subutility function, as well as the functional
form of the subutility function, Vjk. Estimation schemes based on utility maxi-
mization and not just income maximization may be more realistic, but usually
require the researcher to model tastes. In this paper, a multitude of variables
potentially belong in the taste component of the utility function. A few examples
include moving costs, differences in nonwage local labor market characteristics,
the relative cost of living, and differences in public services, taxation, climate, and
crime rates (Roback (1982, 1988)). To complicate matters, many of the variables
that belong in Vjk may be unobservable or poorly measured.
In this paper, I attempt to overcome some of the challenges inherent in an

extended Roy model. I reduce the dimensionality of the selection criteria without
stringent distributional assumptions on the error terms in the outcome and selec-
tion equations. This paper also avoids the problems associated with modeling
tastes by sidestepping estimation of the underlying parameters of the subutility
function.

3� modeling selection bias with multiple choices

In this section, I present a new estimation method and discuss the implica-
tions of my approach. While I develop the methodology in the context of a Roy
model of mobility, it could be applied to a variety of polychotomous choice set-
tings. My insight is that a reinterpretation of Lee’s (1983) maximum order statis-
tic approach combined with more recent work on semiparametric estimation of
sample selection models provides a simple estimation procedure that allows flexi-
ble modeling of the joint distribution of the error terms in polychotomous choice
models.

3�1� Reducing the Dimensionality of the Joint Distribution of the Error Terms

I begin by modeling the joint distribution of the error terms in the earnings
equation and the selection equations. Let fjk�uik
 eij1−eijk
 � � � 
 eijN−eijk� denote
the joint density function of the error term in the earnings equation (1) and the
error terms in the selection criteria (6), and let Fjk denote the corresponding
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cumulative distribution. Similarly denote the marginal joint density of the selec-
tion error as f ejk�eij1−eijk
 � � � 
 eijN −eijk� for birth state j and residence state k,
and let F ejk denote the cumulative distribution.

3�1�1� Using the Lee Approach to Selection Correction

Accounting for the correlation of the error terms from N selection equations
with the error term in the earnings equation of interest appears overwhelming.
A parametric generalization of Heckman’s two-step approach would require a
complete specification of fjk�uik
 eij1−eijk
 � � � 
 eijN −eijk�, and would involve the
integration of an �N −1�-fold integral. Lee (1983) suggests reducing the dimen-
sionality of the problem by reframing the N selection equations in (6) in terms
of order statistics. Combining equations (6) and (7), the selection rule for state
k becomes

yik observed if and only if

�Vj1−Vjk+eij1−eijk
 � � � 
VjN −Vjk+eijN −eijk�′ ≤ 0

where 0 is an N -dimensional column vector. To understand Lee’s approach, note
that an equivalent expression is

yik observed if and only if max
m
�Vjm−Vjk+eijm−eijk�≤ 0(9)

where maxm�•� indicates the maximum over m. Thus any selectivity bias in yik
is driven by the event that the maximum of the collection of random variables
Vj1−Vjk+eij1−eijk
 � � � 
VjN −Vjk+eijN −eijk is less than or equal to zero. The
distribution function Hjk of the maximum order statistic, conditional on the subu-
tility function differences, can be expressed as

Hjk�t�Vj1−Vjk
 � � � 
VjN −Vjk�(10)

= Pr
[
max
m
�Vjm−Vjk+eijm−eijk� < t�Vj1−Vjk
 � � � 
VjN −Vjk

]
= Pr�eij1−eijk < Vj1−Vjk+ t
 � � � 
 eijN −eijk < VjN −Vjk+ t�
= F ejk�Vj1−Vjk+ t
 � � � 
VjN −Vjk+ t�


which makes clear that Hjk (conditional on Vj1−Vjk
 � � � 
VjN −Vjk) evaluated
at zero is simply the probability of sample selection. Given the equivalent for-
mulation of the selection rule in (9), the cumulative distribution function Fjk can
now be expressed in the following ways:

Fjk�r
Vj1−Vjk
 � � � 
VjN −Vjk�(11)

= Pr�uik < r
 eij1−eijk < Vj1−Vjk
 � � � 
 eijk−eijN < VjN −Vjk�
= Pr

[
uik < r
max

m
�Vjm−Vjk+eijm−eijk� < 0�Vj1−Vjk
 � � � 
VjN −Vjk

]
=Gjk�r
0�Vj1−Vjk
 � � � 
VjN −Vjk�
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where Gjk is a well-defined cumulative joint distribution function for uik and
maxm�Vjm−Vjk+eijm−eijk�. Writing (11) in terms of density functions provides
another way to express this distributional equivalence:

fjk�uik
 eij1−eijk
 � � � 
 eijN −eijk�Vj1−Vjk
 � � � 
VjN −Vjk�(12)

= gjk
(
uik
max

m
�Vjm−Vjk+eijm−eijk��Vj1−Vjk
 � � � 
VjN −Vjk

)
where both sides of the equation are explicitly written as conditional densities to
emphasize the dependence on the differences in subutility functions. Equation
(12) has reduced the dimensionality of the error terms that must be accounted for
by expressing an N -variate joint distribution in terms of a bivariate distribution.

3�1�2� A Reinterpretation of Lee’s Approach

So far, no assumptions have been made to arrive at the distributional equiva-
lence expressed in equation (12). What restrictions will allow the researcher to
take advantage of this reduction in dimensionality? As developed more formally
in Appendix A, Lee’s method constructs a new random variable from the maxi-
mum order statistic by making a transformation (to normality, for example). Lee
then assumes that this newly created random variable has a joint distribution
(bivariate normal, for example) with the error term in the outcome equation of
interest. Building on earlier work (Lee (1982)), Lee points out that distributions
other than the normal can be used for the transformation, providing a method
for generating a large class of models with selectivity. Different transformations
allow for a wide variety of joint distributions for the error terms in the outcome
equation and the selection equations, regardless of the specific model used to
estimate the choice probabilities.
For example, suppose the researcher believes the marginal distribution of the

error term in the outcome equation to be normal. Suppose the researcher also
uses the conditional multinomial logit model so that the random parts of the
utility functions (in the current paper eij1− eijk
 � � � 
 eijN − eijk) are assumed to
be independent and identically distributed with the extreme value distribution. A
transformation of the maximum order statistic to normality allows the researcher
to assume a joint bivariate normal distribution for the error term in the outcome
equation and the transformed maximum order statistic. Then a simple Heckman-
type correction will control for selectivity bias, by adding a term that takes the
form of the inverse Mill’s ratio to the outcome regression function. The choice
of the conditional logit model does not dictate the form of the selectivity bias
correction, since the researcher can make a transformation consistent with the
assumed joint normality.
Reinterpreting Lee, his approach is not just a parametric transformation of

the maximum order statistic and an ensuing distributional assumption for this
transformed variable and the error term in the outcome equation. Rather, under-
lying Lee’s parameterizations is an implicit assumption; namely, the joint dis-
tribution of the error term in the outcome equation and the maximum order



return to education 2377

statistic does not depend on the subutility function differences. As noted in (10),
the random variables maxm�Vjm−Vjk+eijm−eijk� indexed over i are not identi-
cally distributed, since in general the distribution function depends on the subu-
tility function differences, Vj1−Vjk
 � � � 
VjN −Vjk. Lee’s transformation of the
maximum is central not because it creates a new normally distributed variable,
but because the same transformation is applied regardless of the specific values
for Vj1−Vjk
 � � � 
VjN −Vjk. Hence, the unstated assumption implicit in Lee’s
approach for polychotomous choice models is

gk

(
uik
max

m
�Vjm−Vjk+eijm−eijk�

)
(A-1)

does not depend on Vj1−Vjk
 � � � 
VjN −Vjk�
While I take advantage of Lee’s idea to reduce the dimensionality of the error
terms, I propose somewhat less restrictive assumptions than assumption (A-1).

3�2� Using Migration Probabilities as Sufficient Statistics
in Single- and Multiple-Index Models

Lee’s approach could be extended with recent semiparametric advances to esti-
mate the parameters of the selection criteria with fewer distributional assump-
tions. Some of these methods use nonparametric regression to estimate the
unknown distribution function of the selection errors and the accompanying
regression parameters (for example, Ichimura (1987), Newey, Powell, and Walker
(1990), Cosslett (1991), Klein and Spady (1993)). Such an approach would still
require modeling the determinants of utility and a correct specification of how
these conditioning variables should enter the selection correction function.
To avoid these problems, I pursue an alternative approach motivated by the

observation that in single-index selection models, the selectivity bias can be writ-
ten as a function of the probability of selection given covariates (Heckman and
Robb (1985, 1986), Choi (1992), Ahn and Powell (1993)). This form for the
correction term follows from the fact that in latent index models, the selected
mean of the error term in the outcome equation is an invertible function of
the selection probability. Using this fact, Ahn and Powell sidestep estimation of
the unknown distribution function of the selection errors. A similar idea extends
to multiple-index models. Combining these insights with Lee’s approach results
in a simple and flexible semiparametric correction for polychotomous selection
models.

3�2�1� Formulation as a Single-Index Model

The formulation of mobility and earnings in equations (1) and (6) implies the
earnings equations can be rewritten as multiple-index, partially-linear models:

yik = �k+x′i�k+ si
k(13)

+
N∑
j=1
�Mijk×$jk�Vj1−Vjk
 � � � 
VjN −Vjk��+%ik �k = 1
 � � � 
N�
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where $jk�•�=E�uik�Vj1−Vjk
 � � � 
VjN −Vjk� and %ik is an error term with mean
zero in the conditional sample for state k. As a reminder, Mijk is a dummy
variable that equals one if individual i was born in state j and currently resides
in state k. Equation (13) is called a multiple index model because the control
functions $jk for each birth state j are unknown functions of the multiple indices
Vj1−Vjk
 � � � 
VjN −Vjk. Fortunately, the dimensionality of the control functions
can be reduced using a modification of Lee’s approach.
To take advantage of Lee’s insight in a semiparametric framework, I make the

following index sufficiency assumption:

gjk

(
uik
max

m
�Vjm−Vjk+eijm−eijk��Vj1−Vjk
 � � � 
VjN −Vjk

)
(A-2)

= gik
(
uik
max

m
�Vjm−Vjk+eijm−eijk��pijk

)
where pijk is the probability that individual i moves from state j to state k
given the vector Vj1 − Vjk
 � � � 
VjN − Vjk. The equivalence in (A-2) assumes
that pijk = pijk�Vj1−Vjk
 � � � 
VjN −Vjk� exhausts all the information about how
Vj1−Vjk
 � � � 
VjN −Vjk influences the joint distribution of uik and maxm�Vjm−
Vjk+ eijm− eijk� contained in the sample. That is, the conditional distribution of
uik and maxm�Vjm−Vjk+ eijm− eijk� can depend on the conditioning variables
only through the single index pijk.
The single index pijk is the probability of an individual’s first-best migration

choice, a choice which is observable since the researcher knows where an indi-
vidual chooses to live and work. This scalar migration probability associated with
the maximum order statistic can be written in the following ways:

pijk = Pr �Mijk = 1�Vj1−Vjk
 � � � 
VjN −Vjk�(14)

= Pr �Vjk+eijk ≥ Vjm+eijm
 ∀m�
= F ejk�Vj1−Vjk
 � � � 
VjN −Vjk�
=Hjk�0�Vj1−Vjk
 � � � 
VjN −Vjk��

The researcher must somehow account for the subutility functions to get an esti-
mate of pijk, since the vector Vj1−Vjk
 � � � 
VjN −Vjk determines an individual’s
migration choice. Discussion of how to estimate pijk is postponed until later; for
the moment, assume that an appropriate estimator is available.
Using assumption (A-2), equation (12) can be simplified to

fjk�uik
 eij1−eijk
 � � � 
 eijN −eijk�Vj1−Vjk
 � � � 
VjN −Vjk�(15)

= gjk
(
uik
max

m
�Vjm−Vjk+eijm−eijk��pijk

)
and the earnings equations can now be written as single-index, partially linear
models:

yik = �k+x′i�k+ si
k+
N∑
j=1
�Mijk×'jk�pijk��+(ik �k = 1
 � � � 
N�(16)
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where for each birth state j
'jk�•� is an unknown function of the single index
pijk and (ik is an error term. I refer to the 'jk’s as the selection correction
functions for state k. By construction, the error term (ik has zero mean given
the migration probability and the fact that earnings are observed in a state:

E�(ik�xi
 si
pijk
Mijk = 1�= 0 �k = 1
 � � � 
N��
A proof for the result that $jk�Vj1−Vjk
 � � � 
VjN −Vjk�= 'jk�pijk� if assumption
(A-2) holds is provided in Appendix B.

3�2�2� Extension to a Multiple-Index Framework

One interpretation for the use of pijk in the correction function for polychoto-
mous choice models relies on the fact that, subject to an invertibility condition10

gjk

(
uik
max

m
�Vjm−Vjk+eijm−eijk��Vj1−Vjk
 � � � 
VjN −Vjk

)
(17)

= gjk
(
uik
max

m
�Vjm−Vjk+eijm−eijk��pij1
 � � � 
pijN

)



which simply states that the multiple migration probabilities, pij1
 � � � 
pijN , con-
tain the same information as the differenced subutility functions, Vj1−Vjk
 � � � 

VjN −Vjk. This implies the earnings equations can be rewritten as multiple-index,
partially-linear models that depend on all N migration probabilities:

yik = �k+x′i�k+ si
k(18)

+
N∑
j=1
�Mijk×)jk�pij1
 � � � 
pijN ��+%ik �k = 1
 � � � 
N�

where )jk�•� = E�uik�pij1
 � � � 
pijN � = E�uik�Vj1 − Vjk
 � � � 
VjN − Vjk�.
Assumption (A-2) simplifies this equivalence by assuming that only the probabil-
ity of the utility maximizing choice matters for the parameterization of the joint
distribution gjk. Hence, (A-2) can also be thought of as an exclusion restriction
in that it requires the distribution of uik and maxm�Vjm−Vjk+ eijm− eijk� given
pij1
 � � � 
pijN to be the same as that given pijk.
A relaxation of (A-2) allows other probabilities besides the first-best choice

probability to also influence the joint distribution gjk. Letting �q represent a cho-
sen subset of the full set of migration probabilities �pij1
 � � � 
pijN �, this less
restrictive assumption can be written as

gjk

(
uik
max

m
�Vjm−Vjk+eijm−eijk��Vj1−Vjk
 � � � 
VjN −Vjk

)
(A-3)

= gjk
(
uik
max

m
�Vjm−Vjk+eijm−eijk��pijk
 �q

)
�

10 To insure that equation (17) holds locally, the assumptions of the implicit function theorem must
be satisfied. The N ×N determinant of the vector of implicit equations �F ejm�Vj1−Vjm
 � � � 
VjN −
Vjm�−pijm�= 0
m= 1
 � � � 
N , must be nonzero so that the Jacobian is nonzero and a local inverse
function exists.
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This extension allows the earnings equations to be written as multiple-index, par-
tially linear models, where the bias correction is an unknown function of the
first-best migration probability plus a few other chosen probabilities. The proof
in Appendix B can easily be adapted to account for these additional probabilities.
The difficult task is deciding which other probabilities are important in parame-
terizing the joint distribution gjk, since only a select number of probabilities can
be included before the curse of dimensionality makes estimation infeasible.
It would be natural to include the second, third, or perhaps even fourth

best choice probabilities as additional terms in the correction function. Unfor-
tunately, which probabilities correspond to an individual’s second through N th
best choices cannot usually be determined since the researcher generally only
observes the individual’s first best, or actual choice. In the current application,
a few probabilities suggest themselves as likely candidates for inclusion in the
bias correction functions for state k. One possibility is the “retention” probabil-
ity; that is, the probability that a person born in state j will choose to remain
in state j . Another possibility is to include the highest predicted probability for
an individual, excluding the retention probability, namely, maxm�pijm� m 	= j . A
final possibility is to include the migration probabilities of states geographically
near an individual’s birth state.
In the current application, I end up adding the retention probability as another

term in the correction functions. I discuss how this term was chosen for inclusion
in the next section of the paper. Thus, the maintained distributional assumption
for the current application is

gjk

(
uik
max

m
�Vjm−Vjk+eijm−eijk��Vj1−Vjk
 � � � 
VjN −Vjk

)
(A-4)

= gjk
(
uik
max

m
�Vjm−Vjk+eijm−eijk��pijk
pijj

)



which implies the earnings equations can be written as

yik=�k+x′i�k+si
k+
N∑
j=1
�Mijk×'∗jk�pijk
pijj ��+(∗

ik �k= 1
 � � � 
N��(19)

The correction terms in the wage equations for movers are now unknown func-
tions of two probabilities, pijj and pijk. Notice that for stayers the correction
terms are a function of a single probability, pikk, since j = k for individuals who
do not move from their birth state.

3�3� The Index Sufficiency Assumption

This section explores the restrictions on earnings and tastes imposed by the
index sufficiency assumptions. For ease of presentation, I begin by discussing
(A-2), which implies the first-best choice probability is sufficient to describe joint
distribution of the error terms in (12). In the context of my model, this restriction
implies that only the probability of the utility maximizing choice of residence
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matters for selectivity bias. The particular identities of the second best through
the N th best migration choices, along with the probabilities that an individual
would have chosen those migration paths, convey no information about earnings
in the state in which an individual chooses to live. For example, consider two
individuals born in the same state who both chose to move to the same state
k because it was their expected utility maximizing choice. The fact that one
individual’s second choice for where to live differs from the other individual’s
second choice is irrelevant, and cannot affect the error term for earnings in state
k, uik.
Since the selection correction functions for a state depend on the joint distri-

bution of uik and eij1−eijk
 � � � 
 eijN −eijk, it is informative to consider the bivari-
ate covariances between the error term in the earnings equation and the error
term in each of the migration equations:

cov�uik
 eij1−eijk�
 � � � 
 cov�uik
 eijN −eijk��(20)

Each bivariate covariance in (20) can be broken up into four separate covari-
ances. For example, the first term can be expressed as

cov�uik
 eij1−eijk�= cov�uik
ui1�− var�uik�+ cov�uik
wij1�
− cov�uik
wijk��

A fully flexible estimation scheme should allow for a variety of bivariate covari-
ances, and hence permit a rich combination of zero, positive, and negative
selection. An example of a very inflexible approach is estimation that disregards
selectivity bias altogether, since such an approach implicitly restricts all of the
bivariate covariances to be zero. Equation (20) points out that self-selection can
potentially be a problem even if unobserved earnings and tastes are not corre-
lated with each other or across states, since in this case each bivariate covariance
equals −var�uik�. More generally, if taste variables play no role in biasing the
earnings equation and unobserved earnings are equi-correlated across states, the
bivariate covariances are all identical to each other. In this case, the uncorrected
estimate of 
k is biased up or down depending on whether si is positively or
negatively correlated with uik in the conditional sample for state k.11

The assumption of index sufficiency places restrictions on the possible
bivariate covariances described in equation (20). For example, under the
stronger assumption (A-1), if E�uik�maxm�Vjm−Vjk+eijm−eijk�� is monotonic in
maxm�Vjm−Vjk+eijm−eijk� (as it would be if uik and maxm�Vjm−Vjk+eijm−eijk�
had a bivariate normal distribution), then the bivariate covariances must all have
the same sign.12 Under the weaker index sufficiency assumption (A-2), this state-
ment can be relaxed slightly, although the only route for the bivariate covariances

11 Correlation between xi and uik in the conditional sample for state k could also potentially bias
the estimate of 
k.
12 In a discussion of the limitations of Lee’s approach, Schmertmann (1994) provides a proof that

can easily be adapted to the current setting.
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to differ in sign would be as a function of the first-best choice probability pijk.
It should be noted in passing that the index sufficiency assumption does allow
for a restrictive form of conditional heteroskedasticity; namely, the variance of
the outcome error can depend on the single index (i.e., the first-best migration
probability).
What kind of model would satisfy the index sufficiency assumption of (A-2)?

For simplicity, suppose unobserved tastes in the selection equations, wijk, have
zero correlation across birth states and residence states and are uncorrelated
with uik. Then consider the following simple specification for the error term in
the earnings equation:

uik= ai+bik �k= 1
 � � � 
N�(21)

where ai is an individual fixed effect that has mean zero in the population, but is
the same for a given individual in all states, and bik is a state-specific homoskedas-
tic error term for individuals with population mean zero and uncorrelated across
states. Let ai and bik be uncorrelated, and denote the population variances of ai
and bik as -2a and -

2
bk, respectively. Equation (21) is a natural starting point to

describe the unobserved component of earnings. For example, ai could represent
an individual’s unobserved ability which is identical across states, so that individ-
uals who earn more (or less) than average in a given state also earn more (or
less) than average in any other state. The term bik could represent the compo-
nent of an individual’s unobserved earnings that varies across states as a result
of how good a match state k is for a worker. This simple fixed effects model
satisfies assumption (A-2).
To understand why this example satisfies the index sufficiency assumption,

notice that the bivariate covariances described in equation (20) are identical:

cov�uik
 eijm−eijk�= cov�uik
uim�− var�uik�
+ cov�uik
wijm�− cov�uik
wijk� �m= 1
 � � � 
N�

= -2a − �-2a +-2bk�+0−0 �m= 1
 � � � 
N�
=−-2bk �m= 1
 � � � 
N��

It follows that the covariance between uik and maxm�Vjm−Vjk+ eijm− eijk� also
equals −-2bk, which does not depend on the individual’s second through N th best
choices for the state in which he would like to live. More generally, the bivariate
distribution functions for uik and eijm−eijk are identical for all m, and so the joint
distribution of uik and maxm�Vjm−Vjk+eijm−eijk� does not depend on the subu-
tility function differences, Vj1−Vjk
 � � � 
VjN −Vjk. Hence, the index sufficiency
assumption is satisfied. Notice that while the joint density of uik and maxm�Vjm−
Vjk+eijm−eijk� does not depend on Vj1−Vjk
 � � � 
VjN −Vjk, the univariate den-
sity of maxm�Vjm−Vjk+ eijm− eijk� does depend on Vj1−Vjk
 � � � 
VjN −Vjk. A
slightly more general example with the same result is the case where uik and uim
are equi-correlated for m= 1
 � � � 
N , with potentially different variances for uik
in each state k.
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The assumption of index sufficiency is less appealing when the bivariate covari-
ances between the error terms in the outcome and selection equations described
in equation (20) are not equal. Modifying equation (21), consider the addition of
a loading factor in front of the individual fixed effect component of unobserved
earnings:

uik= .kai+bik �k= 1
 � � � 
N�(22)

where .k is the loading factor for state k. If the loading factor equals one for
all states, unobserved ability is rewarded equally in all states, and equation (21)
results. However, if the loading factor is correlated with the return to education
in a state, the joint distribution of uik and maxm�Vjm−Vjk+eijm−eijk� in general
depends on Vj1−Vjk
 � � � 
VjN −Vjk. In the most extreme case, if .k equals 
k
for each state k, the return to unobserved ability in state-specific labor markets
equals the return to observed education. Under the conditional independence
assumption, the only route for Vj1−Vjk
 � � � 
VjN −Vjk to affect the joint density
gjk is through the first-best choice probability pijk, which may be too restrictive
in many cases.
Unfortunately, testing whether index sufficiency holds is difficult in models

with high dimensionality. Under the null hypothesis, only the probability of the
first-best choice belongs in the outcome equation. The alternative hypothesis,
namely that index sufficiency does not hold, implies that all N migration proba-
bilities belong in the correction function. But the alternative hypothesis generally
cannot feasibly be estimated; indeed the rationale for assuming index sufficiency
is to circumvent the curse of dimensionality present in equation (13).13 A partial
test that is implementable is to include a few other probabilities in the correc-
tion functions, and test whether these terms significantly change the estimated
coefficients of interest or significantly improve the fit of the outcome regressions.
Hausman tests similar to those described in footnote 25 are useful to see if the
estimated schooling coefficients change as additional probabilities are included.
Wald tests analogous to those described in footnote 26 can be used to determine
significant differences due to the correction functions as additional probabilities
are added. If these additional probabilities result in significant differences, the
single index assumption should be extended to account for these other probabil-
ities as described in (A-3), and additional tests should be performed. The chal-
lenge, of course, is choosing a probability or combination of probabilities that
provides a test with sufficient power. After calculating Hausman and Wald tests
as described above for various additional sets of probabilities, I end up using
the retention probability in addition to the first-best migration probability in the
application that follows.

13 The current application illustrates the curse of dimensionality well. In the empirical application
that follows, polynomial expansions will be used to approximate the unknown correction functions. If
the series is a second order expansion and all N migration probabilities, pij1
 � � � 
pijN , are included,
the number of regressors for the expansion is

∑N
i=1�i+1�. In the current model with 51 states, 1,377

terms would appear in each correction function.
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To assess the index sufficiency assumption and the general approach developed
in this paper, I perform a brief Monte Carlo investigation (see Appendix C). The
simulations suggest that the estimation method developed in this paper effectively
controls for selection bias in a variety of settings. In the baseline simulations,
earnings are modeled as in equation (21) where the index sufficiency assumption
holds. For these simulations, the estimation method of this paper performs well
for models with a single choice as well as for models with many choices. The
approach also purges the coefficient estimates of bias under a variety of distri-
butional assumptions for the error terms in the earnings and taste equations.
For example, if the errors in the wage equation are skewed or heteroskedastic,
the estimated coefficient of interest remains close to the true value on average.
When index sufficiency is violated, as it would be with the factor loading speci-
fication of equation (22), the estimator only partially corrects for selection bias.
The estimation technique works well in moderately large samples, but performs
poorly in small samples. Lee’s parametric approach as outlined in Appendix A
generally produces similar results. One exception is when the error terms in the
wage equation are lognormally distributed rather than normally distributed. In
this case, Lee’s approach yields biased estimates even though the semiparametric
approach performs well.

4� implementation choices

The previous section outlined a simple approach to the difficult problem of
modeling selection bias when there are many choices. The main contribution is
that an index sufficiency assumption can greatly reduce the dimensionality of the
selection correction functions. For example, under assumption (A-2) the selection
correction for a state reduces from N , N -dimensional control functions to N
univariate control functions that depend only on the probability of the first-best
choice (see equation 16). This methodology could be applied to a variety of Roy
models with multiple alternatives.
In this section, I briefly discuss some of the practical estimation choices I make

to facilitate estimation of the earnings equations in the empirical work that fol-
lows. I first make an assumption to reduce the number of correction functions
that enter a state’s earnings equation. I then discuss grouping individuals into
discrete categories to allow nonparametric estimation of the selection probabil-
ities. Finally, I discuss how to estimate the unknown correction functions using
polynomial expansions.

4�1� Reducing the Number of Correction Functions

In the empirical application that follows, there are potentially 51 different cor-
rection functions for each residence state k, as there is a different correction
function for each possible birth state j . Assumption (A4) reduces the dimension-
ality of each of these 51 corrections from being a function of all 51 probabilities
to 51 corrections that are a function of the first-best migration probability, pijk,
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and the retention probability, pijj . One of these correction functions, '∗kk, is for
stayers. It corrects for the selection bias of individuals born in state k who choose
to remain in state k. The other 50 functions, '∗jk �j = 1
 � � � 
51/ j 	= k�, rid the
earnings equation of selection bias for inmigrants to state k from the other 50
states. Even though there are 51 control functions, it should be noted that the
“curse of dimensionality” is eliminated by the assumption of index sufficiency.
This is because the rate of convergence for the nonparametric control functions
is not affected by the number of correction functions included in the regression
(Andrews and Whang (1990), Newey (1994b)).
For a Roy model with five or perhaps as many as ten sectors, a separate

correction function could be included for each sending sector j . However, in the
current application, estimating 51 different functions for each regression equation
is impractical. In general, the correction functions in equation (19) depend on a
different joint distribution gjk for each origin state j . To reduce the number of
correction functions that enter a state’s earnings equation, I assume

gjk = gk ∀ j 	= k�(23)

Equation (23) restricts these distributions for “movers” in the following sense:
for a given receiving state k, the joint distribution has to be the same for all
possible sending states j (where j 	= k). In other words, given that two people
choose to move to the same state, their selection biases can be characterized by
the same distribution, regardless of their states of origin. This restriction is not
imposed on “stayers”; that is, individuals who choose to remain in their state
of birth (i.e., j = k) are allowed to have a different joint distribution compared
to inmigrants. Equation (23) implies that '∗jk equals '

∗
k for all sending states j

not equal to k. This restriction will help identify the coefficients in the earnings
equation by allowing just two correction functions, one for stayers and one for
movers, to enter a state’s earnings equation instead of N different functions. It
should be noted, however, that this implementation choice is not essential to the
general approach outlined in Section 3.14

4�2� Using Cell Migration Flows for the Selection Probabilities

The formulation of equation (19) assumes the researcher possesses consistent
estimates of the relevant migration probabilities.15 To estimate the selection prob-
abilities in a polychotomous choice model, researchers have mainly used the con-
ditional logit model.16 Typically, the subutility functions Vj1
 � � � 
Vjk are modeled

14 This assumption would not need to be made if more data and more cells were added, so that
enough variation existed in the migration probabilities for each sending-state correction function '∗

jk.
I have explored allowing separate correction functions for different geographical regions of birth,
and the empirical results are very similar.
15 I provide a correction to the standard errors that accounts for the fact that estimates of the

migration and retention probabilities are used instead of their true values in footnote 24.
16 Note that a parametric specification of the selection equations does not preclude using the

semiparametric approach outlined for the joint distribution of the error terms in the outcome and
selection equations.
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by specifying which variables affect mean earnings and mean tastes for a given
migration path as well as specifying their functional forms.17 Potential drawbacks
to the conditional logit model are its previously mentioned independence of irrel-
evant alternatives property and its reliance on an assumed parametric framework.
To simplify estimation of the migration probabilities, I assume that mean earn-

ings and mean tastes are the same for similar types of people. Suppose a vector
of variables contains all the relevant attributes about a person’s type, so that
individuals with the same values for these person-type variables are identically
affected by state-to-state differences in the subutility functions. This specification
does not require the researcher to explicitly obtain variables for an overwhelm-
ing list of state amenities, but only to model an individual’s type. Comparative
advantage motivates this approach, with the prediction that individuals with dif-
ferent skills and characteristics will follow different migration paths on average.
If the vector describing an individual’s type is composed only of discrete vari-

ables (as is often the case in labor economics), similar individuals can then be
grouped into cells. Assignment into cells is made on the basis of the discrete
characteristics such as age, schooling, marital status, the presence of children in
the home, race, and sex. The intuition of this specification is simple: people with
the same level of education who are the same age and similar in all other rel-
evant characteristics are affected by differences in earnings, moving costs, state
taxes, and other state amenities in the same way on average.
With this formulation, the subutility functions depend only on the cell of an

individual. The migration probability for an individual belonging to a “cell” can
be written as

pijk = Pr�Mijk = 1�Vj1−Vjk
 � � � 
VjN −Vjk�(24)

= Pr�Mijk = 1�cell��

A similar expression exists for the retention probability, pijj . An individual’s
migration probability is simply the fraction of individuals in the same cell who
move from j to k. Since the model is fully saturated, note that a conditional
logit or multinomial probit model would yield the same probabilities as these
cell fractions. The advantage of grouping individuals into cells is that the form
of the underlying subutility functions do not have to be specified if appropri-
ately defined similar individuals have the same tastes and earnings on average.
Additionally, because of the cell grouping assignment, estimation of the migra-
tion probabilities requires no distributional assumptions about the error terms
eij1−eijk
 � � � 
 eijN −eijk. Other researchers using sample proportions to estimate
selection probabilities in this way include Dynarski (1987) and Card and Payne
(1998).

17 An exception is Matzkin (1993), who proposes a nonparametric estimation method that does
not require a parametric structure for the subutility functions.
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4�3� Estimating the Unknown Correction Functions

Estimation of the outcome equations requires a suitable method for estimating
the unknown correction functions. A variety of nonparametric techniques exist
to estimate unknown functions; I employ series expansions for the correction
functions (Andrews (1991), Newey (1988, 1997)).18 Consider the approximation
for movers into state k:

'∗k�pijk
pijj ��
T∑
t=1
1tkb

t
k�pijk
pijj �(25)

where the functions btk�•� are referred to as the basis functions. Similar approxi-
mations exist for the stayers’ correction functions. Two common choices for basis
functions are the terms of a polynomial or Fourier series. Since both choices yield
similar estimates in the current application, I report results using the polynomial
expansion. Using series expansions results in a model that is linear in parame-
ters and hence can be estimated by ordinary least squares. The number of basis
functions should increase as the sample size increases, improving the accuracy
of the approximation. In practice, the number of basis functions must be chosen
by the researcher. Newey (1988, 1997) and Andrews (1991) give conditions on
the model, basis functions, and number of observations needed so that the coef-
ficients in the outcome equation are

√
n-consistent and asymptotically normal.

Newey (1994a) discusses the asymptotic variance of semiparametric estima-
tors that involve nonparametric estimation of a function. For series estimators,
the appropriate correction to the variance can be viewed as the standard para-
metric correction for estimation of the full set of coefficients in the regression
equation (including the coefficients on the basis functions), with a fixed number
of expansion terms (see pp. 1368–1372).19 In other words, consistent estimates
for the standard errors of the coefficients in the outcome equation can be read
directly from standard regression output if the true migration probabilities are
known. Since the true migration probabilities appearing in the basis functions are
unknown, in the empirical work that follows I substitute estimated probabilities.
I discuss how to correct the standard errors for this extra sampling variability in
footnote 24.
The references to Andrews and Newey refer to a continuous variable; hence

their results are only applicable when the number of distinct values for the prob-
abilities is large. Consistency of the coefficient estimates requires that the num-
ber of unique probabilities entering the basis functions be sufficiently large. As
described in the previous section, I divide individuals into cells to calculate migra-
tion probabilities. There must be enough cells to allow consistent estimation of
the unknown correction function. Just as the number of basis functions should

18 Estimating the unknown function semiparametrically can be compared to a parametric approach,
such as Lee’s, which specifies the joint distribution of the error terms and hence the functional form
of the correction functions (see Appendix A).
19 In addition, Newey (1994a, p. 1350) explains that the “method of estimating a function does not

affect the asymptotic variance of the estimator.”
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increase as the sample size increases, one could also partition the dataset into
finer cell groupings given a larger dataset. It should be noted, however, that there
is a tradeoff between increasing the number of cells and the precision of the esti-
mated migration probabilities. While it would be interesting to know how best
to choose the size of cells and the number of basis functions when the correc-
tion function is a nuisance term, this question is beyond the scope of the current
paper. In the results that follow, I use a relatively large number of cells and
adjust the standard errors to account for the sampling variability of the migration
probability estimates.
Before turning to the results, notice the proposed approach utilizes existing

results and techniques for estimation. The key modeling insight is that an index
sufficiency assumption allows for a dimensionality reduction that makes estima-
tion possible using existing semiparametric methods. The approach avoids spec-
ifying the joint distribution of the outcome and selection errors and provides
flexible estimation of the selection correction function. With only two choices,
the index sufficiency assumption is automatically satisfied, and the model is an
application of Ahn and Powell using series expansions. Finally, note that the
model specifies single equation estimation for each state, which does not take into
account any cross-equation restrictions on the coefficients or any cross-equation
variance-covariance structure. If restrictions are available, the proposed estima-
tion methodology is less efficient, but still consistent.

5� estimation

This section corrects and tests for selection bias in the returns to education
caused by workers sorting themselves into different states. Estimation proceeds
in three steps. First, I estimate the probability that an individual follows a given
state-to-state migration path. In the second step, I use the approach developed in
Section 3 and the implementation choices discussed in Section 4 to get corrected
estimates of the return to college in the wage equations. In the third step, I test
the appropriateness of the Roy model of migration and earnings, by estimating
how migration flows respond to differences in the corrected returns to education
and other amenities.
The model and empirical estimation of this paper considers migration between

the fifty-one states and the returns to education in the fifty-one states. Since it
is impractical to present detailed information for so many states, this section
provides summary results for the fifty-one states and more detailed results for six
illustrative states. The six chosen states are California, Florida, Illinois, Kansas,
New York, and Texas, states chosen for their geographical and labor market
diversity. Due to space limitations, I present results using 1990 Census data;
results using 1980 data are generally similar and available from the author on
request. Before turning to the three steps of estimation, I first provide a brief
description of the data.
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5�1� Data

This paper uses data from the 5 Percent Public-Use Sample of the 1990 U.S.
decennial census (Ruggles and Sobeck (1997)). Since this dataset consists of a 1
in 20 random sample of the entire population, it has enough observations to track
state-to-state migration paths fairly accurately. Previous research confirms that
age, education, and family structure dramatically affect mobility, and evidence
suggests that males and females, and blacks and whites, may migrate for different
reasons.20 To tighten the paper’s focus, I restrict the data to white males, age 25
to 34, who were employed full-time.21 Using this set of individuals not only helps
to pinpoint the migration decision, but also controls for much of the variation in
the wage equations. In this paper, I define mobility in terms of an individual’s
state of birth versus current state of residence. That is, an individual is considered
to have migrated from state j to state k if he was born in state j and currently
lives in state k.22

Summary statistics for the entire U.S. as well as the six representatives states
appear in Table I. In 1990 around one-third of white males, age 25 to 34 and
employed full-time, lived in a different state than where they were born. The
table reveals a wide variation in the fraction of inmigrants making up a state’s
population as well as the fraction of outmigrants who leave their state of birth.
For example, 37 percent of California’s population were inmigrants in this sam-
ple, compared to only 12 percent for New York. The table also lists the percent
of individuals with different levels of education by state, and details the fraction
of individuals who are married or reside in a standard metropolitan statistical
area. Row (11) lists average wages in 1990 dollars, a variable that ranges from
a high of $14.38 per hour in California to a low of $10.29 in Kansas. It should
be noted that regional price indices are not readily available, so it is difficult to
directly compare wages across states. The lack of regional price indices provides
another reason to focus on differences in the return to education rather than
average wages across states.

5�2� Step 1: Estimates of the Migration Probabilities

The first step to correct for self-selection involves estimating the migration
probabilities for individuals. As outlined in Section 4, with discrete variables,

20 For a detailed explanation of the determinants of migration, see Sjaastad (1962), Chiswick
(1974), and Robinson and Tomes (1982). For a breakdown of mobility rates by age, education, race,
sex, and marital status, see Geographical Mobility, U.S. Bureau of the Census, series P-20.
21 An individual was considered to be employed full-time if in the last year they: (i) were not

currently enrolled full time in school, (ii) worked an average of 20 hours or more per week, (iii)
worked for pay for at least ten weeks, and (iv) earned an annual salary of at least 2,000 dollars.
22 An alternative to this definition would be to use the census question that asks which state an

individual lived in five years prior to the census. Not surprisingly, the lifetime and five-year mobility
definitions yield very similar results. Since the five-year results are estimated with less precision, I
utilize the birth-state definition in the results that follow. For simplicity, I exclude individuals who
are known to have moved more than once using information from these two measures.
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TABLE I
Summary Statistics

Variable U.S. California Florida Illinois Kansas New York Texas

(1) Migrant (%) 31 — — — — — —
(0.1)

(2) Inmigrant (%) — 37 69 20 33 12 33
(0.2) (0.3) (0.2) (0.6) (0.2) (0.2)

(3) Outmigrant (%) — 25 34 31 41 32 22
(0.2) (0.4) (0.3) (0.6) (0.2) (0.2)

(4) Less than High School (%) 13 11 15 9 10 10 15
(0.1) (0.1) (0.2) (0.2) (0.4) (0.2) (0.2)

(5) High School (%) 38 28 35 37 40 35 33
(0.1) (0.2) (0.3) (0.3) (0.6) (0.2) (0.2)

(6) Some College (%) 28 35 30 30 31 29 30
(0.1) (0.2) (0.3) (0.3) (0.6) (0.2) (0.2)

(7) College Graduate (%) 17 19 16 19 16 20 18
(0.1) (0.2) (0.2) (0.2) (0.5) (0.2) (0.2)

(8) Advanced Degree (%) 4 6 4 6 3 7 5
(0.0) (0.1) (0.1) (0.1) (0.2) (0.1) (0.1)

(9) Married (%) 63 54 59 63 68 57 68
(0.1) (0.2) (0.3) (0.3) (0.6) (0.3) (0.2)

(10) Residence in SMSA (%) 64 95 83 70 32 74 72
(0.1) (0.1) (0.2) (0.3) (0.6) (0.2) (0.2)

(11) Wage 11.93 14.38 11.15 12.78 10.29 13.72 11.27
(0.01) (0.04) (0.05) (0.05) (0.07) (0.05) (0.04)

(12) Observations 538,953 51,150 24,316 26,792 6,045 38,139 37,846

Note: Standard errors in parentheses.
Source: 1990 U.S. Census data for white males, age 25–34, and employed full-time.

individuals with similar characteristics who have similar costs and benefits for
state-to-state migration can be grouped into cells. These cell assignments can
then be used to estimate individual migration probabilities. The restrictions on
the data set have already eliminated age, race, and sex as factors determining
cell assignment; therefore, I assume that educational attainment and family cir-
cumstances define the cells for a given birth state.
I first divide the data into two categories: movers, or those who have moved

into a state, and stayers, or those who were born in their state of residence. I
also assign individuals into one of five education classes: less than high school,
high school, some college, college degree, and advanced degree. Within each
education class, I divide stayers into 14 mutually exclusive cells. Married stayers
are grouped into eight cells based on whether they have a working spouse, chil-
dren less than five years old, and children 5–18 years old. Non-married stayers
are grouped into six cells based on whether they are divorced, and whether they
live alone, with extended family (children, parents, grandparents, or siblings), or
with a roommate/friend. These assignments result in 70 separate cells for each
residence state.
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Since there are fewer observations for movers, their groupings are coarser by
necessity. I continue to assign individuals into one of the five education classes.
Married movers are then divided based on whether children 18 years or younger
are present in the home. Nonmarried movers are grouped based on whether
they live with extended family. For each birth state, these characteristics divide
movers into 20 cells. Since movers can originate from 50 different birth states,
this assignment potentially creates 1,000 cells for inmigrants to a state. Not all
migration paths will be observed for all cell types, and in practice there will be
fewer than 1,000 cells for each residence state.
The fraction of individuals in a cell who migrate from one state to another esti-

mates the probability that any individual in that cell will follow the same migra-
tion path. Variation in both stayers’ and movers’ migration probabilities plays a
key role in identifying the education coefficients in the earning equation. For
stayers in a given residence state, identification relies on variation in cell prob-
abilities due to differing family circumstances. For movers, there is much less
variation in family circumstances due to the coarser groupings, so identification
relies more heavily on movers originating from different states who have differ-
ing cell probabilities for migration into a residence state. Due to variation in
the migration probabilities because of differing family circumstances or different
origination states, two individuals can have migration probabilities that are close,
but have different levels of education. The variability in education given approx-
imately equal selection bias terms identifies 
k. As a simple example, consider
a person with a high school education who has the same migration probability
as a person with a college education. A simple differences estimator would yield
a consistent estimate of the return to a college education, since the selection
bias term is the same for both individuals (Powell (1987, 1998)). The polynomial
series expansions for the mover and stayer probabilities perform a similar role
in separating out the selection bias.
Table II summarizes the overall variability in the cell migration probabilities

for stayers and movers by education class for all 51 states. Looking at stayers first,
there is a clear decrease in the cell probabilities as education level increases. For
example, the average cell probability for high school dropouts is almost 70 per-
cent, compared to less than 50 percent for individuals with an advanced degree.
For movers, around one to three percent of the individuals belonging to a cell
follow an average migration path. As expected, the average migration probabil-
ity increases with education, reflecting the fact that highly educated individuals
are more mobile. For both the stayers and the movers, there is wide variation
in the cell probabilities within education classes, as is necessary for identifica-
tion. While educated individuals are more likely to migrate, significant overlap
across education classes exists in cell migration probabilities, as evidenced by the
90–10 percentile ranges. This overlap of probabilities plays an important role in
estimation. If the cell probabilities for the five education classes did not overlap
at all for a given state, the correction term coefficients could not separately be
identified from the return to education coefficients in the earnings equation.
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TABLE II
Summary of the Cell Migration Probabilities

Education Number of Cellsa Mean Std. Dev. 10th Percentile 90th Percentile

STAYERS
Less than High School 616 0.6972 0.1243 0.5417 0.8361
High School Graduate 692 0.6790 0.1422 0.4783 0.8287
Some College 668 0.5997 0.1523 0.4000 0.7686
College Graduate 561 0.5325 0.1626 0.3158 0.7381
Advanced Degree 343 0.4857 0.1668 0.2857 0.7143

MOVERS
Less than High School 3923 0.0172 0.0281 0.0018 0.0429
High School Graduate 6090 0.0107 0.0218 0.0009 0.0261
Some College 5879 0.0136 0.0250 0.0012 0.0339
College Graduate 5159 0.0182 0.0311 0.0018 0.0436
Advanced Degree 3048 0.0298 0.0406 0.0038 0.0698

aCells with 10 or fewer observations are excluded.

As expected, Table II confirms that not all migration paths are observed for
all types of individuals. In particular, the number of usable cells is markedly
smaller for the less than high school and advanced degree categories, since there
are fewer individuals in these categories to begin with. It should also be noted
that many of the cells for the smaller states do not contain any observations,
For example, while California has 70 nonempty cells for stayers and over 800
nonempty cells for movers, Vermont has only 36 usable stayer cells and 190
usable mover cells. Therefore, the result for the smaller states may not be very
informative.

5�2�1� The Transition Matrix

The estimated migration probabilities can be condensed by education class and
grouped into a “transition matrix,” where the rows are the birth states and the
columns are the residence states. The transition matrix provides a convenient
method of summarizing differences in migration paths for the different education
classes. Unfortunately, the transition matrix for all fifty-one states is too large to
present in the paper since it has 51×51 elements for each of the five education
classes. A subset of the 51× 51 transition matrix, representing the six states on
which I focus, is provided graphically in Figure 1. The figure superimposes the
information for each education class into a single matrix of bar graphs. The diag-
onal elements of the matrices correspond to the fraction of people by education
class who stay in their state of birth and the off-diagonal elements correspond to
the fraction who move from one state to another.
Looking first at the mobility patterns on the off-diagonal elements, the heights

of the bars reveal that the fraction of individuals who follow a given migration
path varies widely from one state to the next. California, Florida, and Texas
stand out as more popular destinations than Illinois, Kansas, and New York.
Although distance between states clearly plays a role, the flow magnitudes are
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not determined solely by geographical proximity. For example, people born in
New York were much more likely to migrate to California, even though Illinois
was a closer option. The migration flows in Figure 1 are also neither symmetric
nor one-sided. For example, migration from Florida to New York is smaller than
migration from New York to Florida, and there are considerable migration flows
in both directions. While many models of migration predict migration in one
direction only, bidirectional migration flows fit naturally into a Roy model where
individuals relocate to take advantage of their particular skills and tastes.
Scanning a row horizontally reveals that workers from different education

classes have different preferences on average about which potential residence
state would suit them best. For example, consider the migration patterns for indi-
viduals born in California. For advanced degree holders, New York and Texas
appear to be equally attractive destinations. However, for less educated individ-
uals, Texas is five times as popular a destination compared to New York. This
implies that for people born in California with little formal education, Texas is a
relatively more attractive state for them compared to highly educated individuals,
a pattern which supports a Roy model of comparative advantage by education
level. Figure 1 also seems to indicate that tastes play a major role in mobility
decisions, since comparative advantage in earnings cannot completely explain the
observed mobility patterns. For example, the diagonal elements reveal that highly
educated individuals are generally more mobile on average, yet there is little
connection between education and outmigration in California. This is especially
striking since, as will soon be shown, the returns to education in California are
about the same as in Florida and New York, and lower than in Texas. These facts
point out that tastes must be influencing the mobility decision—otherwise, why
would highly educated Californians be so likely to stay?

5�3� Step 2: Corrected Estimates of the Return to College

With estimates of the migration probabilities, the earnings equations can now be
estimated using the implementation choices outlined in Section 4. The dependent
variable of earnings enters as the log of an individual’s average hourly wage. The
independent variables include potential experience along with its square and cube,
a dummy for residence in a standard metropolitan statistical area (SMSA), a mar-
ital status dummy, and four education level dummies. The education categories
are less than high school, some college, college graduate, and advanced degree,
with high school graduate being the omitted category. It should be noted that the
regression intercept includes the intercepts for the correction functions as well as
any state-specific wage constant, since these cannot be separately identified.
For each of the 51 state regressions, there are separate correction functions

for stayers and movers. Using the first-best choice probability as the single index
appearing in the correction functions is the natural starting choice for estimation.
As mentioned in Section 3, a simple test and extension is to allow a few other
probabilities in addition to the first-best choice probability to enter the correc-
tion functions. For the mover correction function, it turns out that including the
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retention probability in addition to the first-best probability generally results in a
significant change in the estimated return to education coefficients and improves
the fit of the outcome regressions, particularly for the larger states. The tests
carried out to determine significance are a Hausman test for the change in the
education coefficients and a Wald test for the difference due to the correction
functions. The two tests are analogous to the ones described in footnotes 25 and
26. Other probabilities, such as the highest predicted probability (excluding the
retention probability) or the probabilities for nearby states, do not have a similar
effect. Therefore, the results presented in the following tables are estimated using
the first-best probability �pikk� for stayers, and the first-best probability �pijk� plus
the retention probability �pijj� for movers. Other estimates and the results of tests
that include other probabilities in the correction function are available from the
author on request. Both correction functions are estimated using second order
polynomial expansions.23

Since estimates of an individual’s migration probabilities substitute for the true
values in the second-step earnings functions, the estimated coefficients are con-
sistent but the estimated covariance matrix is biased. Naive standard errors are
likely to be understated in the second step of a model that does not account
for such sampling error (Murphy and Topel (1985)). I correct for the extra
sampling variability arising from the imputed migration probabilities to obtain
asymptotically correct standard errors.24 The adjustment turns out to increase

23 A polynomial of degree three yields comparable results, adding a little explanatory power at the
expense of an increase in variance. A polynomial of degree one, however, is apparently not flexible
enough. The correction function using a first degree polynomial does not enter the wage equation
as significantly and the coefficients on the education variables do not change much compared to the
uncorrected estimates.
24 A feasible estimator of the asymptotically correct covariance matrix is

�X̂ ′X̂�−1X̂ ′4̂ V̂ �P̂ �4̂ ′X̂�X̂ ′X̂�−1+ -̂ 2�X̂ ′X̂�−1

where X̂ denotes the matrix of explanatory variables appearing in the wage equations, including the
series expansion terms involving the estimated migration probabilities. The first term in the expression
accounts for the sampling variability of the estimated probabilities and the second term is the usual
covariance matrix (see Murphy and Topel (l985)). The second term could readily be extended to allow
for heteroskedasticity using the Huber-White correction as suggested by Ham and Hsiao (1984). Note
that the expression for the covariance substitutes in consistent estimates for the unknown parameters.
Both 4̂ and V̂ �P̂ � are block-diagonal matrices, where the diagonal blocks correspond to subgroups
of data belonging to different cells (see equation (24)). Let nc denote the sample size of cell c. Each
block of 4̂ is an nc × 3 matrix containing the derivatives of the correction functions with respect
to the three migration probabilities evaluated at their estimated values. These derivatives are easily
calculated for polynomial expansions. Each block of V̂ �P̂ � is an estimate of the 3×3 covariance matrix
for the estimated mover, retention, and stayer probabilities for a cell. These cell covariance matrices
are easily estimated since the migration probabilities are distributed as multinomial random variables.
Note that except for the mover and retention probabilities corresponding to the same cell, all of
the migration probabilities appearing in a single state’s wage equation are estimated off of different
samples. Hence, the estimated migration probabilities are uncorrelated across cells. Finally, notice
that it is reasonable to assume that the projection errors associated with the migration probabilities
are uncorrelated with the error term in the outcome equation since any individual’s contribution to
an estimated cell migration probability is small.
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the estimated standard errors by as much as 20 percent for the imputed regres-
sors appearing in the correction functions, but has a negligible effect for other
variables in the earnings equations.

5�3�1� Estimation Results for the Six States

Presenting detailed regressions for all fifty-one states is infeasible, so I first
provide results for the six selected states and then give summary results for all
the states. This paper concentrates most heavily on migration and the return to
education, specifically the return to college relative to high school. Of particular
interest is whether substantial bias exists in the uncorrected education coeffi-
cients because of self-selection. Except for California, the education coefficients
in the corrected equations are almost uniformly lower than the uncorrected coef-
ficients in Table III. For example, while the coefficient on “college graduate”
does not change much in California, for the other five states the coefficient drops
by approximately 10 percent when correcting for self-selected migration. To see
whether such decreases were statistically significant, a Hausman-type test was
performed.25 For all six states, the difference in the return to a college degree is
significant at the one percent confidence level.
While testing for differences between the corrected and uncorrected coeffi-

cients provides a direct test for the presence of selection bias in the return to
college, a necessary condition is that the selection correction terms enter the
wage equation significantly. This paper uses a Wald test statistic, using the asymp-
totically correct covariance matrix, to test the impact of the correction terms.26

The test statistics in row (12) of Table III indicate that the correction function
enters significantly at the one percent confidence level for all of the states except
Kansas. Although the most general test for selection bias depends jointly on
the correction functions for movers and stayers, rows (10) and (11) present the
appropriate Wald tests for the two correction functions separately. These sub-
tests indicate that both the movers’ and stayers’ correction functions play impor-
tant roles in removing selection bias from the wage equations.

25 Under the null hypothesis of no selection bias, OLS is efficient and consistent and the selection
corrected estimates are consistent but inefficient. Under the alternative, OLS is biased but the selec-
tion corrected estimates are still consistent. Therefore, the variance of the difference in the estimates
is equal to the difference in the variances (Hausman (1978)). When testing for differences in indi-
vidual coefficients, one should be aware of a multiple comparisons problem. That is, the covariance
matrix for the full set of coefficients appearing in Table III can only have rank 7, since all of the dif-
ferences arise from the 7 terms comprising the correction function. In this paper, I have chosen to
test the difference between the uncorrected and corrected estimates of the return to college.
26 The appropriate test statistic and its distribution is

7′�V �P��−17 ∼ 82 with degrees of freedom= rank�7�
where 7 is the vector of coefficients for the terms in the correction function and V �P� is the appro-
priate block from the covariance matrix of the estimated equation corresponding to the migration
probability terms appearing in the correction function. In Table III, the chi-square distribution for
row (10) has two degrees of freedom, for row (11) five degrees of freedom, and for row (12) seven
degrees of freedom.
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TABLE III
Estimated Wage Equations for California, Florida,

Illinois, Kansas, New York, and Texas

California Florida Illinois

Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected

(1) Less than High School −0�1597 −0�1489 −0�1527 −0�1520 −0�1710 −0�1898
�0�0082� �0�0082� �0�0101� �0�0105� �0�0113� �0�0116�

(2) Some College 0�1383 0�1505 0�1337 0�1041 0�1165 0�0968
�0�0059� �0�0061� �0�0080� �0�0087� �0�0076� �0�0079�

(3) College Graduate 0�4378 0�4313 0�4485 0�4022 0�3645 0�3272
�0�0075� �0�0079� �0�0106� �0�0127� �0�0100� �0�0117�

(4) Advanced Degree 0�5996 0�5760 0�6407 0�5880 0�5461 0�5059
�0�0110� �0�0117� �0�0172� �0�0194� �0�0147� �0�0178�

(5) Experience 0�0778 0�0745 0�0663 0�0649 0�0580 0�0525
�0�0075� �0�0075� �0�0107� �0�0107� �0�0097� �0�0097�

(6) Experience Squared −0�0023 −0�0023 −0�0024 −0�0023 −0�0008 −0�0005
�0�0007� �0�0007� �0�0009� �0�0009� �0�0009� �0�0009�

(7) Experience −0�0001 0�0001 0�0018 0�0017 −0�0034 −0�0041
Cubed×100 �0�0018� �0�0018� �0�0026� �0�0025� �0�0026� �0�0026�

(8) Married 0�1906 0�1438 0�1763 0�1714 0�1925 0�1736
�0�0047� �0�0056� �0�0065� �0�0070� �0�0063� �0�0069�

(9) Residence in SMSA 0�1754 0�1834 0�1146 0�1160 0�2496 0�2521
�0�0109� �0�0109� �0�0084� �0�0085� �0�0067� �0�0067�

(10) Wald test for ' — 88.29 — 87.72 — 49.75
(Movers Only) �0�0000� �0�0000� [0.000]

(11) Wald test for ' — 1563.56 — 22.23 — 61.65
(Stayers Only) �0�0000� �0�0000� �0�0000�

(12) Wald test for ' — 463.56 — 117.57 — 109.96
�0�0000� �0�0000� �0�0000�

(13) R-squared 0�1534 0�1606 0�1624 0�1668 0�1856 0�1891
(14) Observations 51,149 51,149 24,315 24,315 26,791 26,791

Kansas New York Texas

Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected

(1) Less than High School −0�1887 −0�1933 −0�1958 −0�1985 −0�2023 −0�2046
�0�0230� �0�0233� �0�0099� �0�0099� �0�0085� �0�0085�

(2) Some College 0�0468 0�0349 0�1521 0�1297 0�1614 0�1356
�0�0153� �0�0165� �0�0068� �0�0074� �0�0068� �0�0071�

(3) College Graduate 0�3213 0�2863 0�4310 0�3977 0�5184 0�4697
�0�0211� �0�0253� �0�0085� �0�0107� �0�0087� �0�0098�

(4) Advanced Degree 0�4811 0�4122 0�5898 0�5495 0�6835 0�6130
�0�0369� �0�0462� �0�0118� �0�0145� �0�0137� �0�0153�

(5) Experience 0�0107 0�0110 0�0869 0�0820 0�0834 0�0811
�0�0267� �0�0268� �0�0081� �0�0081� �0�0083� �0�0083�

(6) Experience Squared 0�0028 −0�0028 −0�0041 −0�0038 −0�0029 −0�0027
�0�0026� �0�0026� �0�0007� �0�0007� �0�0007� �0�0007�
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TABLE III—Continued

Kansas New York Texas

Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected

(8) Married 0�1790 0�1820 0�1881 0�1748 0�1901 0�2001
�0�0134� �0�0135� �0�0055� �0�0058� �0�0057� �0�0058�

(9) Residence in SMSA 0�2308 0�2296 0�2209 0�2225 0�1234 0�1139
�0�0135� �0�0138� �0�0061� �0�0061� �0�0060� �0�0060�

(10) Wald test for ' — 7.37 — 85.08 — 43.57
(Movers Only) �0�1946� �0�0000� �0�0000�

(11) Wald test for ' — 2.31 — 60.67 — 116.81
(Stayers Only) �0�3156� �0�0000� �0�0000�

(12) Wald test for ' — 8.34 — 132.59 — 110.39
�0�3037� �0�0000� �0�0000�

(13) R-squared 0�1574 0�1589 0�1912 0�1938 0�1932 0�1974
(14) Observations 6,044 6,044 38,138 38,138 37,845 37,845

Note: Standard errors in parentheses, p-values in brackets; both adjusted for the sampling variability of the estimated migration
probabilities appearing in the correction functions (see footnote 24).

To understand how the correction functions can affect the earnings equations,
consider the shape of these functions for the state of Texas. Figure 2 plots the
value of the correction as a function of the different observed migration prob-
abilities.27 Looking at the graph for stayers, the correction due to self-selection
decreases as the probability of a stayer remaining in his birth state gets larger.
In the lower panel of Figure 2, I graph the correction as a function of the first-
best migration probability for movers, evaluated at the 20th, 40th, 60th, and 80th
percentiles of the retention probability. For movers into Texas, the correction is
larger for migrants with low retention probabilities. For a given percentile of the
retention probability, the bias correction declines as the migration probability
increases.28 One explanation for the shape of the stayers’ and movers’ correc-
tion functions for Texas is that individuals who move to a state when few others
like them do must have better earnings opportunities there than the average
individual.29

27 When interpreting the graphs, attention should focus on the shape and relative changes in the
functions, since the intercept terms are not identified separately from the intercept in the wage
equation.
28 Around half of the 51 states exhibit a monotonic decline in the stayers’ correction functions, with

the next most frequent shape being a hump-shaped, inverse U . Similarly, around half of the states
have correction functions for movers that roughly resemble Texas’, with a wide variety of shapes for
the remaining states.
29 An example unrelated to mobility that exhibits such a monotonic decline is average Scholastic

Aptitude Test scores. As the fraction of students in a state taking the SAT increases, the state-wide
average performance on the test declines. The reasoning usually given is that as the fraction of test-
takers increases, the quality of the marginal student declines (see Dynarski (1987), Card and Payne
(1998)).
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Figure 2.—Correction as a function of the migration probability for stayers and movers.

5�3�2� Summary Results for the Entire U.S.

To graphically illustrate the effect of selection bias on the estimated returns
for all 51 states, Figure 3 plots the corrected versus uncorrected return to college
for each state. All but seven of the estimated returns decrease when correcting for
self-selected migration. Using a Wilcoxon signed-rank test, the corrected returns
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Figure 3.—Corrected versus uncorrected returns to a college education by state.

as a group are statistically different from the uncorrected returns at conven-
tional significance levels. While the OLS estimates differ significantly from the
corrected returns as a group, the corrected and uncorrected returns are strongly
correlated (;= 0�89, p-value< 0�001).
For each state, Table IV presents the coefficients on the college education

dummies from the corrected and uncorrected wage equations. For convenience,
the states are listed alphabetically within the four regions of the U.S. The table
confirms that with few exceptions, the naive uncorrected return to college is
biased upward. While the average bias for all states is around nine percent,
there is considerable heterogeneity between and within regions on the extent of
the bias. The average bias appears to be larger in the Midwest and lower in the
West. In 27 states the bias in the college education coefficient is significant at the
one percent confidence level using a Hausman-type test (see footnote 25). Four
additional states register a significant bias at the five percent level. The table
also reports on the significance of the correction functions. For thirty-four states
the correction terms enter the wage equation significantly at the five percent
level using the Wald test described in footnote 26. Together with the significant
changes in the return to college, these tests indicate that self-selected mobility
plays an important role in earnings determination for many states.
One possible explanation for the upward bias in the OLS estimates is that

college-educated individuals are more likely to sort into states that provide a
better match for their particular skills and talents compared to those with a
high school education. College migration choices might be more responsive to
unobserved earnings because highly educated individuals are more likely to move
for a fixed moving cost or because variation in unobserved earnings across states
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TABLE IV
Corrected and Uncorrected Estimates of the Return to College by State

Uncorrected Corrected Hausman Test Wald Test for Uncorrected Corrected Hausman Test Wald Test for
State College Return College Return for Difference Correction Terms State College Return College Return for Difference Correction Terms

ALL REGIONS MIDWEST

Mean 38.1 34.7 Illinois 36.4 32.7∗∗∗ 6.04 109.96
Std. Dev. 5.96 6.05 (1.0) (1.2) [0.000] [0.000]

Indiana 36.9 30.3∗∗∗ 4.87 26.88
NORTHEAST (1.4) (1.9) [0.000] [0.000]

Iowa 31.5 25.6∗∗∗ 2.76 9.99
Connecticut 33.7 27.3∗∗∗ 5.67 70.47 (2.1) (3.0) [0.006] [0.189]

(1.6) (1.9) [0.000] [0.000] Kansas 32.1 28.6∗∗ 2.50 8.34
Maine 35.9 38.1 0.88 11.94 (2.1) (2.5) [0.012] [0.304]

(3.0) (3.9) [0.378] [0.102] Michigan 39.0 35.1∗∗∗ 4.20 68.74
Massachusetts 30.7 27.6∗∗∗ 5.79 76.48 (1.1) (1.5) [0.000] [0.000]

(1.1) (1.2) [0.000] [0.000] Minnesota 32.2 27.3∗∗∗ 4.11 43.49
New Hampshire 38.7 36.7 1.16 20.53 (1.5) (1.9) [0.000] [0.000]

(2.4) (3.0) [0.248] [0.005] Missouri 34.6 29.0∗∗∗ 4.00 37.82
New Jersey 39.8 33.3∗∗∗ 9.87 252.03 (1.6) (2.1) [0.000] [0.000]

(1.1) (1.3) [0.000] [0.000] Nebraska 32.6 28.8 1.53 6.73
New York 43.1 39.8∗∗∗ 5.08 132.59 (2.8) (3.8) [0.127] [0.458]

(0.9) (1.1) [0.000] [0.000] North Dakota 40.8 39.9 0.33 6.27
Pennsylvania 38.6 31.3∗∗∗ 8.82 102.60 (5.0) (5.7) [0.744] [0.509]

(0.9) (1.2) [0.000] [0.000] Ohio 39.4 32.1∗∗∗ 8.14 71.47
Rhode Island 36.9 32.7∗∗∗ 2.65 44.59 (1.0) (1.3) [0.000] [0.000]

(3.1) (3.4) [0.008] [0.000] South Dakota 40.8 41.6 0.36 6.26
Vermont 35.9 39.1 0.72 6.41 (4.7) (5.2) [0.672] [0.510]

(4.6) (6.4) [0.474] [0.492] Wisconsin 31.3 21.9∗∗∗ 6.69 104.54
Mean 37.0 34.0 (1.5) (2.0) [0.000] [0.000]
Std. Dev. 3.6 4.7 Mean 35.6 31.1

Std. Dev. 3.7 5.6
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TABLE IV—Continued

Uncorrected Corrected Hausman Test Wald Test for Uncorrected Corrected Hausman Test Wald Test for
State College Return College Return for Difference Correction Terms State College Return College Return for Difference Correction Terms

SOUTH WEST
Alabama 46.0 42.3∗∗∗ 3.02 16.16 Alaska 33.2 28.7 1.55 14.68

(1.9) (2.3) [0.003] [0.024] (6.2) (6.8) [0.121] [0.040]
Arkansas 38.3 34.7∗∗ 2.22 10.07 Arizona 48.8 44.4∗∗∗ 4.50 35.80

(2.7) (3.2) [0.026] [0.185] (2.0) (2.2) [0.000] [0.000]
Delaware 34.6 31.5 0.99 5.57 California 43.8 43.1∗∗ 2.43 463.56

(4.1) (5.1) [0.324] [0.591] (0.7) (0.8) [0.015] [0.000]
D.C. 33.1 30.0 0.72 6.68 Colorado 43.7 40.1∗∗∗ 3.16 12.85

(12.1) (12.9) [0.472] [0.463] (1.8) (2.1) [0.002] [0.076]
Florida 44.8 40.2∗∗∗ 6.60 117.57 Hawaii 43.7 44.9 0.45 3.82

(1.1) (1.3) [0.000] [0.000] (6.1) (6.7) [0.654] [0.801]
Georgia 41.2 35.7∗∗∗ 4.99 32.84 Idaho 28.7 30.3 0.86 6.27

(1.4) (1.8) [0.000] [0.000] (4.2) (4.6) [0.391] [0.508]
Kentucky 41.6 34.8∗∗∗ 4.77 22.44 Montana 26.0 23.0 0.90 9.54

(2.1) (2.5) [0.000] [0.002] (4.8) (5.9) [0.368] [0.217]
Louisiana 42.2 39.3∗∗ 1.99 5.42 Nevada 35.7 37.2 1.07 37.07

(2.0) (2.5) [0.047] [0.609] (3.8) (4.1) [0.284] [0.000]
Maryland 43.2 35.3∗∗∗ 8.50 93.66 New Mexico 45.1 42.6 1.17 16.79

(1.4) (1.7) [0.000] [0.000] (3.5) (4.1) [0.243] [0.019]
Mississippi 40.3 35.4∗∗ 4.28 25.26 Oregon 31.2 31.1 0.07 34.85

(2.7) (2.9) [0.000] [0.001] (2.3) (2.6) [0.946] [0.000]
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North Carolina 44.1 38.6∗∗∗ 6.14 62.45 Utah 34.4 34.9 0.49 15.53
(1.3) (1.6) [0.000] [0.000] (2.7) (2.9) [0.623] [0.030]

Oklahoma 39.4 37.6 1.52 8.58 Washington 32.1 31.4 0.94 113.15
(2.2) (2.5) [0.128] [0.284] (1.5) (1.7) [0.347] [0.000]

South Carolina 39.2 37.4 1.51 22.92 Wyoming 22.1 22.0 0.03 5.29
(2.0) (2.3) [0.132] [0.002] (6.5) (8.0) [0.977] [0.625]

Tennessee 45.9 39.4∗∗∗ 5.47 33.69
(1.7) (2.1) [0.000] [0.000] Mean 36.0 34.9

Texas 51.8 47.0∗∗∗ 11.27 110.39 Std. Dev. 8.3 7.9
(0.9) (1.0) [0.000] [0.000]

Virginia 42.0 35.2∗∗∗ 7.00 84.09
(1.4) (1.7) [0.000] [0.000]

West Virginia 44.6 41.3∗ 1.78 19.81
(3.3) (3.8) [0.076] [0.006]

Mean 41.9 37.4
Std. Dev. 4.4 4.1

Note: Standard errors in parentheses, p-values in brackets; both adjusted for the sampling variability of the estimated migration probabilities appearing in the correction functions (see footnote
24).

∗∗∗Significantly different from the uncorrected estimate under the null hypothesis of no selection bias at the 1% level; ∗∗significantly different at the 5% level; ∗significantly different at the
10% level.
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Figure 4.—Corrected returns to a college education by state in 1990 versus 1980.

is greater for individuals with a college degree. This could generate a positive
correlation between schooling level and the error term in the wage regressions for
the self-selected samples and hence an upward bias in the uncorrected estimates
of the return to education.30

While the estimated returns to a college education are significantly biased,
Figure 3 and Table IV document that correcting for the bias does not narrow the
range of returns across states. This suggests that the productivity of a college-
educated worker relative to a high school-educated worker varies from state to
state, and that migration is ineffective in equalizing the wages of comparably edu-
cated labor across space. One explanation for such variation is that differences
in the returns to a college education are equalizing differentials for amenity dif-
ferences (Roback (1988)). If amenities remain largely unchanged over time, per-
manent differentials in the return to education could exist from state to state.
Figure 4 examines the stability in the corrected returns by comparing the esti-
mates in this paper to estimates using 1980 data. The graph plots the corrected
returns in 1990 versus 1980, with the solid line in the graph representing a linear
fit. The graph reveals that state-specific returns to college education are signif-
icantly correlated between 1980 and 1990 (; = 0�35, p-value = 0�012) and that
the return to education has risen over time. One possible interpretation is that

30 Of course, observing more college migration than high school migration does not guarantee a
positive bias in the OLS estimates. For example, the high school individuals who move could have
relatively larger error terms in the self-selected samples so that the correlation between schooling and
the error term was not positive. More generally, in a Roy model with multiple sectors and selection
based on earnings and tastes there are a variety of reasons the OLS estimates could be upward biased.
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Figure 5.— Percentage change in the estimated return to a college education when correcting
for selection bias versus the number of observations used in estimation by state.

the rise in the return to education was a nationwide increase that affected state-
specific labor markets in a similar fashion (see Bound and Johnson (1992), Katz
and Murphy (1992)).
How do the corrected estimates in a state depend on the number of observa-

tions? Consistency of the corrected estimates requires sufficient variability in the
cell migration probabilities (see Section 4.3), and the number of distinct migra-
tion probabilities is strongly correlated with the size of a state. For each state,
Figure 5 plots the percentage change in the return to a college education when
correcting for selection bias versus the number of observations used in estima-
tion. The plotting symbol is a state’s two letter postal abbreviation. For states
with few observations the estimated bias in the uncorrected returns is highly vari-
able, ranging from roughly −13 percent to +9 percent. As expected, the results
for these smaller states are estimated with less precision, with little evidence of
selection bias using the tests reported in Table IV. However, for the larger states,
the bias is overwhelmingly negative and significant. For example, in states with at
least ten thousand observations, the average bias in the college education coeffi-
cient is −13 percent. These findings suggest the estimation approach developed
in this paper is more suitable for reasonably large datasets. A similar conclusion
emerges from the Monte Carlo simulations presented in Appendix C.
Another interesting question is how the semiparametric approach developed

in this paper compares to the parametric approach developed by Lee. As a
reminder, the results presented in Tables III and IV use series expansions to
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estimate two unknown correction functions that depend on the first-best proba-
bility �pikk� for stayers and the first-best probability �pijk� plus the retention prob-
ability �pijj� for movers. In contrast, Lee’s method involves two parametric cor-
rection functions that depend on the first-best probability for stayers and the first-
best probability for movers. Since Lee’s approach does not include the retention
probability in the movers’ correction function, it is not too surprising that the Lee
estimates differ. The average return to education across all 51 states when using
Lee’s correction as outlined in Appendix A is 36.3 percent (std. dev.= 6�00). In
comparison, the average return is 34.7 percent (std. dev.= 6�05) for the corrected
estimates appearing in Table IV. Perhaps a more parallel comparison to the Lee
estimates would be to use a semiparametric approach where the unknown correc-
tion function for movers is a function of only the first-best migration probability.
These estimates are very similar to the Lee estimates, with the mean difference
between the two estimates being less than 0.01 (std. dev.= 0�60) for the 51 states.
Further evidence on when Lee’s approach is likely to yield similar estimates to
the semiparametric approach developed in this paper is discussed in the Monte
Carlo appendix (Appendix C).31

5�4� Step 3: Testing the Roy Model

In this section, I test the appropriateness of the Roy model and the estimation
approach taken in this paper. Using aggregate information for high school and
college individuals, I estimate the responsiveness of migration flows to differences
in corrected returns and amenities.

5�4�1� A Model of Migration Flows and Amenity Differences

If the true return to education differs across local labor markets and individuals
behave according to comparative advantage, migration flows by education level
should respond to differences in returns across states. In the spirit of the Roy
model developed in this paper, an equation describing migration flows from state

31 One could think about extending Lee’s approach so the retention probability could be part of
the selection correction function just as Heckman’s method (1979) has been extended to higher
dimensions (see Maddala (1983, pp. 278–283)). For example, the researcher could specify the inverse
cumulative distribution functions corresponding to the first-best migration probability and the reten-
tion probability to both be inverse standard normals. The next requirement is to estimate the covari-
ance term between the error terms associated with these two inverse CDFs. One way to do this is
to construct residuals assuming linear probability models, i.e., by taking the difference between pre-
dicted probabilities and actual migration choices. The researcher could then specify that the error
terms associated with these two inverse CDFs and the error term in the wage equation have a trivari-
ate standard normal distribution. The approach involves numerical integration, and correction of the
standard errors involves further numerical integration. This extension to Lee’s approach yields esti-
mates that are close, although slightly larger on average, compared to the semiparametric estimates
appearing in Table IV. While a detailed discussion of this extension is beyond the scope of the paper,
the estimates are available from the author on request.
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j to state k for college-educated movers in terms of earnings and amenities is

ln�pCDjk �= <CD0 +<1�yCDk −yCDj �+<CD2 �Ak−Aj�+<CD3 Djk+?CDjk(26)

where ln�•� denotes the natural log
 yCDk represents the average earnings of indi-
viduals with a college degree in state k, Ak is a vector of amenity variables asso-
ciated with state k, Djk is a vector of cost variables for moving from j to k, and
?CDjk is an error term. Note that for estimation, one would need to substitute in
estimates of yCDk and yCDj since their true values are unavailable. Define a similar
equation for individuals with a high school education, superscripting the appro-
priate variables and coefficients with an “HS” instead of a “CD”. Equation (26)
formalizes the assumption that migration flows are determined by earnings and
amenity differences across states. Notice that schooling level does not change
the package of amenities offered by a state. However, the value individuals in
different education classes place on those amenities is expected to differ, which
accounts for the education-specific coefficients on these variables. In contrast,
while state-specific earnings depend on education level, the coefficient <1 is not
superscripted by schooling level in the migration flow equations. The implication
is that the log of college and high school migration flows respond identically to
a given difference in earnings.
Differencing the log migration flows of college- and high school-educated indi-

viduals yields

ln�pCDjk �− ln�pHSjk �= �<CD0 −<HS0 �+<1�yCDk −yHSk �(27)

−<1�yCDj −yHSj �+ �<CD2 −<HS2 ��Ak−Aj�
+ �<CD3 −<HS3 �Djk+ �?CDjk −?HSjk ��

Assuming the only component of earnings that differs by schooling level across
states is the return to education, the expression yCDk −yHSk represents the return
to a college education relative to high school in state k. This relative return is
simply the coefficient on the college dummy in the earnings equation, which I
denote as 
CDk for state k. Making this substitution and simplifying the notation
of equation (27),

ln�pCDjk �− ln�pHSjk �= <0+<1@
CD+<2@A+<3Djk+?jk(28)

where <0 = <CD0 −<HS0 , <2 = <CD2 −<HS2 , <3 = <CD3 −<HS3 , @A=Ak−Aj , ?jk = ?CDjk −
?HSjk , and @


CD = 
CDk −
CDj .
Since the true value of @
CD is not available, I substitute an estimate into

equation (28) using results from Step 2. The coefficient estimates from a simple
OLS regression will be consistent, but the standard errors will be biased due to
the extra sampling variability. Accounting for this sampling variability increases
the standard error for the estimate of <1 between 21 and 78 percent, depend-
ing on the specification. The standard errors for the other estimated coefficients
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TABLE V
Responsiveness of College Relative to High School Migration Flows

to Differences in the Return to College and Amenities

Dependent Variable: ln�pCD
j k
�− ln�pHS

j k
� (1) (2) (3) (4) (5) (6) (7)

Intercept 0.51∗∗∗ 0.51∗∗∗ 0.54∗∗∗ 0.52∗∗∗ 0.52∗∗∗ 0.53∗∗∗ 0.52∗∗∗

(0.02) (0.02) (0.03) (0.02) (0.02) (0.02) (0.03)
@ Corrected Return to College 2.29∗∗∗ — 2.38∗∗∗ 1.89∗∗∗ 3.45∗∗∗ 2.39∗∗∗ 2.89∗∗∗

(0.4) (0.35) (0.39) (0.62) (0.40) (0.77)
@ Uncorrected Return to College — 2.24∗∗∗ — — — — —

(0.32)
Distance in Miles — — −0.23 — — — 0.10

(0.22) (0.26)
@ Unemployment Rate — — −3�18∗∗ — — — −1�03

(1.45) (2.66)
Included Amenity Variables
Quality of Lifea × ×
Climateb × ×
State Spending and Taxingc × ×

F test for Amenity Variables — — — 10.83 3.92 7.70 5.44
[.0000] [.0000] [.0000] [.0000]

R-squared 0.0452 0.0479 0.0507 0.1325 0.0907 0.0855 0.1721
Observations 1,871 1,871 1,871 1,871 1,871 1,706 1,706

Notes: Huber-White standard errors in parentheses, p-values in brackets; the standard errors and F tests are adjusted for the
sampling variability of the estimated state returns to a college education (see footnote 32). The symbol @ represents the difference
operator for the value of a variable between state k and state j . All explanatory variables are averages of 1980 and 1990 values except
for the climate variables, which are already long-term averages. See Appendix D for variable sources and definitions.

aQuality of Life variables are @ Population Density, @ Doctors per Capita, @ Dentists per Capita, @ Hospital Costs, @ Teacher’s
Salaries, @ School Expenditures per Capita, @ School Expenditures per Pupil, @ Crime Rate, @ Violent Crime Rate, and @ Incarcer-
ation Rate.

bClimate variables are @ Average Temperature, @ Maximum Temperature, @ Minimum Temperature, @ Afternoon Humidity,
@ Annual Precipitation, @ Number of Rainy Days, @ Number of Sunny Days, and @ Average Wind Speed.

cState Spending and Taxing variables are @ State Spending on Education, @ State Spending on Health and Human Services, @ State
Spending on Highways, @ State Spending on Public Welfare, @ Miscellaneous State Spending, @ State Sales Tax, and @ Average State
Income Tax.

∗∗∗Significant at the 1% level; ∗∗significant at the 5% level; ∗significant at the 10% level.

increase anywhere from 9 to 106 percent, depending on the coefficient and
specification. The standard errors are also corrected to account for possible
heteroskedasticity.32

32 A feasible estimator for the asymptotically correct covariance matrix is

�X̂ ′X̂�−1X̂ ′<̂2V̂ �@
̂CD�X̂�X̂ ′X̂�−1+ �X̂ ′X̂�−1
∑
i

x̂i x̂
′
ir
2
i �X̂

′X̂�−1

where X̂ is the matrix of the explanatory variables appearing in equation (28), with @
̂CD substituting
for @
CD, and ri is the estimated residual for observation i. The expression is analogous to that
in footnote 24, with a few important differences. First, the second term in the expression is the
Huber-White covariance matrix to account for possible heteroskedasticity (White (1980)). Second,
the derivative with respect to @
̂CD is a constant term. Third, the estimated covariance matrix of
@
̂CD, while easy to calculate, is not a block-diagonal matrix. To understand the elements of this
matrix, first note the returns from which @
̂CD is formed are estimated on different samples, with
the exception that the migration probabilities used in the correction functions may share common
denominators. With the assumption that the denominator in the migration probability (i.e., the total
number of observations in a cell) does not create a correlation in the returns to education, these
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5�4�2� Estimation Results

Table V lists the estimation results for equation (28) using a variety of return to
college and amenity variable combinations. All specifications indicate that migra-
tion is at least partly driven by comparative advantage, with state differences in
college returns significantly influencing migration flows. The intercept is positive
in every specification, confirming that the college group is more mobile than the
high school group on average. Throughout Table V, the coefficients on the vari-
ables should be interpreted as how college migration responds to a given differ-
ence in earnings or amenities across states relative to high school migration.
Columns (1) and (2) examine how migration responds to differences in cor-

rected and uncorrected returns to college. Both the corrected and uncorrected
state-to-state differences in returns significantly explain migration flows. To
understand the impact these return differences have on migration patterns, con-
sider the coefficient estimate from column (1). For a one-standard deviation
increase (0.0724) in the difference in the corrected return to college, the per-
centage change in the high school migration probability subtracted from the per-
centage change in the college migration probability increases by 16.6 percentage
points. Notice the corrected returns do not induce spurious correlation as they
would if they were mechanically related to the migration probabilities. That is,
the corrected returns are not equal to the uncorrected returns plus some func-
tion of the migration probabilities. In fact, the estimates of the corrected returns
partial out the effects of the correction functions (which in turn depend on the
migration probabilities).
Is the cell assignment assumption based on education level plausible? The

remaining specifications in Table V test if college- and high school-educated indi-
viduals are differentially motivated by amenity differences. Column (3) adds in a
distance variable as well as state differences in the five-year average unemploy-
ment rate. Column (4) includes measures of population density differences, crime
rate differences, and other quality of life differences from state to state. Column
(5) adds in climate difference variables and column (6) adds in differences in state
spending and taxing measures. Column (7) includes all of the variables of columns
(3) through (6). Details of the amenity variables and how they are constructed are
found in Appendix D. Many of the variables appear to significantly affect migra-
tion flow differences, although the coefficients are often imprecisely estimated and
not robust to the inclusion or exclusion of other variables.33 Table V indicates that
migration is driven by amenity differences in general, however, with these variables
being jointly significant in every specification.

returns are independent. This assumption merely says that the total cell population in a state does
not affect the return to education in other states. This implies the covariance matrix for @
̂CD is
composed of the negatively- and positively-signed variances for the return coefficients 
̂CD1 
 � � � 
 
̂

CD
N .

For example, the covariance between 
̂CD3 − 
̂CD7 and 
̂CD6 − 
̂CD3 equals minus the variance of 
̂CD3 , a
variance that was consistently estimated in Step 2.
33 The individual coefficients for these amenity variables are not reported in Table V due to space

considerations, but are available from the author on request.
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In the specifications that include the amenity variables, the coefficient on the
difference in the return to college, <1, continues to be estimated as a positive
and significant value. The magnitude suggests a quantitatively important effect of
college return differentials on migration flows. To see this, note that the number
of college-educated individuals in the sample who move from their birth state to
another state due to differences in the return to college is

∑
∀k

∑
∀ j

[
pjkPOPj −

pjkPOPj
1+ I�
CDk > 
CDj �<1�


CD
k −
CDj �

]
(29)

where I�•� is an indicator function and POPj is the number of potential migrants
in state j . The first term in brackets is the total number of college-educated
individuals who migrate from state j to k, while the second term is the number of
college-educated individuals who migrate for reasons other than the difference
in returns. I estimate this quantity using the corrected college return coefficients
from Table IV, the predicted value for <1 in column (7) of Table V, and the
number of college-educated individuals born in each state in the sample. The
calculation implies that 3.9 percent of the college-educated men in the sample
moved in response to a higher return in another state. Looked at another way,
the results indicate that state differences in the return to education account for
9.6 percent of the migration of college-educated individuals. While much of the
variation in mobility choices remains unexplained, the strong and robust effect
of the return differentials in explaining migration flows supports a Roy model of
comparative advantage.

6� conclusion

This paper provides a simple way to model and correct for selection bias
when there are many choices. Two questions motivate the application: how does
self-selected migration affect the observed returns to education in state-specific
labor markets, and does self-selection play a role in explaining the wide range
of returns across states? To answer these questions, I outline a Roy model of
mobility and earnings with multiple sectors. To correct for sample selection bias
in a model with so many alternatives, I develop and apply a new semiparametric
technique. My main methodological insight is that a combination of Lee’s maxi-
mum order statistic approach with the use of selection probabilities in an index
framework results in a flexible semiparametric correction for selectivity bias in
polychotomous choice models. In its simplest form, the selection correction takes
the form of an unknown function of the first-best choice probability. An extension
allows a subset of the other probabilities to also enter the correction function.
My main substantive finding is that self-selection significantly biases the

observed returns to schooling in state-specific labor markets. Tests of the Roy
model support the role of comparative advantage by education level in mobil-
ity decisions. I find that self-selection of more highly educated people to states
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with higher returns to education generally leads to upward biases in the return
to a college education, in many cases by 10 to 20 percent. However, the vari-
ation between states in returns does not narrow, suggesting that state-specific
amenities and other unmeasurable nonwage variables play important roles in the
migration decisions of individuals with different levels of education. Consistent
with a range of corrected returns, I find that relative (college to high school)
migration flows respond significantly to differences in the corrected return to
education and differences in amenities across states.
It should be emphasized that the new semiparametric approach I develop in

this paper is not specific to my model of mobility and earnings. My methodol-
ogy can also be applied to more conventional choice models, where the selection
probabilities are not estimated semiparametrically by the fraction of individu-
als who choose different alternatives. For example, my basic approach could be
applied to a Roy model of occupational choice, where individuals choose from
many alternative careers based on comparative advantage. The researcher could
estimate the choice probabilities using a conditional logit model and then use
the first-best probability as the single index appearing in the correction func-
tion. While such an approach parameterizes the selection equations, it is flexible
regarding the joint distribution of the error terms in the outcome and multi-
ple selection equations and hence the form of the selection correction function.
Future research could adapt the semiparametric correction method of this paper
to a variety of other polychotomous choice models.

Dept. of Economics, University of Rochester, 229 Harkness Hall, Rochester, NY
14627, U.S.A.; dahl@troi.cc.rochester.edu.
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APPENDIX A: Lee’s Methodology

Using the same notation as Section 3, this appendix describes Lee’s parametric approach for
correcting selection bias. While the random variables maxm�Vjm−Vjk+eijm−eijk� indexed over i are
not identically distributed, Lee points out that new random variables that are identically distributed
can be constructed using the transformation Eijk =GE−1

jk �Hjk�0�Vj1−Vjk
 � � � 
VjN −Vjk��, where GE
jk

is any continuous univariate cumulative distribution function. The selection rule can be expressed in
the following equivalent ways:

yik observed if and only if eijm−eijk ≤ Vijk−Vijm ∀ m
or max

m
�Vjm−Vjk+eijm−eijk�≤ 0

or Eijk ≤GE−1
jk �F

e
jk�Vj1−Vjk
 � � � 
VjN −Vjk���

The final equivalence reduces the N error terms from the selection criteria into the single error term,
Eijk. By construction, GE

jk is a well-defined marginal distribution for Eijk.
Lee next makes the critical assumption that the random vectors �uik
 Eijk� indexed over i are

independent and identically distributed with joint distribution function Gjk, thus specifying the form
of Fjk, the joint distribution for �uik
 eij1− eijk
 � � � 
 eijN − eijk�. Given the equivalent formulations of
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the selection rule above, the cumulative distribution function Fjk can be expressed in the following
ways:

Fjk�r
Vj1−Vjk
 � � � 
VjN −Vjk�= Pr�uik < r
 eij1−eijk < Vj1−Vjk
 � � � 
 eijN −eijk
< VjN −Vjk�

= Pr
(
uik < r
 Eijk < G

E−1
jk �F

e
jk�Vj1−Vjk
 � � � 
VjN −Vjk��

)
=Gjk

(
r
GE−1

jk �F
e
jk�Vj1−Vjk
 � � � 
VjN −Vjk��

)
�

Lee’s assumption allows eij1
 � � � 
 eijN to affect the distribution function Fjk only through the N -to-1
distribution function F ejk. The distributional transformation of the maximum and an assumed distri-
bution for Gjk completely specifies the form of the selection correction.
The standard parametric assumptions for Lee’s approach are: (i) specify GE

jk to be a univariate
standard normal CDF, and (ii) specify the joint distribution of uik and Eijk to be bivariate standard
normal. The expression for the expectation of uik conditional on sample selection is then

E�uik�si
Mijk = 1
Vj1−Vjk
 � � � 
VjN −Vjk�
= ;jkFjk�F ejk�Vj1−Vjk
 � � � 
VjN −Vjk�� �k = 1
 � � � 
N�


where ;jk is the correlation between uik and Eijk and Fjk�F ejk� = −G�H−1�F ejk��/F
e
jk, with G and H

representing the normal PDF and CDF respectively. Hence the conditional expectation of yik is

E�yik�si
Mijk = 1
Vj1−Vjk
 � � � 
VjN −Vjk�= �k+x′i�k+ si
k+;jkFjk�F ejk�
= �k+x′i�k+ si
k+;jkFjk�pijk��

APPENDIX B: Proof that $jk�Vj1−Vjk
 � � � 
VjN −Vjk�= 'jk�pijk�
This appendix proves that under the index sufficiency assumption (A-2), the multiple index cor-

rection function of equation (13) can be reduced to the single index correction function of equation
(16). For notational brevity let �V denote Vj1−Vjk
 � � � 
VjN −Vjk. Since $jk� �V �= E�uik�Mijk = 1� is
a function of the conditional density fjk�uik
 eij1−eijk
 � � � 
 eijN −eijk�Mijk
 �V � and since

fjk�uik
 eij1−eijk
 � � � 
 eijN −eijk�Mijk
 �V �= gjk�uik
max
m
�Vjm−Vjk+eijm−eijk��Mijk
 �V �


it suffices to show that

gjk�uik
maxm�Vjm−Vjk+eijm−eijk��Mijk
 �V �
= gjk�uik
maxm�Vjm−Vjk+eijm−eijk��Mijk
pijk��

By Bayes Theorem,

gjk

(
uik
max

m
�Vjm−Vjk+eijm−eijk��Mijk
 �V

)

= P�Mijk = 1�uik
maxm�Vjm−Vjk+eijm−eijk�
 �V �×gjk�uik
maxm�Vjm−Vjk+eijm−eijk�� �V �
P�Mijk = 1� �V �

�

The denominator of this expression, P�Mijk = 1� �V �, equals pijk. By the index sufficiency
assumption (A-2),

gjk

(
uik
max

m
�Vjm−Vjk+eijm−eijk�� �V

)
= gjk

(
uik
max

m
�Vjm−Vjk+eijm−eijk��pijk

)
�

By definition, the event �Mijk = 1� is equivalent to �maxm�Vjm−Vjk+eijm−eijk�≤ 0�, an expression
that depends only on maxm�Vjm−Vjk+eijm−eijk�. Therefore, P�Mijk = 1�uik
maxm�Vjm−Vjk+eijm−
eijk�
 �V �= P�Mijk = 1�uik
maxm�Vjm−Vjk+eijm−eijk�
pijk� and the result is proved.
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APPENDIX C: Monte Carlo Simulations

Baseline Monte Carlo Design

Consider data generated from a Roy model of self-selection similar to the model of mobility
and earnings described in Section 2. A simplified representation capturing the essence of this data-
generating process is:

yik = si
k+uik �k = 1
 � � � 
N�

uik = .kai+bik �k = 1
 � � � 
N�

tijk = ziJjk+wijk �k = 1
 � � � 
N�

Vijk = yik+ tijk �k = 1
 � � � 
N�

yik observed if and only if Vijk ≥ Vijm ∀ m

where the same notation is used as before. The exogenous variable si takes on integer values between
1 and 5 with equal probability, while zi takes on integer values between 1 and 10 with equal prob-
ability. Without loss of generality, the simulations that follow focus on estimation of the outcome
equation for k = 1.
The form and severity of selectivity bias depends on the coefficient vectors and the assumptions

made regarding the distributions of the error terms. Varying the error distributions reveals how well
the proposed method performs when the index sufficiency assumption (A-2) holds as well as when it
does not. The baseline model for discussion is ai ∼N�0
1�
 bik ∼N�0
1�
wijk ∼N�0
1�, and .k = 1
for k = 1
 � � � 
N . In the baseline model ai is independent over i
 bik is independent over i and over
k, wijk is independent over i, over j , and over k, and ai, bik, and wijk are all independent of each
other. This baseline specification satisfies assumption (A-2) as noted in Section 3.3. In addition, in
the baseline model the correction functions are identical for all originating sectors (i.e., 'jk = 'k, ∀ j).
The purpose of the simulations is to assess how well the method proposed in this paper can

estimate 
1 in the presence of self-selection. While there are many parameters that could be varied in
the simulations, this paper focuses on three aspects of polychotomous choice models: (i) the number
of alternatives, (ii) the distribution of the error terms uik and wijk, (iii) and the sample size. To assess
the large and small sample properties of the estimation method, I consider self-selected samples
generated by models with 10,000 and 1,000 observations originating in each sector. I examine models
that satisfy the index sufficiency assumption as well as models that violate it.
The direction and size of the selection bias also depends on the full set of coefficients in the

model. However, to maintain focus on the primary objectives of this exercise, these coefficient vectors
are not treated as experimental parameters. Instead, arbitrary values were chosen for the true values
of the coefficients, with 
2 to 
N ranging from 0 to 2, and each Jjk ranging from −�25 to �25. It
is impractical to report all of these coefficients since there are N +N 2 coefficients that vary in an
N -sector baseline model. These coefficients are available from the author on request. In all of the
simulations the parameter of interest, 
1, equals 1.
Migration probabilities are estimated by grouping observations into cells based on the discrete

variables si and zi, and calculating cell fractions as described in Section 4.2. Corrected estimates are
presented for the method of this paper using polynomial expansions of the first-best migration prob-
ability (labeled “1st Best Probability” in the table), the Lee approach as developed in Appendix A
assuming joint normality, and second order polynomial expansions that include the products and
cross-products of other migration probabilities as well. Except where noted, a single correction func-
tion is used instead of separate correction functions for each originating sector j . This results in an
efficiency gain, since by construction these correction functions will be identical in all but one of the
simulations. For further details on these implementation choices, see Section 4.

Choice Models of Various Dimensions

To see how well the estimation method performs as the dimensionality of the model grows, the first
panel of the Appendix Table considers baseline models with 2
3
5
10
25, and 50 sectors. Caution
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should be exercised in comparing the amount of selectivity bias across specifications with differing
numbers of sectors. Since higher dimensional models have additional parameters, the severity of
the bias is not directly comparable. What can be seen from the table, however, is that the method
developed in this paper is able to take care of selection bias in low-dimensional as well as high-
dimensional models.
The Appendix Table begins by reporting simulation results for a two sector baseline model.

Because there is only one migration probability (for the single choice) for each observation, no index
sufficiency assumption is required. The results for the two sector model can be viewed as a com-
parison benchmark, since for a single choice model the estimation method of this paper is just an
application of Ahn and Powell (1993) with a slightly different semiparametric estimation method. As
expected, the OLS estimate is significantly biased away from the true value of 
1 = 1. Both the Lee
approach and the semiparametric approach of this paper eliminate the bias in large samples and a
majority of the bias in small samples.
Specifications (2) through (6) examine baseline models of various dimensions. Once again, the

OLS estimates are significantly biased. The estimator relying on the first-best migration probability
eliminates most of the bias, even as the number of choices under consideration increases. For the 25
and 50 sector models, the selection corrected estimates appearing in the table only eliminate around
90% of the bias. Although not reported in the tables, as the sample size increases, the remaining bias
in these estimates disappears. For example, if there are 20,000 observations per sector, the first best
probability estimate is 0.999 in the 25 sector model and 1.012 in the 50 sector model. In the smaller
samples (1,000 observations per sector), the estimator eliminates only a fraction of the bias and the
reported standard deviations are large. For all of the baseline models, the Lee estimator yields very
similar results.

Deviations from Baseline in a Two Choice Model

The second panel in the Appendix Table examines the effect of a variety of distributional assump-
tions for a three sector model. To maintain comparability, all 3 sector models use the same set of
coefficients for 
k and Jjk. The first specification draws the error terms in the outcome equations from
lognormal rather than normal distributions and sets .k = 0 for all k. The semiparametric approach
developed in this paper does a good job of eliminating selection bias, at least in the large sample. In
contrast, the Lee approach relying on joint normality does not completely eliminate the bias. Speci-
fication (8) increases the variance of the error distribution so that the bias is approximately twice as
much as in (7). Once again, the semiparametric estimator relying on the first-best probability outper-
forms the Lee estimator relying on joint normality. The Lee approach could be improved by using
other distributions for the transformations discussed in Appendix A, but the researcher would some-
how need to choose the appropriate distributions (see Lee (1982)).
The point of specifications (7) and (8) is that selectivity corrections based on a parametric approach

can be significantly biased when the distributions are misspecified (Arabmazar and Schmidt (1981,
1982), Goldberger (1983)). Another example when the Lee approach performs poorly occurs when
uik is drawn from a mixture of normal distributions. In a simulation not reported in the table, the
mean OLS estimate was 1�318, the Lee estimate was 1�045, and the first best probability estimate
was 1.008.
Specification (9) models the variance in the fixed effect component of unobserved earnings as

a function of si. This provides one way to model the observation made by labor economists that
the variance in earnings is larger for more educated individuals. Both the Lee approach and the
semiparametric approach developed in this paper work well in the presence of this conditional het-
eroskedasticity.
Specification (10) draws the error term wijk from a multivariate normal distribution, with cor-

relation in this variable across the j originating sectors. This implies the correction functions are
sector-specific, and suggests that using a single correction function may be inappropriate. If a single
correction function is used, even though sector-specific correction functions are called for, the esti-
mation method of this paper still eliminates a large fraction of the bias. However, only by adding
separate control functions for each sector does the bias go to zero.
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APPENDIX TABLE

Monte Carlo Results
(True Parameter Value Equals 1)

10,000 Observations per Sector 1,000 Observations per Sector

Ave. Ave.
Std. Sample Std. Sample

Mean Dev. RMSE Size Mean Dev. RMSE Size

BASELINE MODELS OF VARIOUS DIMENSIONS
(1) 2 Sectors
OLS 1.074 0.014 0.075 5,579 1.074 0.044 0.086 558
Lee 1.003 0.016 0.016 1.022 0.049 0.054
1st Best Probability 1.005 0.016 0.017 1.022 0.049 0.054

(2) 3 Sectors
OLS 1.139 0.019 0.140 4,314 1.138 0.064 0.152 432
Lee 0.987 0.025 0.028 1.037 0.079 0.087
1st Best Probability 0.995 0.027 0.027 1.044 0.082 0.093
+Remaining Probability 1.026 0.037 0.032 1.068 0.103 0.123

(3) 5 Sectors
OLS 1.084 0.022 0.087 3,271 1.080 0.068 0.106 326
Lee 1.003 0.030 0.030 1.060 0.077 0.097
1st Best Probability 1.002 0.030 0.030 1.059 0.078 0.098

(4) 10 Sectors
OLS 1.098 0.016 0.099 5,604 1.104 0.050 0.115 562
Lee 0.992 0.019 0.021 1.051 0.054 0.074
1st Best Probability 0.999 0.020 0.020 1.053 0.055 0.076

(5) 25 Sectors
OLS 1.127 0.026 0.130 3,259 1.124 0.072 0.143 326
Lee 1.023 0.031 0.038 1.096 0.075 0.122
1st Best Probability 1.026 0.031 0.041 1.096 0.076 0.122

(6) 50 Sectors
OLS 1.139 0.030 0.142 2,612 1.135 0.100 0.168 263
Lee 1.020 0.032 0.037 1.097 0.102 0.141
1st Best Probability 1.028 0.032 0.042 1.098 0.104 0.143

DEVIATIONS FROM BASELINE IN A THREE SECTOR MODEL

(7) Lognormal distribution for uik [log�uik�∼N�0
2�7�]
OLS 1.130 0.016 0.131 3,492 1.131 0.052 0.141 350
Lee 1.023 0.017 0.029 1.053 0.057 0.078
1st Best Probability (4th order) 1.007 0.017 0.019 1.047 0.059 0.075

(8) Lognormal distribution for uik, with approximately twice
as much bias as �7� [log�uik�∼N�0
4�4�]
OLS 1.250 0.022 0.251 3,693 1.249 0.071 0.259 369
Lee 1.058 0.022 0.062 1.119 0.077 0.141
1st Best Probability (4th order) 1.016 0.024 0.029 1.104 0.079 0.107

(9) Conditional heteroskedasticity for ai [ai ∼N�0
 s2i �]
OLS 1.140 0.050 0.149 4,215 1.140 0.173 0.222 422
Lee 1.000 0.057 0.057 1.047 0.196 0.202
1st Best Probability 1.005 0.063 0.064 1.054 0.205 0.212
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APPENDIX TABLE—Continued

10,000 Observations per Sector 1,000 Observations per Sector

Ave. Ave.
Std. Sample Std. Sample

Mean Dev. RMSE Size Mean Dev. RMSE Size

(10) Correlation across j for wijk
OLS 1.131 0.019 0.133 6,030 1.127 0.060 0.140 603
Lee 1.041 0.020 0.045 1.059 0.065 0.088
1st Best Probability 1.040 0.021 0.045 1.061 0.066 0.090
Sector-Specific 1.000 0.031 0.031 1.105 0.077 0.130
Control Functions

(11) Fixed effect loading factor .k equals 
k
OLS 1.121 0.020 0.123 6,211 1.118 0.066 0.135 622
Lee 0.954 0.029 0.054 1.036 0.078 0.085
1st Best Probability 0.960 0.031 0.051 1.041 0.079 0.089
1st Best+Additional 1.002 0.047 0.047 1.045 0.099 0.109
Probability

DEVIATION FROM BASELINE IN A FIFTY SECTOR MODEL
(12) Random Correlation across k for bik �i.e., uik correlated across states�
OLS 1.204 0.024 0.205 2,523 1.207 0.078 0.221 250
Lee 1.107 0.026 0.110 1.177 0.078 0.193
1st Best Probability 1.108 0.026 0.111 1.182 0.081 0.199
+Maximum Predicted 1.154 0.028 0.157 1.211 0.087 0.228
Probability

+One Other Probability 1.109 0.027 0.113 1.183 0.081 0.200
+Two Other Probabilitiesa 1.111 0.029 0.115 — — —
+Three Other Probabilitiesa 1.124 0.030 0.128 — — —

Notes: 500 replications for all specifications. “Lee” stands for the method relying on the normality assumptions as developed in
Appendix A and “1st Best Probability” stands for the semiparametric approach developed in the current paper using assumption (A-2).
RMSE stands for root mean squared error. See Appendix C for further details on the Monte Carlo designs and a discussion of the
results.

aNot estimable for the small sample, since the covariance matrix of independent variables was often singular.

How does the estimator perform when the index sufficiency assumption does not hold? In speci-
fication (11), the loading factor on the fixed effect is allowed to vary by state, so that .k = 
k. In the
context of a model of earnings, this specification can be interpreted as setting the return to unob-
served ability equal to the return to education in a state. As discussed in Section 3.3, this formulation
violates the index sufficiency assumption. Under these circumstances, the estimation method of this
paper does not eliminate the bias, although the estimate has a smaller bias compared to the OLS
estimate. If the remaining probability is included in the control function, then no index sufficiency
assumption is needed. When this additional probability is included in a second-order polynomial
expansion of the correction function, the bias is eliminated at the cost of a small increase in the
variance of the estimate.
The final specification examines the assumption of index sufficiency in a high-dimensional model.

Fifty error terms for the fifty outcome equations are drawn from a multivariate normal distribu-
tion, with random covariances across sectors. Although a slightly different formulation compared to
specification (11), this error term structure also violates the index sufficiency assumption. The Lee
estimator and the estimator that assumes single index sufficiency (A-2) each eliminate about half of
the bias. The curse of dimensionality makes it impossible to include all 50 probabilities in the correc-
tion function, so a few other probabilities were added instead. Including other probabilities, whether
it be the maximum predicted probability or other probabilities chosen at random, does not reduce
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the bias. These results suggest that it may be difficult to detect violations of the index sufficiency
assumption in high-dimensional models (see Section 3.3).

APPENDIX D: Data Sources for Table V

Distance and Unemployment Variables

(1) Distance in Miles: Author’s calculations of distance between the state capitals in miles, using
the “Great Circle” formula:

Distance= arc cos��sin�Latj � sin�Latk��+ �cos�Latj � cos�Latk� cos�Lonj −Lonk���×M

where Latj = latitude of capital j , Latk = latitude of capital k, Lonj = longitude of capital j , Lonk =
longitude of capital k, and M = 69�16 miles, the average value of a degree. Source for latitude and
longitude of state capitals: Munro, D., editor (1988): Cambridge World Gazetteer: A Geographical
Dictionary. Cambridge, U.K.: Cambridge University Press.

(2) Unemployment Rate: Five year average unemployment rate for individuals age 16 and older.
Source for unemployment rate: U.S. Bureau of the Census (various years): March Current Population
Survey.

Quality of Life Variables

(3) Population Density: Persons per square mile.
(4) Doctors per Capita: Doctors per person.
(5) Dentists per Capita: Dentists per person.
(6) Hospital Costs: Average hospital cost per day (to hospital), in dollars.
(7) Teachers’ Salaries: Average salary for a teacher in the public schools, in dollars.
(8) School Expenditures per Capita: Annual public school expenditures, per capita, in dollars.
(9) School Expenditures per Pupil: Annual public school expenditures, per pupil, in dollars.
(10) Crime Rate: Crime rate per 100,000 persons.
(11) Violent Crime Rate: Violent crime rate per 100,000 persons.
(12) Incarceration Rate: Number of prisoners sentenced to more than one year, per 100,000 resi-

dents.
Source for variables (3)–(12): Horner, E., editor (various years): Almanac of the 50 States: Basic

Data Profiles with Comparative Tables. Palo Alto: Information Publications.

Climate Variables

(13) Average Temperature: Normal daily mean temperature in Fahrenheit degrees.
(14) Maximum Temperature: Normal daily maximum temperature in Fahrenheit degrees.
(15) Minimum Temperature: Normal daily minimum temperature in Fahrenheit degrees.
(16) Annual Precipitation: Normal annual precipitation in inches.
Source for variables (13)–(16): U.S. National Oceanic and Atmospheric Administration, Climato-

graphy of the United States, No. 81. Airport data based on a standard thirty-year period, 1961–1990.
Data for selected cities in all 50 states and the District of Columbia.
(17) Number of Rainy Days: Average days per year with precipitation of 0.01 inch or more.
(18) Number of Sunny Days: Average days per year that are either clear or partly cloudy.
(19) Afternoon Humidity: Annual average relative afternoon humidity (percent).
(20) Average Wind Speed: Annual average wind speed in miles per hour.
Source for variables (17)–(20): U.S. National Oceanic and Atmospheric Administration, Compar-

ative Climatic Data, Annual. Airport data for period of record through 1993. Data for selected cities
in all 50 states and the District of Columbia.
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State Spending and Taxing Variables

(21) State Spending on Education: Annual per capita state expenditures on public education.
(22) State Spending on Health/Human Services: Annual per capita state expenditures on health

and human services.
(23) State Spending on Highways: Annual per capita state expenditures on highways.
(24) State Spending on Public Welfare: Annual per capita state expenditures on public welfare.
(25) Miscellaneous State Spending: Total annual per capita state expenditures, minus expenditures

on education, health/human services, highways, and public welfare.
(26) State Sales Tax: Total annual sales tax revenue per capita.
(27) Average State Income Tax: Average annual income tax revenue per capita.
Source for variables (21)–(27): U.S. Bureau of the Census, Government Finance Series, General

Revenue Tables. No data for Hawaii, Alaska, or the District of Columbia. All variables measured in
dollars.
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